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In the present analysis, we study the dynamics of charged particles submitted to the action of slowly

modulated electromagnetic carrier waves. While the velocity of the particles remains smaller than

the carrier’s phase-velocity, their dynamics is well described by a refined ponderomotive approach.

The ponderomotive approach has its own validity limits well established, beyond which particles are

resonantly trapped by the carrier waves. We show that under adequate conditions, the trapping mech-

anism places particles at an optimal relative phase with respect to the carrier for maximum accelera-

tion. In addition to the analytical approach involved in the ponderomotive description, we use

numerical simulations to validate the corresponding dynamics as well as to explore various features

of the resonant trapping and acceleration. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4995524]

I. INTRODUCTION

The ponderomotive approximation for the nonlinear

dynamics of particles in high-frequency fields attempts

to describe the full dynamical problem in terms of a self-

consistent set of time averaged, low-frequency variables.1

The procedure leading to the approximation is valid as long

as particles are not in resonance with the driving waves.

What is typically left after high-frequency components of

the dynamics are removed is an energy conserving system,

provided no dependence on slow time scales remains. The

occurrence of energy conservation in ponderomotive regimes

simplifies the description of the dynamical system, but pre-

vents particles from a net energy gain when these particles

interact with localized steady state envelopes of high-

frequency waves. Under this condition, the kinetic energy of

particles before and after the interaction would be the same.

On the other end of the spectrum of dynamical regimes,

one finds the resonant regimes. Here particles can be highly

accelerated as they move in phase with the high frequency

carriers, as for instance is the case of particle acceleration by

self-sustained electromagnetic (EM) waves in plasmas.2,3 A

classic example is the beat-wave accelerator scheme, where

a coherent electrostatic plasma wave is nonlinearly generated

by the beating of transverse laser modes and particles are res-

onantly accelerated as they are injected with the proper reso-

nant phase with respect to the electrostatic mode.4

The beat wave accelerator evolved into a large number of

sophisticated variants. In current experiments, the preferred

profiles for the driver structures are based either on localized

laser modes or on bunched beams of charged particles,5 both

of which can provide higher field intensities in the region of

interest.6,7 What remains as a needed crucial condition in all

variants is the adjustment of a proper resonant phase between

accelerating fields and particles.2,8

Proper wave-particle tuning demands fine control of the

beam-injection process,9–11 so one might be interested in set-

tings where tuning can be achieved automatically by the own

system, without any extra intervention of the experimenter.

One way to do that is to use intense electromagnetic waves in

neutral gases—the gas is ionized and the resulting charged

particles are self-adjustably accelerated by the waves.12,13 In

the present work, we develop a ponderomotive formalism to

discuss the possibility of efficient acceleration within the con-

text of the self-adjusted phase. The ponderomotive approach

enters as a crucial tool to that effect.

In the model, a high-frequency electrostatic wave is

smoothly modulated along its wavevector by a steady-state

envelope which has a length scale much larger than the wave-

length of the carrier. A relativistic particle is then injected

along the wavevector axis and allowed to approach the region

occupied by the envelope with smaller velocity than the car-

rier’s phase-speed.

Under conventional ponderomotive conditions14,15 where

particles see a very high Doppler-shifted carrier frequency,16,17

the model becomes integrable and these particles either

advance across or are reflected off the envelope region with no

net energy gain, as mentioned earlier. The present work dis-

cusses the possibility that the initially nonresonant particle lag-

ging the carrier can still be highly accelerated as it emerges

from the envelope region. This involves an initial ponderomo-

tive stage followed by trapping by the rising levels of the enve-

lope potential field seen by the moving particle and, through

an autonomic phase adjusting, a subsequent catapulting accel-

eration as particles go all the way downhill from the potential

peak just after capture in a wave trough. In a nutshell, if
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particles are injected with smaller velocities than the wave

phase-velocity, they keep slipping backwards relatively to the

wave up to a point where the wave crests may become suffi-

ciently large that end up like a potential wall pushing particles

forwardly. We point out that trapping occurs when the full par-

ticle’s velocity, not only its average speed, becomes resonant

with the carrier’s speed. We therefore require a refined ponder-

omotive calculation that allows to obtain not only average, but

also peak oscillatory velocities.

II. THE PONDEROMOTIVE FORMALISM

In our model, we examine the interaction of a relativistic

particle with an electrostatic modulated wave of the form

uðx; tÞ ¼ u0 e�
x2

r2 cos ðkx� xtÞ: (1)

The amplitude u0 is a constant, k and x are the fast wavevec-

tor and frequency of a carrier moving along the x axis, and r
measures the envelope length; we assume r� 1/k to enforce

the condition of a slowly modulated wave train.

From the fully relativistic Lagrangian of a particle with

charge q and mass m

L ¼ �mc2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� _x2=c2

q
� quðx; tÞ; (2)

a canonical Hamiltonian can be obtained in the following

dimensionless form

H ¼ cþ u0e�x2=r2

cos ðx� tÞ; (3)

where space and time are normalized by k�1 and x�1,

respectively, c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2=a

p
is the relativistic factor with p

as the dimensionless momentum, a � v2
/=c2 with v/¼x/k as

the phase-velocity of the carrier, and c the speed of light. In

addition, H (u0) is normalized by the factor mc2 (mc2/q).

Mass and charge are kept arbitrary at this point, but occa-

sionally along the text we discuss applications to electron

acceleration. We point out that while the velocity is normal-

ized by v/, the momentum is normalized by mc2/v/.

We point out that even though our relativistic model is

purely electrostatic, as long as the particle dynamics parallel

to the wavevector axis is concerned, the underlying physics

is similar to that of a particle submitted to the combined

action of collinear electromagnetic and wiggler fields. If

either one is modulated and both are sufficiently intense,

the resulting force field due to this inverse free-electron

laser arrangement18–20 would be similar to that of the purely

potential field. Note that while the generation of coherent

plasma waves involving plasma or neutral gas environments

may be a complicated task from the experimental point of

view, the vacuum electronics behind the free-electron laser

scheme may be more easily achieved in laboratory.

As mentioned earlier, we know what happens in ideal pon-

deromotive conditions and we know what happens exactly at

resonance. In the present work, we will be interested in the sys-

tem performance as one gradually moves from ideal pondero-

motive conditions towards resonance. It is in this crossover

region that the optimum trapping mechanism of acceleration

discussed earlier takes place.

We therefore begin with the analysis looking for a pon-

deromotive approximation for the full model represented by

Eq. (3). The conventional ponderomotive approximation

demands that one is far away from resonance, the latter writ-

ten as p/(ac) –1¼ 0 in our dimensionless system, and that the

envelope is long enough that r� 1. Under these conditions,

the local particle dynamics is slightly affected by the high-

frequency carrier and one searches for the average secular

dynamics of the particle’s oscillation centre.

Following the formal norm of Hamiltonian perturbations,

one performs a canonical transformation that removes the

high-frequency components of Hamiltonian (3). We consider

a generating function F(x, P)¼ xPþ f(x, P, t) depending on

the old coordinate x and on the new momentum P. The rela-

tionship between old and new momenta reads p¼Pþ @f/@x
and we look for the function f that renders P a low-frequency

variable. In other words, we construct f such that it absorbs all

the high-frequency jittering of the dynamics.

We initially suppose to be sufficiently far from resonan-

ces that the high frequency jitter is small, which allows to

expand c in Eq. (3) in the form

c � Cþ P@f=@x

aC
þ

@f=@xð Þ2 1� P2

aC2

� �

2aC
; (4)

where C �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ P2=a

p
. Under the canonical transformation,

the original Hamiltonian is changed into h¼Hþ @f/@t and if

one requires that the linear terms on the derivatives of f of

the newly formed Hamiltonian sum up to cancel the potential

term up to first order, f can be found in the form

ðf Þ1storder ¼ u0e�x2=r2

sin ðx� tÞ= P=ðaCÞ � 1½ �: (5)

In terms of order of magnitude, one sees that f goes with the

inverse of the Doppler shifted frequency as mentioned earlier.

Expression (5) can be used to evaluate the squared term

involving @f/@x which can be separated into high and low-

frequency components. The high-frequency part can then be

removed with a second-order canonical transformation. If

one stops at this first cycle, the resulting ponderomotive

Hamiltonian reads

H ¼ Cþ 1

4aC
u2

0e�2X2=r2

ðP=ðaCÞ � 1Þ2
1� P2

aC2

� �
; (6)

where the capital X represents the oscillation center position.

Note that variable x can be replaced with X in the exponen-

tial owing to the fact that the difference between these two

variables is much smaller than the envelope length scale

under the ponderomotive approximation. As for the generat-

ing function correct up to the current order of approximation,

one has

f ¼ u0e�X2=r2

sin ðx� tÞ
P=ðaCÞ � 1

�u2
0e�2X2=r2

sin 2ðx� tÞ½ �
8 P=ðaCÞ � 1ð Þ3

1� P2

aC2

� �
: (7)
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At this point we illustrate the accuracy of our model, by

comparing the full dynamics generated either by Eq. (2) or

by the corresponding full Hamiltonian (3), with the pondero-

motive approximation as represented by Hamiltonian (6) and

the corresponding generating function (7).

For given values of a and u0, in Fig. 1 we examine two

typical cases: the case of reflected particles which occurs at

small enough injection velocities v0 of panel (a) and the case

of passing particles which occurs at large enough velocities

of panel (b). We start our numerical essays with a1=2¼ 0.9

since this provides a solid view on the general aspects of the

problem. Extensions to higher values of a are important,

have critical implication, and will be discussed later on.

In the two panels of Fig. 1 we consider u0¼ 0.5, with

v0¼ 0.3 a�1=2 in (a) and v0¼ 0.5 a�1=2 in (b) (note that under

the present dimensionless scalings, va1=2 is precisely the ratio

of the dimensional velocity to the speed of light, vdim/c); par-

ticles are always injected from x(t¼ 0)¼ –5r although all

results in the paper are independent of any initial wave-particle

relative phase. In both cases of Fig. 1, the full solutions (in

red) obtained from the complete Lagrangian (2) are superposed

with thick dashed lines representing the enveloping velocities

associated with the momenta Pþ @f/@x calculated from the

ponderomotive approximation. The upper (lower) enveloping

curve is computed as the carrier’s phase term sin ðx� tÞ is

replaced with its maximum (minimum) excursion value þ1

(–1). One observes that the agreement provided by the present

ponderomotive theory is truly satisfactory.

III. BREAKDOWN OF THE PONDEROMOTIVE
APPROXIMATION AND ACCELERATION

We now proceed to the main point of this work and see

what happens when the peaks of velocity excursions reach

the resonant condition. At this point particles are captured by

the potential well and can be accelerated towards c as much

as the amplitude u0 and proper initial phase allow.

Once particles are trapped by the carrier, one can relate

u0 to the maximum possible velocity if the particle goes

downhill from the maximum to the minimum of the poten-

tial. An estimate reads

u0 � 1�
ffiffiffi
a
p� �� �

= 2
ffiffiffi
2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� vf ;dim=c
q	 


; (8)

from which one observes that with amplitudes around u0

� 0.5 as in the previous figures, final velocities on the order

of vf,dim/c � 0.99 can be attained when a1=2¼ 0.9. The esti-

mate can be obtained if one takes Hamiltonian (3) and

neglects the slow modulation for the fast resonant energy

gain. Under this condition, one has a purely harmonic wave

of amplitude u0 to which one associates a conserved quantity

H – p obtained from canonical expressions dH/dt¼ @H/@t
and dp/dt¼ –@H/@x. Next, if one inputs a particle with the

resonant phase velocity at the peak of the cosine potential

as the initial condition, the velocity at the bottom can be

obtained as a function of u0 through the conserved quantity.

Expression (9) is finally obtained under the approximation

(c – vf,dim)/c� 1, valid for fast particles.

In our next figure, Fig. 2, we examine a trapping event.

A peak in the ponderomotive oscillation is about to cross the

resonant condition in panel (a), the peak occurring at the

maximum of the modulated field at x¼ 0 owing to the sym-

metry. Particles still lag the wave. For a slightly larger value

of v0, the peak crosses the resonant line and the particle is

catapulted forward as it is pushed by a maximum of the

potential well. We point out that the particle is not pushed

back by the next potential maximum because as the particle

advances, the modulation reduces the maximum height of

the potential wave and allows barrier crossing. Note that for-

wardly directed extraction at maximum speed is then inher-

ent to the mechanism discussed here.

Figure 3 offers a global view of the ponderomotive

dynamics and resonant acceleration just examined.

In the 2D plot of the figure, we depict the colour graded

final velocity vf that particles injected with velocity v0 exit

the accelerating region occupied by a modulated wave mode

of maximum amplitude u0. The accelerating region resulting

from resonant trapping is seen in vivid red/yellow colors.

The bounding curve indicating the onset of the trapping

mechanism is obtained from the model and once again we

see that simulations agree well with the analytical estimates.

The more subdued colors indicate regions where the ponder-

omotive approximation is valid. The upper region, that

of higher u0’s, corresponds to particles reflected off the

potential hump, while the lower region corresponds to pass-

ing particles. There is a frontier between both regions, the

locus of which again agrees with the dotted curve obtained

by our approximate model. Finally, the four cases studied in

FIG. 1. Evolution of particle velocity for
ffiffiffi
a
p
¼ 0:9, u0¼ 0.5, and r ¼ 100.

Reflected particles in (a) with v0¼ 0.3 a�1=2 and passing particles in (b) with

v0¼ 0.5 a�1=2. The blue solid line represents the resonant velocity v/,dim/c
¼ a1=2, while the dashed black lines are obtained from the ponderomotive

approximation. The peaks of velocity do not reach the resonant condition in

either case.

FIG. 2. Same as in Fig. 1: v0¼ 0.55 a�1=2 in (a) and v0¼ 0.60 a�1=2 in (b).

In panel (a), the peak of velocity is slightly below the resonant wave’s

phase-velocity. In panel (b), the peak of velocity crosses the resonance line,

ponderomotive dynamics breaks down, and the particle is accelerated

towards c as detailed in the inset.
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Figs. 1 and 2 are marked accordingly. The trapping event

analysed in Fig. 2 was chosen to occur around the left cor-
ner of the trapping region. The corner is defined as the point

along the trapping boundary where the ponderomotive

approximation first develops a double hump profile preced-

ing the curve bending and the reflective profile. The corner

is indicated as a cross in the plot and Fig. 2(a) shows the

double hump forming. The corner region is the one where,

with the lowest field amplitudes, one achieves the maxi-

mum predicted final velocity starting with the lowest

injected velocity. Accelerating efficiency does not change

much as u0 grows and actually diminishes as the injection

velocity becomes larger, so the corner is the optimum

region for acceleration. We shall return to these topics in a

moment.

A. Choice of a

As mentioned earlier, this may be the appropriate occa-

sion to discuss the choice and role of a on the accelerating

mechanism. What happens is that as a decreases, the left-

hand side corner of the trapping region in Fig. 3 scales down

to smaller values of u0 and v0. At the same time, relation (8)

shows that for a given exiting velocity, u0 increases from

zero when a decreases. There is thus a unique value of a
where the amplitude u0 at the corner coincides with the

needed amplitude for a given final ejection velocity. The

value of a corresponding to final velocities of the order of

99% of c, sits around a ¼ 0.78, which is nearly what we use

in our first numerical discussion. This is seen in Fig. 4 where

we plot the amplitude at the corner (u0,cor) and the amplitude

for resonant acceleration (u0,res) as obtained from Eq. (8) for

a variety of final velocities. As indicated in Fig. 4, larger val-

ues of a led to increasingly larger values of the final velocity

as well. One should notice that at the largest illustrated a in

the plot, even for a moderate value of u0 the final electronic

energies—in the case of electron acceleration—approach the

scale of GeV’s from relatively small injection velocities

around 0.7c.

B. Optimum acceleration at the corner

Finally, why is the corner optimum? One notices a

roughly periodic array of less-than-effective discrete curves

inside the accelerating region of Fig. 3. We have examined

these singular curves and found out that their vertices corre-

spond to “fixed points” of the dynamics in the velocity space,

where exiting and injecting velocities are identical. As one

moves along the wings emanating from the vertices, both

velocities become different, but still with the exiting speed

below resonance. A detailed view of the dynamics at the ver-

tice, highlighted in Fig. 3, is seen in Fig. 5. The feature is not

dissimilar to what is seen in parametric analysis of bifurcat-

ing dissipative systems.21

In addition, the number of oscillations within the resonant

region increases by one unit each time one crosses upwards/

rightwards each layer of (almost) side-by-side vertices. This

feature causes the dynamics to increasingly resemble an adia-

batic one as one tries to augment either the injected velocity

v0 or the amplitude u0 with a view on a possible improvement

of the accelerating process. It appears that in both circumstan-

ces particles are simply captured at lower levels of the modu-

lated potential before reaching the peak, execute a large

number of action-conserving oscillations inside the slowly

varying potential well, and are gently released at lower veloci-

ties than the maximum.

IV. CONCLUSION

In summary, we have studied the breakdown process of

the ponderomotive dynamics of a particle in the field of a

smoothly varying EM wave. In the present analysis, the EM

wave is modeled after an electrostatic mode, but one expects

FIG. 3. Color graded map of the exiting speed vf for a1=2¼ 0.9 and r ¼
100. Gray (blue) hues represent the reflective (passing) regime, yellow

roughly indicates velocities between 0.9c and 0.99c, and red indicates veloc-

ities a bit greater than 0.99c. The green and white dashed lines indicate the

ponderomotive approximations for the reflective/passing frontier and for the

boundary of the resonant regime. The points and region shown in details in

other figures are marked and labeled in the map.

FIG. 4. Intersection of curves u0,cor and u0,res indicating the ideal operating

point for various final velocities vf,dim. On the right vertical axis we represent

the corresponding injection velocities v0 at the corner.

FIG. 5. Panel (a) expands the corresponding region of Fig. 3 and panel (b)

explores in detail the dynamics of the fixed point at v0¼ 0.65913 a�1=2 and

u0¼ 0.49988.
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the same kind of behaviour if the longitudinal forces of the

electrostatic mode are replaced with those generated by the

beating of collinear laser and wiggler fields in an inverse

free-electron laser process, for instance.

Dynamics is well described by ponderomotive approxi-

mations as long as one stays away from wave-particle reso-

nance. If one increases either the injection velocity or the

field amplitude u0 such that resonance is attained, particles

can be highly accelerated under adequate conditions. These

adequate conditions are generically represented by the red/

yellow regions of the color graded plot of Fig. 3. However,

as just discussed, efficiency is much higher if one works

close to the left-hand-side corner where particles are cata-

pulted instead of undergoing the adiabatic-like process

where several oscillations take place while the particle

remains trapped.

Overall efficiency is magnified if a is such that the value

of u0 at the left corner of the resonant region coincides with

the needed amplitude to make particles leap from the reso-

nant velocity to the vicinity of the speed of light. For

vf ;dim=c � 0:99, these two threshold amplitudes become simi-

lar when a � 0.78, which requires usage of only moderately

relativistic amplitudes on the order of u0� 0.4–0.5. The

acceleration process is nevertheless very efficient because it

is not based on the strength of the wave amplitude alone, but

also on the automatic positioning of particles at the peak of

the wave field, which is provided by the synergetic pondero-

motive process. The choice of larger values of a leads to

increasingly larger final energies.

The present model does not take into account multi-

dimensional aspects associated with the wave-particle inter-

action: inclusion of misalignment between the incoming par-

ticles and the carrier’s wavevector as well as the finite cross

section of a real accelerating field, for instance, may reduce

the acceleration efficiency. We have also modeled the wave

field in terms of a pure electrostatic mode, which is some-

what equivalent but not equal to the inverse free-electron

laser discussed earlier. In addition, given the large accelera-

tions particles are submitted to, another important feature

to be investigated is the problem of radiation reaction on

particles and the self-consistent dynamics of the accelerating

fields in case one works with relatively dense particle beams.

Further study is needed on the issues of the previous para-

graph, but despite its shortcomings we still expect the present

1D analysis to be adequate as a first approach to understand

the underlying nonlinear dynamics of the full process.
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