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ABSTRACT

The comet assay is a technique used to detect DNA lesions. It involves analyzing images

from individual cells, which can later be sorted into categories according to damage level.

In this work we propose performing the image analysis and classification using Convolu-

tional Neural Networks, comparing this method with other existing solutions.

Keywords: Comet assay. convolutional neural network. neural networks in python.



RESUMO

Comet assay é uma técnica utilizada para detectar lesões no DNA. Ela envolve anali-

sar imagens de células individuais, que depois devem ser classificadas em categorias de

acordo com seu nível de dano. Nesse trabalho propomos fazer a análise e classificação

dessas imagens usando Redes Neurais Convolucionais, comparando esse método com

outras soluções existentes.

Palavras-chave: Comet assay. redes neurais convolucionaism. redes neurais em python.
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1 INTRODUCTION

In biology, the comet assay is a technique used for detecting DNA damage in in-

dividual cells that can also be used to evaluate DNA repair (SILVA et al., 2000). Also

known as single cell gel electrophoresis assay, or SCGE, it is a simple method that in-

volves staining DNA comets with DNA-binding dye and analyzing the resulting images

(GYORI et al., 2014).

Figure 1.1 shows one of those resulting images, which is made of several comets.

For the classification to work, each individual comet, as shown in Figure 1.2, must be

identified and then sorted into the right category, considering the severity of DNA damage:

class 0 refers to undamaged cells, while class 4 represents maximum damage. Figure 1.3

shows one comet from each class. All comet images used in this work were obtained with

Universidade Federal do Rio Grande do Sul’s biochemistry department. More of their

work is available at (SILVA et al., 2013).

Figure 1.1: Comet assay image containing several comets

Fonte: UFRGS’ biochemistry department

Currently there are several free and commercial tools available for comet image

analysis; among the free ones are CaspLab (KOńCA et al., 2003), CometScore (HOOVER,

2016), OpenComet (GYORI et al., 2014) and HiComet (LEE et al., 2018). The problem

with all available free software is that they do not actually output the category of each

comet, and instead return a variety of values such as comet area, head area and tail length,

which the user can later use for manual classification. In this work we propose a method

for automatic classification of comets into categories without the need for user interven-
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tion.

Figure 1.2: A single comet

Source: UFRGS’ biochemistry department

From the mentioned free comet image analysis tools, OpenComet and HiComet

are the most recent ones. OpenComet had its latest version made available in 2016 and

can identify individual comets on its own by using using pixel intensity to separate the

comets from the background. The tool cannot, however, identify comets that are too

damaged, for example having the head separated from the tail, or recognize overlapping

comets, leading to a quantity of valid comets being discarded. HiComet, released in 2018,

overcomes this problem and can identify overlapping comets, but still cannot classify

comets into categories.

In this work, we propose using a Convolutional Neural Network (CNN) to clas-

sify comet assay images. CNNs are a special kind of neural network designed to recognize

patterns from images (LECUN, 2018). Image classification in CNNs works by using the

image that needs to be classified as an input, and then processing this input by passing it

through a sequence of pre-trained layers. The output of the network is the predicted class

for the image.

A CNN architecture is usually composed by several layers of different types, such

as convolutional and pooling layers. Convolutional layers are connected only locally, and

are made of kernels that learn relevant features to recognize the images, such as edges.

Kernels in the first layers learn basic features, while the ones in later layers learn higher-

level ones. The pooling layers reduce the input size and control overfitting. After them,

fully connected layers are responsible for predicting the class of the input image, based

on how the network was previously trained.
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We hypothesize that CNNs are an adequate method for the comet assay image

analysis problem based on the fact that they are already widely used in several fields,

ranging from applications that deal with face recognition in social media to video surveil-

lance, and thus can potentially be trained for this task as well. On top of that, after training

a network, running the classification for new images is done without user intervention,

meaning that overall time spent by the user is reduced.

Figure 1.3: Comets ranging from classes 0 to 4

Source: UFRGS’ biochemistry department

1.1 Document Organization

Following this introduction, chapter 2 of this work describes related works on both

CNNs and comet assay image analysis. Chapter 3 follows with an explanation on how

CNNs and the comet assay technique work. Chapter 4 shows the CNN implementation

as well as its results on comet assay images, and chapter 5 introduces the segmentation
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proposed to obtain individual comets from the original image. Chapter 6 presents the

conclusion and future works.
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2 RELATED WORK

This chapter introduces what has already been done in terms of image classifi-

cation using CNNs, while also considering networks that offer solutions for the object

detection problem. After that, we describe available free softwares for comet assay image

analysis and the respective techniques each one of them uses for the task.

2.1 Convolutional Neural Networks

LeNet-5 was a network designed in 1998 to recognize handwritten letters and

numbers (LECUN et al., 1998). Since then, several CNN architectures have been pro-

posed for the image classification problem, and some of them, in more recent years, also

offer solutions for object detection. In this section we will present several networks that

have offered important contributions for solving both problems.

AlexNet was the first CNN to win an ILSVRC (ImageNet Large-Scale Visual

Recognition Challenge), a competition that evaluates algorithms for object detection and

image classification at large scale (RUSSAKOVSKY et al., 2015), in 2012. AlexNet

has 60 million parameters and 650.000 neurons; it is composed by five convolutional

layers and three fully-connected layers, followed by a 1000-way softamax function, and

achieved an error rate of 15.6% compared to the error rate of 26.2% achieved by the

second-best entry in that year (KRIZHEVSKY; SUTSKEVER; HINTON, 2012).

In 2014, VGG Net won second place in that year’s ILSVRC, with an error rate

of 7.2%. It is considerably deeper than AlexNet, with variations having 11 to 19 con-

volutional layers, and the number of parameters ranging from 133 to 144 million (SI-

MONYAN; ZISSERMAN, 2014). GoogLeNet, with a 6.67% error rate, was the winner

of the 2014 ILSVRC, and has a different architecture from previous CNNs, being com-

posed by modules that can be executed in parallel so that the entire network does not have

to be run sequentially (SZEGEDY et al., 2014).

The 2015 ILSVRC winner, ResNet, has 152 layers, making it 8 times deeper

than VGG Net (HE et al., 2015). The error rate achieved by ResNet in the ILSVRC

is 3.57%, a better rate than humans, who usually score between 5 to 10%, can achieve

(DESHPANDE, 2016).

All networks described until now are used for the image classification task, which

consists on receiving an image as input and sorting it into a class. For the object detection
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task, however, it is also important to locate separate objects in an image, meaning one

image might have more than one object from different classes.

R-CNN (GIRSHICK et al., 2013), Fast R-CNN (GIRSHICK, 2015) and Faster

R-CNN (REN et al., 2015) are CNNs designed to detect objects within images and then

classify them into categories. Faster R-CNN, in particular, works by merging a Region

Proposal Network and Fast R-CNN into a single network in order to achieve state-of-the-

art object detection accuracy. YOLO, another network designed for object detection that

has state-of-the-art accuracy, runs at 45 fps and has a faster, less accurate version that runs

at 155 fps (REDMON et al., 2016).

2.2 Comet Assay

In this section we describe what is available in terms of free software for the anal-

ysis of comet assay images. It is relevant to remember that none of the available free

software can classify comets into the desired five classes; instead they offer a variety of

parameters related to each comet’s tail and head.

Figure 2.1: CaspLab’s user interface

Source: (CASPLAB. . . , 2018)
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CaspLab (KOńCA et al., 2003) works with color and gray-scale images of fluorescence-

stained comets in the TIF format, with silver stained comet images needing to be con-

verted into negatives. It calculates parameters such as head radius, tail length and tail

moment. After launching the program, once the user has adjusted threshold sensitivity

settings, it is estimated that 25 to 50 measurements can be performed in less than 10

minutes. CaspLab’s interface can be seen in Figure 2.1.

CometScore (HOOVER, 2016) works by having the user adjust a threshold so that

the comets can be separated from the background, and then drawing a rectangle around

each comet that must not overlap with other comets. The program calculates several

parameters, such as comet length, comet area, head area, head length, etc.

OpenComet (GYORI et al., 2014) is a plug-in for the ImageJ image processing

platform. The user selects a set of images for analysis and an output folder to save the re-

sults in a spreadsheet format. It can automatically detect comet locations, but overlapping

comets are considered invalid and discarded. Output parametrs include comet length,

head length, tail length, among others. OpenComet’s interface is shown in Figure 2.2,

where comets considered invalid by the software are also visible.

Figure 2.2: OpenComet’s user interface

Source: (GYORI et al., 2014)
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HiComet (LEE et al., 2018) goes through 4 steps (preprocessing, binarization, fil-

tering and overlap correction, characterization and classification) in order to find parame-

ters such as size, head moment, tail moment, etc. Unlike OpenComet, it can identify and

analyze overlapping comets; this is an important feature, as overlapping comets are still

valid for classification. Figure 2.3 shows the output image for each step of the HiComet

method.

Figure 2.3: Overview of HiComet’s methodology

Source: (LEE et al., 2018)
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3 DETAILED REVIEW OF USED TECHNIQUES

3.1 Convolutional Neural Networks

A Convolutional Neural Network is a neural network architecture inspired in bi-

ology, specifically by visual perception of living beings. It receives an input, processes

it, and outputs the class predicted for the said input. When used for image processing in

computer vision, for example, a CNN can receive a picture and classify its contents based

on what categories the network has been trained to recognize. This section describes the

components a regular CNN is made of. The next section describes how the network works

for image classification.

Like other backpropagation neural networks, CNNs are composed by neurons,

biases, and their interconnections. While there are architecture variations, typically CNNs

are made by a combination of several convolutional, pooling (subsampling), and fully-

connected layers. Figure 3.1 shows the CNN architecture of LeNet-5 with all mentioned

layers, extracted from (LECUN et al., 1998).

Figure 3.1: Architecture of LeNet-5

Source: (LECUN et al., 1998)

Convolutional layers are made of kernels (also called filters), which in turn are

made of neurons; neurons in CNNs share weights, introducing sparsity, reducing the

number of total weights (KAFUNAH, 2016) and the model complexity, and making the

network easier to train (GU et al., 2015) . Those kernels learn features about the input they

are fed with. Kernels in lower level layers learn simple, low-level features, while features

learned by kernels in higher layers are more complex. By stacking several convolutional

layers in succession, it is possible to learn high-level features that convey complex infor-

mation about the input. Figure 3.2 shows convolutional kernels learned by AlexNet, with
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a variety of frequency and orientation-selective kernels, extracted from (KRIZHEVSKY;

SUTSKEVER; HINTON, 2012). The kernels on the top of the image were trained by

one GPU, while the ones on the bottom were trained by a second one; this figure shows

an specialization exhibited by the two GPUs, with the second one learning color-specific

kernels.

Figure 3.2: Convolutional kernels learned by AlexNet

Source: (KRIZHEVSKY; SUTSKEVER; HINTON, 2012)

Pooling layers usually follow convolutional layers, and are used to reduce the

spatial size of the previous layer’s output, also reducing the number of operations in sub-

sequent layers, controlling overfitting. Common functions to use in the pooling layer are

max-pooling and average pooling. Max-pooling, the most used from the two, consists on

defining a window size, sliding it over the pooling layer’s input (usually the output from

the previous convolutional layer), and performing a max operation on chosen cells, pass-

ing to the next layer only the one with the highest value and effectively reducing matrix

size.

Activation functions are commonly used after convolutional layers to introduce

nonlinearities, making it possible for the network to learn non-linear features. One com-

mon way to do this is by using a rectified linear unit (ReLU) layer, although other func-

tions can be used. ReLU takes the output of the convolutional layers and turns all negative

values into zeros, keeping positive values the same.

After the sequence of convolutional and pooling layers, fully-connected layers

can be used for high-level reasoning. As the name implies, neurons in these layers do

not share weights and are normal backpropagation neural networks. When classifying an

image, for example, each neuron from the last layer of the network can be interpreted

to mean the probability of the image belonging to the class associated with that neuron.

To choose which class the image belongs to, one method available is to pick the class
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associated with the neuron who presented the highest value, usually only if that value is

above a threshold. This can be done using a softmax function. A detailed review of CNN

behavior and structure can be found in (GU et al., 2015).

With their structure in mind, training CNNs is very similar to training regular

neural networks: the input is passed forward through all the layers, and then afterwards

during the backpropagation phase the network is updated based on the output error. The

problem with training this kind of network, however, is that not only a huge amount of

data is needed, each input also has to be annotated with which class it belongs to. The

annotation task is done by humans, and so requires time and resources. If not enough data

is available, sometimes images are flipped, shifted, etc., in order to emulate more training

cases.

3.2 Comet Assay Technique

The comet assay is a technique used for detecting DNA damage in individual cells.

Cells are first embedded in agarose on a microscope slide, then lysed, which leaves nu-

cleoids. Those nucleoids are electrophoresed in alkali, and DNA loops containing breaks

are relaxed and extended towards the anode, forming a comet-like image, as already

shown in Figure 1.2, that can be viewed by a fluorescence microscopy with a suitable

stain. The extent of DNA damage can be expressed as the percentage of DNA fluores-

cence in the tail (LORENZO et al., 2013).

Visual scoring of the comets in the five categories is arbitrary and not strictly

comparable with softwares that provide tail percentage. As it is, an approximation of

each class on the visual scale can be seen as 20% of the percentage interval (COLLINS et

al., 1997). Since available softwares do not output the class for each comet, it is usually

done by the user; while it can, as mentioned, be done considering the tail percentage, it

does not correspond perfectly to the five classes.
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4 IMPLEMENTATION

While several CNN implementations are available for free, in this work we de-

cided to focus on implementing one from scratch, in order to fully understand and be

in control of all parameters. The full code is available at <https://bitbucket.org/lrzg/

comet-assay-cnn/src/master/>.

The programming language chosen for the task was Python, using the Jupyter

Notebook platform. This choice was based on the several libraries and packages available,

such as numpy. The network follows a classic CNN structure as presented in chapter 2

of this work, with convolutional, max-pooling and ReLU layers in sequence, followed by

fully-connected layers.

Several network parameters can be adjusted in the config.txt file. The number

of convolutional, ReLU, max-pooling and fully-connected layers can be changed. The

total number of filters of each convolutional layer can also be modified, as well as filter

size; each layer’s filter size and number of filters are independent from each other. Max-

pooling layers have adjustable filter size and stride, and if the user does not want to use

a max-pooling layer the filter size can be simply set to 1. It is also possible to modify

the number of neurons in fully connected layers. Input images are of the .bmp format

and their size can be changed by setting the correct W (width) and H (height) values in

the first convolutional layer; those values have to be kept consistent in subsequent layer’s

configurations.

To ensure network correctness, we first trained our CNN to learn a set of simple

geometric formats, with the following classes: circle, square, triangle. After assessing the

network could learn these classes correctly, we moved on to real comet images.

4.1 Results of Comet Classification

Training was performed using images obtained with UFRGS’ biochemistry de-

partment. As we were able to obtain only few examples per class, from two microscope

slides, training had to be done with a very limited training set. Each image was first la-

beled by one specialist, and then checked by another one to ensure it was classified in the

correct class.

Due to the small number of images, comet category 2 had to be omitted from

training, as it is a very heterogeneous category and most examples available from it had

https://bitbucket.org/lrzg/comet-assay-cnn/src/master/
https://bitbucket.org/lrzg/comet-assay-cnn/src/master/
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a strong variation and dissimilarity. A few variations of class 2 comets can be seen in

Figure 4.1, showing that some comets from this class have almost no tail while others do,

and also that tail intensity severely varies between examples, making such a small training

set inadequate for learning this class.

Figure 4.1: Comets from class 2

Source: UFRGS’ biochemistry department

We trained the network with several configurations and a preset number of itera-

tions. Input images are all 100x100 pixels. Accuracy was calculated by the percentage of

right classifications per total images on the test set, previously separated from the training

set. The test set is composed by two images per category. Accuracy results can be seen in

Table 4.1

Configurations with the same number of convolutional layers where increasing it-

erations lowered the accuracy might mean an overfitting; considering our limited training

set, the network could have learned features that are too specific of images from the train-

ing set, but do not generalize well. For the 5 convolutional layers setup, as it has more

weights to train, 500 iterations might not have been sufficient for it to converge, hence the

better accuracy of training with 1000 iterations. This behavior is in accordance with what

has already been reported in literature (MITCHELL, 1997).
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Table 4.1: Accuracy results
Number of convolutional layers Iterations Accuracy

2 500 75%

2 1000 62.5%

3 500 87.5%

3 1000 75%

4 500 62.5%

4 1000 62.5%

5 500 50%

5 1000 87.5%

We are aware that CNNs are usually trained with hundreds of images (GU et al.,

2015), but comet image labeling by humans is a time consuming task, as it involves

manually classifying each comet and may require a second person for validation. On

top of that, transformations such as shifting or rotating images do not work well for this

problem. Shifting a comet does not add relevant characteristics for the network to learn.

Rotating a comet also cannot be done, as comets have a certain orientation, in our case

with the tail extending to the left of the head; other softwares for comet assay image

analysis also rely on the comets’ head and tail orientations.

Due to the time factor, the total number of images we were able to obtain during

this work’s timespan was limited, but in the future we will be able to acquire more images

with UFRGS’ previously mentioned biochemistry department and, if possible, other ex-

ternal collaborators, such as different universities. Collaboration with other sources might

also add important variations to the training and testing sets, as slides coming from other

laboratories’ microscopes will have different characteristics.

As it is, Table 4.2 shows that adding more images to the training set gradually

increases network accuracy. The network configuration for this test was of two convolu-

tional layers with a max-pooling layer between them, followed by three fully-connected

layers. This topology has been reached after experimenting with different topologies, and

obtaining a decent error in the training phase.

As we progress with this work we will obtain more images and, taking Table 4.2

as an example, increase the network accuracy more. With more examples we will also be

able to cover comet variations better, including class 2, which will be added to training

when possible. We also plan to train overlapping comets as separate classes; the network
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Table 4.2: Accuracy results by number of examples per training class
Number of images per training class Accuracy
1 37.5%
2 50%
3 62.5%
4 75%

should have no problem learning them, seeing as one comet on top of another one has a

distinguished shape from a single separate comet. This task, however, will require a lot

of slides, as overlapping comets are not that common; collaboration with other sources is,

then, essential to obtain a relevant amount of instances.
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5 SEGMENTATION

Segmentation of comet assay images was also done in Python, using image la-

belling (LABEL. . . , 2018) and Li’s Minimum Cross Entropy thresholding method (LI;

LEE, 1993). The original code is available at <http://scikit-image.org/docs/dev/auto_

examples/segmentation/plot_label.html>, while the modified code is available together

with the CNN code.

A few changes were made in the code to better adapt it to comet segmentation.

First, bounding boxes smaller than a set size were discarded, as objects that small are not

considered comets. Second, we changed the original thresholding function from Otsu’s

method to Li’s Minimum Cross Entropy method, as it better performs comet detection.

Last, we expanded some boxes to cover comet tails more throughly.

Figure 5.1: The same comet, segmented with and without box expansion

Li’s Minimum Cross Entropy was chosen as the thresholding method after com-

paring it to several other methods. Li’s method obtained the best results in terms of being

able to detect all comets. A comparison between some of the thresholding methods tested

for this task can be seen in Figure 5.3. Otsu’s method (OTSU, 1979) can detect the major-

http://scikit-image.org/docs/dev/auto_examples/segmentation/plot_label.html
http://scikit-image.org/docs/dev/auto_examples/segmentation/plot_label.html
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ity of comet heads, but cuts off some tails that are detected by Li’s method; the ISODATA

method (RIDLER; CALVARD, 1978) presents similar problems. Yen’s method (YEN;

CHANG; CHANG, 1995) cannot detect several separate comets as different objects, and

groups them in one box.

While the proposed method is able to detect all comets on test images, tails from

heavily damaged comets sometimes get cut off in the middle. In order to overcome this

problem, we expanded bounding boxes that have higher width than height, so bounding

boxes that were reaching only part of a tail could better cover the whole comet. Results

before and after bounding box expansion can be seen in Figure 5.2. Those images were

not classified by our network as they need first to be evaluated by a specialist.

Figure 5.1 shows a single comet obtained from this segmentation technique. With-

out expanding boxes, a part of the comet’s tail is lost, but box expanding fixes this issue.

The box expansion, however, cannot be too big, or it might overlap with another comet.

Due to image availability, we have only been able to test this method with two comet

assay images, which were provided by UFRGS’ biochemistry department.

In order to train the network in the future with images extracted directly from

microscope slides by the segmentation step presented here, we aim to obtain not only a

higher quantity of slide images, but also for those slides to have each comet classification

on them. Specialists manually drawing bounding boxes on all valid comets and assigning

each one a class, for example, will be one way to compare if our method can detect all

comets and appropriately segment them.
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Figure 5.2: Comet segmentation using Li’s Minimum Cross Entropy thresholding method
with and without extended boxes
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Figure 5.3: A few threshold methods tested
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6 CONCLUSION

While there are many CNN implementations available as open code, the process

of programming one from scratch was important for this work, as not only a deeper un-

derstanding of them was achieved, but also all relevant parameters can be set as wished.

It also means that integration of CNN and segmentation codes will be trivial, as the two

are already on the same platform.

Choosing Python to implement the CNN means it does not run as fast as it could if

it were done in another language, such as C. However, as the running time for processing

comets is measured in minutes, and since no user intervention is needed, it does not impact

usability. The reduced time taken to implement the code in Python over other available

options due to specific libraries and packages was enough to make up for the running

time being a bit slower. Training each CNN configuration for this work, however, took

approximately one hour per network, and will take more as we expand the training set and

train for more iterations. Training time, if programming was done in C, could have been

significantly reduced.

6.1 Future Work

In this work we demonstrated that a CNN is capable of classifying comets into

four of the five comet assay categories. The next step is acquiring more pre-labeled images

with area specialists. With more images in the training and testing sets, we can potentially

increase accuracy, as it has already been demonstrated in Table 4.2. On top of that, more

slides coming from different microscopes also mean a different variety of comets in each

class; since comets, even in the same class, have varying characteristics, it is important to

collect examples that encompass all of them. The best example of this behavior is class

two, which could not be trained due to highly different comet images from the same class.

We also plan to make the transition from segmentation to classification automatic,

and train the network directly with images from our segmentation algorithm. For this to

work, we need to obtain more classified images, specifically with each comet in a full slide

annotated. An specialist can, ideally, draw bounding boxes in the slide images, attaching

a class to each one; this way we can also throughly check if our segmentation algorithm

is missing any important comets as well as correctly covering all comets’ area.

Collaboration with other laboratories will be important for gathering a significant
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amount of examples, also adding possible comet characteristics variations between lab-

oratories. Not only that, the green dye of the images used in this work is not the only

possible option; gathering images obtained with other dye colors is important. Based on

the fact that the network can be trained with grayscale images, we believe other color will

not affect performance.
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