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ABSTRACT

New applications are demanding several improvements in the quality of computer net-

work technologies and infrastructure. These new applications that are expected to operate

in dynamic environments and computing solutions must provide similar performance even

in different network and resources qualities scenarios. Convergent wireless and wire-

line networks provides mobile and high data rate transfer and solves some of this new

requirements such as mobility and low-latency network communication. Also, remote

computing such as Cloud and Fog computing has arisen as an approach to deal with la-

tency issues in this context. This group of computing technologies enables several new

studies areas. Therefore, to support the research and development solutions for future

computer networks, we design COPA, a wireless/wireline network convergent monitor-

ing and container manager architecture for testbeds. This architecture enable the testbeds

experimental research by providing real-time wireless and wireline network monitoring

and experimenter-level orchestration. The monitoring of the network provides network

quality data for decision-making algorithms. Also, we provide a friendly user interface

for following the experiment network scenario. While, the experimenter-level orchestra-

tion enables the emulation of Cloud and Fog interplay by providing tools for management

of virtualized environments such as containers. We also present a use case of COPA. In

this use case we developed a smart lighting IoT system that allows control of light bulbs

(turn on/off, color and brightness change). This IoT device could be controlled by voice

commands which are processed and translated to light bulb language in a remote server.

This server could be at a Cloud computing, Fog computing datacenter or close to the de-

vice at some kind of smart gateway. We show in this use case, how COPA can provide

the necessary data for convergent wireless/wireline networks related research. Finally, we

conclude that COPA provide a excellent environment for researches of wireless/wireline

convergent network and orchestration algorithms for containerized services.

Keywords: Convergent Monitoring. QoS. Cloud. Testbed. IoT.



COPA: Uma arquitetura para monitoramento de redes sem-fio/cabeadas e

gerenciamento de containers

RESUMO

Novas aplicações estão demandando muitas melhoras na qualidade das tecnologias e in-

fraestrutura de redes de computadores. É esperado que essas novas aplicações operem

em ambientes dinâmicos, e soluções de computação precisam prover uma performance

similar mesmo em diferentes qualidades de recursos computacionais ou de rede. Redes

convergentes sem-fio e cabeado provem conectividade móvel e alta taxa de transferência

de dados solucionando alguns requisitos dessas novas tecnologias tais como mobilidade e

baixa latência de comunicação de rede. Soluções de computação remota tais como Cloud

e Fog computing vem sendo utilizadas para melhorar problemas de atraso de rede nesse

contexto. Esse grupo de tecnologias de informática habilitam o estudo em diversas no-

vas áreas. Então, para apoiar a pesquisa e desenvolvimento de soluções para redes de

computadores do futuro, COPA foi arquitetado, uma arquitetura para monitoramento de

redes convergentes sem-fio/cabeadas e gerenciamento de containers para laboratórios ex-

perimentais. Essa arquitetura habilita a pesquisa em ambientes experimentais provendo

monitoramento de rede sem-fio e cabeada em tempo real e orquestração em nível de ex-

perimentador. Também é apresentado um uso de caso do COPA. Nesse uso de caso, é

desenvolvido um sistema de luzes inteligentes que permite o controle de uma lampada

(liga/desliga, cor e intensidade do brilho). Esse dispositivo pode ser controlado por co-

mandos de voz os quais são processados em um servidor remoto e traduzidos para a

linguagem da luz inteligente. Esse servidor poderia estar localizado em um centro de da-

dos de Cloud computing, Fog computing or perto do usuário final em algum tipo de smart

gateway. Nesse uso de caso, é mostrado como o COPA pode prover os dados necessários

para pesquisas relacionadas a convergência de redes sem-fio/cabeadas. Por fim, é con-

cluído que o COPA fornece um excelente ambiente para pesquisas de redes convergentes

sem-fio/cabeadas e algorítmos de orquestração de serviços virtualizados.

Palavras-chave: Monitoramento convergente, Qualidade de Serviço, Cloud computing,

Redes, IoT.
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1 INTRODUCTION

New applications are putting computer networks to test several demanding im-

provements in the quality of computer network technologies and infrastructure. Mobile

and low-latency communication are some of these applications requirements. Wireless

networks provide mobile communication for devices, while there are some wireline net-

work technologies capable of high data rate transfer. Fast data transference reduces the

network latency and provides fast communication between devices. Convergent wire-

line/wireless networks solves some new applications requirements. However, there are

several cases such as Cloud Radio Access Networks [Checko H. Christiansen 2015], and

others mixed wireline/wireless network infrastructure models that need to be studied more

deeply.

Cloud computing is a paradigm that enables services over the Internet. Retrained

resources devices are not able to make complex processing or store too much informa-

tion. These devices sometimes do not have powerful hardware or, in others situations,

needs to decrease the battery usage. Cloud computing enables complex processing, large

data storage in this retrained-devices by providing services [Armbrust I. Stoica 2010].

Nevertheless, Cloud computing data center many times may be located far away from

the end-user, because of capital expenditure and operational expenditure decisions. This

distance from the service and the user causes an increase in the application response time.

Nonetheless, Fog computing is a paradigm that enables the services over the Internet pro-

viding extended capabilities to restrained-resources devices closer to the user than a Cloud

infrastructure [Bonomi R. Milito 2012].

Fog computing infrastructure size and processing power are smaller than a Cloud

computing facility. The smaller size of the infrastructure decreases the cost of deploying

a computing facility and enables the deployment of Fog facilities in several regions closer

to the end-user. Being closer to the user and in the network edge provide a lower net-

work latency than Cloud computing facilities. Fog computing enables remotely executing

of latency-sensitive applications computing. However, Fog may not have the sufficient

processing power to some computing routines and may delay the applications response

time. In this cases, Cloud computing infrastructure may decrease the processing time of

the application computing routine sufficiently to compensates the high network latency,

decreasing the application response time. Therefore, the interplay between Cloud and

Fog computing may solve the deployment of latency-sensitive applications computing
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routines.

Future networks may count with Cloud and Fog computing over a wireline/wireless

convergent network. These computing technologies may work together to provide the best

communication performance for the mobile devices. Improving the quality of service of

the computer network opens many research areas that need testing. In this case, testbeds

are experimental environments to help the research of specifics scenarios. This environ-

ment provides resources and tools for deployment of experiments. Testbeds also have the

advantage of owning the servers and the network infrastructure of the experiment. By

owning it, testbeds can provide tools to monitor and manage its resources, enabling the

reproduction of several real-life scenarios. As far as we know, there are not any testbed

solution to decrease the time spent with experimentation setup of the interplay between

Cloud and Fog computing over a wireless/wireline convergent network researches.

In this monograph, we introduce COPA, a convergent wireline/wireless network

monitor and container manager. COPA enables an easy experimentation environment

setup for testbeds. Our solution can monitor computer resources, wireless network and

wireline network quality. To emulate a Cloud and Fog interplay scenarios, we count

on container virtualization technologies. Container virtualization provides a virtual en-

vironment similar to Virtual Machines, but with less overhead in the virtualization host.

Combining the monitoring tool and the virtualization management, COPA can deploy,

manage or even migrate application servers among servers. Therefore, providing COPA

in this study, we aim to accelerate and help the research in future networks by providing,

also, a friendly user interface.

The remaining of this document is organized as follows. In Chapter 2, we present

the background regarding cloud and fog computing, convergent networks, and testbed

environments. In Chapter 3, we present the architecture of our solution. In Chapter 4,

we present our implementation of the described testbed environment tool. In Chapter 5,

we present an use case where our tool is essential to analyze experimental scenarios. In

Chapter 6, we conclude this document and present future work.
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2 BACKGROUND AND RELATED WORK

In this Chapter, we introduce the background knowledge pertinent to this docu-

ment, required to fully comprehend our solution. We also present the related work regard-

ing future networks, thus Cloud and Fog-based environments deployed over a convergent

wireline/wireless network infrastructure. Also the importance of experimentation in this

scenarios.

2.1 Cloud and Fog Computing

Cloud computing is a paradigm that enables services over the internet. Likewise,

it may refer to the hardwares and systems in the data centers that provides this services.

There are many approaches that Cloud computing can be accessed by a client. Cloud

companies may offer a service to the public this is referred as Software as a Service

(SaaS). Furthermore, when the Cloud company offers the hardware or a system that runs

on the data center the terms used are Infrastructure as a Service (IaaS) and Platform as

a Service (PaaS), respectively [Armbrust I. Stoica 2010]. The data center software and

hardware is what we call Cloud. In this work, we focus in SaaS since we plan to provide

better management solutions to IoT services.

Now a days, there are several computing devices that makes part of our daily

routine. It can be a smartphone or a health care sensor for elderly care, this devices

have a diversity of characteristics such as battery saving, low processing resources or a

small data storage. To achieve this objectives, this devices counts with the structure of

large data centers for remote processing and storage. Also, each data center guarantees

high-availability of it infrastructure in certain level, turning it targets for big applications

companies to trust their services. Big data centers are really expensive to build and sev-

eral conditions are considered before choosing the right place to initiate the construction.

Hence, cloud companies, many times, chose to build their data centers far away from the

end-user for several reasons. This distance may increase the network latency between the

server application and the final user, and may or may not affects in its quality of experi-

ence.

Fog computing is a paradigm that refers to a platform for local computing, dis-

tribution and storage to limited-resources devices. Different from Cloud computing, fog

does not counts on a large infrastructure, but Micro Data Centers (MDC) geographically
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distributed or even Smart Gateways located in the very network edge. Fog computing

reduced size turns it a restrained processing resource, however it makes possible the de-

ployment of such infrastructure at the network edge. Being at the network edge makes

fog closer to the end-user than a standard cloud computing data center. Many companies

are trusting its services to this micro data centers trying to reach a better service response

time performance for its network latency-sensitive applications. Therefore, cloud com-

puting data centers may not qualify for many of applications requirements, turning fog

computing one of the main alternative for latency-sensitive applications.

However, fog computing have its downsides. Because of its retrained process-

ing resources, the deployment of massive processing applications may be very costful

for the MDCs increasing, then, the service response time. Complex computing routines

may turn small data center a bottleneck to remote processing of such applications. Cloud

computing data centers, on the other way, may reduce the processing time of such rou-

tines. Reducing the processing time considerably may compensates the high network

latency characteristics of Cloud data centers. Therefore, it can reduces the response time

as whole and may be the best alternative for this kind of applications.

Considering the diversity of applications and the variation of processing power re-

quirement, the interplay between of Cloud and Fog computing data centers may be stud-

ied. A very know Cloud and Fog computing architecture is presented at figure 2.1. This

architecture shows at the top the Cloud computing data centers providing high processing

power and high network latency. Right under it, we have the Fog computing layer. This

layer is composed by MDCs and smart gateways, providing low processing power and low

network latency to the client applications. The interplay between this two paradigms can

be achieved by monitoring the applications resource utilization and network quality. The

monitoring data may provide the necessary information to decide where the application

server will be better to be deployed in or migrated to.

2.2 Convergent Networks

New services are created frequently with the development of new technologies.

The creation of this new services enables the increasing the computer network usage.

The increasing of computer network demand only grows and have achieved more than 25

billion of Internet connected devices around the world. In order to support this demand, it

needs to be provide an effective network infrastructure. 5G mobile networks may supply
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Figure 2.1: Cloud and Fog architecture
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part of this demand by providing high network capacity and excellent quality of service.

Therefore, most of the modern devices and all kinds of applications are preferring mobile

network connectivity from fixed. Because, the wireless technologies are achieving quality

of services equivalents of the standards wireline technologies, besides having the mobility

advantage.

Nevertheless, there are big urban conglomerates that requires support for con-

nection of great amount of users. 5G wireless access point technologies, then, needs to

support this number of users and forward the incoming data to a network communication

medium capable to support the quality of service enabled by 5G. Optical fiber enables

high data rate and low latency network communication. Hence, the best alternative for

this scenario is to use optical fiber as a wireline network communication medium to pro-

vide internet connectivity to the 5G wireless network user.

Optical/wireless convergent networks infrastructure may be part of future net-

works infrastructure. However, uniting this two technologies requires a deeply study.

Achieving the quality level of this convergent was a commercial demand and natural

move for computer networks. But, providing this communication quality enables others

areas of study such as Network Functions Virtualization (NFV) and latency-sensitive ap-

plications. NFV aims to migrate network-specific hardware components to software that
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can be run in generic hardware. This technology aims to reduce capital expenditure to

deploy a computer network infrastructure by economizing in hardware and transferring

the analogical signal processing to a powerful processing location such as data centers.

Also, this technology provides flexibility to provide new network functions solutions by

just changing the running software in a centralized center.

Furthermore, latency-sensitive applications could migrate from fixed to mobile

network connectivity with the deployment of optical/wireless convergent infrastructures.

This migration enables the growth of areas such as Healthcare which have some critical

applications that requires quick feedback for the end-user. In this scenario several services

could run in a Cloud computing data center and it still would provide a high quality

user experience. The deployment of this futuristic infrastructure may be slow in several

countries. Many places may not be prepared to spend its time and money in this kind of

expensive infrastructure, opting, then, to find others solutions. Thus, in future, we could

not always count with only wireless/optical convergence, but with any wireless/wireline

infrastructure. To achieve similar results we may need to group up some study areas.

The interplay of cloud and fog computing in this transitional or alternatively sce-

narios to wireless/optical infrastructures may be a reasonable solution. The research and

industry community are already providing experimental scenarios for future network stud-

ies and experiments. This places are called network testbeds and are explained in the next

section.

2.3 Testbed Environments

Research and development are the bases of new high demand technologies. In

many cases, researchers utilizes experimental use cases to prove their premises or solu-

tions. However, the environments of this experiments are not always regular and pre-

dictable. Therefore, many times researchers are surprised with non-previewed events or

external influences that may compromise the study. But is most of the cases the experi-

mental research is essential for improvement and proof of technologies State-of-the-Art.

Nonetheless, testbeds, experimental controlled environments, were created to facilitate

the life of our fellows experimenters. Testbeds can vary from hands-on prototype devel-

opment such as automobile industries to software development environments. In our case,

we will focus in computer network testbeds in this work.

Computer network testbeds are mostly specialized in some technology or area
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such as Internet of Things, wireless network or convergent optical/wireless networks. In

a IoT testbed, must be provided IoT devices such as raspberry pies or other hardware

capable of communicating through protocols such as low-rate wireless personal area net-

works (LR-WPANs). For an wireless network testbed it can be provided, for example,

Universal Software Radio Peripheral (USRPs) for deploying any kind of wireless pro-

tocol. USRPs are generic programmable radios that enables the development of several

wireless network protocols. For an convergent optical/wireless network testbed, it is nec-

essary the deployment of any wireless network technology connected to a optical fiber.

This optical fiber may provide connectivity to a application servers or any kind of service.

Then, it can be researched about this technologies.

Emulab is an example of network testbed. It helps researchers develop, debug

and evaluate their systems in a wide range of environments. Emulab is located at Utah,

United States of America and counts on two dozen sites. This sites provides resources

to help computer science researchers in the fields of networking and distributed systems.

Emulab counts with USRPs, 802.11 wireless nodes and tools to create complex network

topologies. Also, we have Federated Union of Telecommunications Research Facilities

for an EU-Brazil Open Laboratory (FUTEBOL) [FUTEBOL 2018] that is a federation

of testbeds which its purpose is to provide access to advanced facilities in Europe and

Brazil for research and education across the wireless and optical domains. To achieve

its objective, FUTEBOL has enabled the access of resources in universities testbeds such

as UFRGS, UFMG, UNIVBris and Trinity College Dublin through a federative tool for

testbed management, JFed.

FUTEBOL project counts with a diversity of resources. At UFRGS, the federa-

tion has Raspberry Pis, Arduinos with Xbee shield to experiment with IoT network pro-

tocols and USRPs to reproduce any wireless network protocol. Also, UFRGS FUTE-

BOL testbed counts with USRPs with optical fiber connectivity enabling the emulation

of Radio Over Fiber experimentation or any optical/wireless network convergence ex-

perimentation. Not only at UFRGS, FUTEBOL counts we computer servers to deploy

Virtual Machines (VMs). VMs are a generic and indispensable resource for any testbed.

Through operational system emulation, this resource make possible create network gate-

ways, servers or any virtual resource the experimentation may have.

Testbeds are very important for science, making experimentation easier and trust-

ful. Also, for computer network research and development, it is the only possible option

for and low-cost research, since many of the resources needed are very expensive and
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may be unaffordable for many of experimenters. FUTEBOL testbed will be focused in

this work since it is specialized in wireless optical convergence.

2.4 Related Work

There are several factors that affect IoT scenarios, such as devices’ features, geo-

graphical location, and network architecture. Yannuzzi [Yannuzzi et al. 2014] concludes

that the current datacenters’ locations will not be able to fulfill the requirements of fore-

seen IoT applications. Considering mobility, reliable control, and scalability, the author

analyzes fog computing as a natural platform for IoT, also addressing the increasing im-

portance of the interplay between fog and cloud in coming years.

Bibani [Bibani et al. 2016] proposes a hybrid fog/cloud architecture in order to

provide a feasible IoT solution for low-latency applications such as firefighting. Authors

demonstrate their approach, providing evidence that fog and cloud computing can al-

ternate their computing role within the hybrid architecture to meet different application

requirements; in particular, to reduce latency, the architecture can allocate the computing

processes in the fog, closer to IoT devices.

Confirming these findings, Shi [Shih et al. 2016] presents a solution called Fog-

Radio Access Network (F-RAN) which is able to bring efficient computing capability to

the edge of the network, the fog, to meet the requirements of ultra-low latency applica-

tions. In order to have a comprehensive understanding of the interplay between fog and

cloud computing in the IoT context, the convergence of optical and wireless networks

must be taken into account. Munõz [Munoz et al. 2016] presents their 5G end-to-end ex-

perimental platform which combines heterogeneous optical/wireless networks, distributed

cloud, and IoT devices. The authors acknowledge the importance of the fog/cloud inter-

play and the role of optical and wireless combined networks.

The articles presented in this sections provides a vision of how the computer net-

work researchers are facing some future network solutions. After researching about Cloud

and Fog computing, wireless/wireline convergent networks and testbeds, we designed a

solution that enables research in such testbed environments scenarios. In the next chap-

ter, we present COPA: a wireline/wireless convergent network monitoring and container

manager architecture.
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3 COPA: THE SOFTWARE ARCHITECTURE

In this chapter, we present COPA, a wireline/wireless convergent network moni-

toring and container manager architecture. This software architecture manages and mon-

itors a Cloud and Fog computing scenario that utilizes container-based virtualization in a

converged network testbed infrastructure. Furthermore, we show the architecture details

per module explaining details about the execution and patterns about the theory behind

the development of the software.

To fulfill all the requirements, COPA is composed of 3 major modules: the or-

chestrating, the monitoring and the Web Server module. We divided the orchestrating and

monitoring modules into two submodules. This division was planned so we could have

two distinct levels, the control layer, and the execution layer. The first submodule is the

first entity which controls one or more execution layer entities that run on remote servers.

The secondary layer, in case of the monitoring module, is called COPA Agent and, in the

case of the orchestrator, are represented by the container manager software. Furthermore,

all the control layer stays in an entity called COPA Server and the secondaries ones are

located in the COPA Pool. Thus, the Web Server module, as the control layers, is located

at COPA Server, having just one of this module per experimentation. Figure 3.1 presents

all the modules organization and communication among them. We chose a centralized

paradigm because of multiple advantages and limitations of the control framework used

to reserve resources in the testbed explained in the following sections.

3.1 Web Server

Web Server is the central entity of COPA Architecture. This module is responsible

for many tasks as providing a web interface, a REST API and a database for the testbed

experiment. The Web interface is an HTML-based API that the user will be able to ac-

cess via browser, while the REST API is a JSON-oriented interface focused on providing

automated access to the server database. The Web Server was designed in a Model, View

and Control (MVC) paradigm where it can logically separates the database management

layer, the controlling layer and the method of data visualization layer. This organization

enables COPA to provide two types of interface.

The Web interface enables the experimenter to follow the COPA Pools monitoring

in real time. Besides that, this tool also allows the configuration of the COPA Pools and
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Figure 3.1: COPA software architecture
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orchestration methods. The REST API provides functions to store, request monitoring

data and even container management actions. Besides that, the experimenter could de-

velop a script that uses the REST API to save or gather information from the database.

Centralizing data at the Web Server also allows the data consumers applications have a

lower response time than requesting each COPA Pool individually to request monitoring

data. Having all the data in one place also facilitates future data analysis by the experi-

menter or the orchestration algorithms.

To provide an easy to use Web interface, we designed a mock-up of COPA’s main

screen presented in Figure 3.2. The idea was to make available monitoring data in real

time for the experimenter and fast orchestration reconfigurability. Therefore, for the or-

chestration reconfigurability, we designed a delegation bar. In this component, the experi-

menter could choose between manual delegation or automatic. If the manual option were

chosen, the experimenter would have control of the containerized applications. A drag

and drop functionality is planned to move containers from one COPA Pool to another

manually, providing a user-friendly interface for server migration. If the automatic option
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were chosen, a drop-down menu that would show up and the experimenter would have

to choose among the options presented. In this menu, we would have available the cus-

tom orchestration algorithms uploaded by the user and other eventual pre-stored testbed

orchestration algorithms. With the automatic delegation activated, the user would be un-

able to manage the containers manually, and the chosen software intelligence would take

control of this task.

Figure 3.2: Dashboard mockup
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The end-to-end wireline network monitoring generates many data making its vi-

sualization more complex. For the COPA main screen, we planned to keep more simple

as possible. Hence, the health status monitoring of COPA Pools was prioritized in this

first view. We can see in Figure 3.2 that we have a list of panels components, where

each one of the panels represents one COPA Pool. In this panel, we designed to show

the resources monitoring of each COPA Pool and the list of containerized applications

hosted by them. The first resource data presented is the CPU load that is represented by

a percentage bar. Second, we have the memory usage that is represented by the same

component that the CPU. Right under, we have the Network Load which is the amount of

data passing through the network interfaces of the host. Then, we have the container list

which provides the location information of each application and container management

as well. Each container in this list has a menu that enables the experimenter to start, stop,

freeze, unfreeze and delete a container. Furthermore, there is a form for creating con-

tainers which the experimenter can access by clicking on the plus button located inside

the container list. To finish, we have the links button which opens a better view of the
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wireline and wireless end-to-end network measurements.

In this links view, we planned to have the wireline end-to-end network measure-

ments from each COPA Pool to another. The wireline monitoring will be divided into

tabs where each one will present information from one end-point COPA Pools. Also, we

designed the charts to be updated in real-time as the resource monitoring. Furthermore,

we plan to develop a comparative tool to visualize the different links quality. In the same

window, the wireless network monitoring will be shown in the case of the COPA Pool

have a wireless network interface. This visualization will be organized in tabs too. Each

tab will have the information about a connected device.

As we could see, the Web Server module is the base of the architecture. It is re-

sponsible for storing data collected by the monitor, provide a graphical user interface for

the researcher and provide data and reconfigurability to the orchestrator module. How-

ever, we cannot show any data if there is any of it. Therefore, in the next section, we

present how we design the monitoring module to provide the data that better represents

this network convergent scenario.

3.2 Monitoring

Some modules had significant influences in the monitoring module design given

some characteristics of the testbed environment. The control framework utilized in the

FUTEBOL testbed, where we based our software architecture, have some limitations.

When provisioning the experimenter slice resources, the control framework does not have

some crucial information as what are the IP address of the resources. That influences di-

rectly at the Monitor Agent because it needs the information of where it needs to connect

to make the end-to-end network quality measurement. Another characteristic of the con-

trol framework is the unsynchronized initialization of resources. If we had decentralized

monitoring, we would have to utilize or develop a network detection protocol to discover

new COPA Pools in the network, causing a development overhead.

Therefore, we propose the monitoring module to be divided into two entities:

Monitor Controller and Monitor Agent. The former submodule is a centralized entity

for the monitoring module. It can connect to all Monitor Agents through a proprietary

API and initiate and synchronize them, while the latter makes the actual network and re-

sources monitoring. Besides that, the Controller can handle the insertion of new COPA

Pools by the experimenter. It is made by monitoring the COPA Server database for differ-
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ences between the data stored in the database itself and what it has stored in the controller

data structures.

After defining architectural issues, we elaborated a logical behavior of the Monitor

Agent that follows the state machine presented in Figure 3.3. Initially, the Agent is not

connected to any Controller and listen to a port waiting for connections. This Agent

behavior helps to manage the synchronization of the COPA Pools. After the connection

of the Monitor Controller, the Agent waits to receive the information necessary to start the

monitoring. Received the data, it waits until all the Agents are in the same state and then

receives a command to start the monitoring. When the monitoring is under execution, the

agent captures metrics from the wireline network, the resources of the host COPA Pool

and, if exists, the wireless network. Finally, at the end of this routine, the Agent sends the

monitoring data to the Web Server where it is saved in the database.

Figure 3.3: Monitor Agent state machine.
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The Monitor Controller was planned as presented in the algorithm in Figure 3.4.

When initiated, the process accesses the database requesting for the existent COPA Pools.

Following, it compares the new information of COPA Pools to the previously collected

ones. If it is the first iteration of the algorithm, the Controller only stores the COPA

Pools data in a data structure. Next, the controller saves the COPA Pools data in a control

structure, where it can make group commands to each Monitor Agent given it state. If

there are Agents that are not connected yet, the Controller tries to connect, and them
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save the current state of this agent given the result of the action. Next, the controller

executes the register action distributing data of the connected agents to all agents with

the connected state. After the registration of the connected agents, the controller initiates

all the registered agents. If there is new COPA Pools, the controller reset all the existent

agents by disconnecting to them and redoing all the procedure described above. The same

occurs when a COPA Pool is removed from the experiment.

Figure 3.4: Monitor Controller algorithm.
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The monitoring module is essential for research and is the focus of this work.

Although, there would be no purpose in collecting this information if we could not do

anything with it. Therefore, in the next section, we present the orchestrating module.
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3.3 Orchestrating

The objective of COPA is not to provide orchestration algorithms to be used in

the experimentation. However, to provide a platform where the experimenter can write

any service orchestration algorithm and run it without any problem. To achieve this, we

present a detailed architecture of the Orchestrating module in Figure 3.5.

Figure 3.5: Detailed Orchestrator Architecture

Proprietary API

Source: Author

This module is composed of two major entities: the Orchestrator and the Service

Run Environment (SRE). The first is located at COPA Server while the second is placed

at COPA Pool. The Orchestrator is divided into three components that provide a generic

orchestration algorithm environment. The first component is the Algorithm Library which

is responsible for storage the uploaded user algorithms. The second, we have the Orches-

tration Manager. This component is responsible for monitoring the database for changes
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in the orchestration configuration and replaces it if necessary. For example, when the user

changes the running orchestration algorithm, the Orchestration Manager detects it, con-

sults the Algorithms Library, stops the current active algorithm and executes the selected

algorithm.

Third, the Sandbox Environment which provides a secure and isolated environ-

ment for the orchestration algorithms to run. This component is essential, because, in

COPA, we allow the user to run any code inside COPA. The objective of running user

content is for research purposes. Nevertheless, we can not guarantee that the user will

not try to find a security breach in the software environment. For that matter, we ar-

chitecture two Communications Libraries for external operations. One of them is the

Container Manager Communication Library. This library provides direct access to the

Remote Container Manager which has access to all containers in the COPA Pools. The

remote container manager provides management to any containerized service among the

COPA Pools. Furthermore, we have the Database Communication Library which enables

the Orchestration Algorithm to request monitoring data from Storage. Without this last

component, the Orchestration Algorithm would not have any information to base its de-

cision making without this last component.

Service Run Environment is a container virtualization technology that provides

isolation and management to containerized services. It also provides an open API to

connect to others Service Run Environments and be able the exchange information. These

connections enable the migration between the COPA Pools and also the Remote Container

Manager to manage containers. Inside of SRE, we count with a control layer of the

container virtualization technology and the containers itself. This organization enables

the experimenter to deploy and manage containerized applications without any problem.

We all know that the theory and practice go hand in hand. Therefore, we presented

in this chapter the planning and theory of COPA. We could design a well-defined structure

and rules to make the COPA platform possible. In the next chapter, we show how the

development was executed and what technologies were used.
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4 IMPLEMENTATION

This chapter presents the implementation aspects of the COPA architecture de-

signed in Chapter 3. As we previously stated, the aim of COPA is to allow the monitoring

of a wireline/wireless convergent network and management of containerized applications.

Considering the challenge inherent to this end, several third-party software were inte-

grated to achieve each of the internal functioning objectives of the architecture. In what

follows, we explain our technology decisions and their roles in COPA. In figure 4.1, we

present the main screen of COPA.

Figure 4.1: COPA dashboard.

Source: Author

4.1 Technologies

COPA has as its objective to provide an easy-to-use tool for wireline-wireless

monitoring of container manager hosts. Hence, it smartly aggregates some technologies

to achieve its objectives. In the wireline monitoring, it was chosen One-Way Active Mea-

surement Protocol (OWAMP), an already certificated software to capture one-way-latency

and jitter. In the wireless monitoring, we used IW tool [GNU 2017] that is a native Linux

tool which provides wireless network metrics for each connected device. The subsections

4.1.1, 4.1.2 and 4.1.3 present the leading technologies used and how they were used in
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the project.

4.1.1 Django

Django is a Python Web Framework that enabled to implements the web server

module, the centralized part of the system architecture. Among many advantages, this

framework was chosen because of its fast development and clean, pragmatic design [DJANGO

2018]. This framework is also a Model, View, and Controller (MVC) which is a very

well-known organizational method for web servers in general. Therefore, this technology

enabled the development of both REST API and the web interface.

To store data, Django provides support to SQLite by default. This database soft-

ware enables an easy to deploy and portable environment which is very important for

running in experimentation. Django helps in the implementation of the web server mod-

ule by providing different out of the box libraries and structural models. This features

helped to speed up the development.

4.1.2 OWAMP

OWAMP is a command line client application, and a policy daemon used to deter-

mine one-way latencies and end-to-end jitter measurements between hosts [INTERNET2

2018]. Such a tool allows COPA to extract data about experiments and provide a complete

view of testbed network behavior. The version used in this project was the 3.4-10.

OWAMP is a client-server architecture. The server listens to a specific port waiting

for a client to initiate the end-to-end network quality measurement. Both client and server

were installed in all of the COPA Pools. The server is initiated at boot time of COPA Pool

while a COPA Agent executes the client. Each measurement longs at least 10 seconds

and returns the maximum, the minimum and the average latency of that period. It is not

repeated to say that this software enables a precise wireline monitoring tool and provides

two fundamental metrics for this work, latency, and jitter.
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4.1.3 LXD

LXD is a next-generation system container manager. Different from others con-

tainer managers, the objective of LXD is not only provide containerized applications but

serve as a light-weight option to Virtual Machines (VM) and provide full servers deploy-

ment. COPA is projected for monitoring and orchestrates services, simulating, then, a

similar environment of Cloud/Fog computing. Therefore, a key factor in choosing this

technology was the implementation of the live-migration method which other containers

managers such as Docker has not implemented until this project was written. Further-

more, this technology provides a REST API over a local Unix socket as well as over the

network. The REST API enables remote communication that is essential to COPA, so

the control layer of the orchestrating module could execute actions from COPA Server to

COPA Pool.

All the COPA Pool have an LXD instance to enable the execution of container-

ized applications. The LXD, in this context, represents the Service Run Environment

component of the orchestrating module. Also, COPA Server has an LXD installed in it.

However, it does not execute any container in it. The role of LXD installation in COPA

Server is providing a container image library, storing pre-made containers images, e.g.,

ubuntu server. It is important to inform that to run LXD with live-migration, it requires a

specific Linux kernel version, LXD, and Checkpoint/Restore In Userspace (CRIU) soft-

ware: kernel v4.8.0-54, LXD 2.0.9, and CRIU v3.1.

4.2 Coding details

To provide a better understanding of this work, we describe in this section some

nuances about the COPA code. We organize this section in four subsections, following

the structure of COPA architecture: first, we describe coding of the Web Server; then we

explain details regarding the components COPA Controller and COPA Orchestrator of the

COPA Server; finally, we discuss coding aspects of the COPA Agent that run in the COPA

Pool.
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4.2.1 Web Server

For the Web Server component, we use Django framework in the 2.0 version. The

Django framework organizes their modules in "apps", and we implement three of them

in the web server: containers site, core, and monitor. The first is the default app, which

provides files and components that are used by more than one app, e.g., the site template.

Second, the core is responsible for providing a REST and HTML-based interface for

managing the containers inside the COPA Pools. Finally, the monitor app provides a

Create, Read, Update and Delete (CRUD) REST interface for monitoring data gathered

by COPA Agents. In the following, we explain the structure of the two important apps:

core and

Core app

The core is the container management interface. This app uses the “pylxd” library

to provide classes and methods to connect with the local and remotes LXDs in the net-

work. Table 4.1 presents the organization of the Core app. In the left column, we have the

HTML-based functions, which are accessible through the browser. While in the right we

have the REST API available.

We can see while the HTML-Based have one function per action, the REST API

have only one for all. That occurs, because the HTML-Based returns an HTML for each

URL, while the REST API have one URL and the actions are sent by HTTP method. For

example, if we want to add a new container, we should use the HTTP method POST and

the URL that refers to the REST API container function. It is important to highlight that

the migrate function, that is present in both user interfaces, depends on secure connectivity

among COPA Pools. To migrate a container, the Web Server connects through the pylxd

library with the origin LXD and executes a move action to the destination Pool. The

remote LXD connection can only occur because of a previous setup of certificates in all

COPA Pools LXD.

Monitor app

The monitor app hosts the main COPA interface. Hence, it is one of the most im-

portant and the most worked part of the system interface. As the core app, the monitor

also exposes a REST API and an HTML-based interface as shown in Table 4.2. One of
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Table 4.1: Core app code organization
HTML-Based REST API
containers_list

container

containers_start
containers_stop
containers_delete
containers_freeze
containers_new
containers_migrate
containers_unfreeze
containers_info

Table 4.2: Monitor app code organization
HTML-Based REST API

dashboard
locus
dashboard
dashboardlinks

about
kpilink
kpiresource
kpiwireless

the characteristics of this app is the dynamism of its dashboard HTML-based interface.

The experimenter can execute actions without changing the webpage. For that matter, we

can see that in the HTML-based interface we have only two functions: dashboard and the

about page. In turn, the REST API exposes five functions, three for getting and saving

network related data in the database (kpilink, kpiresource, and kpiwireless) and two for

update data in real time in the dashboard interface (dashboard and dashboardlinks). The

former is requested by a javascript loop function to update the dashboard resource moni-

toring charts. A javascript loop function also requests the latter but in different times.

4.2.2 COPA Controller

The COPA Controller is part of the monitoring module. This component con-

sists in a Python script that runs inside COPA Server and acts in the management of

COPA Agents, especially in the initialization process. As COPA Agents run as indepen-

dent instances of software, when they are started they do not know the existence of their

neighbors. In such a context, the Controller is responsible for gather registered Pools

from COPA Server and update Agents with neighborhood information. This feature was

implemented using a socket python library, and for data transferring we used JSON data

format.



32

In many cases, Pools do not initiate simultaneously. Therefore, another function

of the COPA Controller is to synchronize the start of the whole monitoring system, reg-

istering each COPA Agent and starting them all together. To do this, we implemented a

control class called Monitor which follows the Agent’s state machine rules described in

the Solution chapter in Figure 3.3. This class can connect to remote COPA Agents and

send messages, changing their states automatically.

Another important data structure is the Controller class. This class manages all

the instances of the Monitor class, enabling the mass executing of actions as the con-

nect action. For example, when the connectMonitors function from the Controller class

runs, the COPA Controller checks all the Monitors instances if any of them have a "not

connected" status. If there is, the COPA Controller tries to connect and, if successful,

changes to Monitor status to connected. The implementation of this two classes plus the

flow of execution as seen in the figure 3.4 of the Solution chapter, enables the Controller

to perform all the actions of the algorithm.

4.2.3 COPA Orchestrator

Similarly to COPA Controller, the COPA Orchestrator is a python script running

in the background on the COPA Server. Unfortunately, neither the Algorithms Library

neither the Orchestration Manager components were implemented. As a proof of concept

and for the sake of simplicity, we employ a generic class to implement methods that gather

monitoring information from the database. Seven of the eight methods are implemented

to provide abstracted data to the orchestration algorithm. Among them, we have two-time

interval methods, get and set. The time interval is the referent of how old information the

experimenter wants to use to feed the algorithm. For example, the default time interval is

two minutes. Then, our algorithm is going to get information about the network links of

the last 2 minutes of monitoring. The remaining of this methods implement the Database

Communication Library (DCL) of the Orchestrator component.

Representing the DCL, we have a method to get the existing COPA Pools in the

experiment. Furthermore, we have implemented the method to get the containers inside

this pool, together with the monitoring data of the containers itself provided by LXD

platform. Moreover, we have the methods getResources, getLinks, and getWireless which

receives the COPA Pool name as a parameter and returns the resources, wireline network

monitoring and wireless network monitoring data, respectively. Last but not the least we
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have the decision algorithm. However, as said before, this part is only an abstract method,

giving the opportunity for the experimenter to extend this class and add its code. The

downside of this approach is that the experimenter has to extend the Orchestration class

adding its python orchestration algorithm. After that, the experimenter has to run the

process in the COPA Server manually.

Furthermore, the container manager calls for migrating and creating containers

must be made through the implemented Core API which represents the Container Man-

ager Communication Library. The API is well documented in COPA repository [COPA

2017].

4.2.4 COPA Agent

The COPA Agent is also a python script that runs in the background. The module

starts at the boot of COPA Pool together with the OWAMP server. When started up, this

module includes three important classes: two for passive monitoring and one for active

network monitoring.

The first passive monitoring class is for capturing wireless data from the connected

devices if a WiFi network is up. To capture this information, the WLInfo class, as it is

called, make use of the IW tool. This software is native to Linux, and it gives information

per connected device about the signal strength, TX and RX bytes transmitted and TX bytes

failed. Moreover, WLInfo parses the response of IW tool and turns into a JSON friendly

format. The second class is the Throughput, which is a thread of the Agent process. The

role of this class is to calculate the instantaneous network throughput of all the COPA

Pool network interfaces. With this information, we can measure the Network Load of

the server. Different from WLInfo, Throughput uses a psutil library to gather network

data. The Throughput thread is consulted from time to time by the main thread of COPA

Agent and sent to COPA Server. In the active monitoring, we have the Owping class. This

component manages the use of OWAMP client which calculates the end-to-end one-way

latency and the jitter between two COPA Pools.

For control of the monitoring agent, we have two classes: StateMachine and

LoopThread. The former works similarly to the state machine presented in the monitor-

ing section of the solution chapter. The difference is that this class, in addition to storing

the status of this program, and the rules of changing one state to another, executes some

deployment actions. For example, the register method, which executes when each COPA
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Monitor connects, execute the main control class, LoopThread. LoopThread is a thread of

the monitoring script and is responsible for executing the monitoring actions and sending

data to the Web server, located at COPA Server. This class contains a loop controlled

by a flag. This flag is turned on and off according to the registration and disconnection,

respectively, of the COPA Monitor.

4.3 Graphical Interface

The monitor graphical interface of an experiment must be simple and easy to use.

We based our interface development in the mockup presented in Chapter 3, Figure 3.2.

Given our expertise with the responsive web framework, we used the Bootstrap v2.3.2 for

the graphical interface implementation.

The home page of COPA is the dashboard as shown in Figure 4.1. This page

is divided into two areas depicted in Figure 4.2. In the top area, a menu bar exhibits

orchestration options. By default, the delegation method is manual, and this means the

application containers will not migrate to any other Pool unless moves it manually. The

other options are in the sub-menu Automatic. The provided orchestration algorithms are

just threshold algorithms for CPU, Latency or both together. This automatic options are

just proof of concept and must be enhanced.

Figure 4.2: Monitor state machine.

1

2

Source: Author

In the second area, the web interface presents monitoring information and options.

In this division, we have a panel for each COPA Pool in the experiment. Where, charts

exhibit resource monitoring data from the COPA Pool, e.g., the percentage of CPU usage,
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Memory usage and Network Load in megabits per second. Right below, the containers ap-

plication are listed. Given the implemented functions in Core app located inside the Web

server, the web interface can send actions to containers by just making ajax requests to the

available API. The actions are available in a submenu that appears when the experimenter

hover the mouse through the container name shown in Figure 4.3.

Figure 4.3: Containers actions.

Source: Author

Next, there is the network monitoring modal window in Figure 4.4. In this win-

dow, there are two sections. First, we have the wireline monitoring which contains metrics

about the link between COPA Pools. The first chart of this section shows the variation of

the latency over time. In turn, the second chart represents the variation of the jitter over

time. To implement this charts, we use the Highcharts library for chart drawing [HIGH-

SOFT 2018]. Above this two charts tabs allows the experimenter can navigate through

Pools. The following interface section provides wireless monitoring of all connected de-

vices in the WiFi network provided by the Pool. This interface section only is showed up

when the Pool has an active wireless interface. The first chart of this section shows the

device signal strength. The second chart is about the connected device data load, which

provide information about transmission, received bytes and failed transmitted bytes.
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Figure 4.4: Containers actions.

Source: Author
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5 ADAPTIVE CLOUD/FOG FOR IOT

In this use case, we present how COPA can be used in a real wireline/wireless

convergent network testbed experiment scenario. The primary research areas are Fog

and Cloud computing, wireline/wireless convergence and IoT. Also, we demonstrate how

COPA can help tools the research in future networks as a wireline-wireless infrastructure

to provide high-quality IoT communication, involving devices ranging from low com-

plexity sensors and actuators (luminosity, and smart light bulbs) to more advanced ones

(multimedia sensors and smart glasses). The first section of this chapter validates the idea

of this use case. Next, we set up a scenario where the experimentation occurs. Then, we

explain how the experiment is deployed inside the FUTEBOL testbed. Finally, we show

the monitoring of the metrics collected by COPA and how the experimenter follows the

status of experimentation.

5.1 Use case motivation

Using Fog/Cloud in this use case, we could process the workload of different IoT

applications, like smart energy metering, security systems, water toxicity sensors, air pol-

lution detectors. These different types of applications impact differently from the wire-

line and the wireless-network domains. The integration between wireless and wireline

networks in this experiment comes from the fact that the wireline network can be used

as an efficient transport mechanism for IoT wireless data to be processed in the Cloud,

due to the high capacity and low latency provided by wireline transmission technologies

as an optical fiber. The experiment demonstrates the importance of resource and net-

work monitoring of the applications by providing information to the interplay between

Fog and Cloud computing. This demonstration aims to validate the convergent network

monitoring and container management as part of future network infrastructures for IoT

deployments. The converged wireline-wireless network monitoring is essential to address

the requirements of IoT data transmission and analytics and to offer the highest flexibility

and reactivity to changing load demands.

Fog computing enables the reduction of network latency for IoT applications and

the decreasing of the total data traffic sent to the core of the network. Fog improves net-

work connectivity because it is located closer to the user. Such performance enhancement

can be measured regarding network capacity and latency gains. Also, it is possible to im-
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plement containers orchestration intelligence to analyze network and computer resources

data and decide whenever the Fog is required. This arrangement enables the dynamic

allocation of the locus of computing among the databases according to wireline-wireless

network and container host conditions, tailored to latency-constrained IoT applications.

In a previous study, it was demonstrated that a smart light controlled by voice

commands could validate the usage of Cloud and Fog [Silva B. Abreu 2017]. The authors

conclude in this study that from the processing time point of view, for processing complex

voice commands, we could not see a big difference in latency between the Cloud, Fog, or

Local. As for simple commands, the processing time is smaller in the tiers closer to the

mobile device (local machine or fogs). Although the Cloud could have more processing

capabilities, it results in longer latency when there is competition for network resources.

Moreover, last, from the response time point of view, a combination of network latency

and processing power is assessed showing that Cloud/Fog interplay could improve the

application performance.

We will use the same IoT application for experimentation. The main objective of

this use case is to provide a testbed solution for experimentation which can provide data

about a wireline-wireless convergent network and help to assess the interplay between

Fog and Cloud to enhance the performance of IoT applications. COPA enables a trade-off

between Fog and Cloud when applied to IoT environments while considering different

conditions of resource and network monitoring.

5.2 Showcase set up

To set up an experimental scenario, we relied on the FUTEBOL testbed. There-

fore, in this use case, we have designed an experimental architecture given the available

resources in the FUTEBOL testbed. As in figure 5.1, we have three distinct tiers of

processing. The first one is a Local Fog (Local) closer to the application client. Next,

with more of processing power than Local and further away from the user, we have the

Regional Fog (Fog). Last, we have the Cloud computing datacenter (Cloud) with more

computing power, but farther from the client application than Fog. In our scenario, the

Local tier is responsible for enabling the wireless network connectivity, turning into a

smart wireless gateway. Given the location of the IoT devices, the Federal University

of Rio Grande do Sul (UFRGS) was chosen to be our Local tier. The location decision

enables the secure configuration and test of the application client. Federal University of
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Minas Gerais (UFMG), then, was utilized as a Fog tier. Finally, we used resources at the

University of Bristol (UNIVBris) as a Cloud computing given the high latency character-

istic.

Figure 5.1: Experiment architecture

Source: Author

In figure 5.2, we present the simplified architecture described above. In each tier,

we have installed a Virtual Machine (VM) with a COPA Pool enabling the remote process-

ing of the application server. The COPA Server was installed in the Cloud tier, given the

higher processing power comparing to the others tiers. Connected in the Local wireless

network, we have the IoT application. We have built a multi-colored smart light sys-

tem in which a person can control the lights through voice commands. In particular, the

lights can be controlled on a course three levels: turn on/off, increase/decrease brightness,

and change color. This system is a client-server architecture and spans a wireless and a

wireline network. The client is connected to a wireless network while the server, where

the voice recognition process occurs, stays a remote locus of computing which operates

across the wireline network. In this case, processing can occur in any of the presented

COPA Pools.

The smart light controlled by voice was created, at the client-side, with a Rasp-

berry Pi 3, an Arduino Uno, an infrared controlled multi-colored light bulb, a protoboard,

an infrared emitter and a microphone. In the Raspberry Pi, we used pyaudio library to
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Figure 5.2: Convergent monitoring setup
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Source: Author

capture the audio and send to the remote processing server. Due to some limitations,

Raspberry Pi cannot use the infrared emitter without alterations in the kernel. That oc-

curs because the process that sends data to the infrared emitter is interrupted several times

by the CPU process scheduler, making it impossible to send the infrared at the right fre-

quency. Therefore, to execute commands to the smart light, we connected the Arduino

with the infrared emitter to the Raspberry. So, the Raspberry can send commands through

USB to the Arduino and, then, executes commands to the multi-colored light bulb. In the

server-side, we create an LXD container with a Python 3 script utilizing pocket sphinx

voice recognition library. This script awaits the client connection, receives an audio file,

tries to recognize the command and then send a text command back to the IoT device,

which executes the action to the smart light system.

This showcase scenario tries to simulate a Cloud/Fog computing interplay over a

wireline/wireless network convergent infrastructure for an IoT application. Then, we will

be able, with the usage of COPA, to research about how the degradation of network and

processing quality burden the IoT application experience in future networks. Note that, in

the future, COPA can be connected to any other application enabling the data collecting

of different classes of experimental research.

5.3 Experiment deployment

In this section, we present how we deployed this experiment with the smart light

application in the FUTEBOL infrastructure. Also, we explain how the metrics collected

can be interpreted and how research can be done using COPA as experiment monitoring

platform. To initiate our tests we need to request an experiment slice in the testbed. An ex-
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periment slice is a group of testbed resources that are isolated physically or logically from

the others experimenters. This isolation provides an environment without external influ-

ences, making the experimentation more precise and trustworthy. To request a slice, we

need a federative tool to intermediate the allocation of resources between the experimenter

and the testbed. This tool is capable of making the user authentication and communicates

with the testbed control framework. After the authentication, the federative tool provides

a list of resources of the federated testbeds. Therefore, the experimenter can choose a set

of resources to run his experimentation. In our case, we used jFed, a Java-based graph-

ical user interface for testbed specification and reservation of an experimentation slice.

In each chosen resource, we need to choose the testbed where the experimentation will

occur, the type of resource, and, in the case of Virtual Machines, the image that we will

use. This options are presented in figure 5.3.

After configuring the scenario, we need to allocate the resources and wait for the

testbed control framework to set it up. As seen in figure 5.4, we allocated the following

resources successfully: one COPA Server, two COPA Pools (one at UNIVBris, one at

UFMG), one COPA Pool with the wireless interface at UFRGS and one Raspberry Pi also

at UFRGS.

Remote login into the experimenter resources is a must in every testbed. FUTE-

BOL enables this feature through jFed by creating an SSH tunnel between the resources

and the experimenter. Utilizing from this feature, we enable the connection with the

COPA Server web interface via a browser. We redirect the port 8000 from the web server

located at COPA Server’s VM to the experimenter’s localhost. Opening the COPA web

interface, we can already follow the COPA Pools resource monitoring. The dashboard

presents the three allocated COPA Pools, and its status is updated in real-time. After

checking the locus of computing functioning, we can confirm the IoT device connectivity

by accessing the Local COPA Pool wireless network monitoring.

Afterward, in the experimentation, we need to configure the containerized remote

processing server. COPA enables an interface for creating the container with a generic

Ubuntu 16.04 image, but for configuration, it is necessary to login into COPA Pool

through SSH and configures the container utilizing LXD tools. After creating the con-

tainer, we are able to monitor and manage the container via COPA interface. Utilizing

the manual delegation feature, the experimenter can relocate the containerized applica-

tion where is better to him, or even stop and delete the container. In our case, we created

a container in the Local tier, closer to the user.
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Figure 5.3: Options provided by JFed federation tool

Source: Author

After installing and configuring the application server in the container, we connect

the IoT device to the server by executing a script and passing the server IP address as a

parameter. The voice recognition application needs a microphone so it can capture the

audio. In a testbed, the microphone usage is not applicable since the user is using it

remotely. Hence, we developed a script to simulate a microphone into the Raspberry Pi.

This script captures the microphone from the experimenter computer and creates a tunnel

over the Internet and executes inside the testbed’s Raspberry Pi as a virtual microphone,

enabling the capture of voice commands. Also, we could create a script to send the pre-

recorded audios and, then, automate the experiment. Besides that, we have the smart

light available inside the testbed in which the experimenter could not see its status. We

could make that the smart light be available only in text-mode. Nevertheless, we create a
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Figure 5.4: Allocated COPA resources in JFed

Source: Author

webcam server in the testbed. This webcam server provides images from the smart light

system, making possible the experimenter to check into his tests. The webcam server

is accessible via SSH port forwarding as the COPA web server. All the resources are

installed and ready for experimentation. Now, we can send voice commands to the smart

light and see how the IoT application behavior by being executed in three different tiers

of computing.

5.4 Experiment visualization

In the COPA dashboard, it is possible to monitor the cloud, fog, and the local

computer resources. The experimenter can quickly detect a processing overload or even

if the host lacks memory to execute specific computing process. In our experiment, we can

use this tool to monitor a simulated overload situation and then evaluates the application

performance. The computer resources monitoring of this use case is presented in figure

5.5.
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Figure 5.5: Monitoring of voice recognition host and container

Source: Author

It is important to notice that the convergent monitoring is essential in this experi-

ment to identify the causes of performance issues and decide if it is worth to migrate the

processing or not. For example, if the performance degradation of the IoT application is

caused by only the wireless link, moving the locus of processing from a Cloud to a Fog at

the network edge will not work around the problem. Otherwise, if the locus of processing

is facing processing overload issues in a Fog, the migration to a less overloaded Cloud

can improve the IoT service. COPA monitors all end-to-end links among the COPA Pools.

However, for this use case, the end-to-end link monitoring between the Local and Cloud,

and the link monitoring between the Local and Fog is the most important one. That oc-

curs because the IoT device is connected to a wireless network provided by the Local tier,

making it the convergent point of the wireless/wireline network. We can see the monitor-

ing between Local and Cloud in figure 5.6. The one-way latency collected shows around

60ms for uplink and downlink, while the jitter for downlink is compromised and for up-

link runs smoothly. The jitter downlink and uplink difference could be occurred because

of some software background download during the experimentation.

The wireless monitoring of the connected Raspberry Pi is also demonstrated in the

figure 5.7. First, we can analyze the first chart of this view and verify that the IoT device is
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Figure 5.6: Monitoring of end-to-end link between Local and Cloud tier

Source: Author

very near to the wireless access point. While in the second chart, shows how many bytes

were received and transmitted to this device from the access point. We can conclude,

analyzing this chart, that the Raspberry uploaded many more bytes than downloaded.

Moreover, to finish, with zero transmitted bytes failed, we can check the quality of the

wireless connection.

Figure 5.7: Monitoring of IoT device wireless connection

Source: Author

To demonstrate the usage of orchestration algorithms, we created a simple thresh-

old algorithm. This algorithm shows how COPA automatic migration can help in the

research of orchestration algorithms in future networks too. Our threshold migration so-



46

lution has as its limit value of 60% of CPU load. Therefore, when the containerized

application host reaches a value higher than 60%, the service will be migrated to another

locus of computing, as can be seen in the sequence of images in figure 5.8. In the left

column, we can see the Local tier with the container, while in the right we present the

migration destination, the Fog. In stage 1 of the sequence, the automatic migration is

triggered by the CPU overload. In this first stage, we present the areas of CPU bar where

the algorithm decides to migrate the container. Also, we can see a grey layer with a load-

ing icon over the container, demonstrating the occurrence of migration. The overload of

the Local tier is very common since it lacks the processing power and could easily be

overloaded. In stage 2, we detect a network overload because of the transference of the

application container. Also, the CPU load of the Fog rises considerably because of the

migration. In stage 3, the migration ends successfully. To finish, COPA provides experi-

mentation data to the experimenter through the monitor REST API. The data is available

with JSON format and can be easily converted to others format as CSV to create it owns

charts in another tool.
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Figure 5.8: Automatic migration stages sequence
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6 CONCLUSION AND FUTURE WORK

In this work, it was designed a wireless/wireline convergence monitoring and con-

tainer manager architecture called COPA. This architecture can deploy and migrate con-

tainerized applications among several computing levels such as Cloud, Fog computing or

even at the network edge. These applications enabled the remote processing for several

IoT devices. Also, we researched and developed monitoring and experimenter-level or-

chestration features for testbed experimentation in future networks. The monitor collects

data from the wireless/wireline networks and container host computing resources. COPA

enables the usage of this monitoring data in the orchestration module for automatic to

manage the experimenter containerized applications. Also, the experimenter could man-

ually migrate the processing application to any of the COPA Pools available through a

friendly user interface. Doing it, the researcher could evaluate the deployment of com-

puter routine at different levels of remote computing. Our use case demonstrated how an

experiment is executed in a testbed using COPA and how we could analyze the collected

metrics. However, several improvements could be made.

Some components of COPA could not be developed in time for this work. These

components are from the orchestrator module and should be developed to follow the

project planning. The monitor module was developed with completeness but can be im-

proved. External factors should not influence testbeds scenarios. To influence less in the

network traffic, the COPA Agent should utilize not only an active monitoring method but

a mixed active-passive monitoring method. So, when there is traffic passing through the

network interfaces of COPA Pools, would not be necessary to insert more data into the

network links. This feature would decrease the influence of the monitor in the user ex-

periment. Also, the addition of network traffic concurrence tool is beneficial for the best

representation of experimental scenarios. That is because testbeds most of the times can-

not represent a real-world scenario because it lacks physical resources. This tool could

simulate network traffic patterns of several IoT applications enabling the research of net-

work concurrence classes in the Internet of Things.

In the Orchestration module, more types of container technologies could be in-

tegrated such as Docker, the most famous one of them. This expansion would bring

flexibility to COPA platform, enabling the experimenter to bring in the testbed out of the

box containerized solutions, not being necessary to adapt to a specific technology. Some-

times, when working with migration algorithms, we wish could classify the applications
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services, so not all of them follow the same rules. That said, in this module, could be de-

veloped more detailed configuration options such create classes of containers and assign

them specific rules. This improvement would make possible the refinement of orches-

tration methods. COPA Orchestrator makes use of live-migration aiming to improve the

quality of the service. However, this migration sometimes burdens the network because

of the size of the containerized server. So, another feature to think about is to diversify the

methods of changing the processing locus of the remote application. COPA could provide

not only migration of the service but create another instance of the application server and

distribute the network load between them, increasing the research options in the testbeds.

COPA platform is already available in the FUTEBOL’s testbeds and ready to use.

Experiments of FUTEBOL project were already deployed on top of our solution and

demonstrated in the second year review of the project, proving its usage. Finally, the

platform is functional and full of potential for further improvements. We hope that it be

beneficial for the future experimenters and help to advance the research of future networks

state-of-the-art faster than before.
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