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ABSTRACT

Moore’s law reaching its physical limitations has pushed the industry to produce multi-

core processors. However, programming those processors with an imperative language

is not easy since it requires developers to create and synchronize threads. A pure func-

tional language is an adequate tool for this task both from the architectural point of view

and from the developer’s. We will show that an architecture can benefit from the implicit

parallelism present on functional programs and from the lack of side effects making it

easier to parallelize. The developer benefits from functional languages from the superior

expressiveness of the language to avoid bugs. In this dissertation, we present the ACQuA

architecture, a multicore accelerator created to explore parallelism available in function

calls from a pure functional program. ACQuA uses hardware support and a specifically-

tailored memory organization to minimize the overheads of scheduling, communication,

and synchronization. Function calls are placed into a queue and are scheduled to different

processing units. The processing units are interconnected and exchange results from func-

tion applications. In this work we defined a high level model of the accelerator and how

to compile a functional program to it. We also simulated the accelerator and evaluated

results, such as speedup, memory usage, and communication overhead of the proposed

architecture. We defined the necessary traits of a program to achieve a good speedup on

the architecture. On the ideal use case, we can increase the speed up at the same rate we

increase the number of processing units in the architecture.

Keywords: Architecture. parallelism. functional programming. accelerator.



Explorando paralelismo em linguagens funcionais puras com ACQuA

RESUMO

A indústria está sendo pressionada a produzir processadores com múltiplos núcleos de-

vido as limitações físicas da lei de Moore. Porém, programar esses processadores com

linguagens imperativas não é uma tarefa fácil, já que o programador deve criar e sincro-

nizar threads. Linguagens funcionais puras são ferramentas adequadas para essa tarefa

tanto do ponto de vista da arquitetura e do programador. Do ponto de vista da arquite-

tura, essas linguagens apresentam paralelismo implícito, e são mais fáceis de paralelizar

devido a falta de efeitos colaterais. Já o programador é beneficiado por não precisar defi-

nir explicitamente threads e a sincronização entre elas, além de aproveitar o alto nível de

abstração provido por essas linguagens para evitar erros. Nessa dissertação, nós apresen-

taremos a arquitetura ACQuA, um acelerador de múltiplos núcleos criado para explorar

o paralelismo implícito em aplicações de funções de linguagens funcionais. ACQuA têm

suporte em hardware e uma organização de memória criada especificamente para minimi-

zar a sobrecarga do agendamento, comunicação e sincronização dos núcleos. Chamadas

de função são colocadas em uma fila e são agendadas para diferentes unidades de pro-

cessamento. As unidades de processamento são interconectadas e trocam resultados das

chamadas de função. Nesse trabalho, nós definimos um modelo para a arquitetura em

alto nível, e como compilar um programa funcional para ela. Nós também simulamos

o acelerador e avaliamos resultados como aceleração, uso de memória e sobrecarga de

comunicação. Nós definimos as características necessárias de um programa para atingir

uma boa aceleração na arquitetura. Nos casos de uso ideais, a aceleração aumenta na

mesma taxa em que mais unidades de processamento são adicionadas na arquitetura.

Palavras-chave: arquitetura. paralelismo. linguagem funcional. acelerador.
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1 INTRODUCTION

With future processors being expected to have hundreds of cores, it becomes im-

practical for a developer to manually divide and synchronize parts of a program to be ex-

ecuted in parallel, making automatic parallelization all the more important. Meanwhile,

the absence of side effects in programs written in purely functional languages simplifies

the task of identifying parts of a program that can be executed in parallel (HAMMOND,

2011).

To take advantage of that, we present the ACQuA (Active Call Queue Architec-

ture) accelerator, an architecture that explores some of the inherent parallelism in purely

functional languages by automatically parallelizing independent function applications,

also known as function calls. With ACQuA’s direct architectural support, a developer can

write programs in a pure functional language and benefit from the parallelism in indepen-

dent function applications transparently, without having to resort to language abstractions

to explicitly create, synchronize or describe the communication among multiple threads.

The architecture also features list support, since lists and functions to process them are

present in any functional programing language and are widely used in this programming

style. In particular ACQuA provides support for mapping a function to the elements of a

list since this operation has the potential of spawning several independent function calls.

The main goals of this work are to introduce the ACQuA accelerator architecture,

to evaluate its performance and scalability, and also to identify which are the properties

that make programs more or less suitable to perform well on the proposed architecture.

The idea of having architectural support specific for executing functional lan-

guages is not new (SCHEEVEL, 1986; STOYE; CLARKE; NORMAN, 1984; RHO et

al., 1994; VEGDAHL, 1984). This idea, however, lost its strength due to the fast rate

of improvement of conventional processors which was a reality until recently. With the

increasing difficulty of improving single-threaded performance and the rise of multicore

processors, we believe this subject becomes again worth discussing.

Dedicated hardware modules and a specifically-tailored memory organization were

devised in ACQuA to shorten the gap between the high-level abstraction of function ap-

plications and the architecture. Thereby, architectural support is provided to minimize the

overheads of creating, scheduling and synchronizing tasks.

Pure functional languages are arguably easier to parallelize thanks to the lack of

states and side effects. Thanks to this property, two function calls without explicit data
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dependency from pure functional languages can always be evaluated in parallel, and a

function called multiple times with the same argument always return the same value. On

imperative languages we can not make such claims, since a function can modify a global

state (JONES, 1989). There are other advantages on using functional languages that are

also important to critical software modules. The usage of functional languages allows the

developer to express complex programs with less lines of code than it does with imperative

languages. The number of correct lines of code a programmer can write does not seems

to depend on the language an developer is using (WASSERMAN; GUTZ, 1982), so using

more expressive languages help to reduce the number of lines, and thus the number of

bugs in a software. Having less bugs is specially useful for parallel programs, which are

a source of high impact, hard to fix bugs (ASADOLLAH et al., 2016). Also, functional

languages are easier to verify (BACKUS, 1978), which is an useful property for critical

software modules.

The architecture is based on a queue of function calls and multiple processing

units. It is currently proposed as an accelerator that operates when activated by a program

running on a general-purpose host processor. With this accelerator-based approach, the

programmer is responsible for identifying which parts of a program are critical regard-

ing performance. These parts, if written in a pure functional language, can have their

execution accelerated by ACQuA inside an impure software.

The accelerator is programmed with a small pure functional programming lan-

guage, which is compiled to ACQuAIR, a lower level language with specific commands,

such as to enqueue and to synchronize non-independent function applications. Since AC-

QuA excels when multiple independent function calls execute in parallel, the architecture

also provides native support for mapping a function to the elements of a list.

We have implemented a simulator for the architecture to evaluate its viability and

performance. Experiments were conducted to collect data about speedup, memory usage,

and communication overhead. Some experiments have outstanding results, for instance,

the execution of the classical longest common substring algorithm achieved a speedup of

14 when running with 16 processing units.

The dissertation is structured as follows: In Chapter 2, we present the history of

parallelism and how its exploration has advanced, be it with computer language features

or architectural support. The accelerator architecture is explained at Chapter 3. In this

chapter we will explain the ACQuA architecture and how a program run on it, explaining

and justifying project decisions. In chapter 4 we present the accelerator intermediate rep-
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resentation language ACQuAIR, and explain how the core of a pure functional language

can be compiled to this intermediate representation. In Chapter 5, we present the result of

experiments done for this architecture on a simulator. Chapter 6 has our conclusions and

a discussion about future work.
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2 RELATED WORK

2.1 Parallelism on programming languages

On most programming languages, parallelism needs to be explicitly expressed on

the code. For a long time the C language did not have built in support for parallelism,

which could only be obtained by using system libraries to create and synchronize threads,

like POSIX (STANDARD. . . , 2016) for unix based systems. C11 (ISO, 2011) has in-

troduced a standard library to create and synchronize threads, making easier to share a

parallel code through different operational systems, however the only way to achieve par-

allelization on C is still through threads.

Concurrency is the source of high impact, hard to fix bugs (ASADOLLAH et al.,

2016), thus there is an effort to simplify the way we express concurrent and specially

parallel programs. One interesting case is present in the Haskell programming language.

While it has support for creating and synchronizing threads through Concurrent Haskell

(JONES; GORDON; FINNE, 1996), it also has the par construct to explicitly evaluate

two expressions in parallel (MARLOW; NEWTON; JONES, 2011). Having only one

simple command to execute expressions in parallel makes it easier to understand the code

since it abstracts threads synchronization, unlike traditional constructs such as POSIX

threads and monitors which might execute code with complex synchronization.

More complex abstractions that remove the need of creating threads have been

used by modern impure languages, for instance the actor model (HEWITT; BISHOP;

STEIGER, 1973). In the actor model, each concurrent computation is an actor, and syn-

chronization is achieved through messages. Each actor has a private state that can only

be modified by the actor itself, thus avoiding the need for any lock. This model is im-

plemented by Erlang (SALVANESCHI; GHEZZI; PRADELLA, 2012), Scala and Rust,

for instance. While this model is less explicit to create parallel code than than Haskell’s

par construct, it can be used to implement complex synchronization. In comparison with

traditional concurrency control methods like POSIX threads, it simplifies the synchroniza-

tion by hiding hardware and operational system synchronization details like semaphores.

While there is an effort by modern programming languages to express the par-

allelism in a simpler way, there is still some hard work for the developer, for instance

identifying the sources of parallelism of a program and making it explicit in the source

code how the program should be parallelized. Recognizing a parallelism opportunity is
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not always trivial, and parallelizing the wrong part of a source code might hurt the perfor-

mance and/or introduce bugs.

2.2 Implicit parallelism exploration

One way to alleviate the burden on the developer is through implicit parallelism,

that is, achieving parallelism on a program with no special commands, leaving the com-

piler to decide where and when to execute code in parallel.

One possible way to explore implicit parallelism is to perform a code transforma-

tion, including parallelism commands on a code that originally had none. It is hard to

identify safe parallelization opportunities on imperative languages because of states. The

simplest transformation that can be done in compile time for imperative languages is par-

allelizing loop iterations. For instance, Cetus (DAVE et al., 2009) is a C source-to-source

compiler that explores implicit parallelism on loops. The ICU-PFC compiler (KIM et al.,

2000) transforms Fortran code to include OpenMP directives.

There is also effort to explore the implicit parallelism of programs on the dis-

tributed memory model through code transformations. For instance, Jones (AUBREY-

JONES; FISCHER, 2016) shows a technique to compile pure functional languages to

MPI C++ code able to run on Linux clusters. By using pure functional languages it was

possible to parallelize operations on arrays, maps and lists in a simpler fashion than on

impure languages.

Exploring implicit parallelization does not need to be done at compiler level. It

can be explored in the interpreter or virtual machine level. For instance, there is a version

of the Java Virtual Machine (JVM) that explores the parallelism on method executions

(CHEN; OLUKOTUN, 1998), which is tricky because of imperative programming side

effects. Conversely, ACQuA explores the parallelism on function applications, which are

similar to method executions from object-oriented languages, but are guaranteed to lack

side effects. Also there is the JRPM (CHEN; OLUKOTUN, 2003), a version of the JVM

that identifies which loops are worth being parallelized by thread-level speculation.

Instead of trying to extract the implicit parallelism on existing non-parallel lan-

guages, some programming languages are designed to be parallel. This is the case of Id

(SHARP, 1992), a dataflow programming language (JOHNSTON; HANNA; MILLAR,

2004) which by definition evaluates some expressions in parallel, for instance function

arguments or strict operator arguments. It does not specify a machine or interpreter for
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the language, only the evaluation strategy, thus its performance is highly dependent on

the system on which it is running. The only way to achieve parallelization on the current

commercial processors and operational systems is through threads. Creating and syn-

chronizing threads have a cost that limits the grain of effective parallelization, making it

harder for lower grain parallelization efforts like the Id language to succeed.

2.3 Architectural support for functional programming languages

The idea of having a specific architectural support for executing functional lan-

guages is not new (VEGDAHL, 1984). Some efforts were made on the design of Lisp ma-

chines (SCHEEVEL, 1986) and processors based on the notion of combinators (STOYE;

CLARKE; NORMAN, 1984). The DAVRID architecture (RHO et al., 1994) dates from

that time and uses a functional language augmented with explicit constructs for loop un-

folding to achieve some degree of parallelization. There is also a work that utilize mul-

tiple cores to speculatively execute possible program paths when reaching conditional or

branch instructions (WATERLAND et al., 2014). While the work achieves good results,

this approach is probably expensive in energy for programs with multiple conditions since

it executes unnecessary code.

More recently, a special-purpose and FPGA-based processor called Reduceron

(NAYLOR; RUNCIMAN, 2010) has been proposed to explore implicit low-level par-

allelism purely functional programs. It sees a pure functional program as a graph and

executes the program by reducing the graph. It explores every tiny parallelism in the re-

duction by using a stack and parallel memories. ACQuA works on a coarser grain to avoid

communication overhead. It also has a hardware implementation on an FPGA, while AC-

QuA has a simulator. Reduceron was implemented with parallel memories which are ex-

pensive in area, and those are fundamental to the results they got. ACQuA uses standard

memory which escalates better, and because of that, it does not explore all parallelism in

a functional program, focusing only on function applications. The architecture from Re-

duceron is totally new, while ACQuA uses standard cores to compute the program, being

able to take advantage of advances in microarchitectural design, if desired.

Reduceron inspired some other works in the area, including the PilGRIM (BOEI-

JINK; HÖLZENSPIES; KUPER, 2010). This processor core also reduces a graph that

represents the functional program, but unlike Reduceron it focuses on lazy evaluation.

There is no physical implementation for PilGRIM, only a simulator, just like ACQuA.
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Both Reduceron and PilGRIM present a small functional core to accelerate, not consider-

ing ample used data structures like lists, which ACQuA do.

The most similar architecture with ACQuA we found was the Data Flow Mul-

tiprocessor (RUMBAUGH, 1977). This processor features many similar architectural

components, including multiple memories, cores and a scheduler. Unlike ACQuA, it

considers a functional program as a data flow, thus having nodes executing operations

when data is available. It also uses a really small grain, parallelizing math operations.

As far as we know, no simulator was written to test this processor. On our experiments,

we will conclude that ACQuA does not perform well on such a small grain, and because

the architecture is very similar, we believe that this processor would not perform well if

implemented to parallelize the operations described in the paper.

As far as we know, ACQuA is the first architecture proposed specifically for

supporting the automatic parallelization of function application in purely functional lan-

guages with native support to list processing.



14

3 ARCHITECTURE

The ACQuA architecture is presented in the following three sections. In Section

3.1 we explain the architecture functionality, hiding details and optimizations, with the

objective of showing the basic execution flow. Afterwards, in Section 3.2, we lower

the level and we present details of the architecture. In Section 3.3, we explain some

optimizations and discuss project decisions and alternatives.

Figure 3.1: ACQuA accelerator architecture overview.
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3.1 ACQuA architecture overview

The ACQuA accelerator aims to automatically explore parallelism existing in

purely functional programs by executing independent function calls in parallel. The func-

tions to be accelerated are written in a pure functional language and a successful compi-

lation results in ACQuAIR code.

Figure 3.1 shows the ACQuA architecture overview. ACQuA has five main com-

ponents: a Queue of function calls, a set of Processing Units (PU1, PU2, . . . PUN), an

Interconnection used by the processing units to exchange data, a Scheduler responsi-

ble for assigning function calls from the Queue to processing units, and an Instruction
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Memory where the host processor loads the code of functions to be accelerated. Each

processing unit has its own Memory (Mem) for data and an Instruction Cache (IC) that

fetches code from the Instruction Memory. The architecture also has a Reserved Process-

ing Unit (PU0), that is a special processing unit responsible for the setup and for the end

of execution of function calls initiated by the host processor.

The programmer invokes the accelerator by informing in the host program the

name of a pre-compiled function with its arguments. The Reserved PU then places infor-

mation about this function call in the Queue from where the Scheduler eventually assigns

it to an available processing unit. Subsequent function calls, reached along the execution

of the original function call, are also placed in the Queue before the Scheduler assigns

them to processing units. Parallelism occurs when multiple processing units are execut-

ing the code of independent functions at the same time.

Whenever a processing unit finishes the execution of a function call that was as-

signed to it, the resulting value is returned, through the interconnection, to the processing

unit where the function call was made. When the original function application finishes,

its resulting value returns to the Reserved PU which sends it to the host processor.
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3.2 ACQuA architecture details

During the life cycle of a function call in ACQuA, it is necessary to keep a record

of a variety of information such as the entry point address of the function’s code, the

address of where the resulting value should be stored, etc. Since the initial setup of a

function call and its actual execution might occur at different processing units, the over-

head for moving all these information through the interconnection from one PU’s memory

to another can be too high. Hence, to reduce communication costs ACQuA uses different

data structures to maintain all the information required by a function, the most important

of which are call records, queue entrys, and execution records.

Below we describe these data structures in detail, and we explain the life cycle of

function calls in ACQuA. We assume there is a single address space for all processing

units. Hence, given an address it is possible to infer in which processing unit memory it

is located.

Call Record. A call record is the first structure created on behalf of a function. A new

call record is created every time the execution flow reaches a function. It is defined as a

tuple

〈fn_addr,bindings,n_available,n_missing〉

where

• fn_addr is the address in the Instruction Memory of the entry point of the function

associated to the call record,

• bindings holds the bindings for the names that appear in the function body which

are declared in the function definition as its formal parameters or outside of the

function in a bigger scope.

• n_available holds the number of entries of bindings which correspond to names

with their values already defined.

• n_missing is the number of entries of bindings with names with values are yet to be

defined

Note that the number of entries in bindings is always n_available+n_missing.
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When a call record is created, regardless whether this call record is going to be

called immediately, passed as a parameter or returned from a function, n_missing holds

the number number of entries in bindings that still needd to be completely defined before

the instructions in the body of the function can be executed. As values referencing the

names are added to bindings, n_missing is decremented and n_available is incremented.

Once

Call records can hold the information for higher-order functions, both to receive

functions as arguments and to return them as results. If a function f n is passed as argu-

ment, the value for this function on bindings will be the memory address of a call record

created for it the function f n. Similarly, functions that return functions return the memory

address of a call record.

n_missing reaches zero, the function is ready for execution and a queue entry is

placed in the queue.

Queue Entry. A queue entry is a tuple

〈cr_addr,ret_addr, isMap,mapParam 〉

where

• cr_addr is the memory address of its associated call record

• ret_addr is the memory address where the resulting value of the function call should

be stored.

• isMap is a flag that is set if this queue entry refers to a function call that originated

from the mapping of a function to a list, and

• mapParam is the element of the list to which the function was applied, used only

when isMap is set

The isMap and mapParam components are used as an optimization for the map

function which will be detailed in chapter 3.3.

Execution Record. Immediately before the function’s body starts executing, a structure

called execution record is allocated in the memory of the processing unit where the func-

tion call was assigned to. This structure is filled with information some of which come
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from the function’s call record and queue entry. An execution record is defined as a tuple

〈ret_addr,callCount,exeCtxt,env〉

where

• ret_addr is the function’s return address. It is copied from the queue entry,

• callCount counts the number of other functions called by this function that did not

return a value yet,

• exeCtxt holds the execution context of the processing unit, and

• env is the execution memory used for temporary data, and also for the bindings

copied from the call record

Now that the main data structures were presented we explain the main components

of the ACQuA’s execution model.

Life cycle of a function call. The complete life cycle of a function call in ACQuA is

composed of five main steps: creation of call records, activation of call queue, schedul-

ing of queue entries, and function execution and termination. Below we explain each of

these steps assuming a situation depicted in Figure 3.2 where the code for the application

of a function f is reached at PU1, and the actual execution of f ’s code will be assigned to

PU2:

STEP 1 - call record creation. When the execution flow reaches a function f a call record

cr is created on its behalf in PU1’s memory. The function’s code entry address at the

Instruction Memory is inserted into fn_addr, bindings is set with the bindings the com-

piler can statically determine and space is reserved for the bindings it can’t determine,

n_missing is initialized with the number of missing bindings for f , and n_available is set

to zero.

STEP 2 - call queue activation. As values are added to bindings, n_available is incre-

mented and n_missing is decremented. Once n_missing counter of call record cr reaches

zero, meaning that the function has all the values it requires, a queue entry e, pointing to

cr, is placed in the Queue. Note that since it may take some time to compute the values

for the missing bindings step 2 does not necessarily occurs immediately after the creation
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of the call record in step 1.

STEP 3 - queue entry scheduling. The Scheduler continuously fetches entries from the

queue and assigns them to idle processing units. In this example, ACQuA’s scheduler

identifies that PU2 is idle and assigns the queue entry e to it, deallocating e from the

queue. At this point (step 4), PU2 can initiate the execution of the code of function f .

STEP 4 - function execution. This is the more involved of all five steps, and it consists of

the following sub-steps:

(a) call record copy - When PU2 receives queue entry e, it uses the cr_addr component

of e to retrieve its call record cr which is copied from PU1’s memory through the

interconnection. At this moment the area occupied by cr is deallocated from PU1’s

memory.

(b) execution record creation - An execution record er is allocated at PU2’s memory.

The values contained in the bindings component of call record cr and the return

address of the queue entry e are copied both to the env and to the ret_addr compo-

nents of the execution record er respectively. The callCount counter is initialized

to zero. Execution of the code of function f can finally initiate at PU2 (sub-step (c)

below). Additional auxiliary variables, such as partial values in the evaluation of

an expression and return addresses for called functions, may be stored in env too

during next sub-step.

(c) execution and synchronization - Whenever f calls another function which will even-

tually lead to a new queue entry, its callCount is incremented, and when a return

value is received, callCount is decremented. Note that calling a function is a non-

blocking operation. When a return value is required for the computation to pro-

ceed, a synchronization operation is necessary. These are automatically inserted

by ACQuA’s compiler, and cause the current function to be halted until callCount

reaches zero, or are skipped if callCount already is zero. If the function is halted,

the processing unit’s context, including the program counter and general-purpose

registers, are saved at exeCtxt. The processing unit then is free to execute other

functions, and when it has nothing else to execute, it will first check whether it has

unfinished functions that are ready to continue execution, and only then will it indi-

cate to the scheduler that it is idle. In other words, continuing unfinished functions
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Figure 3.2: Life cycle of a function call
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has a higher priority then fetching new ones from the queue.

STEP 5 - function termination. Once f ’s execution is completed at PU2, its result is re-

turned, through the interconnection, to the address in PU1’s memory indicated by the

ret_addr component of the execution record er, concluding f ’s call life cycle. The exe-

cution record er and the call record cr are deallocated from PU2’s memory.

Example 1. As a simple example to illustrate the life cycle of a function call and the role

the data structures play on it, consider the functions defined in Figure 3.3 and suppose that

the call quad(10) is placed at the host processor and the ACQuAIR code corresponding

to the function quad is already present on the Instruction Memory.

Following the request of the host processor, the Reserved PU creates a call record

cr for quad in its call record memory. The fn_addr component of cr is the address

in the Instruction Memory of the entry point for the code of quad. Note that double

is formally a free identifier from quad’s perspective. This identifier, however, can be

statically resolved by the compiler and, therefore, it will not require an additional entry in

quad’s call record bindings. Hence n_available component starts with 0 and n_missing

starts with 1, which is the number of parameters quad needs to receive before it can be

executed.

The argument of quad is readily available hence the value 10 is immediately

added to the bindings of cr. At this moment, n_available is incremented to 1, and

n_missing is decremented to zero, allowing the activation of the call queue with the in-
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Figure 3.3: Example of function definitions.
1 fun double(x) = x * 2
2

3 fun quad(x) = double(double(x))

sertion of a queue entry e with its component cr_addr pointing to the call record and its

component ret_addr pointing to a free position in the Reserved PU’s memory. This free

position will eventually receive the function application returning value. Since this is not

a map application, isMap is set to zero, and mapParam can have any value, as it will not

be used.

The scheduler then assigns the queue entry e to an idle processing unit. In the

current state of this work, it will simply assign it to the first idle unit, PU1, for instance,

which will then fetch the call record cr from the Reserved PU’s memory and access the

Instruction Memory to retrieve quad’s code.

An execution record er is allocated at PU1, with enough space to store in env all

intermediate values, determined at compile time. The component ret_addr is copied from

e and the binding x 7→ 10 is copied from the call record cr to env. Both the call record

cr and the queue entry e have been deallocated. The execution record er is the only

descriptor left for the call quad (10).

At this moment, the actual execution of the code of quad can begin. Its first ac-

tion is to call double, forwarding x’s value to it. It will allocate a call record pointing to

double’s code at its fn_addr component and with n_available = 0 and n_missing = 1.

When x is added to the bindings of the new call record, n_missing becomes zero and a

new queue entry can be placed in the queue, pointing to the new call record, and quad’s

callCount is incremented to 1. The ret_addr in this entry will be a position in the env

component of execution record. This second queue entry will be assigned to PU2 while,

in parallel, PU1 realizes it has nothing else to do but to wait for the return value, saving

its context at exeCtxt. PU2 will then retrieve its call record, from where it gets the value

of x, multiplies it by 2 and returns. With the returning value, callCount becomes zero

and quad can resume its execution. It will repeat the creation of a new call record for

double, this time placing the return value as the parameter, and enqueueing another

entry. Once this second double call returns, quad can return its result to its ret_addr,

which is at the Reserved PU. The Reserved PU then forwards the result to the host pro-

cessor.
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Figure 3.4: Example with higher-order functions.
1 fun f(x) = fn y => x + y
2 fun app_1(g) = g(1)
3 fun h(x) = app_1(f)(x)

Figure 3.5: Fibonacci sequence function with parallel function calls.
1 fun fib(x) = if x <= 2 then 1
2 else fib(x-1) + fib(x-2)

Example 2. Call records are also used by higher-order functions, as app_1 and f in

Figure 3.4. Let us assume the host issued a call for h(2). The Reserved PU will allocate

a call record for h, inserting the parameter 2 and issuing a queue entry, which will be

assigned to a processing unit, e.g. PU1. PU1 will allocate a call record for app_1, with

n_missing = 1. It will also allocate a call record for f, but in this case with n_missing = 2.

The function f has only one parameter and can execute as soon as this parameter value is

provided. The returning value would be simply an call record address for the function in

the body of f , with the value of x included. In this case, x is a variable that occurs free in

the function which is the body of f and that cannot be statically defined by the compiler.

The compiler realizes this and it directly allocates a call record expecting two values, and

with fn_addr pointing to code of the function in f ’s body. The address of this call record

is added to the bindings of app_1’s call record, which has its n_missing decremented to

zero. A queue entry for app_1 is issued by h, which has now to wait for the return value.

The execution of app_1, which may take place at PU2, for instance, starts by

fetching g’s remote call record. For each time g is used in app_1’s code, this call record

has to be copied, since it could potentially be applied multiple times to different parame-

ters or forwarded to other functions. If the compiler can guarantee that gwill be used only

once, this copy could be avoided, although this optimization is considered future work.

After the copy, the value 1 is added to the bindings of the call record, and its n_missing

is decremented to 1, meaning it cannot be executed yet. The return value of app_1 is,

thus, the address of the produced call record. Upon receiving the return value, h resumes

its execution by fetching the remote call record produced by app_1, inserting 2 to its

bindings and decrementing n_missing to zero. A queue entry can now be issued, and the

code of f2 will add 1 and 2. The final return value is forwarded by h to the Reserved PU

and then to the host processor.

Example 3. The previous two examples showed ACQuA’s basic operation but lacked
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parallelism. The interdependence among function calls causes ACQuA’s compiler to

insert synchronization operations that sequentialize operations. Figure 3.5, on the other

hand, presents a function suitable for parallel execution. The naïve implementation of the

Fibonacci sequence has two independent recursive function calls whenever x > 2. As

these calls have no dependence among themselves, when the code of a fib call takes the

else path, it will allocate a call record and issue a queue entry for the first call (with x -

1). As this is a non-blocking operation, it will proceed to make the second call (with x

- 2). Only when both calls are enqueued, a synchronization operation is issued, as the

compiler realizes that the return values are now necessary for the function to proceed. This

kind of recursive parallelism can provide numerous parallel function calls for ACQuA to

process, taking great advantage of an increased number of processing units, as will be

seen in chapter 5.
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3.3 Optimizations for map applications

Every functional programming language comes equipped with a high order func-

tion called map. A map consists in the application of a function to each element of

a list, returning a new list with the result of each application: map f
[
v1,v2, ...vn

]
=[

f
(
v1
)
, f

(
v2
)
, ... f

(
vn
)]

. As such, the map function provides substantial parallelism for

ACQuA’s execution model, since these multiple calls are independent from each other.

To take full advantage of this potential parallelism, however, some optimizations had to

be devised and incorporated into ACQuA.

As described in Section 3.2, whenever a function is called, a call record and a

queue entry have to be created. For a map application, this means one call record and one

queue entry for each element of the list. Moreover, once the queue entry is assigned to a

processing unit, the call record has to be transmitted through the interconnection, adding

latency and increasing traffic. The optimizations proposed in this Section aim to mitigate

these two possible bottlenecks for map applications: the costs of creating and fetching

through the interconnection the new call records created for each list element; and the

costs of creating a new queue entry for each list element.

Reuse of call records. The first optimization is based on the fact that, in the call records

of function applications stemming from a map, only the function parameter changes. The

other fields in the call record are identical. Therefore, we propose to reuse the same call

record for all function calls, with the function parameter being hold on the queue entry

instead of in the call record bindings. The mapParam field in the queue entry is used

for this purpose, with the isMap bit indicating to the receiving processing unit that the

mapParam field should be considered. Moreover, when isMap is set, the processing unit

fetches the call record from the remote memory, as usual, but it also caches it for later

reuse. A single cache entry is used in each processing unit. When receiving another

queue entry with isMap on, the processing unit checks if the call record to be copied is

at the same address of the call record in the cache, and if the call record is still valid. If

it is at the same address and valid, the call record copy is skipped, using the cached call

record. If the call record is invalid or resides on a different address, it is copied through

the interconnection and cached.

Cache validity is required to avoid a potential incorrect execution when a mem-

ory address is reused to store a different call record. In this case, a processing unit may



25

Figure 3.6: Call record cache functionality
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mistakenly use its old cached record. We use cache decay to avoid this problem. An un-

used cached call record only remains valid for a predetermined number c_decay of cycles.

When a call record is cached, a counter is set to c_decay and starts to decrement every

cycle. Each time a call record is reused, the counter is reset. If the counter reaches zero,

the cache entry is deemed invalid. To avoid false positives, the processing unit which

executed the map cannot allocate other call records on the same memory address until

c_decay cycles after it receives the last returned value from all mapped functions. This

approach ensures that any cached copy of that address will have already decayed. False

negatives may happen, and in this case, the same call record is copied through the inter-

connection again. By setting a sufficiently large c_decay, we can make these repeated

copies rare enough so that they are not a bottleneck to overall performance. Figure 3.6

shows the call record cache functionality during the execution of a map on a list of two

elements.

Splitting calls among processing units. The second optimization aims at increasing the

throughput with which the function calls are set up by a map. A single processing unit

creating each queue entry can become a bottleneck, even if the call record is being cached

and reused, especially if the function being mapped has low computational cost. In these

scenarios, it might be possible that a single processing unit (or just a few of them) is

processing the function calls at the same rate with which they are created, while the other

processing units remain idle, reducing the attainable acceleration.
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Thus, this optimization consists in dividing the task of creating queue entries

among multiple processing units, increasing the throughput and allowing more units to

process the map calls in parallel. When a map on a sufficiently long list is found, the

list is sliced, and multiple parallel maps are initiated on the sublists. The results are then

concatenated into a single list.

The optimization is only used when the list size is greater than eight times the

number of processing units on the ACQuA accelerator being used. Also, it is only used

when ACQuA has at least eight processing units. For shorter lists or fewer processing

units, the costs of slicing and concatenating the lists are not amortized, providing no

gains or even performance reductions. These thresholds are heuristically based on our

test cases and can be adjusted for different functions, as they are embedded in the code.
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4 ACQUA’S INTERMEDIATE LANGUAGE

The compiler developed for ACQuA accepts as input programs written in a small

core for a strict and pure functional language with integers, (high order) functions, and

lists. Figure 4.1 shows the language’s abstract syntax. Examples of code given in the

dissertation are written using usual syntactic sugar. Some examples of programs written

on the language without any syntactic sugar can be found on Chapter B.

Figure 4.1: Abstract syntax for the source language.

e ::= n

| x

| e1 op e2

| if e1 then e2 else e3

| fn x⇒ e

| e1 e2

| let x = e1 in e2

| let rec x = fn x⇒ e in e′

| e1 :: e2

| nil

| head e

| tail e

| map e1 e2

| last e

| length e

| concat e1 e2

| slice e1 e2 e3

All processing units apart from the reserved processing unit execute the same in-

struction set, that is represented by the ACQuAIR. There are no architecture specific

variants on the compilation, so the code is not compiled for a specific number of proces-



28

sors, memory size or interconnection topology. This property allows moving to more or

less powerful versions of the architecture without the need of recompilation, much like

superscalar processors.

The compiler output is a program written in ACQuA’s intermediate representa-

tion (ACQuAIR). ACQuAIR is similar to a regular Instruction Set Architecture (ISA), but

featuring commands for list processing and commands that are specific to ACQuA’s ex-

ecution model, such as commands for creating call records, and for updating/recovering

call record components. ACQuAIR can be directly executed by specialized processing

units or translated into any standard ISA. In this work, the former is considered.

Table 4.1: ACQuAIR Basic commands and terminators summary.

Command Cycles Description

x = call crid 1 Creates a queue entry which references the call
record crid . The respective function’s returned value
will be stored on x.

wait 1 Holds this function execution until all functions
called from it are finished.

x = GetNPUS 1 Assigns to x the number of processing units on
ACQuAIR. It does not count the reserved process-
ing unit.

x = innercopy x′ x′ size Makes a copy of call record or list x′ residing in this
processing unit and assign it to x.

x = outercopy x′ varies Makes a copy of call record or list x′ residing in other
processing unit and assigns it to x. This command
requires data transfer through the interconnection,
and might take an arbitrary number of cycles to fin-
ish depending on the architecture state.

free x 1 Free the memory referenced by x. x might reference
a list or call record.

return x 1 Finishes the current function execution and returns x
to the processing unit which inserted the queue entry
that originated the call.

An ACQuAIR program is defined as a sequence of basic blocks. Each basic block starts

with a label for its entry point, followed by a sequence of commands ending with a ba-

sic block terminating command (either a conditional/unconditional jump to another basic

block, or a return command). As is common for machine-level code, some basic blocks

are entry points for functions and can be referenced by function calls, while others are

only accessible from within the same function.

In the context where ACQuA is used as an accelerator we assume the input for the

compiler is a sequence of function definitions. The compiler will produce a sequence of
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Table 4.2: ACQuAIR call record related commands.

Command Cycles Description

crid = newCR n 1 Creates a new call record of size n which can be ref-
erenced by crid .

setCRentry crid l 1 Sets the fn_addr component from the call record crid
to label l.

setCRmis crid x 1 Sets the n_missing component from the call record
crid to x.

setCRcnt crid x 1 Sets the n_available component from the call record
crid to x.

setCRpar crid n x 1 Sets the nth identifier from bindings component
present on the call record referenced by crid to x.

x = getCRmis crid 1 Assigns the n_missing value from the call record ref-
erenced by crid to x.

x = getCRcnt crid 1 Assigns the n_available value from the call record
referenced by crid to x.

x = getCRpar crid n 1 Assigns the nth value from bindings component
present on the call record referenced by crid to x.

basic blocks for each one of the functions f1 . . . fn. When one of those functions, say fi,

is called from a program executing in the host processor, the cycle described in Section

3.2 initiates with the execution of ACQuAIR commands in the first basic block produced

for fi.

Commands and terminators are presented in three tables. Table 4.1 shows the ba-

sic commands and terminators. Table 4.2 shows call record-related commands. Table

4.3 shows list-related commands. These tables show the mnemonic representation and a

brief description of each ACQuAIR command. They also include the cycle cost for each

command, which is used during simulation, as will be detailed in Chapter 5. The compi-

lation function that takes abstract syntax trees of expressions of the functional language

and produces a sequence of ACQuAIR basic blocks is defined in the Apendix A.

The intermediate representation includes two data types: call records and lists. A

call record is a structure that is used on function calls and was extensively discussed in

Chapter 3. Lists are supported because they are frequently used in functional programs

and also because the map function, which produces multiple independent functions ap-

plications, is of particular interest in this work. Lists have received native architectural

support, which is reflected on ACQuAIR as well. In what follows, we explain some of the

commands summarized in the tables.

Call records are created on ACQuAIR by using the command crid = newCR n,
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where n is an integer that defines the memory size of the call record. The call record

size varies depending on the number of parameters and non-local variables presented

in the function body which the call record represents. This number is defined during

compilation. The memory contents of a just-allocated call record memory are undefined.

There are also a series of set/get commands to modify and to obtain the values of call

record components which are shown on table 4.2.

The command x = call crid calls a function with call record pointed by crid .

This instruction does not block execution and the identifier x remains with an undefined

value until the function called returns and a value is assigned to it. This instruction also

creates a new call queue entry pointing to crid . This call does not block execution, and

x will have an undefined value until the function described by crid is finished and the

returning value is sent through the interconnection. To determine how many return values

a given function is currently waiting, the number of times that this command is executed

needs to be tracked. For this purpose, the callCount component of the caller’s execu-

tion record is incremented when calls are made and decremented when return values are

received.

The only way to wait for the returning value after a call command is executed is by

using the command wait. The command does not receive any parameters, and it does not

return any value. This command’s behavior is linked to the callCount component from

the execution record. If the wait command is executed and callCount is zero, nothing

happens. If callCount is greater than zero, the current execution stops, its context is saved

in exeCtxt, and the processing unit is free to receive other queue entry from the scheduler.

The return x command is also specific to this architecture. Returning a value

marks the end of a function execution. Thus the resulting value should be sent to the

processing unit which created the queue entry. The processing unit also becomes available

to be assigned other queue entries by the scheduler. The execution record component

ret_addr contains the memory address in which the resulting value should be placed. The

value of ret_addr is set when the queue entry is assigned to the processing unit. Executing

the return command causes a message to be sent through the interconnection with the

value of x to the processing unit which has the memory address ret_addr.

Upon receiving a message with the resulting value of a function execution trig-

gered by return, the callCount of the function in which the resulting value is placed is

decremented. If this value is zero, the receiving function is not expecting any other re-

turning values and can resume execution. The function resumes its execution immediately
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if the processing unit is idle. Otherwise, it is placed on an internal list of functions that

can resume. This list is necessary because more than one waiting function might become

able to resume execution while another function executes. The list of functions ready to

be resumed has higher priority than new queue entries so a processing unit that becomes

idle first checks its internal list and only if the list is empty does it inform the scheduler it

is idle.

There are two optimizations related to the map command: the call record cache

and the division of a map on a long list to multiple maps on shorter lists. Both opti-

mizations are described in Section 3.3. The call record cache is handled directly by the

processing units, and no extra ACQuAIR code is generated for it. However, code for map

splitting is inserted by the compiler. This optimization is only applied when the list size is

greater than eight times the number of processing units on the ACQuA accelerator being

used, as discussed in Section 3.3.

To discover the number of processing units, the instruction n = GetNPUS is used.

If there are more than eight elements on the list for each processing unit, the optimized

code for map is executed. This optimized code starts by splitting a list listid ′ in smaller

lists, using the listid = slice listid ′ n1 n2 command. The command listid = smap

crid listid ′ n is then used to map the function represented by call record crid to each of

the smaller lists produced. The command smap is similar to the map command, but

allows its list argument to be on a different processing unit. After all partial resulting lists

are done, they are concatenated to construct the resulting map of the original list.
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Table 4.3: ACQuAIR list related commands.

Command Cycles Description
listid = newList n 1 Creates a list of size n and as-

signs its reference to listid .
setList listid nx 1 Assigns x value to the nth el-

ement of the list referenced by
listid .

x = getList listid n 1 Assigns the value of the list ref-
erenced by listid nth element to
x.

x = length listid 1 Assigns the length of the list ref-
erenced by listid to x.

x = last listid 1 Assigns the value of the last ele-
ment from the list referenced by
listid to x.

x = head listid 1 Assigns the value of the first ele-
ment from the list referenced by
listid to x.

listid = tail listid ′ listid’ size Creates a copy of the list refer-
enced by listid’ without its first
element. The copy can be refer-
enced by listid .

listid = concat listid ′ listid ′′ listid’ size + listid” size Creates a new list referenced by
listid with all elements from the
list listid’ followed by the ele-
ments from list listid”.

listid = map crid listid ′ bindings size from crid + 1 Maps the function defined by
crid to the list listid’. The
list with results is referenced by
listid .

listid = smap crid listid ′ n bindings size from crid + 1 Maps the function defined by
crid to the list listid’ that is at a
processing unit. n is the list size
of listid’. The returning list can
be referenced by listid .

listid = slice listid ′ n1 n2 listid size Creates a new list with elements
from listid’, starting on listid’
n1th element to its n2th element.
The new list is referenced by
listid .
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5 EXPERIMENTAL RESULTS

A simulator for ACQuA, written in Haskell, was developed to obtain the results

presented in this section. The simulator itself, the resulting data, and the scripts used to

conduct the experiments are all publicly available (TANUS, ). The simulator operates at

the instruction level, directly executing ACQuAIR operations at each processing unit.

We consider one cycle per ACQuAIR instruction except when handling lists. For

instance, the tail instruction, described in table 4.3, takes n cycles where n is the size

of the list. The simulator estimation of cycles for each instruction can be found on tables

4.1, 4.2 and 4.3. As the goal of this work is to evaluate the architecture’s scalability and

possible performance bottlenecks, instead of exactly counting execution cycles, the sim-

ulator simplifies details like processing unit pipelines and considers a fixed cycle cost per

instruction. Optimizations such as instruction-level parallelism are possible mechanisms

to improve the architecture’s performance, but are outside the scope of this work. All

processing units, the queue and the interconnection work with one synchronous clock.

The benchmarks are divided into two categories: list-based algorithms and scalar

algorithms. We divided the benchmarks on those two categories because examples of the

same category tend to have the same properties, simplifying the evaluation and explana-

tion of the data gathered. Three scalar algorithms and four list algorithms with different

properties are used. The scalar examples are naïve implementations of Fibonacci, facto-

rial, and Newton-Raphson. The list-based algorithms are the longest common substring

(LCS), dot product, mapping of the greatest common divisor (GCD), and quicksort. Those

algorithms were picked to show how different program structures behave in the ACQuA

architecture, aiming to identify properties of programs that make them good candidates

for acceleration with ACQuA. As for the input to our algorithms, we calculate the 15th

Fibonacci number, sort a list of 200 random numbers, find the longest common substring

of 4-character string on a 100-character string, calculate the dot product of 2 vectors of

2000 numbers, find the greatest common divisor of a list of 200 pairs of numbers, and

execute a total of 100 Newton-Raphson iterations. Strings and pairs are implemented us-

ing ACQuA’s native lists. The inputs for each example were selected to be big enough

in order to evaluate the architecture with 16 processing units, since increasing the exam-

ple’s input size will generate similar results. These benchmarks were compiled with both

optimizations discussed on Section 3.3.

We explored two different interconnections: crossbar and hierarchical crossbar.
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Figure 5.1: Difference between simulated crossbar and hierarchical crossbar interconec-
tions.
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The crossbar interconnection connects every processing unit with each other in a single

hop 5.1 (a). The hierarchical crossbar is a slower interconnection model that escalates

better with the number of processing units, in terms of area. Figure 5.1 (b) shows the

interconnection architecture of a hierarchical crossbar, which is structured as a tree of

degree-two crossbars. This structure has a linear area increase with the amount of pro-

cessing units, instead of the quadratic increase observed for an n-degree crossbar. During

the hierarchical crossbar simulations, we pessimistically consider that all processing units

are as far apart as possible. Thus, messages have an additional latency of 2∗ log2n cycles

(to go up and down the entire tree), where n is the number of processing units.

We start by evaluating the speedup and memory usage when increasing the number

of processing units, using the crossbar interconnection. Then we evaluate the speedup for

the hierarchical crossbar. We do not present the memory usage for hierarchical crossbar

because both results and analysis are similar. Afterwards, we show the effectiveness of

list and map the optimizations discussed on Section 3.3 by using two synthetic examples.

5.1 Speedup

The analysis of speedup with a crossbar interconnection considers scalar and list-

based benchmarks in separate. We start with the simulation results for the scalar algo-

rithms.

Scalar benchmarks. Figure 5.2a shows the speedup of each scalar benchmark when the

number of processing units is increased. We can see a significant speedup curve with

Fibonacci. This speedup is expected because Fibonacci with input 15 is massively paral-

lel and has two independent recursive function calls that easily occupy all the processing

units. We can see an almost ideal linear speedup by increasing the number of process-
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Figure 5.2: Speedup
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(a) Speedup on scalar algorithms.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  2  4  6  8  10  12  14  16

sp
e
e
d

u
p

processing units

quicksort
lcs
dot
gcd

(b) Speedup on list-based algorithms.

ing units. The experiment with the Fibonacci function show us that ACQuA is capable

of exploring the intrinsic parallelism of functions to a great extent without any specific

language-related support.

For the factorial example, we expected no speedup at all, but there is an almost

negligible speedup when adding a second processing unit in Figure 5.2a. However, adding

more processing units does not make any difference. This happens because some small

parallelism from the architecture is explored: a function call, fat(5) for instance, causes

a new queue entry to be placed in the queue. The processing unit that was assigned to

fat(5) carries on the execution until it finds a wait instruction. Only then we have

a free processing unit to receive the new function call (fat(4)). With two processing

units, these two function calls can alternate the execution, having some instructions of

advantage. Because there is no function calls on factorial that can be executed in parallel,

at most two processing units are being used on any given cycle.

The Newton-Raphson method divides a function by its derivative. The calculation

of the function and its derivative can be done in parallel, and this is the only parallelism

provided by this benchmark. For the next iteration, both function calls have to be finished.

So naturally, as we can observe in Figure 5.2a, we have a small speedup when adding the

second processor, but adding more processors shows no advantage at all, providing only

slightly more speedup than the Factorial example.

List-based benchmarks. Figure 5.2b shows the speedup of each algorithm that oper-

ates with lists when the number of processing units is increased. LCS shows significant

speedup, similar to the speedup curve of Fibonacci given in Figure 5.2a. We can identify

a pattern that is present both in Fibonacci and in the LCS programs: the existence of in-

dependent recursive function calls. Algorithms that share this characteristic are the ideal
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candidates for acceleration with ACQuA.

Observe that the speed up for Fibonacci is almost linear and it is higher than the

speed up obtained for LCS. That happens because LCS has to perform longer sequential

computations with the results returned after the (recursive) function calls. These compu-

tations involve list operations which take more cycles than the arithmetic operations of

Fibonacci, reducing the overall speedup.

The dot product exhibits some speedup as we increase the number of processing

units but quickly reaches a limit. Since the code of the function being applied is very

small (it performs only a multiplication), the messages sent through the interconnection

and the overhead of creating a new call record for just one multiplication operation be-

comes the bottleneck. To confirm this hypothesis, we can examine the benchmark that

maps GCD (greatest common divisor) to a list. In this benchmark, a function that calcu-

lates the GCD is mapped to a list of tuples to define each tuple’s greatest common divisor.

The parallelism present is similar to the dot product, but since the greatest common divi-

sor computation takes longer than a simple multiplication, a better speedup is observed.

This shows that while ACQuA can achieve a small grain of parallelization in comparison

with traditional parallelization techniques, some tiny parallelization is not successfully

explored by ACQuA because of the overhead in managing the call records and schedul-

ing the functions to be executed.

Quicksort also exhibits independent recursive function calls (like Fibonacci and

LCS), and in Figure 5.2b we observe a small speedup by adding up to four processing

units. The main difference of quicksort and LCS is that quicksort contains significant

sequential parts when splitting the numbers of a list as lesser or greater than the pivot,

reducing the achieved speedup. This limitation can be understood through Amdahl’s law

(AMDAHL, 1967), which states the sequential parts of any program impose limits on the

maximum speedup. The first quicksort call, which operates on the entire list, has a much

longer running time than its subsequent calls. It takes, in fact, roughly half of the entire

execution time, assuming nearly-ideal pivots. Thus, the sequential nature of this first call

greatly limits total speedup.

5.2 Memory usage

As we did for the analysis of speedup, we also consider memory usage first for

scalar algorithms and then for list-based algorithms. In both cases, we assume a crossbar



37

Figure 5.3: Memory usage
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(a) Memory usage in a processing unit for scalar
algorithms.
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(b) Memory usage in a processing unit for list-
based algorithms.

interconnection.

Scalar benchmarks. Figure 5.3a shows the memory usage of any single processing unit

during the execution of each scalar benchmark when we increase the number of process-

ing units. The memory measured is the area required, in memory words, to allocate call

records and lists, which are the sources for memory dynamically allocated.

The goal of this analysis is to determine whether memory occupation is properly

spread across multiple processing units when we increase the number of processing units.

In other words, this analysis is important to investigate how the required memory per

processing unit scales as more units are added. Requiring more memory per unit as more

units are added would constitute a serious scalability problem.

The Fibonacci function shows a decrease in the memory usage in a single pro-

cessing unit as more processing units are added, as expected. Memory usage per proces-

sor also decreases when a second processing unit is added to the factorial and Newton-

Raphson examples. However, for these two benchmarks, the used memory does not de-

crease by adding more processing units because those extra processing units are not used

during the execution. Part of this excessive memory usage is due to the simple scheduling

algorithm used in the simulator. It takes the first processing unit available to execute a

function, and on sequential code, it ends up always taking the same one or two processing

units. This decision does not help to decrease the memory usage per processor since all

other processing units are kept idle and with empty memories through the entire execu-

tion. Other scheduling algorithms are yet to be studied and can address this problem by

spreading functions to different processors. This would decrease the memory usage per

unit by occupying memory of different processing units.
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Figure 5.4: Speedup using hierarchical crossbar
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(a) Speedup with hierarchical crossbar for scalar
algorithms.
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(b) Speedup with hierarchical crossbar for list-
based algorithms.

List-based benchmarks. Figure 5.3b shows the memory usage of any single processing

unit during the execution of each list-based benchmark when we increase the number of

processing units. The memory measured is the area required to allocate call records and

lists.

The memory occupation for list programs follow the same trends observed for the

scalar examples. As more processing units are occupied, memory occupation spreads

throughout the architecture. Thus, the programs with higher speedup, LCS, and GCD,

require progressively less memory per unit as more units are added. As observed for scalar

benchmarks, modified scheduling approaches can be investigated to force the spread of

memory occupation when required.

5.3 Speedup for hierarchical crossbar interconnection

The hierarchical crossbar is a slower interconnection model that escalates better

with the number of processing units in terms of area. We evaluated only the speedup of

the benchmarks for this model, to discover if this cheaper interconnection is enough to

provide a performance gain. Figure 5.4a shows the speedup of scalar benchmarks when

the interconnection is a hierarchical crossbar. On the Fibonacci example, we can see that

adding more processing units still is quite effective, but the speedup line is not as straight

as with a crossbar as interconnection. This is so because, in this scenario, adding more

processing units means more time required to exchange messages. For very sequential

algorithms (factorial and Newton-Raphson), adding more processing units slightly in-

creases the execution time, due to the longer interconnection latency. Note, however, that

the results on Figure 5.4a are pessimistic considering that PUs are as far apart from each
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other as possible, not taking into account that neighbouring processing units have shorter

interconnection latencies.

On Figure 5.4b we can see the speedups for list-based algorithms when using a

hierarchical crossbar as interconnection. While this interconnection yields inferior per-

formance, there is still a reasonable speedup for LCS and dot product, and especially for

LCS. The quicksort is more severely penalized, similarly to Newton-Raphson and facto-

rial. It is interesting that the dot product maintains its speedup even when adding more

processing units. This is so because the current bottleneck of the algorithm is in sending

data from one single processing unit to others. Therefore, performance is currently lim-

ited by the interconnection bandwidth and not latency, causing dot to yield similar results

for both evaluated interconnection topologies. The mapping of GCD, on the other hand,

shows a smaller speedup, because since it uses more cycles to execute the operations, the

bandwidth is not fully used.

These results show that the interconnection topology plays a significant role on

the attainable speedup, but that speedup can be achieved even with heavy interconnection

penalties, provided the application presents sufficient parallelism.

5.4 Optimizations evaluation

We now discuss the impact of the two optimizations presented in Section 3.3:

caching call records of map calls, and splitting map calls of big lists in multiple processing

units. In this section, in order to have a finner control on the number of cycles, synthetic

benchmarks are used to evaluate the effectiveness of each optimization, individually and

combined, under different circumstances. The four possible combinations are considered:

no optimizations; only splitting map among processing units (split map); only call record

cache (cr cache); and both optimizations applied.

Figure 5.5 shows the speedup obtained using 16 processing units and varying the

number of cycles of the function mapped to the elements of a list of size 500. The variation

in the umber of cyles is obtained by varying the number of 1’s added in the function

mapped to the list (see code in figure 5.5b). First, as expected, the speedup increases

along with the number of cycles in the mapped function and approaches the theoretical

maximum value of 16. As was observed with dot and GCD, longer functions allow the

amortizing of the costs, such as the allocation of call records and the issuing of queue

entries. Maximum performance is always attained when both optimizations are enabled.
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Figure 5.5: Synthetic example to evaluate the effectiveness of the split map optimization
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Figure 5.6: Synthetic example to highlight the effectiveness of the call record cache opti-
mization
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1 fun f x1 x2 x3 x4 x5 x6⇒
2 x1+ x2+ x3+ x4+ x5+ x6
3

4 let g =
(((((

f 1
)

2
)

3
)

4
)

5
)

5 map g n1 . . .n500

(b) The synthetic function f with a call record
with 5 bindings mapped to a list with 500 ele-
ments.

Only using split map, however, provides very similar results in most cases. For very fast

functions (around 20 cycles), the call record transfer time is relevant and, therefore, the

cache of call records provides some improvements.

Figure 5.6 shows a different scenario. In Figure 5.6a, the code shown in Figure

5.6b is used. The call records created have five bindings. Then, the different values for

the map are taken from the list, and passed through the mapParam field of each queue

entry. The larger the call record, the more expensive to transfer it from one processing

unit to another, increasing the relevance of the cache.

From Figures 5.5a and 5.6a, it can be seen that both optimizations combined al-

ways provide the best results and that their individual relevance depends on the properties
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of the function being executed, and there are cases that one works better than the another.
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6 CONCLUSION AND FUTURE WORK

We have presented the ACQuA accelerator architecture, capable of exploring in-

trinsic parallelism of functional programs automatically, without the need of language

support. We have identified a class of programs that the accelerator excels with: pro-

grams that make multiple independent function calls with non-negligible processing done

by each function. We have shown in the experiments that the accelerator can achieve

outstanding results for programs that share these properties, such as the longest common

substring and Fibonacci.

There is much to be studied about the ACQuA accelerator yet. The best intercon-

nection between the processing units is yet to be defined. A crossbar has lower message

passing cost, but the required area grows exponentially with the number of processing

units. The performance penalty of slower interconnection models might give a faster

overall accelerator because the extra space can be used to add more processing units.

Studying this trade-off can be very rewarding to the architecture.

We have not defined the best algorithm to be used by the scheduler. This algorithm

has a major impact on performance with interconnections other than the crossbar. In a

hierarchical crossbar, a message might take a different number of cycles between two

different processing units. Minimizing the distance between two processing units that

will exchange a significant amount of data can improve the accelerator performance. The

scheduler algorithm should be studied along with different interconnection models.

The compiler used to generate the ACQuAIR on our simulator is quite basic. The

only optimization done is the removal of unnecessary variable assignments resulting from

the compilation. Not even known optimizations are applied to the resulting ACQuAIR.

Since ACQuAIR has novel instructions not present in other popular intermediate lan-

guages, new optimizations might have to be developed and existing optimizations might

have to be adapted to work with ACQuAIR instruction set.

We have shown with the dot product example that parallelism on tiny processing

does not achieve good results. The multiplications can be done in parallel, but the memory

bandwidth does not allow the architecture to achieve great speedups. If the architecture

could explore even the tiniest processing loads, it would increase significantly the class

of programs worth accelerating, and it would avoid the necessity of complex compiler

analysis to decide when to parallelize. It might be possible to solve this architectural

problem using 3D stacked memory.
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Currently, the evaluation of the ACQuA accelerator is done using a simulator.

While the simulator is a good tool for a first study of viability and scalability, we cannot

compare the performance of the accelerator with existing processors. It would be interest-

ing to implement the architecture physically and see how ACQuA accelerator compares

to mainstream processors.

It would be interesting to compile a feature-rich language to ACQuAIR. It is pos-

sible to find more parallelism opportunities in the language features, other than function

applications. Also, compiling existing software from a feature-rich language can show the

speedup on real-world programs, and define areas which are more important to optimize.
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APPENDIX A — COMPILING FROM L1 TO ACQUAIR

In this appendix we introduce intuitively a compilation function that takes as ar-

guments an functional language abstract syntax tree as described in Chapter 4 plus a table

ST with information about identifiers and returns a list of ACQuAIR instructions. The

function C is defined by induction on the structure of the abstract syntax tree. Resulting

values for the evaluation of each subexpression of the tree are saved in a special variable

named ans, which is used to The value produced by executing the ACQuAIR instruction

resulting from C
(
e,ST

)
is assigned with identifier ans.

The table ST starts empty, and during the compilation process it can be extended

or consulted. ST tables names to code. To consult the ST , we use the notation ST
(
name

)
,

and to expand it, we use ST
[
name→ code

]
. Some parts are defined intuitively as pseudo

code. This pseudo code features the function Issue
(
code

)
, which issues the code con-

tained in x, Typeof
(
x
)
, which defines the type of a variable x, and FreeVars

(
e,ST

)
,,

which finds names that are not bound to a value on e taking in by testing against the

variable names defined on ST .
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C(n, ST) = ans = n

C(x, ST) = ST(x)

C(e1+ e2, ST) = C(e1, ST)

aux1 = ans

C(e2, ST)

aux2 = ans

ans = aux1+aux2

C(if e1 then e2 else e3, ST) = C(e1, ST)

if ans goto l2

l4 :

C(e3, ST)

goto l

l2 :

C(e2, ST)

goto l

l :

C(fn x1⇒ e1, ST) = goto continue

l :

endFnCode←
[]

x2 . . .xn← FreeVars
(
e1,ST

)
for xi in x1 . . .xn

if Typeof
(
x
)
∈ {CR, list}

xi = remoteCpy xi

endFnCode← endFnCode . free ci

C
(
e1,ST

)
Issue

(
endFnCode

)
continue :

ans = newCR n
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C(e1 e2, ST) = C(e1, ST)

crid = ans

C(e2, ST)

setCRpar crid ans

missing = getCRmis crid

missing = missing−1

setCRmis crid missing

available = getCRcnt crid

available = available+1

setCRcnt crid available

ans = missing < 1

if ans goto l

ans = crid

goto l2

l :

ans = call crid

goto l2

l2 :

C(let x = n in e, ST) = C(e, ST[x 7→ ans = n])

C(let x =
[
v1, . . .vn

]
in e, ST) = C(e, ST[x7→C

([
v1, . . .vn

]
,ST

)
])

C(let x = e1 in e2, ST) = C(e1, ST)

x = ans

C(e2, ST)



49

C(let f = fn x1⇒ . . .xn⇒ e1 in e2, ST) = goto continue

l :

endFnCode←
[]

ST’← ST

for xi in x1 . . .xn

xi = getCRpar callRecord i

if Typeof
(
xi
)
∈ {CR, list}

ST’← ST′
[
xi 7→ ans = remoteCpy xi

]
endFnCode← code . free ci

else

ST’← ST′
[
xi 7→ ans = xi

]
C(e1, ST’)

Issue
(
endFnCode

)
continue :

C(e2, ST[f7→ ans = newCR n])

C
([

e1, . . .en
]
,ST

)
= lstid = newList n ∗n≥ 0

C
(
e1,ST

)
setList lstid 1 ans

. . .

C
(
en,ST

)
setList lstid n ans

ans = lstid

C(head e, ST) = C(e, ST)

ans = head ans

C(tail e, ST) = C(e, ST)

ans = tail ans
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C(last e, ST) = C(e, ST)

ans = last ans

C(length e, ST) = C(e, ST)

ans = length ans

C(concat e1 e2, ST) = C(e1, ST)

aux1 = ans

C(e2, ST)

aux2 = ans

ans = concat aux1 aux2

C(slice e1 e2 e3, ST) = C(e1, ST)

aux1 = ans

C(e2, ST)

aux2 = ans

C(e3, ST)

aux3 = ans

ans = slice aux1 aux2 aux3

C(filter e1 e2, ST) = C(e1, ST)

aux1 = ans

C(e2, ST)

aux2 = ans

ans = filter aux1 aux2

C(map e1 e2, ST) = C(e1, ST) ∗non−optimized version

crid = ans

C(e2, ST)

lstid = ans

ans = map crid lstid
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C(map e1 e2, ST) = C(e1, ST) ∗optimized version

crid = ans

C(e2, ST)

lstid = ans

lstsize = length lstid

pus = GetNPUS

ans = pus∗8

b1 = lstsize > ans

b2 = pus > 8

ans = b1 and b2

if ans goto lopt

ldummy :

ans = map crid lstid

wait

goto continue

lopt :

divisor = pus div 2

slicesize = lstsize div divisor

nresults = lstsize div slicesize

partialResulLst = newListN nresul

setCRmis crid 0 ts

start = 0

idx = 0

goto loop
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loop :

lst = slice lstid start slicesize

thisSliceSz = length lst

crid = newCR 3

setCRentry crid splitMap

setCRmis crid 0

setCRcnt crid 3

setCRpar crid 0 lstid

setCRpar crid 1 lst

setCRpar crid 2 thisSliceSz

callL idx

continue :
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APPENDIX B — EXAMPLE OF FUNCTIONAL PROGRAMS USED AS INPUT

TO THE SIMULATOR

Fibonacci 10

1 letrec fibo =

2 fn x =>

3 if x < 2

4 then 1

5 else (fibo (x - 1)) + (fibo (x - 2))

6 in

7 fibo 10

8 end

Factorial 10

1 letrec fat =

2 fn x => if x > 1

3 then x * (fat (x-1))

4 else 1

5 in

6 fat 10

7 end

Newton-Raphson starting on 40, 10 iterations

1 let fun = fn x => (x*x) + (2*x) - 1848 in

2 let dfun = fn x => 2*x + 2 in

3 let x0 = 40 in

4 let newtonrapson = fn x => x - ((fun x)/(dfun x)) in

5 letrec apply_n = fn func => fn arg =>

6 fn n => if n <= 0

7 then arg

8 else (((apply_n func) (func arg)) (n-1))

9 in

10 (((apply_n newtonrapson) x0) 10)

11 end

12 end

13 end
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14 end

15 end

LCS, looking for [2,3,4] on [1,2,3,2,3,4]

1 letrec lcs = fn list1 => fn list2 =>

2 if (length list1) = 0

3 then 0

4 else if (length list2) = 0

5 then 0

6 else let x = head list1 in

7 let y = head list2 in

8 if x = y

9 then

10 let match = (lcs (tail list1)) (tail list2) in

11 1 + match

12 end

13 else

14 let dropx = lcs((tail list1), list2) in

15 let dropy = lcs(list1, (tail list2)) in

16 if dropx > dropy

17 then dropx

18 else dropy

19 end

20 end

21 end

22 end

23 in

24 (lcs [2,3,4]) [1,2,3,2,3,4]

25 end

GCD of [10,20,30]

1 letrec gcd = fn elms =>

2 let a = (head elms) in

3 let b = (head (tail elms)) in

4 let a = if a > 0 then a else a * -1 in

5 let b = if b > 0 then b else b * -1 in

6 if b == 0



55

7 then a

8 else let c = a mod b in

9 gcd [b,c]

10 end

11 end

12 end

13 end

14 end

15 in

16 map(gcd, [[10,20,30]])

17 end

Quicksort of [10,20,30]

1 letrec quicksort =

2 fn list =>

3 if (length list) > 1

4 then

5 let x = head list in

6 let xs = tail list in

7 let smallerSorted = quicksort (filter(fn y => y < x, xs)) in

8 let biggerSorted = quicksort (filter(fn y => y >= x, xs)) in

9 concat3(smallerSorted, [x], biggerSorted)

10 end

11 end

12 end

13 end

14 else

15 if (length list) > 0

16 then

17 let x = head list in

18 [x]

19 end

20 else []

21 in

22 quicksort [10,20,30]

23 end
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APPENDIX C — COMPILED FIBONACCI CODE

1 main:

2 goto continue1

3 _fn_0:

4 x = GetCallRecordParam callRecord 0

5 var2 = x

6 var3 = 2

7 resp = var2 < var3

8 if resp goto then2

9 dummy2:

10 var0 = NewCallRecord 1

11 SetCallRecordFn var0 _fn_0

12 SetCallRecordMissingI var0 1

13 SetCallRecordCountI var0 0

14 var7 = var0

15 var4 = x

16 var5 = 1

17 param = var4 - var5

18 one = 1

19 var7 = var7

20 missing = GetCallRecordMissing var7

21 count = GetCallRecordCount var7

22 new_missing = missing - one

23 new_count = count + one

24 SetCallRecordCount var7 new_count

25 SetCallRecordMissing var7 new_missing

26 SetCallRecordParam var7 count param

27 resp = new_missing < one

28 var12 = var7

29 if resp goto then0

30 dummy0:

31 resp = var7

32 goto back0

33 then0:

34 var6 = var7
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35 var12 = Call var6

36 goto back0

37 back0:

38 var0 = NewCallRecord 1

39 SetCallRecordFn var0 _fn_0

40 SetCallRecordMissingI var0 1

41 SetCallRecordCountI var0 0

42 var11 = var0

43 var8 = x

44 var9 = 2

45 param = var8 - var9

46 one = 1

47 var11 = var11

48 missing = GetCallRecordMissing var11

49 count = GetCallRecordCount var11

50 new_missing = missing - one

51 new_count = count + one

52 SetCallRecordCount var11 new_count

53 SetCallRecordMissing var11 new_missing

54 SetCallRecordParam var11 count param

55 resp = new_missing < one

56 var13 = var11

57 if resp goto then1

58 dummy1:

59 resp = var11

60 goto back1

61 then1:

62 var10 = var11

63 var13 = Call var10

64 goto back1

65 back1:

66 Wait

67 resp = var12 + var13

68 goto back2

69 back2:

70 goto continue0
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71 then2:

72 resp = 1

73 goto back2

74 continue0:

75 return resp

76 continue1:

77 var0 = NewCallRecord 1

78 SetCallRecordFn var0 _fn_0

79 SetCallRecordMissingI var0 1

80 SetCallRecordCountI var0 0

81 var15 = var0

82 param = x

83 one = 1

84 var15 = var15

85 missing = GetCallRecordMissing var15

86 count = GetCallRecordCount var15

87 new_missing = missing - one

88 new_count = count + one

89 SetCallRecordCount var15 new_count

90 SetCallRecordMissing var15 new_missing

91 SetCallRecordParam var15 count param

92 resp = new_missing < one

93 if resp goto then3

94 dummy3:

95 resp = var15

96 goto back3

97 then3:

98 var14 = var15

99 resp = Call var14

100 goto back3

101 back3:

102 Wait

103 return resp
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