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In a previous work [Haas et al., Phys. Plasmas 23, 012104 (2016)], a new model was introduced,

taking into account the role of the Fermi weak force due to neutrinos coupled to

magnetohydrodynamic plasmas. The resulting neutrino-magnetohydrodynamics was investigated

in a particular geometry associated with the magnetosonic wave, where the ambient magnetic field

and the wavevector are perpendicular. The corresponding fast, short wavelength neutrino beam

instability was then obtained in the context of supernova parameters. The present communication

generalizes these results, allowing for arbitrary direction of wave propagation, including fast and

slow magnetohydrodynamic waves and the intermediate cases of oblique angles. The numerical

estimates of the neutrino-plasma instabilities are derived in extreme astrophysical environments

where dense neutrino beams exist. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4997187]

I. INTRODUCTION

The neutrino-plasma coupling in magnetized media is a

relevant issue in diverse situations, as near the core of proto-

neutron stars, where it is a source of the free energy behind

the stalled supernova shock.1–4 Neutrino-driven wakefields

and neutrino effective charge in magnetized electron-

positron plasma,5,6 the magnetized Mikheilev-Smirnov-

Wolfenstein effect of neutrino flavor conversion,7 spin waves

coupled to neutrino beams,8 neutrino cosmology and the

early universe,9 neutrino emission and collective processes

in magnetized plasma, and neutrino-driven nonlinear waves

in magnetized plasmas10,11 are examples of neutrino influ-

enced plasma phenomena. The existence of intense neutrino

beams in general astrophysical plasma is well documented.12

The coupling between neutrino flavor oscillations and

plasma waves has been also reported.13–15

One of the most popular approaches to plasma astro-

physics in the presence of magnetic fields is magnetohydro-

dynamics (MHD), which usually does not account for

neutrino species not even in any approximate way. Actually,

neutrino studies in a material medium are more frequently

pursued within the framework of particle physics, which in

terms of language is somewhat far from the majority of the

plasma community. This has motivated the creation of

neutrino-magnetohydrodynamics (NMHD), where the inter-

action between neutrinos and electrons is forwarded in terms

of a coupling between the MHD and neutrino fluids.16 As a

first application, NMHD proved the destabilization of the

magnetosonic wave by neutrino beams, yielding a plausible

mechanism for type II supernova explosion. However, the

magnetosonic wave supposes a very particular geometry,

where the wave propagation is perpendicular to the ambient

magnetic field. Therefore, it is advisable to perform a more

general linear stability analysis, allowing for arbitrary orien-

tations. This is the purpose of the present work, namely, the

study of the impact of a neutrino beam on the stability of

general MHD waves. That is to say, in the case of an ideally

conducting fluid and using simplified MHD assumptions,

these are the shear Alfv�en wave, and fast and slow magneto-

sonic waves. Therefore, the present work removes the

orthogonality condition of Ref. 16, to obtain instability

growth-rates of simplified and ideal NMHD for arbitrary

oblique angles between wave propagation and equilibrium

magnetic field. Similarly, the instability analysis of general

electrostatic perturbations in magnetized electron plus neu-

trino plasmas in an ionic background was recently carried

on.17

It can be justifiably argued that the NMHD model as it

stands underestimates other important quantum effects in

dense plasmas, such as relativistic degeneracy effects, parti-

cle dispersive effects, and exchange effects.18 The basic rea-

son for our choice is that the original quantum

magnetohydrodynamics was derived starting from a quantum

kinetic model, the non-relativistic Wigner-Maxwell system,

not including neutrino coupling.19 Therefore, the insertion of

relativistic corrections and extra terms of exchange and

quantum dispersion would be ad hoc in the present state of

the art. On the other hand, for very dense white dwarfs,

degeneracy comes together with relativistic effects in view

of a Fermi momentum pF of the order of mc, where m is the

mass of the charge carriers and c the speed of light. Hence,

for strongly degenerate-relativistic plasmas, a more

advanced theory would be necessary from the beginning.

This work is organized as follows. Section II reviews

the basic equations and validity conditions of NMHD.

Section III obtains the general linear dispersion of waves,

where a few extra details (not explicitly shown in Ref. 16) of

the algebra are provided. Section IV derives the instability

growth-rate in general, discussing it in the significant partic-

ular cases: fast magnetosonic wave; slow magnetosonic

wave; perpendicular wave propagation (with respect to the
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ambient magnetic field); and parallel wave propagation. The

shear Alfv�en wave is found to be unaffected by neutrinos.

The strong growth-rate is estimated in a typical case of type

II supernova parameters. Section V is reserved to the

conclusions.

II. NEUTRINO-MAGNETOHYDRODYNAMICS MODEL

For completeness, we briefly review the NMHD model

derived in Ref. 16, comprising the following set of equations,

namely, the continuity equations for the neutrinos:

@n�
@t
þr � ðn�u�Þ ¼ 0; (1)

and for the MHD fluid

@qm

@t
þr � ðqmUÞ ¼ 0; (2)

the momentum transport equations for the neutrinos

@p�

@t
þ u� � rp� ¼ �

ffiffiffi
2
p

GF

mi
rqm; (3)

and for the MHD fluid

@U

@t
þ U � rU ¼ �V2

Srqm

qm

þ ðr � BÞ � B

l0 qm

þ F�

mi
; (4)

as well as the dynamo equation modified by the electroweak

force

@B

@t
¼ r� U� B� F�

e

� �
: (5)

Here, n� and qm are, respectively, the neutrino number den-

sity and the plasma mass density, u� and U, respectively, the

neutrino and plasma velocity fields; B, the magnetic field;

GF, the Fermi constant; mi, the ion mass; VS, the adiabatic

speed of sound; l0, the free space permeability; e, the ele-

mentary charge; and F�, the neutrino force

F� ¼
ffiffiffi
2
p

GF E� þ U� mir� B

el0qm

� �
� B�

� �
; (6)

where E� and B� are effective fields induced by the weak

interaction

E� ¼ rn� �
1

c2

@

@t
ðn�u�Þ; B� ¼

1

c2
r� ðn�u�Þ : (7)

Finally, the neutrino relativistic beam momentum is

p� ¼ E�u�=c2, with a neutrino beam energy E� .
The assumptions behind the NMHD model are the same

of the simplified and ideal MHD, namely, a highly conduct-

ing, strongly magnetized medium, and low frequency

processes in a scale where electrons and ions couple so much

as to be faithfully treated as a single fluid. The neutrinos

influence the plasma by means of the charged weak current

coupling electrons and electron-neutrinos, through the

charged bosons W6. In addition, implicitly in Eq. (4) the

displacement current was neglected, supposing wave phase

velocities much smaller than c—although such a restriction

has no role in the results of the present work. In conclusion,

Eqs. (1)–(5) are a complete set of 11 equations and 11 varia-

bles, namely, n�, qm, and the components of p�, U, and B. A

more detailed derivation is provided in Ref. 16.

For convenience, it is useful to reproduce here Eq. (28)

of Ref. 16, which collects the conditions of high collisional-

ity and high conductivity of the plasma, supposing a wave

with angular frequency x

mijxj
mexpe

� 2

3

lnK
K
� xpe

jxj ; K ¼ 4pn0k
3
D

3
; kD ¼

vT

xpe
; (8)

where n0 is the equilibrium electron (and ion) number den-

sity, me is the electron mass, xpe ¼ ½n0e2=ðmee0Þ�1=2
is the

electron plasma frequency, vT ¼ ðjBTe=meÞ1=2
is the elec-

trons thermal velocity, jB is the Boltzmann constant, and Te

the electron fluid temperature. The validity conditions of

NMHD are essentially the same, since the neutrino compo-

nent is a second order influence. The derivation of Eq. (8)

assumes the Landau electron-electron collision frequency,

and non-degenerate and non-relativistic electrons. More

details on the validity conditions of MHD can be found, e.g.,

in Refs. 20 and 21.

III. GENERAL DISPERSION RELATION

Starting from the homogeneous equilibrium

n�¼n�0; qm¼qm0; p�¼p�0; U¼0; B¼B0; (9)

and supposing plane wave perturbations proportional to

exp ½iðk � r� x tÞ�, it is possible to obtain the dispersion rela-

tion for small amplitude waves. Here, we provide a few

more details on the necessary algebra, in comparison with

Ref. 16. The idea is to express all perturbations in terms of

dU, the first-order plasma fluid correction. For instance, the

linear correction to the neutrino fluid velocity becomes

du� ¼
c2

E�0

dp� � u�0 u�0 � dp�=c2
� �

; (10)

¼
ffiffiffi
2
p

GFqm0c2

miE�0 x
k� k � u�0 u�0=c2
� �
ðx� k � u�0Þ

k � dU; (11)

where u�0 and E�0 are, respectively, the equilibrium neutrino

beam velocity and energy, viz., p�0 ¼ E�0u�0=c2. Equation

(10) can be operationally found using the relation between

neutrino momentum and neutrino velocity and the energy-

momentum relation E� ¼ ðp2
�c

2 þ m2
�c

4Þ1=2
, where the neu-

trino mass m� is eliminated at the end. The step from Eqs.

(10) to (11) is made using the linearized plasma continuity

equation (2) and the linearized neutrino momentum transport

equation (3).

To proceed, in view of Eq. (6), the linearized neutrino

force becomes dF� ¼
ffiffiffi
2
p

GFdE� since the term containing

the effective neutrino magnetic field B� is of second order.

The perturbed effective neutrino electric field dE� can be
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found from Eq. (7), together with the neutrino continuity

equation (1) and Eq. (11). The result is

dF� ¼
2iG2

Fn�0qm0 ðk � dUÞ
miE�0 xðx� k � u�0Þ2

� ððk � u�0Þ2 � c2k2 � xðk � u�0Þ þ x2Þk
h

þx k2 � x
c2

k � u�0

� �
u�0

�
: (12)

As could have been expected, the neutrino force is enhanced

for x � k � u�0, so that the wave resonates with the neutrino

beam.

The remaining straightforward steps allow to express

the linearized plasma momentum transport equation (4) in

terms of dU only

x2dU¼ V2
AþV2

SþV2
N

c2k2�ðk�u�0Þ2þxðk�u�0Þ�x2

ðx�k�u�0Þ2

 ! !

�ðk�dUÞkþðk�VAÞððk�VAÞdU�ðdU�VAÞk

�ðk�dUÞVAÞ�
xV2

Nðk2�xk�u�0=c2Þðk�dUÞu�0

ðx�k�u�0Þ2

þ iV2
NVAðk�dUÞ

Xiðx�k�u�0Þ2
k2�xk�u�0

c2

� �
VA�ðk�ðk�u�0ÞÞ;

(13)

where the vector Alfv�en velocity VA and VN are given by

VA ¼
B0

ðqm0l0Þ1=2
; VN ¼

2G2
Fqm0n�0

m2
i E�0

 !1=2

; (14)

while Xi¼ eB0/mi is the ion cyclotron frequency. As apparent,

the characteristic neutrino-plasma speed VN contains both

MHD and neutrino variables, emphasizing the mutual coupling.

The somewhat formidable expression can be considerably

simplified for low frequency waves such that x/k� c, allow-

ing to disregard the terms containing x in the numerators of

the right-hand side of Eq. (13), as deduced from appropriated

order of magnitude estimates. In the same trend, the very last

term proportional to X�1
i can be discarded, provided kVA/

Xi� c/VA, or equivalently ck/xpe�xpe/Xe, where Xe¼ eB0/

me is the electron cyclotron frequency. Such a condition tend

to be easily satisfied wavelengths much larger than the plasma

skin depth c/xpe, and large enough densities so that xpe�Xe.

Finally, Eq. (13) reduces to

x2dU ¼ V2
A þ V2

S þ V2
N

ðc2k2 � ðk � u�0Þ2Þ
ðx� k � u�0Þ2

 !
ðk � dUÞk

þðk � VAÞððk � VAÞdU� ðdU � VAÞk� ðk � dUÞVAÞ;
(15)

which is shown in Ref. 16.

In Ref. 16, for simplicity it was supposed that k � VA

¼ 0, which allows to discard several terms of Eq. (15). This

corresponds to the magnetosonic wave modified by the neu-

trino component, for which dU k k as seen from inspection.

The corresponding instability due to the neutrino beam was

then evaluated. Our goal now is to consider the general situa-

tion, where the wavevector and the ambient magnetic field

have an arbitrary orientation, as shown in Fig. 1.

It turns out that Eq. (15) is formally the same as the one

for linear waves in simplified ideal MHD, provided the adia-

batic sound speed VS is replaced by ~VSðx; kÞ defined by

~V
2

Sðx; kÞ ¼ V2
S þ V2

N

ðc2k2 � ðk � u�0Þ2Þ
ðx� k � u�0Þ2

; (16)

so that

x2dU ¼ V2
A þ ~V

2

Sðx; kÞ
	 


ðk � dUÞk
þðk � VAÞððk � VAÞdU� ðdU � VAÞk� ðk � dUÞVAÞ;

(17)

which is exactly the same as the well known simplified and

ideal MHD system for linear waves, with the replacement

VS ! ~VSðx; kÞ. Hence, the usual procedure applies, as

follows.

Assuming the geometry of Fig. 1, where without loss of

generality the y–component of k and VA is set to zero, and

from the characteristic determinant of the homogeneous sys-

tem (17) for the components of dU, the result is

ðx2 � k2 V 2
A cos2hÞ x4 � k2ðV2

A þ ~V
2

S ðx; kÞÞx2

h
þ k4 V 2

A
~V

2

S ðx; kÞ cos2h� ¼ 0 : (18)

As apparent from the factorization, one root is

x ¼ k VA cos h, which is the shear Alfv�en wave, unaffected

by the neutrino beam. This happens because k � dU¼ 0 for

the shear Alfv�en wave, which eliminates the neutrino contri-

bution in Eq. (17). Presently, the more interesting modes

come from the second bracket in Eq. (18), to be discussed in

Sec. IV.

IV. INSTABILITIES

Ignoring the shear Alfv�en wave, the general dispersion

relation (18) yields

x4 � k2ðV2
A þ V 2

S Þx2 þ k4 V 2
A V 2

S cos2h

¼
V2

Nk2 c2k2 � ðk � u�0Þ2
	 


ðx2 � k2V2
A cos2hÞ

ðx� k � u�0Þ2
; (19)

FIG. 1. Wave vector and ambient magnetic field.
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where the neutrino term was isolated in the right-hand side.

Due to the small value of the Fermi constant, the neutrino

contribution is always a perturbation, even for the neutrino-

beam mode. The natural approach to Eq. (19) is then to set

x ¼ Xþ dx; X� dx; X ¼ k � u�0; (20)

where X is the classical (no neutrinos) solution

X4 � k2ðV2
A þ V 2

S ÞX2 þ k4 V 2
A V 2

S cos2h ¼ 0; (21)

and where in Eq. (20) the neutrino-beam mode was selected

in order to enhance the neutrino contribution.

Therefore, the zeroth-order solution gives the fast (þ)

and slow (–) magnetosonic waves

X ¼ X6 ¼ kV6;

V6 ¼
1

2
V 2

A þ V 2
S 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV2

A � V2
SÞ

2 þ 4 V 2
A V 2

S sin2h
q� �� �1=2

:

(22)

Taking into account Eqs. (19) and (20), as well as the

expression of the unperturbed frequency, we get

ðdxÞ3 ¼
6V2

N c2k2 � ðk � u�0Þ2
	 


V2
6 � V2

A cos2h
� �

k

2V6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV2

A � V2
SÞ

2 þ 4 V 2
A V 2

S sin2h
q

� 6V2
Nc2 V2

6 � V2
A cos2h

� �
k3

2V6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV2

A � V2
SÞ

2 þ 4 V 2
A V 2

S sin2h
q ; (23)

where in the last step X¼ k � u�0 and V2
6 � c2 were used.

The unstable root with c¼ Im(dx)> 0 yields the growth-rate

c¼ c6¼
ffiffiffi
3
p

k

24=3

Dc4jV2
6�V2

A cos2hj

V6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV2

A�V2
SÞ

2þ4V 2
A V 2

S sin2h
q

0
@

1
A

1=3

; (24)

introducing the dimensionless quantity

D ¼ V2
N

c2
¼ 2G2

Fn0n�0

mic2E�0

; (25)

using qm0� n0mi. The parameter D is endemic in neutrino-

plasma problems, as in the neutrino and anti-neutrino effec-

tive charges in magnetized plasmas5 or in the expression of

the neutrino susceptibility.22

The weak beam condition c/X� 1 can be worked out as

Dc4jV2
6 � V2

A cos2hj

V4
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV2

A � V2
SÞ

2 þ 4 V 2
A V 2

S sin2h
q � 1; (26)

which is independent of the magnitude k of the wavenumber.

In the unlikely cases where Eq. (26) is not satisfied, one must

go back to the sixth-order polynomial equation (19), to be

numerically solved.

The growth-rate (24) is completely general, in the sense

that it is valid for arbitrary geometries of the wave propaga-

tion, as long as the weak beam assumption holds, and is the

main result of this work. It is interesting to evaluate the

instability in the separate fast and slow magnetosonic cases,

as well as for perpendicular (k ? VA) and parallel (k k VA)

to the magnetic field wave propagation.

A. Destabilization of the fast magnetosonic wave

The choice of the plus sign in Eq. (24) corresponds to

the fast magnetosonic wave, with a growth-rate c 	 cþ.

From now on, parameters of Type II core-collapse scenarios

like for the supernova SN1987A will be applied. There one

had neutrino bursts of 1058 neutrinos and energies of the

order of 10–15 MeV, strong magnetic fields B0� 106–108 T,

and neutrino beam densities n�0 between 1034–1037 m�3.23

In the following estimates, we set E�0 ¼ 10 MeV;
n0 ¼ 1034 m�3; n�0 ¼ 1035 m�3; B0 ¼ 5� 107 T, and an

electron fluid temperature Te¼ 0.1 MeV, appropriate for the

slightly degenerate and mildly relativistic hydrogen plasma

in the center of the proto-neutron star. In addition, we use

GF ¼ 1:45� 10�62 J m3; VS ¼ ðjBTe=miÞ1=2
. For these

parameters, one has D ¼ 1:75� 10�33; VA=c ¼ 3:64

�10�2;VS=c ¼ 1:03� 10�2. We set k¼ 106 m�1, which is

fully consistent with the applicability condition (8). Finally,

the simplifying assumption of page 6, viz., ck/xpe�xpe/Xe,

becomes k� 1.2� 1010 m�1, which is obviously satisfied.

From Eq. (24), the result is then shown in Fig. 2, dis-

playing the growth-rate as a function of the orientation angle.

One has a fast instability with the estimate 1=cþ � 10�3 s,

while the characteristic time of supernova explosions is


1 s. On the other hand, the weak beam assumption cþ�
Xþ [equivalent to Eq. (26)] is fairly satisfied, since

Xþ� 1013 rad/s without much variation as a function of the

angle. The conclusion from Fig. 2 is that the instability

becomes stronger for more perpendicular waves. One could

have even stronger instabilities for a denser plasma, but

some of the above calculations, although remaining approxi-

mately accurate, would need to be slightly revised in view of

stronger degeneracy and relativistic effects.

B. Destabilization of the slow magnetosonic wave

Setting exactly the same parameters used for the fast mag-

netosonic wave and using Eq. (24), one gets the growth-rate

shown in Fig. 3 below, which is also such that 1/c– � 10�3s.

The weak beam condition (26) is satisfied except for h ! p/

2 rad, where both X– and c– go to zero. Contrary to the fast

FIG. 2. Growth-rate of the destabilized fast magnetosonic wave, for the set

of parameters described in the text.
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magnetosonic wave, the slow magnetosonic wave becomes

more unstable for parallel and anti-parallel propagation, while

it stabilizes for perpendicular orientation between k and B0.

C. Perpendicular wave propagation (k ? VA)

It is useful to collect the special cases of Eq. (24) for

noteworthy orientations. For instance, when k ? B0, or

h¼p/2 rad, it is found

cþ ¼
ffiffiffi
3
p

D1=3c4=3k

24=3ðV2
A þ V2

SÞ
1=6
; c� ¼ 0 : (27)

At this point, it is interesting to critically compare with

the instability calculations from Ref. 16, where k ? B0 from

the beginning. There, the growth-rate was found as

c ¼ D1=2c2kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

A þ V2
S

q ; (28)

see Eq. (32) in Ref. 16, in the case of almost perpendicular neu-

trino propagation (k � u�0 � 0), which yields the larger instabil-

ities. While Eqs. (27) for cþ and (28) for c are similar, there are

some decisive discrepancies, and effectively cþ� c by many

orders of magnitude. This is because of the exceedingly small

coupling in terms of D1=3 
 G
2=3
F in Eq. (27) and D1=2 
 GF in

Eq. (28). What is the origin of the discrepancy? It happens that

in Ref. 16 the neutrino-beam mode was selected with x ¼
k � u�0 þ ic and c� X ¼ ðV2

A þ V2
SÞ

1=2k, with wavevector

almost perpendicular to neutrino beam velocity, but the reso-

nance condition k � u�0¼X was not enforced. By definition,

the resonance condition enhances the interaction between the

wave and the neutrino beam, producing a larger instability. In

this context, the present findings are more appropriate.

D. Parallel wave propagation (k k VA)

When k k B0, or h¼ 0, we get

cþ ¼ 0; c� ¼
ffiffiffi
3
p

D1=3c4=3k

24=3V
1=3
S

; (29)

where the result supposes VA>VS. Otherwise, if VS>VA,

then cþ is interchanged with c– in Eq. (29). The case of par-

allel propagation has two fundamental modes: the pure

Alfv�en wave X¼ kVA, which is unaffected by the neutrino

beam, and the sonic mode X¼ kVS, which is destabilized

according to Eq. (29). The anti-parallel case (h¼p rad) is

similar.

V. CONCLUSION

The linear dispersion relation of simplified and ideal

NMHD was examined in detail, together with the validity

conditions of the theory. With the additional hypothesis of

very subluminal waves (V6 � c) and wavelengths not very

small compared with the plasma skin depth, the linear dis-

persion relation becomes formally the same as for usual sim-

plified and ideal MHD, provided the adiabatic sound speed is

replaced by a quantity VS(x, k) containing the neutrino beam

contribution. Therefore, the standard procedure for waves

with an arbitrary orientation applies. Due to the small value

of the Fermi coupling constant, the neutrino term is nearly

always a perturbation, to be treated as a second order effect.

Nevertheless, the corresponding instability growth-rate is

found to be strong enough to be a candidate for triggering

cataclysmic events in supernovae. The central result of the

work is the growth-rate in Eq. (24), valid for arbitrary geom-

etries and considerably enlarging the results from Ref. 16,

which are restricted to perpendicular wave propagation (k �
B0¼ 0). The particular cases of destabilized fast and slow

magnetosonic waves, and perpendicular and parallel propa-

gation have been discussed. It would be interesting to relax

some of the assumptions behind Eq. (15), e.g., the hypothe-

ses of very subluminal waves, as well as the introduction of

non-ideality effects. In this way, even more general (and

more complicated) phenomena could be addressed.
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