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ABSTRACT

Learning shader programming often requires the novice to create an entire host applica-

tion, having to manually load polygonal models and textures, and to deal with graphics

API details. This process can be quite discouraging, deviating one’s attention from ac-

tual shader programming to the development of application infrastructure. To alleviate

this load, shader development environments have been created by graphics cards man-

ufacturers, such as NVIDIA’s FX Composer and AMD’s RenderMonkey, but both have

long been discontinued, not supporting modern shading languages. Available on-line re-

sources, like Shadertoy and Shdr, can be valuable tools in assisting the learning of shader

programming, but are often difficult to use, have limited feature sets, and/or lack proper

documentation to get beginners started. We present a complete environment for learn-

ing and exploring shader programming using GLSL. Our environment, developed using

Vulkan, can suit the needs of both beginners and advanced users. Its user-friendly in-

terface allows one to effortlessly load 3D models and images and modify variables and

textures, applying the changes in real time.

Keywords: Shader programming. GLSL. vulkan. computer graphics.



Uma Ferramenta Interativa para o Aprendizado e Exploração de Programação de

Shaders

RESUMO

O aprendizado de programação de shaders comumente requer que o novato crie uma

aplicação hospedeira completa, carregando manualmente modelos poligonais e texturas

e lidando com detalhes da API gráfica. Esse processo pode ser bastante desencorajador,

desviando a atenção da programação de shaders para o desenvolvimento da infraestrutura

da aplicação. Para aliviar esse trabalho, ambientes de desenvolvimento de shaders foram

criados por fabricantes de GPUs, como o FX Composer da NVIDIA e o RenderMonkey

da AMD, mas ambos foram descontinuados há bastante tempo, e não oferecem suporte a

linguagens modernas de shading. Recursos disponíveis on-line, como Shadertoy e Shdr,

podem ser ferramentas valiosas para ajudar no aprendizado de programação de shaders,

mas costumam ser difíceis de utilizar, possuem um conjunto de funcionalidades limitado

e/ou não oferecem documentação adequada para iniciantes. Nós apresentamos um am-

biente completo para o aprendizado e exploração de programação de shaders utilizando

GLSL. Nosso ambiente, desenvolvido usando Vulkan, é capaz de suprir as necessida-

des de usuários iniciantes bem como experientes. Sua interface amigável permite que o

usuário carregue modelos 3D e imagens sem dificuldade, além de modificar variáveis e

texturas, aplicando as mudanças em tempo real.

Palavras-chave: Programação de shaders. GLSL. vulkan. computação gráfica .
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1 INTRODUCTION

Shader programming is an essential part of modern computer graphics. However,

in order to write her/his first shader program, one is often faced with the need to write

an entire host application that will supply data for the shader. This includes establish-

ing associations between variables from the host program and from the shader, loading

polygonal models, setting parameters, initializing textures, etc. All this can be quite dis-

couraging for a novice, deviating one’s attention from actual shader programming to the

development of application infrastructure.

To make it easier for newcomers, we have built an application that provides a

complete environment for shader programming. With this tool, one will be able to write

shaders without having to worry about such infrastructure details. By being able to focus

on the shaders themselves and get results faster, we hope to encourage more students to

learn computer graphics. Developing such a tool also had another important personal

goal: serve as an opportunity for learning Vulkan, a modern graphics API.

Our application allows students to easily prototype shaders using an integrated

source code editor, and to view the results in real time in the visualization window, which

can include any objects the user wants to add, including custom meshes that can be im-

ported. While implementing this tool, we were able to understand the inner workings

of Vulkan, an API which is growing fast and becoming more present in the industry of

computer graphics.

This thesis is organized as follows: Chapter 2 presents the reader with a base

knowledge about computer graphics and how the modern graphics applications perform

their functions, as well as introduces Godot Engine, the tool used to create our applica-

tion. Chapter 3 introduces important details of the Vulkan API and how it differs from

OpenGL. Chapter 4 describes the methods applied in the implementation of our tool,

the architecture of our application and how to use it from a user perspective. Chapter 5

presents the results we were able to obtain using our solution. Chapter 6 concludes this

work, presenting our view of the tool developed. Chapter 7 discusses how our application

could be improved in the future.
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1.1 Related work

As we mentioned, many attempts were made to create development environments

for shaders.

RenderMonkey, developed by AMD, aimed to provide tools for both program-

mers and artists. It featured a complete shader source editor and preview window, but also

a workspace specific for artists, where much of the shader programming was hidden from

the user, widgets used to adjust parameter values. It presented support for HLSL, GLSL

and GLES shading languages (AMD, 2008b). The latest version of the software was re-

leased in 2008 (AMD, 2008a) and AMD’s website no longer displays any information

about the software or that it ever existed.

FX Composer, developed by NVIDIA, featured an integrated source code edi-

tor, a scene visualizer which could use DirectX 10, DirectX 9 or OpenGL, widgets for

editing parameters, particle systems, material manager, material preview and much more

(NVIDIA, 2008a). The software has not been updated since 2008 (NVIDIA, 2008b), pre-

senting many usability issues and instability, such as debug messages pointing to errors

that were not from the user code but from the software architecture. This is part of the

motivation to create this work.

Shadertoy is an online resource which allows users to write only fragment shaders

to create effects. Shdr is another online resource to write shaders, both vertex and frag-

ment shaders, but the user is not allowed to define uniform variables in the shaders (pa-

rameters to change the results generated by the shaders). The lack of features on both

applications prevents the user from creating a large variety of effects.

ShaderLabFramework (TOISOUL; RUECKERT; KAINZ, 2017) is a tool cre-

ated for the undergraduate Computer Graphics course at the Imperial College London,

UK, and was tailored to their course syllabus. It implements a two-pass rendering pipeline

structure, allowing users to render to texture and applying post-processing effects. This

application was implemented in C++ using the Qt framework for user interface, and uses

OpenGL to render the visualization scene.

Unlike the above tools, Shader Tutor allows the user to load arbitrary geometry and

define a variety of shader parameters and textures for both the vertex and the fragment

shaders, all of which are displayed in the control window for the user to change. It is

implemented using the Vulkan graphics API, and provides an integrated GLSL code editor

and compiler. The editor was built using Godot instead of frameworks such as Qt.
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2 BACKGROUND

In this chapter, we will introduce the reader to Godot, the tool used to create our

application, to GLFW, a supporting library used in our scene visualization window, and to

important concepts of computer graphics required for the complete understanding of this

thesis. Concepts from linear algebra like vector maths, matrix operations and geometric

transformations are presumed to be known.

2.1 Godot Engine

Godot Engine is a 2D and 3D game engine, free and open source under the MIT

license. It provides a set of common tools for game development, including many GUI

widgets, like buttons, menus, panels and text editors, which is exactly what we needed to

build the control window of our application in a way that is very easy to use and to script,

while being able to deploy to different platforms. The engine uses its own programming

language for scripts, called GDScript, which is similar to Python and allowed us to script

the behavior of the control window without worrying about including new libraries to the

project.

2.1.1 GDNative

GDNative is a module of Godot Engine which adds a new "scripting language"

to it (Thomaz Herzog, 2017). In reality, it is not a language, but a precompiled dynamic

library that will be loaded into the Godot application. GDNative allows developers to

access the Godot API and create scripts using different languages, for example C and

C++, and use these scripts inside Godot as if they were scripts native to the engine.

There are two big use cases for GDNative:

• To allow developers to write performance critical code in more efficient languages

than GDScript (the scripting language used by Godot Engine). GDScript is a good

scripting language, but it was not built for performance. An example task that fits

this scenario is generating terrain procedurally;

• To allow developers to bring third-party code to Godot. This is useful in game

development in general to integrate useful libraries like Steamworks and Google
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Play Services. In our case, we used it to bring Vulkan code into the application.

GDNative is provided as a C API. In order to use other languages, bindings to the

original API must be created.

2.2 GLFW

GLFW is an Open Source, multi-platform library for OpenGL, OpenGL ES and

Vulkan development on the desktop. It provides a simple API for creating windows,

contexts and surfaces, receiving input and events (GLFW, 2016).

2.3 Graphics pipeline

In the field of computer graphics, the graphics pipeline is used to generate 2D

images out of 3D geometric information in real time applications (SHIRLEY, 2002).

Figure 2.1 shows a diagram describing the stages of the graphics pipeline. Each stage

of the pipeline is responsible for a specific operation; the output of each stage is passed to

the next stage to be used as input.

The function performed by each of the stages in the pipeline are described as

follows (Alexander Overvoorde, 2016):

• Input assembler: Collects the raw vertex data from the vertex buffer and may also

use an index buffer to repeat certain elements without having to duplicate the vertex

data itself;

• Vertex shader: Executed for every vertex in the object, generally applies transfor-

mations to turn vertex positions from model space to screen space;

• Tesselation: Optional stage which subdivides geometry based on certain rules to

increase mesh quality;

• Geometry shader: Optional stage executed for every primitive (point, line, triangle)

which is able to discard or create new primitives;

• Rasterization: Breaks down the primitives into fragments, which are the pixel ele-

ments that will make up the rendered image. Fragments located outside the screen

space are discarded, and vertex data is interpolated across the fragments;

• Fragment shader: Invoked for every fragment, determines its color based on the
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interpolated vertex data outputted by the rasterization stage;

• Color blending: Applies operations to mix different fragments that map to the same

pixel in the resulting image, usually based upon transparency.

Figure 2.1: Graphics pipeline

Source: (Alexander Overvoorde, 2016)

Certain stages can only be controlled by changing their parameters, but the func-

tion performed is always the same. These are known as fixed function stages and are the

ones in green in Figure 2.1.

The other stages, in orange, are known as the programmable stages, which means

developers can upload source code to the graphics card to apply exactly the operations

they intended for that stage.
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From the programmable stages, tesselation shaders and geometry shaders are op-

tional, meaning that their functions can be skipped and the pipeline can still work prop-

erly. On the other hand, the vertex shader and the fragment shader are required from the

developer and the graphics pipeline cannot function without them.

Shaders always receive data from the previous stage of the pipeline, but they can

also define additional parameters to be used in their computations. These parameters are

called uniform variables. Uniform variables can have their values changed from one draw

call to the next, but for every time the shader is executed, the uniform variable will have

the exact same value. These variables can be used to, for example, tell the shader where

the lights are located in the scene, or provide an image to be used as texture. These values

must be supplied from the host application, which manages the graphics pipeline.

The following code represents the basic operation of a vertex shader (in the GLSL

language):

uniform mat4 modelViewProjection;

in vec4 position;

out vec4 clip_position;

void main() {

clip_position = modelViewProjection * position;

}

The first line defines a uniform variable which is a matrix that will transform ver-

tices from local space to clipping space (a normalized space required by the next stages

of the pipeline). This matrix accumulates model, view and the projection matrices. The

model matrix applies rotation, scale and translation to the object’s vertices, transforming

them from local space to world space. The view matrix transforms the vertex positions

from world space to view space, where the camera is at the origin. Finally, the projection

matrix will deform the geometry to apply perspective or orthogonal projections.

The second line describes the vertex attribute that the vertex shader expects to

receive from the input assembler. This simple example expects just the vertex position

in object space, but it could require other attributes, such as normal vectors or texture

coordinates.

The third line describes the output of this shader. Since it is a vertex shader, the

vertex position in clip space is required to be an output. Other output variables can be

defined, and these variables will be interpolated by the rasterizer and delivered to the

fragment shader.
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The following code represents the basic operation of a fragment shader:

uniform vec4 frag_color;

out vec4 final_color;

void main() {

final_color = frag_color;

}

The purpose of the fragment shader is to output the color of the fragment. This

sample code does just that: a uniform variable is used as color for the fragment. The

vec4 variable type can be used to represent colors because it holds four floating point

values, which are interpreted as red, green, blue and alpha channels.

2.4 Graphics APIs

As we have mentioned, graphics applications require a host application to manage

its operation. The means used to do that is through a graphics API. Graphics APIs are

a set of routines implemented by graphics cards manufacturers that allow developers to

control the hardware. Examples of graphics APIs include Direct3D, OpenGL, Metal and

Vulkan. Each API defines their own set of methods and how they are used, and it is up for

hardware manufacturers to support the APIs. Some APIs, such as Direct3D and Metal,

are proprietary to enterprises (Microsoft and Apple, respectively) and can only be used

on their platforms. Others, like OpenGL and Vulkan, are open standards, both provided

by the Khronos group, an industry consortium.

Vulkan is a relatively new technology, released version 1.0 in 2016. Since then,

several games have been ported to this API, and many game engines have developed ren-

dering backends using Vulkan (Khronos, 2018b). This indicates that Vulkan may become

the standard graphics API to real-time graphics applications. This work uses the Vulkan

API to fulfill a personal goal of creating a functional piece of software using this technol-

ogy.
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3 VULKAN

In this chapter, we will introduce the reader to the Vulkan API, its motivations and

goals, as well as present the objects of the API that are fundamental to building not only

Shader Tutor, but any application using Vulkan.

Vulkan is a new generation graphics and compute API that provides high-efficiency,

cross-platform access to modern GPUs used in a wide variety of devices from PCs and

consoles to mobile phones and embedded platforms (Khronos, 2018b). Vulkan is a much

lower level API compared to OpenGL (SELLERS, 2016). It requires the developer to

deal with a lot of different hardware related aspects, from enabled GPU features to video

memory management.

Vulkan also presents some very interesting features designed to solve problems of

older APIs. For example, an OpenGL application has to explicitly tell the GPU what op-

erations are executed to render the scene every frame (Segal, M. Akeley, K., 2010), which

consumes a lot of valuable CPU time that could be used for other purposes depending

on the application’s nature (for example, a game could use this process time to compute

artificial intelligence behavior for non-playable characters). Vulkan improves this by re-

quiring the application to record all drawing commands in advance and possibly using

multiple threads, and storing the commands in immutable objects which can be stored in

memory optimal for reading. Then, each frame, the application just needs to tell the GPU

to execute the commands in those objects, saving CPU time.

3.1 Debugging: validation layers

Because graphics operations are executed on the GPU, debugging becomes a dif-

ficult task. Device drivers for older APIs included extensive error checking mechanisms

in order to produce meaningful error messages to help developers. The Vulkan API,

however, is designed around the idea of minimal driver overhead and one of the manifes-

tations of that goal is that there is very limited error checking in the API by default. Even

mistakes as simple as setting enumerations to incorrect values or passing null pointers to

required parameters are generally not explicitly handled and will simply result in crashes

or undefined behavior (Alexander Overvoorde, 2016). Instead, Vulkan comes with a set of

validation and debug layers as part of the Vulkan SDK and, when any subset of these lay-

ers are enabled, they insert themselves automatically into the call-chain of every Vulkan
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API call issued by the application to perform their job. Validation layers can also report

warnings about potential incorrect or dangerous use of the API, and are even capable of

reporting performance warnings that allow developers to identify places where the API is

used correctly but not used in the most efficient way (Daniel Rakos, 2016). This allows

developers to enable validity checks in debug builds to make sure that the application is

built correctly, but disable them for release builds, allowing the API to run without doing

any checks, improving performance.

3.2 Compiling shaders

Up until OpenGL 4.6, applications had to compile shader source code at run-time,

passing a string of high-level source code to the graphics driver. While this allowed

the application to run on different hardware, this also forced each GPU manufacturer to

provide a GLSL compiler with the device driver. The development of the updated drivers

to support new versions of the APIs would take longer, or, in some cases, support for

newer versions was simply not provided (HELPS, 2018).

3.2.1 SPIR-V

The "Standard Portable Intermediate Representation" version "V" (as in "Vulkan")

is a binary representation of shader code which device drivers can parse more easily.

Application developers, having their shaders written, must compile them into SPIR-V

format before loading them in their applications. Support for SPIR-V shaders is included

in OpenGL 4.6 and Vulkan 1.0 (KHRONOS, 2018).

Vulkan is not concerned about the language which was used to write the shader,

as long as the provided SPIR-V code is valid. This allows shaders to be written in any

shading language as long as it can be compiled into SPIR-V, which gives more flexibility

to the API.

3.3 Memory management

While OpenGL drivers manage memory allocations transparently to the program-

mer, Vulkan not only allows but also requires that programmers allocate device memory



19

and bind the memory to the resources used in the application. While this may increase

the application’s performance if the programmer takes advantage of it, it also requires

the programmer to manually manage buffer alignments and aliasing. In Vulkan, a buffer

object represents a linear array of data which can be used for various purposes, and re-

quire memory to be allocated and bound to it. Figure 3.1 shows three memory allocation

strategies possible with Vulkan (NVIDIA, 2016).

Figure 3.1: Vulkan memory allocation strategies

Source: Adapted from (NVIDIA, 2016)

The first to the left is the naive approach: for each buffer it uses a "dedicated"

memory allocation. This approach is the easiest to implement, since every object allo-

cates, binds and frees their own memory, without taking into account other objects. It

is also the least optimized approach, given that it most likely will not be cache-friendly.

It is also important to note that Vulkan devices have a maximum number of memory

allocations that can exist simultaneously.

The approach shown in the middle ("The Bad") shows a single memory allocation

with various buffers bound to it. This approach is more cache-friendly than the previous

one, because with a single allocation it is more likely to have different buffers loaded in

the GPU cache, but it requires the programmer to deal with memory aliasing, offsets and

buffer alignments.

The rightmost ("The Good") is the recommended approach. It represents a single

memory allocation bound to a single buffer, with different data loaded to different areas of

the buffer. This approach is the most cache-friendly, because a single buffer is more likely

to load different types of data to the CPU cache, and the most optimized for performance

in highly-dynamic scenes, but also the most difficult to implement. This setup is possible

thanks to Vulkan low-level control of offsets even inside a single buffer, allowing the
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developer to define "virtual buffers".

The tool developed in this work was intended to allow the user to write shaders

with few objects, for the purposes of visualization only. For this reason, we opted to

use the naive approach. Implementing a memory management module would not have a

perceived impact on the performance of the application.

3.4 Host application

Vulkan is a low-level API and, as such, requires developers to setup a large amount

of objects and configuration values before displaying anything on screen. In this section

we will explain the purpose of each of these objects.

3.4.1 Vulkan instance

There is no global state in Vulkan and all per-application state is stored in a ‘VkIn-

stance’ object. Creating this object initializes the Vulkan library and allows the applica-

tion to pass information about itself to the implementation (Khronos, 2018a). Applica-

tions can even define and manage multiple instances depending on their requirements.

In order to initialize a Vulkan instance object, we can first create a ‘VkApplica-

tionInfo’ object, which will describe our application for the driver. This structure holds

the name and version of the application, and also the name and version of the engine

used, if any. This data is technically optional, but it may provide some useful information

to the driver to optimize for specific applications (Alexander Overvoorde, 2016). Unlike

the ‘VkApplicationInfo’, the ‘VkInstanceCreateInfo’ structure object is not optional. It

describes the instance extensions and debug layers we want to enable in our application.

To make sure our application can be executed, we can check the available extensions with

the function ‘vkEnumerateInstanceExtensionProperties’ to compare against our required

extensions.

During the Vulkan instance object creation we can also specify validation lay-

ers to be enabled. Available validation layers can be queried with the ‘vkEnumerateIn-

stanceLayerProperties’ function. The Vulkan SDK provides a standard validation layer,

"VK_LAYER_LUNARG_standard_validation", which implicitly enables a range of use-

ful diagnostic layers. In order to receive the debug messages from the validation layers,
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however, the application must also enable the "VK_EXT_debug_report" extension, which

will allow the developer to setup a callback function that will be called whenever a de-

bug message is issued by the validation layers. To setup the debug callback function, the

developer has to get a pointer to the ‘vkCreateDebugReportCallbackEXT’, which is an

extension function and therefore not included in the base API, using the ‘vkGetInstance-

ProcAddr’ function.

3.4.2 Physical device

The function ‘vkEnumeratePhysicalDevices’ returns a list of available Vulkan de-

vices installed in the system. Basic device properties like the name, type and supported

Vulkan version can be queried using ‘vkGetPhysicalDeviceProperties’. The support for

optional features like texture compression, 64 bit floats and multi viewport rendering can

be queried using ‘vkGetPhysicalDeviceFeatures’. Device features must be enabled before

they are used by the application.

Almost every operation in Vulkan, from drawing to uploading textures, requires

commands to be submitted to a queue. A queue belongs to a queue family, and each

queue family supports certain types of commands. To query queue families available in

the device, there is a ‘vkGetPhysicalDeviceQueueFamilyProperties’ function.

3.4.3 Device

The function ‘vkCreateDevice’ takes a physical device queried and a ‘VkDevice-

CreateInfo’ object as arguments. The latter describes which physical device features we

want to enable from our selected physical device and specifies the queue family index and

how many queues we want to create from each family. The application does not need to

explicitly create the queue objects; after the device is created, the application can call the

‘vkGetDeviceQueue’ function to get the ‘VkQueue’ objects to which commands will be

passed into for execution.



22

3.4.4 Window surface

In order to display images, the Vulkan API must interface with the platform spe-

cific window system. Also, since Vulkan is also a compute API, this functionality is not

in its core specification, but is part of the "VK_KHR_surface" extension. Window sys-

tems also vary for each platform so, in order to create the proper surface object, we also

need to enable the platform-specific surface extension ("VK_KHR_win32_surface" for

Windows, for example).

3.4.5 Swap chain

Unlike OpenGL, Vulkan does not have the concept of a "default framebuffer",

hence it requires a structure to own the buffers where images will be rendered before

they are displayed on screen. This structure is the swap chain, and it must be explicitly

created. This requires the "VK_KHR_swapchain" device extension enabled. The swap

chain is essentially a queue of images that are waiting to be presented on the screen.

Each physical device presents different capabilities in its swap chain. These in-

clude the maximum number of images the swap chain can hold, the pixel formats sup-

ported and presentation modes. The presentation modes are (Alexander Overvoorde,

2016):

• VK_PRESENT_MODE_IMMEDIATE_KHR: Images submitted by your application

are transferred to the screen right away. May result in tearing;

• VK_PRESENT_MODE_FIFO_KHR: The swap chain is a queue where the display

takes an image from the front of the queue when the display is refreshed and the

program inserts rendered images at the back of the queue. If the queue is full then

the program has to wait. This is most similar to vertical sync as found in modern

games. This is the only mode that is guaranteed to be supported;

• VK_PRESENT_MODE_FIFO_RELAXED_KHR: This mode only differs from the

previous one if the application is late and the queue was empty at the last vertical

blank. Instead of waiting for the next vertical blank, the image is transferred right

away when it finally arrives. This may result in visible tearing;

• VK_PRESENT_MODE_MAILBOX_KHR: This is another variation of the second

mode. Instead of blocking the application when the queue is full, the images that
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are already queued are simply replaced with the newer ones. This mode can be used

to implement triple buffering, which avoids tearing with significantly less latency

issues than standard vertical sync that uses double buffering.

3.4.6 Depth resources

In Vulkan, the depth buffer is an image object which the developer has to create

explicitly using special formats that are defined for depth images. Device memory must

be allocated for the image and bound to it, and an image view also needs to be created to

describe how the image will be used. After creation, the image must also be transitioned

to a layout optimal for depth attachment before it can be used as depth buffer.

3.4.7 Render pass

A render pass represents a collection of attachments, subpasses, and dependencies

between the subpasses, and describes how the attachments are used over the course of the

subpasses (Khronos, 2018a).

3.4.8 Framebuffer

The attachments specified in the render pass creation are bound into a framebuffer

object. This object references all the image view objects that represent the attachments

in the render pass. Since the swap chain has many different images (and image views),

applications must also create a framebuffer for each image view of the swap chain.

3.4.8.1 Image vs. Image View vs. Framebuffer

In Vulkan, an image represent multidimensional arrays of data which can be used

for various purposes. An image view represent contiguous ranges of an image object and

contain additional metadata to allow image objects to be accessed by pipeline shaders for

reading or writing image data. A framebuffer represents a collection of specific memory

attachments that a render pass instance uses.
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3.4.9 Command buffers and command pools

As we mentioned, operations like drawing and memory transfers are not executed

with function calls in Vulkan. Instead, the commands are recorded in command buffers,

which are then submitted to a queue for execution.

Command buffers are not created directly, but they are allocated from command

pools which will manage the memory used by the command buffers. Each command pool

can only execute commands on a single queue family; command buffers allocated from a

pool cannot simply execute any command, because the commands will be executed by a

queue family which may not support the operations.

3.4.10 Buffers

Data is passed from the host application to the graphics pipeline via buffer objects.

Buffers must have device memory allocated and bound to them in order to work, and will

be used to pass vertex attributes, vertex index data when available, and uniform values.

Uniform buffers are generally updated every frame.

3.4.11 Images, image views and samplers

Much like buffers, in order to be accessed by shaders, images must be created and

device memory must be allocated and bound to them. There is also the need to create

an image view, an object that describes how to access the image and which part of the

image to access. Sampler objects will determine how the shaders will sample the pixels

of the image, determining filtering and repeat mode, for example. In Vulkan, images and

samplers are distinct objects, which allows the same image to be accessed in shader code

with different samplers, using different configuration values. This feature can be used to

reduce memory usage.

3.4.12 Descriptor set layout, descriptor pool and descriptor set

The descriptor set layout describes the bindings that are used in the shaders, whether

they bind a uniform buffer object or an image sampler, and at which stages each binding
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is available.

The descriptor pool holds a pool of descriptor sets to be allocated; it requires the

number of uniform buffers and image samplers, but is not concerned about the size of

these structures.

The descriptor set layout is just a description of what types of descriptors can be

bound, but no uniform buffers are referenced. The descriptor set specifies a buffer to be

bound in the uniform buffer descriptor.

3.4.13 Pipeline

In order to create the ‘VkPipeline’ object, one first needs to create a ‘VkPipelineLay-

out’ object. The pipeline layout defines the interface of the pipeline object with our ap-

plication, that is, it holds a reference to the descriptor set layout object. Developers also

create objects that will configure every stage in the graphics pipeline:

• VkPipelineVertexInputStateCreateInfo

• VkPipelineInputAssemblyStateCreateInfo

• VkPipelineViewportStateCreateInfo

• VkPipelineRasterizationStateCreateInfo

• VkPipelineMultisampleStateCreateInfo

• VkPipelineDepthStencilStateCreateInfo

• VkPipelineShaderStageCreateInfo

• VkPipelineColorBlendStateCreateInfo

Each of the structures mentioned above have a set of possible configurations which

will determine, for example, the topology used when interpreting the vertex data (points,

lines, triangles), which polygon mode to use in rasterization (points, lines, fill), line width,

back face culling, depth comparison operation and alpha blending.
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4 METHOD

In this chapter we explain how we used the technologies and tools described so

far to create our application. We start by describing the architecture of our software and

how it works internally. Then, we describe how the functions implemented are presented

to the final user such that it helps to learn shader programming.

4.1 Architecture

In this work, the most important decision of the architecture was the choice of

using Vulkan for the graphics API. Using Vulkan has been a learning process, and the

architecture chosen reflects it.

In order to have our Vulkan code respond to changes in the control window, some

of the classes in our architecture are exposed to GDScript via GDNative. GDNative re-

quires the developer to register each method and property that will be made available

for engine scripts to call, which allows our application to provide a minimal interface,

keeping the implementation encapsulated, separated from the GUI in the control window.

Since GDNative loads a precompiled dynamic library, it is required for the de-

veloper to provide the library for the platforms to which the project is to be deployed.

The development of our application was completely done in Linux, and thus it is the only

platform the library has been compiled into, but our code does not rely on any platform-

dependent libraries, so compiling to Windows or MacOS should be straightforward.

The architecture of Shader Tutor is depicted in Figure 4.1. The purpose of each

module is described in the following sections.

4.1.1 Vulkan Application Module

This module is responsible for creating the objects which are global to the appli-

cation. First, it creates the GLFW window that we will use to render the Vulkan scene.

It also registers the mouse button callback and the mouse motion callback, which will be

called by the GLFW library so that our application can react to user interaction, mostly to

move the camera.

To create the Vulkan instance, the extensions our application will enable are those
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Figure 4.1: Shader Tutor architecture

Source: the author

listed by ‘glfwGetRequiredInstanceExtensions’, a convenient method provided by GLFW

to query the required extensions for our window to work properly. We do not need any

other instance extensions.

With a list of the available devices, their features and queue families properties,

we can select a ‘VkPhysicalDevice’ and create a logical device to interface with it. For a

rendering application like ours, we need a physical device which presents a queue family

able to render graphics, and another able to do presentation (displaying images in the

window). These queues could be the same, if the physical device presents a single queue

family with both graphics and presentation capabilities.

Creating the window surface is easy thanks to GLFW, which enables the required

extensions with ‘glfwGetRequiredInstanceExtensions’, and provides a simple ‘glfwCre-

ateWindowSurface’ function which simply returns a surface appropriate for the current

platform.

For swap chain creation, we select the mailbox present mode if available; if not,

we use the FIFO, which is the only setting guaranteed to be supported. We also create the

depth resources, render pass and framebuffers. After the command pool is created, our

application can allocate command buffers from it.

For the drawing commands, we will have to issue a command to bind the correct

framebuffer object and, since we have more than one framebuffer (one for each image

in the swap chain), we also have to allocate multiple command buffers, and record the

drawing operations in all of them.

Whenever a new object is added to the scene, or a material is assigned to an object,

the drawing operations must be re-recorded. To record the drawing commands, we will
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begin the command buffer with the flag "command buffer usage: simultaneous use" set,

which allows our application to request execution of the command buffer before a previ-

ous execution has finished. With the command buffer initialized (after a command buffer

begin function call), we begin a render pass, which will refer to the render pass object we

created beforehand, the framebuffer which will be used, and the clear values used for the

color and depth attachments. Then, the render pass can begin (‘vkCmdBeginRenderPass’

function). The drawing commands are then recorded for each geometry in the scene. Af-

ter the commands are recorded, the render pass must be ended, as well as the command

buffer itself.

4.1.1.1 Application Loop

For every frame, there is a sequence of commands we have to execute. Since this

module manages the Vulkan window, we first need to handle any input events from the

window. We also poll for certain keyboard events to move the camera. We do this instead

of registering a callback with GLFW because keyboard events have delay and repeat

configurations, which makes the camera movement stiff and unpleasant; the poll approach

allows us to check keys’ status every frame, creating a smooth camera movement.

After our application handles the input events, certain variables are updated to be

passed to the shaders as uniform variables. These include the camera view and projection

matrices and their inverted counterparts. These variables must be passed to all the objects

rendered in the scene so that their uniform buffers will be up to date for rendering.

Vulkan rendering is comprised of two different steps: first, we have to render to

one of the swap chain images, and then we have to display it in the window surface. To

begin rendering, we have to acquire the next image available from the swap chain. Since

the command executions happen in the GPU, rendering is asynchronous, which requires

us to use a semaphore (provided by the API) which will be signaled when there is an

image available for rendering. We then use the graphics queue to execute the command

buffer of the image acquired from the swap chain.

After rendering, we will use the present queue to display the image on the window

surface. Again, rendering happens in the GPU and our application must make sure the

image is available for presentation, so we have to use a second semaphore, signaled when

rendering is finished in the graphics queue, to which the present queue will wait before

executing.
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4.1.1.2 Single Time Commands

Certain common operations are executed in different parts of code, like copying

buffer data, transferring buffer data to image and transitioning image layout. These op-

erations, in Vulkan, must be executed in a queue by a command buffer. The commands

must be recorded in advance, and then the command buffer can be executed. These op-

erations, however, are not part of the render loop; they are required to take place during

initialization of resources. For this end, since command buffers must be allocated from a

command pool which is managed by the Vulkan application module, there are commands

to setup a command buffer to perform any of these commands, and then to submit them

to the graphics queue for execution before they are freed.

4.1.1.3 Cleaning Up

During cleanup, a lot of Vulkan resources have to be appropriately freed and de-

stroyed, respecting their dependencies. First, the application must wait for the device to

become idle, i.e., there are not any pending operations to be executed. Then, resources

can be freed. Our application begins destroying the depth image view, depth image, and

then freeing the device memory used by the depth image. Next, the semaphores used to

signal when an image is ready and when a presentation is done are destroyed. Then, the

command pool is destroyed, which automatically destroys the command buffers allocated

from it. Next, the framebuffers are destroyed, followed by the render pass object and im-

age views of the swap chain images. The swap chain is then destroyed as well, followed

by the debug callback (when the application is compiled in debug mode), the window

surface and finally the Vulkan instance. Last, the GLFW window is destroyed before the

application is terminated.

4.1.2 Shader Module

A shader object represents one stage of the programmable pipeline stages. This

module has a type indication, either vertex or fragment, and is capable of loading GLSL

source files and compiling them into SPIR-V binary using the ShaderC library, developed

by Google (GOOGLE, 2018). The compiled code is then enclosed by a ‘VkShaderMod-

ule’ object which will be used in a material’s graphics pipeline. The type of the shader

is inferred when a GLSL shader file is loaded based on the extension of the shader file,
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‘.vert’ for a vertex shader and ‘.frag’ for a fragment shader. This module also provides

ways to check the compilation status and get any compilation error messages.

4.1.3 Material Module

A Material is a combination of a vertex and a fragment shader, plus the values of

the uniform variables defined in those shaders. It is responsible for the creation of the

Vulkan graphics pipeline object, based on the shaders loaded into it and other configura-

tion values.

4.1.3.1 Shader Parsing

The shaders added to the material will have their SPIR-V code parsed by the

SPIRV Cross library. Our application will use this data to load the appropriate vertex

attributes, uniform objects and sampler objects used by the shaders.

Shaders define which vertex attributes will be used as input, and uniform variables

can serve as parameters for the material. All vertex attributes must be recognized by our

application, following the defined names and types defined in table 4.1. The user can also

query the application for certain uniform variables, following the names and types defined

in Table 4.2.

Table 4.1: Recognized vertex attributes
Type Name Description

vec3 or vec4 position Vertex position
vec3 or vec4 normal Normal vector of the surface
vec3 or vec4 tangent Tangent vector to the surface

vec2 uv Texture coordinate

If the position attribute is a vec4, the fourth component will be set to one; If

the normal is a vec4, the fourth component will be set to zero; If the tangent is a

vec4, the fourth component will be either set do 1 or -1, indicating the direction pointed

by the binormal vector, used in normal mapping.

Note that the normal matrix is a 3x3 matrix, unlike the other ones. This is because

the correct matrix to transform the normal vector is the transpose of the inverse of the 3x3

submatrix from the model view matrix (LIGHTHOUSE3D, 2011).

The shader code can also define arbitrary uniform variables, which will be ini-

tialized to a default value and exposed in the control window so the user can change the
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Table 4.2: Recognized uniform variables
Type Name Description
mat4 model Model matrix
mat4 view View matrix
mat4 projection Projection matrix
mat4 modelView Model-View matrix
mat4 modelViewProjection Model-View-Projection matrix
mat4 modelInverse Model matrix inverse
mat4 viewInverse View matrix inverse
mat4 projectionInverse Projection matrix inverse
mat4 modelViewInverse Model-View matrix inverse
mat4 modelViewProjectionInverse Model-View-Projection matrix in-

verse
mat3 normalMatrix Matrix to transform the normal vec-

tors of the object; Corresponds to
the inverse transposed 3x3 model-
view submatrix

values manually. Numeric values are initialized to 1 to avoid division by zero. Image

samplers defined in code will be initialized to a white texture.

4.1.3.2 Descriptor set layout and descriptor pool

After the shaders are parsed, the Material module will create the descriptor set

layout object (’VkDescriptorSetLayout’) and descriptor pool. In our case, every uniform

buffer object and image sampler is available in all graphics stages (vertex and fragment).

For this reason, the shaders must declare the binding of each uniform buffer object and

image sampler used in GLSL code, and the binding numbers cannot be reused. This is

done in GLSL by using the layout qualifier in the declaration of the uniforms.

For our application, the size of the descriptor pool translates into how many dif-

ferent objects can have the same material applied at a given time.

4.1.4 Geometry Module

The geometry module represents an object in the scene. It holds all the vertices

attributes (vertex position, normal, tangent, texture coordinates and indices, if available);

a transformation, which defines the rotation, scale and translation applied to the object;

and a reference to a material object which will be used to render the geometry in the scene.

When an object is added to the scene, it must be filled with vertex data and then
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a material has to be assigned to the object. Then, the object will get a list of the required

vertex attributes from the material, and create the vertex buffer accordingly. If the vertex

attributes include index data, the index buffer is created, too. Then, the uniform buffers

are created, based on the uniform buffer objects in the material assigned.

For the uniform buffer to be passed to the shaders, we need to allocate a descriptor

set from the pool defined in the material assigned to the geometry.

4.1.4.1 Recording Drawing Commands

Since all drawing operations are recorded in advance in Vulkan, this module also

provides a method for recording the drawing commands in a command buffer previously

initialized.

• VkCmdBindPipeline: Binds the graphics pipeline of the material applied to the

object;

• VkCmdBindVertexBuffer: Binds the vertex buffer of the object, which con-

tains the vertex attributes;

• VkCmdBindDescriptorSets: Binds the descriptor set which contains the uni-

form variables data;

• VkCmdBindIndexBuffer: If the object presents index data, binds the buffer

containing the indices;

• VkCmdDrawIndexed: Draw the object using the index buffer;

• VkCmdDraw: Draw object without indices.

4.1.4.2 Updating Uniform Buffers

The function to update uniform buffers is called by the Vulkan application mod-

ule, and expects a structure containing certain uniform values that are not dependent on

the object, such as the camera’s view and projection matrices. The other matrices are

calculated and loaded into the appropriate buffers.

The material can define arbitrary uniform variables, and those must be updated as

well. The material holds an array of dictionaries that describe each of the user-defined

variables, their types, sizes, bindings, offsets and values. With this information, our ap-

plication is able to load the variable value into the correct buffer in the correct offset.
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4.1.5 Texture Module

The texture module handles the passage of image data for the shaders. This means

creating an image, allocating device memory for the image, creating the image view and

the sampler.

Image files are loaded by Godot, the engine used to create the user interface, and

their data is passed to the texture module. Our application then has to pass this data into

the device memory bound to the image. However, there is no way to write directly to the

image memory, which forces us to use a staging buffer. The staging buffer can be mapped

to CPU memory and accessed by our application. In order to transfer this data to the

image, the image must have its layout transitioned to optimal for transfer destination. This

is done using a single time command buffer, which is allocated, recorded, executed and

freed, sequentially. Single time command buffers are managed by the Vulkan application

module. Once the image is ready to receive a data transfer and the staging buffer is loaded,

we can use another single time command buffer to copy the buffer contents into the image.

After this transfer is complete, the image must be transitioned again to a layout optimal

for shader read only. Then, the staging buffer can be destroyed, and the device memory

can be freed.

4.1.6 Camera Module

The camera module represents a virtual camera. It has a position, target and up

vectors for reference and an angle for the field of view of the projection. This module

provides the view and projection matrices used to transform the objects in the shaders. It

also presents methods for moving and turning, used by the Vulkan application module.

4.2 User Interface

In this section we will describe how our application works from a user perspective,

explaining the different panels, their responsibilities and how to use them.

Figure 4.3 shows the different panels of Shader Tutor:

1. Material list: Lists all the materials loaded. Allows the user to load shaders and

compile them, which will prepare the material to be used in the scene;
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Figure 4.2: Shader Tutor control window

Source: the author

2. Shader editor: Source code editor featuring GLSL syntax highlighting, line num-

bers and other useful features. Also contains a multiline shader compilation status

bar to display any errors in the shader code found during compilation;

3. Uniform variables editor: Uniform variables defined in shader code will be dis-

played in this panel as widgets which allow the user to change the values of the

variables. The changes are applied instantly in the visualization window;

4. Object list: List of the objects in the scene. Allows the user to create new objects,

either from primitives (capsule, cube, cylinder, plane, prism or sphere) or loaded

from a file;

5. Inspector: Displays the transformation applied to the selected object in the object

list (translation, rotation and scale) and the material used to display it.

Figure 4.4 shows that the visualization window, which displays the scene, is a
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Figure 4.3: Panels of the control window

Source: the author

different window from the control window described above.

4.2.1 Materials and Shaders

When the application is first executed, a default material is loaded. This is a simple

unshaded material that will be assigned to new objects when they are created. This ma-

terial does not require the geometry to have any any attributes other than position, which

ensures this material can be applied to any loaded mesh.

The create button (labeled with a plus sign) allows the user to load shaders and

create a new material via the create material popup window (Figure 4.5). The material

name must be unique and the vertex and fragment shaders source files must have a ".vert"

and ".frag" extension, respectively. When the material is created, the contents of the
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Figure 4.4: Visualization and control windows

Source: the author

shader files are loaded in the shader editor (Figure 4.6). At this point, the material is not

ready for usage yet.

Figure 4.5: Create material popup window

Source: the author

The GLSL source code for the vertex and fragment shaders can be altered in the

shader editor, which features syntax highlighting, line numbers, highlight selected word

occurrences and a shader compilation status bar.

To compile the shaders and setup the material, the user can click on the execute

button in the material list panel (the button with the "play" icon). The shaders are then

compiled and loaded in the material. If the compilation is unsuccessful, the status bar,
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Figure 4.6: Shader editor

Source: the author
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Figure 4.7: Uniform editor

Source: the author

right under the fragment shader editor, displays the error messages. When the compilation

succeeds, the uniform variables defined in the shaders’ source code are exposed in the

material parameters panel (Figure 4.7).

The editor creates appropriate widgets for each uniform variable defined in the

shaders based on their types. Supported types are described in Table 4.3.

4.2.2 Objects

The plus button on the objects panel allows the user to create a new object, select-

ing a primitive geometry from a list or loading a custom mesh file (in Wavefront ".obj"

format). If the file defines multiple groups inside the object, the groups will be merged and

loaded as a single group. The geometry primitives provided are: capsule, cube, cylinder,

plane, prism and sphere.

Newly created objects are given a name based on their shape (if the object is a

primitive) or their file name (if it was created from a mesh file), and their creation order.

New objects are assigned the default material upon creation, and instantly appear in the

scene (Figure 4.8).

When an object is selected, their transformation and currently assigned material
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Table 4.3: Recognized types for uniform variables
Type name Widget created

int Single numerical input widget. Accepts values from -10000
to 10000. Fractions are rounded.

uint Single numeric input widget. Accepts values between 0 and
10000. Fractions are rounded.

float Single numeric input field. Accepts values between -
10000.0 and 10000.0. Uses 2 decimal digits.

ivec2 Two numerical input widgets. Each widget follows the
same input rules as int.

uvec2 Two numerical input widgets. Each widget follows the
same input rules as uint.

vec2 Two numerical input widgets. Each widget follows the
same input rules as float.

ivec3 Three numerical input widgets. Each widget follows the
same input rules as int.

uvec3 Three numerical input widgets. Each widget follows the
same input rules as uint.

vec3 Three numerical input widgets. Each widget follows the
same input rules as float.

vec4 Color picker widget

Figure 4.8: Dragon mesh with the default material

Source: the author
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Figure 4.9: Inspector

Source: the author

Figure 4.10: Available materials appear in the inspector drop-down menu

Source: the author

are displayed on the inspector panel, below the material parameters panel (Figures 4.7 and

4.9). Changes made to the inspector and the material parameters take effect immediately.

Table 4.4 shows the available commands to navigate through the scene.
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Table 4.4: Scene navigation controls
Input Action

Mouse right click When pressed, enables movement
Mouse movement When movement is enabled, rotates the camera

around its own center, looking around
’W’ key Move the camera forward, relative to its current

orientation
’A’ key Move the camera to the left, relative to its cur-

rent orientation
’S’ key Move the camera backward, relative to its cur-

rent orientation
’D’ key Move the camera to the right, relative to its cur-

rent orientation
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5 RESULTS

The application allows the user to create and visualize different shaders in multiple

objects, define an arbitrary number of parameters for each material and also use multiple

textures to create the desired visuals. In Figure 5.1, we see a sphere illuminated using the

Phong illumination model and shading (illumination is calculated per pixel).

Figure 5.1: Phong shading

Source: the author

In Figure 5.2, the same shading model is applied, but the illumination computation

uses normal mapping to perturb the normal vectors of the sphere.

Figure 5.2: Phong shading with normal mapping

Source: the author

Figure 5.3 shows multiple objects using different materials, instanced in the same

scene. Each material defines its own parameters. Figure 5.4 shows a scene with a variety

of objects. The sky is rendered by applying a texture to a capsule. The ground, sphere, and

torus have normal mapping applied (most visible in Figures 5.6 and 5.7) and the dragon

uses Phong shading (Figure 5.5).
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Figure 5.3: Multiple objects with different materials

Source: the author

Figure 5.8 shows a scene rendered with an illumination model which accounts for

distance from the light source, creating a more realistic effect.
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Figure 5.4: An example scene

Source: the author

Figure 5.5: Dragon closeup

Source: the author
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Figure 5.6: Torus closeup

Source: the author

Figure 5.7: Sphere closeup

Source: the author
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Figure 5.8: Floor illuminated with Phong and attenuation based on distance

Source: the author
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6 CONCLUSION

We presented a complete environment for learning and exploring shader program-

ming using GLSL. Our environment, developed using Vulkan, can suit the needs of both

beginners and advanced users. Its user-friendly interface allows one to effortlessly load

3D models and images and modify variables and textures, applying the changes in real

time. This was also an important learning experience. Developing a real application using

Vulkan provided the opportunity to learn such new graphics API.

In order to provide a context for this work, the thesis also reviewed the concept of

graphics pipeline and its stages, especially the programmable stages, all of which are key

concepts in the field of computer graphics. We also introduced the tool used to build our

application, Godot Engine, and the technology called GDNative, used in our application

to integrate the Vulkan host application and the control window. We also talked about

graphics APIs and how APIs have different characteristics that the developer must be

aware of.

Then, we presented the details of the Vulkan API, used throughout this work. As

we could see, this API burdens the developers with every detail of the graphics pipeline

and configuration. While this empowers programmers to tailor the application that is most

optimized, it can also be very difficult to do so.

We described the architecture and how our tool works from the inside, explaining

each of its modules and how they work to build the best user experience possible. The

user interface is also discussed in depth, showing the features from a user perspective and

describing how to use each of them.

The application we created is a tool that allows students to write shader code with-

out having to worry about the underlying graphics API or creating the application infras-

tructure just to see the shaders in action. The results show we were successful in creating

such tool, rendering different scenes which demonstrate the flexibility achieved.

Creating this application has been a great learning exercise of the Vulkan API,

and the efforts have resulted in a very interesting piece of software with a real-world use-

case scenario, with lots of room to grow. Given the proper treatment, this application,

which is currently presented as a proof of concept, could be really useful in computer

graphics lectures and workshops, from fundamentals of computer graphics to advanced

shader programming.
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7 FUTURE WORK

We have some ideas as to how this project could be improved. For example, the

definition of a project description file format would be of great benefit for students, allow-

ing them to share projects between one another and the teacher. It may also be desirable

to support more types of shaders, like geometry, tesselation control, and tesselation evalu-

ation shaders. Although the graphics hardware supports cube map samplers, Shader Tutor

does not parse uniform variables defined as sampler cubes, but doing so would be useful

to create certain effects, such as environment mapping. Adding lights as entities of the ap-

plication, broadcasting their attributes to all shaders that required them, instead of having

each shader add their own light parameters. Finally, removing and renaming resources

(materials and objects) could improve the experience of students using the application.

The overall implementation could also benefit from more rigid software engineer-

ing guidelines in order to separate the core functionality from the interface used to com-

municate with the control window (using the "Model-View-Controller" model, for exam-

ple).

This application could also be expanded to help students understand general com-

puter graphics topics instead of just shader programming. This could be achieved if the

Vulkan API configuration values in its various structures were exposed to the user in

an organized manner, so that the student could tweak parameters of the entire graphics

pipeline and see the changes in real time. Going even further, this could evolve into a tool

to learn the Vulkan API specifically, if the user were given the chance to, for example,

see the available physical devices, their features and extensions, being able to enable and

disable each of them at will. Such tool could be really enlightening to anyone using the

API for the first time.
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