

EVOLUÇÃO DO GRUPO PORONGOS NA SUA EXTREMIDADE SUL, RIO GRANDE DO SUL, COM INTEGRAÇÃO DE GEOLOGIA DE CAMPO E DATAÇÃO U-Pb DE ZIRCÕES

Porto Alegre 2015

LAURA COSTA MARTINS

EVOLUÇÃO DO GRUPO PORONGOS NA SUA EXTREMIDADE SUL, RIO GRANDE DO SUL, COM INTEGRAÇÃO DE GEOLOGIA DE CAMPO E DATAÇÃO U-Pb DE ZIRCÕES

Trabalho de Conclusão do Curso de Geologia do Instituto de Geociências da Universidade Federal do Rio Grande do Sul. Apresentado na forma de monografia, junto à disciplina Projeto Temático em Geologia III, como requisito parcial para obtenção do grau de Bacharel em Geologia.

Orientador(a): Prof. Dr. Léo Afraneo Hartmann

Porto Alegre

2015

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Reitor: Carlos Alexandre Netto

Vice-Reitor: Rui Vicente Oppermann

INSTITUTO DE GEOCIÊNCIAS

Diretor: André Sampaio Mexias

Vice-Diretor: Nelson Luiz Sambaqui Gruber

Martins, Laura Costa

Evolução do Grupo Porongos na sua extremidade sul, Rio Grande do Sul, com integração de geologia de campo e datação U-Pb em zircões . / Laura Costa Martins. - Porto Alegre: IGEO/UFRGS, 2015. [48 f.] il.

Monografia (Trabalho de Conclusão de Curso).- Universidade Federal do Rio Grande do Sul. Graduação em Geologia. Instituto de Geociências. Porto Alegre, RS - BR, 2015.

Orientador(es):Léo Afraneo Hartmann

1. Grupo Porongos 2. Piratini 3. Idades U-Pb 4. Zircões I. Título.

CDU 55

Catalogação na Publicação Biblioteca Instituto de Geociências - UFRGS Veleida Ana Blank CRB 10/571

Universidade Federal do Rio Grande do Sul - Campus do Vale Av. Bento Gonçalves, 9500 - Porto Alegre - RS - Brasil CEP: 91501-970 / Caixa Postal: 15001. Fone: +55 51 3308-6329 Fax: +55 51 3308-6337

E-mail: bibgeo@ufrgs.br

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE GEOCIÊNCIAS DEPARTAMENTO DE GEOLOGIA CURSO DE GRADUAÇÃO EM GEOLOGIA

A Comissão Examinadora, abaixo assinada, aprova o Trabalho de Conclusão de Curso "EVOLUÇÃO DO GRUPO PORONGOS NA SUA EXTREMIDADE SUL, RIO GRANDE DO SUL, COM INTEGRAÇÃO DE GEOLOGIA DE CAMPO E DATAÇÃO U-Pb DE ZIRCÕES", elaborado por LAURA COSTA MARTINS, como requisito parcial para obtenção do grau de Bacharel em Geologia.

Comissão Examinadora:

Maria de Fátima A. S. Bitencourt

Luiz A. Vedana

Tiago Jalowinski

AGRADECIMENTO

Agradeço a minha mãe, Rita, pelo apoio em todos os momentos da minha vida;

Agradeço profundamente ao Professor Léo Hartmann, pelo privilégio de trabalhar junto a ele;

Agradeço aos colegas graduandos e pós-graduandos que ajudaram de alguma maneira;

Agradeço aos professores do Instituto de Geociências, aos motoristas e aos funcionários que fizeram parte da minha história acadêmica.

"Só sabemos com exatidão quando sabemos pouco; à medida que vamos adquirindo conhecimentos, instala-se a dúvida".

Johann Goethe

RESUMO

O Grupo Porongos corresponde a um cinturão de dobramentos localizado na porção central do Escudo Sul-Riograndense, entre a Bacia do Camaguã e o Cinturão Dom Feliciano, e possui uma complexa e longa história evolutiva. Na extremidade sul do cinturão, região norte da Folha Piratini, afloram xistos que contem relações geológicas essenciais para o entendimento da evolução do cinturão. O objetivo do presente estudo é investigar a origem desses xistos como rochas metavulcânicas ou metassedimentares, pois há um conflito de interpretação. O cinturão foi pouco estudado nessa região, mas há uma descrição detalhada de vários aspectos da geologia e geoquímica de rochas executada pela Companhia de Pesquisa de Recursos Minerais - CPRM, no Programa Levantamentos Geológicos Básicos do Brasil, para o Departamento Nacional da Produção Mineral - DNPM. Esse estudo serve de base para o presente projeto, integrado com os dados da literatura. A metodologia utilizada incluiu geologia de campo, petrografia e datação U-Pb por LA-ICP-MS em zircões de duas amostras de xistos. A interpretação de dados aerogeofísicos (aeroespectrometria e aeromagnetometria), obtidos em levantamento da CPRM, incrementa o trabalho. Os dados obtidos e considerados integradamente permitiram classificar os xistos da região de estudo como rochas de origem sedimentar, petrograficamente biotita-muscovita xistos. As idades fornecidas pelos zircões são, predominantemente, Neoproterozóicas, Ediacaranas, com alguma contribuição Toniana. Com esse estudo, espera-se contribuir para a interpretação da proveniência, ambiente e idade de deposição e áreas-fonte para a bacia do Grupo Porongos.

Palavras-chave: Grupo Porongos. Piratini. Idades U-Pb de zircões.

ABSTRACT

The Porongos Group corresponds to a fold and thrust belt with a complex and long evolution, located in the central region of the Sul-Riograndense Shield, between the Camaguã Basin and the Dom Feliciano Belt. At its southern extremity, specifically at Folha Piratini, schists are exposed that contain essential geological relationships for the understanding of the tectonic evolution of the belt. The aim of this study is to investigate the origin of these schists as either metavolcanic or metasedimentary, because there is a conflict of interpretation. Little attention was paid to this region, but there is a detailed description of various aspects of geology and rock geochemistry performed by the Geological Survey of Brazil (CPRM), as part of the Programa de Levantamentos Geológicos Básicos do Brasil (Basic Geological Survey of Brazil) for the national department of mineral production (DNPM). This study serves as the basis for this project, integrated with data from the literature. The methodology included field geology, petrography and dating of zircon with LA-ICP-MS U-Pb from two samples of schist. The interpretation of geophysical data (aerogammaspectrometry and aeromagnetometry), obtained in a survey by CPRM, adds to this project. The data obtained and integrated allowed the classification of the schists of the study area as rocks of sedimentary origin, petrographically biotite-muscovite schists. U-Pb ages provided by zircons are predominantly Neoproterozoic, Ediacaran, with some Tonian contribution. Trace element geochemistry indicates continental provenance for the zircons. This study is expected to contribute to the interpretation on the provenance, environment and age of deposition and source for the basin Porongos.

Keywords: Porongos Group. Piratini. U-Pb zircon ages. Zircon trace element geochemistry.

LISTA DE ILUSTRAÇÕES

Figura 1: Mapa de localização da Folha Piratini (SH.22-Y-C-II), representada pelo retângulo vermelho, limitada pelos paralelos 31°00' e 31°30' S e meridianos de 53°00' e 53°30' O......**14**

Figura 2: Área de estudo com pontos de campo indicados (imagem obtida através do software Google Earth (2015). Todas as análises realizadas para este trabalho foram efetuadas nas amostras 4 e 5......14

Figura 3: Mapa geológico proposto para o Grupo Porongos, modificado de Porcher & Fernandes (1990), Hartmann *et al.* (2004b), e Chemale (2000). As amostras 4 e 5 estão indicadas, nomeadas SG-004 e SG-005, respectivamente....**17**

Figura 4: Mapa geológico da Folha Piratini, simplificado de CPRM (2009)..18

Figura 6: Variação na média do conteúdo de K, eTh e eU em rochas ígneas com relação ao aumento de sílica (Dickson & Scott, 1997)......25

Figura 10: Diagramas de discriminação tectônica e geoquímica para zircões continentais e oceânicos, modificado de Grimes *et al.* (2007)......31

Figura 11: Mapas aerogeofísicos e mapa geológico da Folha Piratini, limitados pelas coordenadas 53°00' e 53°30' O e 31°00 e 31°30' S.....**32**

LISTA DE TABELAS

Tabela I : Concentração dos elementos traço Y, Yb, Hf, U ²³⁵ e U ²³⁸ em zircõe	es
da amostra 4. Todos valores em ppm (parte por milhão)	38
Tabela II: Concentração dos elementos traço Y, Yb, Hf, U ²³⁵ e U ²³⁸ e	m
zircões da amostra 5. Todos valores em ppm (parte por milhão)4	10
Tabela III: Geocronologia U-Pb de zircões da amostra 44	1
Tabela IV: Geocronologia U-Pb de zircões da amostra 54	14
-	

SUMÁRIO

1.	INTRODUÇÃO	12
1.1	JUSTIFICATIVA	12
1.2	OBJETIVO	12
1.3	LOCALIZAÇÃO DA ÁREA DE ESTUDO	13
2.		15
2.1	GEOLOGIA DA FOLHA PIRATINI	17
3.	ESTADO DA ARTE	19
4.	METODOLOGIA	20
4.1	PETROGRAFIA	20
4.2	DATAÇÃO U-Pb EM ZIRCÃO	20
4.2.	.1 IMAGENS EM MICROSCÓPIO ELETRÔNICO DE VARREDURA (MEV)	22
4.3	GEOQUÍMICA DE ZIRCÃO	22
4.4	AEROGEOFÍSICA	23
4.4.	.1 AEROGAMAESPECTROMETRIA E AEROMAGNETOMETRIA	23
4.4.	.1.1 GEOQUÍMICA DOS ELEMENTOS U, Th e K	24
4.4.	.1.2 DISTRIBUIÇÃO DOS RADIOELEMENTOS NATURAIS NAS ROCHAS	24
4.4.	.2 LEVANTAMENTO AEROGEOFÍSICO NO RIO GRANDE DO SUL	25
5	RESULTADOS E DISCUSSÃO	26
6	CONCLUSÕES E CONSIDERAÇÕES FINAIS	34
REF	FERÊNCIAS BIBLIOGRÁFICAS	35
ANE	EXOS	38

1. INTRODUÇÃO

1.1 JUSTIFICATIVA

Os dados geológicos da região de Piratini são escassos até o momento. Apesar do número considerável de trabalhos publicados sobre o Grupo Porongos, há a necessidade de realizar estudos na área e acrescentar conhecimentos sobre a região, especialmente por apresentar interpretações conflitantes quanto à origem das rochas metamórficas. O grande volume de xistos que afloram na região norte da Folha Piratini, sul do Grupo Porongos, tem sido dividido em dois tipos, sendo um de natureza vulcânica (riodacitos) e outro sedimentar detrítico. Observações preliminares indicam que os xistos vulcanogênicos podem corresponder, na realidade, a rochas sedimentares detríticas deformadas. Essa hipótese vai ser testada neste estudo.

A geologia de campo essencial foi fortalecida com dados de idades de zircões de duas amostras de xistos coletadas ao longo da unidade denominada vulcanogênica no relatório organizado pelo Serviço Geológico do Brasil (CPRM), 2009. Este documento faz parte do Programa Levantamentos Geológicos Básicos do Brasil, executado pela Companhia de Pesquisas de Recursos Minerais (CPRM) para o Departamento Nacional da Produção Mineral (DNPM) e apresenta os resultados do levantamento geológico da Folha Piratini (SH.22-Y-C-II), situada na região sul do Estado do Rio Grande do Sul.

1.2 OBJETIVO

Este Projeto Temático tem por objetivo investigar a origem dos xistos que afloram na região norte da Folha Piratini, na extremidade sul do cinturão, que constituem o Grupo Porongos. Para isso, pretende-se determinar as idades dos zircões contidos nas amostras de xistos, a fim de incrementar os dados já conhecidos da literatura. Como demais objetivos, o presente trabalho deve acrescentar novos dados e contribuir com aqueles já existentes sobre proveniência, ambiente e idade de deposição, possibilitando aprimorar a interpretação geotectônica da área.

1.3 LOCALIZAÇÃO DA ÁREA DE ESTUDO

A Folha Piratini (SH.22-Y-C-II) situa-se na região centro-sul do Estado do Rio Grande do Sul, é limitada pelos paralelos de 31°00' e 31°30' de latitude sul e pelos meridianos de 53°00' e 53°30' de longitude oeste, com uma superfície aproximada de 2.623 km² (fig. 1). Compreende parcelas dos municípios de Pinheiro Machado, Piratini, Bagé e Santana da Boa Vista, com uma única sede municipal, a cidade de Piratini. O acesso à área, a partir de Porto Alegre, é feito pela rodovia federal BR-116 até a cidade de Pelotas; desta, via rodovia BR-392 (Pelotas-Santa Maria), se alcança a extremidade nordeste da folha. Pela rodovia BR-293 (Pelotas-Bagé), temse acesso à porção sul da área, atingindo-se a cidade de Piratini através da rodovia estadual RS-702, que inicia no km 51 da BR-293. De Piratini, vila Torrinhas e das rodovias federais mencionadas, partem inúmeras estradas municipais e particulares de revestimento solto, com bom estado de conservação e de trânsito permanente. Além disso, a área é cortada por diversos caminhos e trilhas, trafegáveis somente na estação seca.

Figura 1 – Localização da Folha Piratini (modificado de CPRM, 2009).

Figura 2 – Área de estudo com alguns pontos de campo indicados. Os pontos 4 e 5 correspondem aos pontos analisados para idades U-Pb (fonte: Google Earth, 2015. Adaptado pelo autor).

2. CONTEXTO GEOLÓGICO

O Grupo Porongos (fig. 3) localiza-se na porção central do Escudo Sul-Riograndense e é considerado um cinturão de rochas supracrustais, metamorfizadas em condições de fácies xistos verdes a anfibolito inferior, de leste para oeste, respectivamente, e possui orientação NE-SW. No Rio Grande do Sul, abrange uma área de aproximadamente 170 Km de comprimento por 20 a 30 Km de largura. É limitado a oeste por falhas normais e transcorrentes que o separam das rochas sedimentares e vulcânicas, de idades Cambrianas a Neoproterozóicas, da Bacia do Camaquã. As rochas do Grupo Porongos incluem ardósias, filitos, quartzitos, quartzo-milonitos, mármores e os xistos, que são predominantes no cinturão. À leste está o Batólito Pelotas, cujo contato tectônico com o cinturão do Porongos é representado pela Zona de Cisalhamento Dorsal de Canguçu.

O Batolito Pelotas é caracterizado por extensivo retrabalhamento de gnaisses com idade Paleoproterozóica (Babinski *et al.*, 1996, 1997; Silva *et al.*, 1999, 2000; Hartmann *et al.*, 2000) e compreende cinco suítes graníticas: Pinheiro Machado, Erval, Viamão, Encruzilhada do Sul e Cordilheira. A Suíte Piquiri é uma suíte sienítica situada a oeste do Batólito, de idade em torno de 610 Ma; a Suíte Pinheiro Machado tem entre 625 a 610 Ma, a Suíte Viamão em torno de 600 Ma e a Suíte Encruzilhada do Sul de 600 a 590 Ma. Outros corpos graníticos e diques de riolito fazem parte da Suíte Dom Feliciano, cujas idades estão entre 595 a 570 Ma. Ainda, pedaços do embasamento estão presentes em todas as suítes.

A Bacia do Camaquã, localizada a oeste do Grupo Porongos, consiste em uma sequência vulcano-sedimentar, tardi a pós-clisional do Ciclo Brasiliano do Cinturão Dom Feliciano (Fragoso-César, 1984; Chemale Jr. *et al.*, 1995; Paim *et al.*, 2000; Hartmann *et al.*, 2008), com orientação NE-SW, que aflora no Escudo Sulriograndense. Esta bacia molássica é uma das mais bem preservadas do mundo, sem registros de metamorfismo ou deformação plástica. A Bacia do Camaquã é margeada pelos cinturões Tijucas e Dom Feliciano, a leste, e posicionada sobre o Terreno São Gabriel e o Cráton La Plata, a oeste.

As continuidades Sul e Norte do Grupo Porongos são recobertas por rochas sedimentares Fanerozóicas Pós-Brasilianas. O cinturão pode ser dividido em uma parte a leste e uma parte a oeste, separadas por um graben limitado por falhas e preenchido por sedimentos siliciclásticos da Bacia do Camaquã e por rochas gnáissicas Pré-Brasilianas, expostas nas áreas centrais, normalmente referidas como núcleos das antiformes (Boa Vista e Santana, por exemplo), como em Jost & Bitencourt (1980).

O cinturão Porongos é composto por várias unidades geológicas:

1. 0 embasamento Pré-Brasiliano, representado pelo Complexo Encantadas (Porcher & Fernandes, 1990; Remus et al., 1990; Tommasi et al., 1994), Compreende gnaisses dioríticos, tonalíticos е granodioríticos (Gnaisses Encantadas), sienogranitos e monzogranitos milonitizados, e anfibolitos de centenas de metros dentro dos gnaisses do complexo. O Complexo Encantadas é uma tonalito-trondhjemito-granodiorito formada associação durante а Orogenia Paleoproterozóica Transamazônica (Hartmann et al., 1999).

 As rochas supracrustais do Grupo Porongos, que consistem em rochas sedimentares, de grau metamórfico que varia de xisto-verde a anfibolito, que incluem metapelitos, quartzitos e rochas metavulcânicas intermediárias associadas com granitos milonitizados.

3. Granitos sin-tectônicos deformados, tais como os gnaisses Capané.

4. Xistos e gnaisses intercalados por falhas transcorrentes de regime semi-dúctil a rúptil.

Figura 3 – Mapa geológico do Grupo Porongos (fonte: modificado de Porcher & Fernandes, 1990, Hartmann *et al.*, 2004b, e Chemale *et tal.*, 2000. Indicação de localização das amostras 4 e 5).

2.1 GEOLOGIA DA FOLHA PIRATINI

De acordo com o relatório da CPRM (2009), foram reconhecidos 4 domínios litológicos na Folha Piratini. São eles: 1. Grupo Rosário do Sul; 2. Coberturas Brasilianas; 3. Complexo Granitóide e 4. Suíte Metamórfica Porongos (Grupo Porongos).

3. ESTADO DA ARTE

O Grupo Porongos tem sido alvo de diversas discussões entre pesquisadores, especialmente quanto à propostas para modelos evolutivos, sendo o mapeamento regional e a geologia estrutural a base para estas ideias. Jost & Bitencourt (1980) realizaram uma das primeiras propostas estratigráficas para o Grupo Porongos (então denominado Suíte Metamórfica Porongos). A presença de rochas ultramáficas associadas a rochas vulcânicas básicas levou autores a proporem que a região norte do Porongos, conhecida como Capané, fosse originada em ambiente de retroarco, sendo a parte basal de um ofiolito (Marques et al., 2003; Gollmann et al., 2008). Dados de proveniência de quartzitos que estão sobre o Complexo Encantadas foram usados para interpretar que o ambiente geotectônico da bacia do Porongos é de margem passiva ou intracratônico (Hartmann et al., 2004; Saalmann et al., 2006; Saalmann et al., 2011; Gruber, 2011). Alguns dados sugeriram a relação entre esses ambientes e o supercontinente Columbia. O estudo de proveniência em zircões detríticos de quartzitos realizado por Hartmann et al. (2004) demonstrou que esta unidade era derivada dominantemente de fontes Paleoproterozóicas (Craton La Plata), normalmente relacionada ao Ciclo Orogênico Transamazônico (Santos et al., 2003). Com base na idade magmática de 780 Ma (Saalmann et al., 2011) foi sugerido que há contemporaneidade entre a sedimentação e o magmatismo do Grupo Porongos (Saalmann et al., 2006; Saalmann et al., 2011). Basei et al. (2008) reconheceram idades Neoproterozóicas Ediacaranas em amostra de filito do Grupo Porongos e definiram a idade máxima do Grupo em torno de 620 Ma.

Pertille *et al.* (2015) fazem um comparativo com base em dados geoquímicos de rocha total entre a região do Capané e as demais regiões do Grupo Porongos. Apresentam uma caracterização geoquímica, assim como uma análise detalhada dos zircões detríticos de uma amostra de clorita-xisto na região do Capané. As análises geoquímicas indicaram que os sedimentos do Grupo Porongos foram derivados de rochas ígneas félsicas, com uma menor contribuição de rochas do embasamento. Um pequeno número de amostras com assinatura geoquímica do manto foi identificado na região norte do Grupo Porongos. Dados de proveniência indicaram que para as duas amostras estudadas (uma de xisto e outra de clorita-xisto) as idades Neoproterozóicas variam entre 570 e 800 Ma. Os zircões detríticos

da amostra de clorita-xisto apresentaram retrabalhamento crustal e idades modelo Mesoproterozóicas a Paleoproterozóicas.

CPRM (2009) traz um relatório resultante do Programa Levantamentos Geológicos Básicos do Brasil, no qual apresenta os resultados do levantamento geológico da Folha Piratini (SH.22-Y-C-II), situada na região sul do Estado do Rio Grande do Sul. O mapeamento geológico, bem como os levantamentos geoquímico e geofísico, geologia estrutural, estratigrafia, entre outros, resultaram na produção de cartas temáticas de serviços que, integradas, geraram a Carta Metalogenético-Previsional, com densidade de informações compatível com a escala 1:100.000. Este documento conta com mapas aerogeofísicos importantes na correlação com os dados gerados pela CPRM (2010) apresentados neste Projeto Temático, além de mapa geológico da Folha Piratini que foi simplificado e utilizado para este estudo.

4. METODOLOGIA

4.1 PETROGRAFIA

A descrição petrográfica das duas amostras e as fotomicrografias foram realizadas no Departamento de Geologia do Instituto de Geociências (IGEO) da Universidade Federal do Rio Grande do Sul (UFRGS). As lâminas delgadas foram analisadas em microscópio petrográfico binocular de luz transmitida (marca Meiji Techno, modelo ML9720), com objetivas de 2,5, 4 e 10x de aumento. As fotomicrografias foram capturadas por uma câmera acoplada (marca Leica) ao microscópio petrográfico e interligada a um computador.

4.2 DATAÇÃO U-Pb EM ZIRCÃO

O método de datação U-Pb baseia-se na constante de decaimento dos isótopos de ²³⁸U para ²⁰⁶Pb, ²³⁵U para ²⁰⁷Pb e ²³²Th para ²⁰⁸Pb, e também no fato de os elementos-pai dessas séries possuírem uma meia-vida longa, da ordem de bilhões de anos.

A utilização do zircão para o método de datação U-Pb é feita por se tratar de um sistema relativamente rico em urânio e muito pobre em chumbo comum, ou seja, o zircão é um mineral que concentra urânio em quantidades mensuráveis e não comporta chumbo em sua estrutura cristalina. Além disso, ele se mantém total ou parcialmente como um sistema fechado quando submetido a diversos processos geológicos, preservando informações sobre os mesmos. Neste caso, o chumbo comum pode ser considerado negligenciável, em comparação ao chumbo radiogênico, e a idade do sistema pode ser obtida de maneira semelhante ao método K-Ar.

A utilização de LA-ICP-MS (Laser Ablation Inductively Coupled Plasma Mass Spectrometry – espectrometria de massa por ablação laser com plasma acoplado) permite a obtenção das razões isotópicas de U e Pb através de análises pontuais no mineral. Os dados adquiridos em forma de tabelas foram corrigidos através do programa ISOPLOT 3 (Ludwig, 2003).

A separação de zircão das duas amostras selecionadas foi realizada pela Universidade Federal do Rio Grande do Sul, através de procedimentos magnéticos e gravimétricos padrão. Os zircões foram manualmente fixados em um disco epoxy (*mount*) junto com 18 cristais de zircões padrão TEMORA2 (417 Ma) na Universidade de São Paulo (USP). A pastilha possui uma população de 81 cristais de zircões da amostra 4 e uma população de 92 cristais de zircão da amostra 5.

1000 µm

Figura 5: Detalhe da pastilha epoxy em lupa binocular. População de zircões da amostra 4 à esquerda, zircões padrão (TEMORA2) ao centro e população de zircões da amostra 5 à direita.

4.2.1 IMAGENS EM MICROSCÓPIO ELETRÔNICO DE VARREDURA (MEV)

A obtenção de imagens por mev foi realizada no Laboratório de Design e Seleção de Materiais, da Escola de Engenharia da UFRGS, no ano de 2015, pela autora deste trabalho. Foram obtidas imagens de todos os grãos de zircão das duas amostras a serem submetidas à datação U-Pb. Um círculo (*spot*) foi posteriormente marcado em cada grão, a fim de selecionar a melhor área para a análise geocronológica, livre de fraturas, zonação ou inclusões. O círculo menor foi utilizado como referência para análise química dos elementos traço.

4.3 GEOQUÍMICA DE ZIRCÃO

O zircão é um mineral capaz de manter as idades e informações químicas, mesmo após sofrer múltiplos episódios de sedimentação, magmatismo e metamorfismo. Vários estudos focaram na relação da geoquímica dos elementos traço de zircão com a proveniência (por exemplo, Grimes *et al.*, 2007). O comportamento de certos elementos terras-raras em zircões segue um padrão que permite extrair informações que possibilitam discriminar zircões que cristalizaram em crosta oceânica daqueles cristalizados em crosta continental (Grimes *et al.* 2007). O método relativamente robusto para distinguir zircões desses ambientes consiste na plotagem dos elementos U versus Yb e a razão U/Yb versus Hf ou Y, a partir de dados de geoquímica de zircão.

Grimes *et al.* (2007) usaram U, Th, Hf, Y e Yb (como um monitor para o elementos terras-raras pesados) para discriminar os zircões cristalizados em rochas provenientes do MORB daqueles formados em ambientes magmáticos continentais. A razão U/Yb é considerada diagnóstica de zircões desses ambientes. A vantagem de plotar esses elementos é que os dados de U, Yb, Y e Hf podem ser adquiridos do mesmo *spot* da análise isotópica de U-Pb utilizando técnicas de ablação a laser.

Os diagramas originais de discriminação de zircões enfatizaram as razões U/Yb e Th/Yb para monitorar as diferenças entre rochas de cadeias meso-oceânicas

contra as rochas ígneas de crosta continental. Os limites entre os zircões de origem continental *versus* oceânica definidos por Grimes *et al.* (2007) baseiam-se na compilação de dados de elementos traço de seu estudo. A razão U/Yb foi escolhida devido à significativa diferença observada nas rochas desses ambientes.

4.4 AEROGEOFÍSICA

A geofísica, especialmente quando baseada em métodos potenciais e gamaespectrométricos, tem aplicação direta na exploração mineral e na interpretação e delimitação de estruturas geotectônicas.

O método de aerogamaespectrometria lê a resposta direta da geologia de superfície, e o método de aeromagnetometria fornece informações geológicas contidas abaixo da cobertura de superfície do solo, das rochas sedimentares e da água. Dados aerogeofísicos foram utilizados neste trabalho para auxiliar na interpretação geológica da área de estudo e na comparação das unidades geológicas com a distribuição dos radioelementos nas rochas.

4.4.1 AEROGAMAESPECTROMETRIA E AEROMAGNETOMETRIA

A aeroespectrometria é normalmente utilizada como apoio ao mapeamento geológico regional e à prospecção mineral. A introdução de gamaespectrômetros de alta resolução e a transformação das contagens por segundo (cps) em % de K, eU (urânio equivalente) e eTh (tório equivalente) em ppm permitem a obtenção de informações de grande valor, principalmente quando integradas a outros dados geofísicos, como magnetometria, por exemplo.

A aeromagnetometria é outro método bastante utilizado em pesquisas feitas com plataforma aérea. A magnetometria revela distorções locais no campo magnético terrestre geradas pela concentração de minerais magnéticos nas rochas. Após a leitura do magnetômetro, os dados são submetidos a diversos tratamentos, que eliminam as variações por causas não geológicas, como a variação diurna, além de filtragem, para corrigir efeitos geológicos indesejáveis. Este processo remove variações de dados não geológicos causadas por voos inexatos, variação diurna do campo magnético da Terra, entre outras causas.

4.4.1.1 GEOQUÍMICA DOS ELEMENTOS U, The K

O urânio (²³⁸U) é um dos componentes menores da crosta, aproximadamente 3ppm. A química deste elemento é dominada por dois estados de valência: U⁺⁶ e U⁺⁴. A forma mais reduzida, U⁺⁴, encontra-se, geralmente, em minerais insolúveis. Já a forma mais oxidada, U⁺⁶, associada a carbonatos, fosfatos e sulfatos, pode formar minerais solúveis. Nas rochas, o urânio pode estar presente em minerais à base de óxido (como em silicatos), ou em minerais com U primário (como em monazita, xenotima e zircão), ou em quantidades traço em outros minerais. O urânio por si só não emite radiação gama durante seu decaimento e o raio gama mais energético emitido pelo isótopo filho é oriundo do elemento bismuto (²¹⁴Bi) (Dickinson e Scott, 1997), que é, portanto, denominado de equivalente ao urânio (eU).

O tório (Th) também é um componente menor da crosta da Terra. Ocorre nas valênicas +4 e +3, sendo raro na natureza e instável em ambiente aquoso (Boyle, 1982). Os principais minerais de Th primário são o zircão e a monazita; são estáveis durante o intemperismo, podendo acumular em depósitos arenosos, em minerais pesados. Assim como o urânio, o tório não emite radiação gama durante seu decaimento, que termina no isótopo estável ²⁰⁸Pb. O isótopo de maior energia emitido pelo isótop filho é oriundo do elemento tálio (²⁰⁸Tl), e, portanto, denominado de equivalente ao tório (eTh).

O potássio (K) é um dos principais componentes da crosta terrestre, com cerca de 2,3%. Os feldspatos potássicos (especialmente ortoclásio e microclínio – com aproximadamente 13% de K) e as micas (biotita e muscovita – 8% de K, em média) são os principais minerais à base de potássio. Consequentemente, rochas ácidas contém alto teor de K enquanto as rochas máficas apresentam baixos teores desse elemento. O comportamento dos minerais à base de K em relação ao intemperismo determina o conteúdo de radioelementos nas rochas intemperizadas e no solos. A tendência dos minerais potássicos é de serem destruídos, segundo a ordem biotita-feldspato potássico-muscovita, durante o processo de intemperismo.

4.4.1.2 DISTRIBUIÇÃO DOS RADIOELEMENTOS NATURAIS NAS ROCHAS

Segundo Dickison e Scott (1997), que através de experimentos em laboratório, utilizando medidas de radioatividade de potássio, urânio e tório em solos

e rochas da Austrália, há um aumento no conteúdo dos radioelementos com relativo aumento no conteúdo de sílicas (em rochas ígneas). Por exemplo, rochas ácidas tem maior conteúdo de radioelementos do que rochas máficas ou ultramáficas, como mostra a figura 8.

Os dados disponíveis para rochas metamórficas indicam que o metamorfismo não afeta o conteúdo dos radioelementos, dependendo do protólito da rocha. As rochas sedimentares normalmente refletem o conteúdo de radioelementos da rocha fonte.

Figura 6 – Variação na média do conteúdo de K, eTh e eU em rochas ígneas com relação ao aumento de sílica (fonte: modificado de Dickson & Scott, 1997).

4.4.2 LEVANTAMENTO AEROGEOFÍSICO NO RIO GRANDE DO SUL

Em estudos como os de Orlandi Filho *et al.* (1990), CPRM (1995) e Roldão (2000) utilizaram dados de levantamentos aerogeofísicos no estado do Rio Grande do Sul. Orlandi Filho *et al.* (1990) elaboraram mapas de contorno dos canais de contagem total, urânio, tório e potássio e razões desses elementos na Folha Piratini no RS.

A aquisição de dados foi feita por LASA PROSPECÇÕES S.A. (CPRM, 2010). O vôo estava a uma altitude de 100 m acima do terreno, o espaçamento entre linhas foi de 500 m e linhas de controle espaçadas 10.000 m, orientadas N-S e L-O. A pesquisa abrangeu 159.800 km de voos. O equipamento Scintrex CS-2 foi utilizado para a aquisição de dados magnéticos. Dois equipamentos foram utilizados em dois aviões diferentes para a aquisição de dados de gamaespectrometria, o Exploranium GR-820 e o Radiation Solutions Inc./espectrômetros RS500. Altímetros de radar King 405 e Collins ALT-50 e barómetros Fugro/Enviro foram usados em aviões diferentes para obter o modelo digital do terreno do escudo.

O processamento de dados geofísicos magnéticos (campo magnético total) e a gamaespectrometria (canais de potássio, tório e urânio) foram realizados pela LASA PROSPECÇÕES S.A., Rio de Janeiro, envolvendo a aplicação de rotinas Oasis Montaj, versão 7.1.1. Mapas foram gerados em diversas escalas, e também um banco de dados. Este banco de dados foi usado pela CPRM de Porto Alegre para produzir mapas de modelo digital de elevação, mapas de gamaespectrometria total, mapas U-eTh-eU, mapas K-Th-U, mapas de campo magnético total e sinal analítico. Mapas aerogeofísicos de magnetometria rasa, magnetismo total e, principalmente, mapa ternário (eU-eTh-K), disponibilizados pela CPRM para o presente estudo, são de grande valor no auxílio à interpretação de feições geológicas e correlação com o mapa geológico regional.

5 RESULTADOS E DISCUSSÃO

Petrograficamente, as amostras contém uma matriz fina, com textura lepidoblástica, grãos subarredondados, composta por micas e quartzo, xistosidade marcada por biotita e muscovita subédricas (fig. 7). Contém raros porfiroblastos de plagioclásio e veios preenchidos por quartzo remobilizado. A rocha possui aproximadamente 40% de muscovita, 25% de biotita, 25% de quartzo, 5% de feldspatos e 5% de minerais opacos. É classificada como um biotita-muscovita-xisto. A foliação S₁ é marcada pelas micas, e uma clivagem tectônica secundária, indicada por crenulações, é observada.

A datação U-Pb (LA-ICP-MS) de zircão de duas amostras de xistos forneceram significativas informações em relação à idade e à proveniência dessas rochas. Os zircões das amostras 4 e 5 tem entre 70 µm e 110 µm de comprimento

maior e são subédricos em sua maioria. Os grãos da amostra 4 frequentemente apresentam zonação, enquanto aparecem menos nos grãos da amostra 5.

Figura 7 –.Fotomicrografias das amostras 4 (fig. a e fig. b) e 5 (fig. c, d, e, e f). Quartzo remobilizado nos veios em (a) e (b). Estrutura primária preservada, acompanhada pelos veios de quartzo e minerais de alteração de feldspato nas bordas. Finas camadas de areia com argila acompanhando a xistosidade, à luz natural (c) e a nicóis cruzados (d). Raros porfiroclastos de plagioclásio sub-arredondado (e) e presença de minerais opacos entre as camadas (f).

Figura 8 – Imagens de mev de alguns zircões da amostra 4 com a indicação para datação (círculo maior) e geoquímica de elementos traço (círculo menor).

As idades da amostra 4 apresentam uma variação entre 553,6 \pm 4,3 Ma a 2434,1 \pm 8,61 Ma. O intervalo de idades predominante é Paleoproterorozóico (46%), seguido de idades Neoproterozóicas (42%) e há uma contribuição menor de idades Mesoproterozóicas (12%) representadas por apenas 4 grãos. O principal pico de idades é de 601 Ma com picos menores de 1968 Ma e 806 Ma. As idades Neoproterozóicas são dominantemente Criogenianas (850 a 635 Ma), com 66%, enquanto 33% dessas idades são Ediacaranas (635 a 541 Ma).

Os zircões datados da amostra 5 mostram uma variação entre 781,3 \pm 6,55 a 2088,7 \pm 8 Ma. Predominam idades Neoproterozóicas (90%), com contribuição Paleoproterozóica intermediária (9%) e menor Mesoproterozóica (1%). O pico principal de idades é de 822 Ma e os picos menores são de 563 Ma e 601 Ma. Nas duas amostras, foram levadas em consideração as melhores idades estimadas para cada grão, que constituem na escolha da idade absoluta com o menor erro para cada grão de zircão.

Figura 9 – Histograma de frequências com análises concordantes (>90%) e melhores idades estimadas.

Estudos de proveniência baseados em geoquímica de zircão levaram a avanços na compreensão da evolução de bacias sedimentares. Os grãos de zircão retém elementos-traço em proporções distintas, de acordo com o ambiente tectônico. As diferenças ocorrem principalmente em zircão formado em crosta continental e oceânica. Neste estudo, foram abordados somente os dados geoquímicos de zircão para os elementos Yb, Y, U e Hf, em diagramas discriminantes de ambientes de Grimes *et al.* (2007), plotando-se U/Yb contra Y e U/Yb contra Hf. As duas amostras estudadas plotaram suas populações de zircão em ambiente de crosta continental, sem nenhuma representatividade para crosta oceânica.

Figura 10 – Diagramas de discriminação tectônica e geoquímica para zircões continentais e oceânicos (modificado de Grimes *et al.*, 2007).

Os dados aeromagnéticos (fig.11) aqui apresentados fornecem informações sobre a estrutura crustal do Escudo Sul-Riograndense. A distribuição do magnetismo em níveis rasos da crosta é exibida no mapa de sinal analítico, ao passo que informações sobre os níveis crustais mais profundos são exibidas no mapa total de sinal magnético. Ambos os mapas ajudam a construir uma seção da crosta na região do Grupo Porongos. Estruturas significativas estão identificadas nas medições magnéticas e são consistentes em ambos os mapas. Valores magnéticos elevados

na região sudeste dos mapas correspondem às rochas graníticas do Batólito Pelotas. Também com altos valores magnéticos está a área no leste da Bacia do Camaquã. O contraste entre valores magnéticos altos e baixos define um par de zonas alongadas com orientação NE. Anomalias magnéticas elevadas com orientação NO são visíveis no mapa de sinal analítico. Estas estruturas são diques relacionados ao vulcanismo Cretáceo da Província Vulcânica Paraná.

Figura 11 – Mapas aerogeofísicos e mapa geológico da Folha Piratini, limitados pelas coordenadas 53°00' e 53°30' O e 31°00 e 31°30' S (fontes: CPRM, 2009; CPRM, 2010).

No diagrama ternário de elementos primários (K-eU-eTh), os principais terrenos do escudo apresentam cores distintas, assemelhando-se ao mapa geológico da região, como mostrado na fig. 12. O Batólito Pelotas constitui a unidade com sinais de K mais elevados. Ele exibe tons diferentes internamente, aproximadamente de acordo com as diferentes intrusões graníticas e a zona de cisalhamento. A oeste do Batólito, Grupo Porongos aparece com tons azulados e esverdeados, mostrando composições mais ricas em U e Th, sem evidência de contribuição do K. O Complexo Encantadas na parte ocidental do mapa, aparece com tom vermelho intenso. As rochas sedimentares da Bacia do Camaquã têm uma tonalidade marrom distinta, possivelmente devido a enriquecimento em tanto K quanto em U. A Dorsal de Canguçu aparece com cor roxa distintiva no mapa ternário, onde os teores de K e U são elevados, e o teor de Th é baixo, podendo ser facilmente traçada. O teor de K é bastante elevado em todo o mapa, de modo geral, mas em particular no Batólito Pelotas.

K-U-Th

Mapa Geológico

Figura 12 – Comparação entre o mapa ternário dos elementos primários (K, eU e eTh) com o mapa geológico da Folha Piratini (modificado e simplificado de CPRM, 2010 e CPRM, 2009).

6 CONCLUSÕES E CONSIDERAÇÕES FINAIS

A integração de dados geocronológicos, petrográficos, geoquímicos e geofísicos forneceram importantes informações sobre o cinturão que compõe o Grupo Porongos.

 As idades isotópicas obtidas a partir de zircões, pelo método U-Pb LA-ICP-MS, mostraram que a bacia do Porongos tem idade deposicional máxima de 565 Ma, o que constitui a idade mais jovem determinada para esta bacia até o presente momento;

2. A origem dos zircões de duas amostras analisadas é 66% de fontes Neoproterozóicas, 29% Paleoproterozóicas e 5% Mesoproterozóicas.

 Dados de geoquímica de zircão mostraram que o mineral foi formado em crosta continental, e que não há contribuição de crosta oceânica nas amostras estudadas.

4. As rochas estudadas são metassedimentares, com predomínio de micas, feldspato e quartzo na sua composição, e vários intervalos distintos de idades, não apresentando indício de se tratarem de rochas vulcânicas.

5. Os mapas de magnetismo total e próximo à superfície evidenciam diferentes províncias, com ênfase no baixo magnetismo do Grupo Porongos, indicativo de origem sedimentar.

6. Os mapas gamaespectrométricos indicam K mais baixo que o Batólito Pelotas, sugestivo de origem sedimentar do Grupo Porongos.

REFERÊNCIAS BIBLIOGRÁFICAS

Babinski, M.; Chemale Jr., F.; Hartmann, L.A.; Van Schmus, W.R.; Da Silva, L.C. 1996. Juvenile accretion at 750–700 Ma in southern Brazil. *Geology*, 24: 439-42.

Babinski, M.; Chemale Jr, F.; Van Der Schmus, W.R.; Hartmann, L.A.; Da Silva, L.C. 1997. U–Pb and Sm–Nd Geochronology of the Neoproterozoic granitic–gneissic Dom Feliciano Belt, southern Brazil. *Journal of South American Earth Sciences*, 3-4: 263-74.

Basei, M.A.S.; Frimmel, H.E.; Nutman, A.P.; Precioszzi, F. 2008. West Gondwana amalgamation based on detrital zircon ages from Neoproteroazoic Ribeira and Dom Feliciano belts of South America and comparision with coeval sequences from SW Africa. *In*: R.J. Pankhurst, R.A.J.; Trouw, B.B.; Brito Neves, M.J.De Witt. West *Gondwana- Pre-Cenozoic Correlations across the South Atlantic Region*, Geological Society London, Special Publication, 294, pp. 239-256.

Boyle, R.W. 1982. Geochemical prospecting for thorium and uranium deposits. Amsterdan: Elsevier. *Developments in Economic Geology*.

Chemale, Jr. F. & Babinski, M. 1995. U-Pb zircon dating of deformational events from the Neoproterozoic rocks in the Eastern Brazil. *In*: SBG, SIMP. NAC. EST. TECTÔN. 5, Gramado.

CPRM. 1995. Companhia de Pesquisas em Recursos Minerais (Serviço Geológico do Brasil). 1995. Programa Levantamentos Geológicos Básicos do Brasil. Passo do Salsinho. Folha SH. 22-Y-A-I-4. Estado do Rio Grande do Sul.

CPRM. 2009. Companhia de Pesquisas em Recursos Minerais (Serviço Geológico do Brasil). 1995. Programa Levantamentos Geológicos Básicos do Brasil. Piratini. Folha SH. 22-Y-C-II. Estado do Rio Grande do Sul.

Dickson, B.L. & Scott, K.M. 1997. Interpretation of aerial gamma-ray surveys – adding the geochemical factors. *In*: Airborne Magnetic and Radiometric Surveys, AGSO. *Journal of Australian Geology & Geophysics*, 17:187-200.

Fragoso-César, A.R.S. Lavina, E.L.; Paim, P.S.G.; Faccini, U.F. (1984). A antefossa molássica do cinturão Dom Feliciano no escudo do Rio Grande do Sul. CONGRESSO BRASILEIRO DE GEOLOGIA, 33: 3272-3283.

Gollmann, K.; Marques, J.C.; Frantz, J.C.F.; Chemale Jr., F. 2008. Geoquímica e isotópos de Nd de rochas metavulcânicas da Antiforme Capané, Complexo Metamórfico Porongos, RS. *Revista Pesquisas em Geociências*, 35: 83-95.

Grimes, C.B.; John, B.E.; Kelemen, P.B.; Mazdab, F.; Wooden, J.L.; Cheadle, M.J.; Hanghøj, K.; Schwartz, J.J. 2007. The trace element chemistry of zircons from oceanic crust: a method for distinguishing detrital zircon provenance. *Geology* 35:643–646. doi:10.1130/G23603A.

Gruber, L. 2011. Geocronologia U-Pb em zircão detrítico aplicada ao estudo de proveniência de metassedimentos do Complexo Metamórfico Porongos – região de Santana da Boa Vista, RS. Porto Alegre, 131p. Dissertação de Mestrado, Programa de Pós-graduação em Geociências, Instituto de Geociências, Universidade Federal do Rio Grande do Sul. Hartmann, L.A.; Leite, J.A.D.; McNaughton, N.J., Santos, J.O.S. 1999. Deepest exposed crust of Brazil - SHRIMP establishes three events. *Geology*, 27: 947-950.

Hartmann, L.A.; Phillip, R.P.; Liu, D.; Wang, Y.; Santos, J.O.S.; Vasconcellos, M.A.Z. 2004a. Paleoproterozoic magmatic provenance of detrital zircon, Porongos Group quartzites, southern Brazilian Shield based on U-Pb SHRIMP geochronology. *International Geology Review*, 46: 97-126.

Hartmann, L.A.; Santos, J.O.S.; McNaughton. 2008a. Detrital zircon U-Pb age data and Precambrian provenance of the Paleozoic Guaritas Formation, southern Brazilian Shield. *International Geology Review*, 50: 364-374.

Jost, H. & M.F. Bitencourt. 1980. Estratigrafia e tectônica de uma fração da Faixa de Dobramentos de Tijucas no Rio Grande do Sul. *Acta Geologica Leopoldensia* 4: 27-60.

Ludwig, K.R. 2003. User's manual for Isoplot 3.00 – a geochronological toolkit for Microsoft Excel. *Berkley Geochronology Center Special Publications,* 4.

Marques, J.C.; Roisenberg, A.; Jost, H.; Frantz, J.C.; Teixeira, R.S. 2003. Geologia e Geoquímica das Rochas Metaultramáficas da Antiforme Capané, Suíte Metamórfica Porongos, RS. *Revista Brasileira de Geociências*, 33: 95-107.

Orlandi Filho, V.; Pimentel, G.B.; Ramgrab, G.E.; Camozzato, E. 1990. Folha Piratini S.H. 22-Y-C-II, Estado do Rio Grande do Sul - Programa de Levantamentos Geológicos Básicos do Brasil. CPRM/DNPM, Brasília.

Paim, P.S.G.; F. Chemale, Jr.; Lopes, R.C. 2000. A Bacia do Camaquã. *In*: Geologia do Rio Grande do Sul. CIGO-UFRGS, Porto Alegre. 231-274.

Porcher, C.C., Fernandes, L.A.D. 1990. Relações embasamento-cobertura na porção ocidental do Cinturão Dom Feliciano: um esboço estrutural. *Revista Pesquisas em Geociências*, 17: 72-84.

Remus, M.V.D.; Philipp, R.P.; Faccini, U.F.; Junges, S.L. Junges. 1990. Contribuição ao estudo geológico estrutural dos Gnaisses Encantadas e as relações com as supracrustais Porongos na região de Santana da Boa Vista (RS). *In*: 36º CONGRESSO BRASILEIRO DE GEOLOGIA, *Anais...* pp. 2356-2370.

Roldão, D.G. 2000. Análise integrada de dados estruturais e geofísicos no controle de depósitos minerais na região oeste do Escudo Sul-rio-grandense (RS, Brasil). Porto Alegre, 133p. Dissertação de Mestrado. PPGEM/UFRGS.

Saalmann, K.; Remus, M.V.D. & Hartmann, L.A. 2006. Structural evolution and tectonic setting of the Porongos belt, southern Brazil. *Geological Magazine*, 143(1): 59–88.

Saalmann, K.; Gerdes, A.; Lahaye, Y.; Hartmann, L.A.; Remus, M.V.D.; Läufer, A. 2011. Multiple accretion at the eastern margin of the Rio de la Plata craton: the prolonged Brasiliano orogeny in southernmost Brazil. *International Journal of Earth Sciences*, 100: 355-378.

Santos, J.O.S.; Hartmann, L.A.; Bossi, J.; Campal, N.; Schipilov, A.; Piñeyro, D.; McNaughton, N.J. 2003. Duration of the Trans-Amazonian Cycle and its correlation within South America based on U–Pb SHRIMP geochronology of La Plata Craton, Uruguay. *International Geology Review*, 45: 27–48. Tommasi, A.; Vauchez, A.; Fernandes, L.A.D.; Porcher, C.C. Orogen-parallel strike-slip faulting and synkinematic magmatism in the Dom Feliciano Belt, Southern Brazil. 1994. *Tectonics*, 13: 421-437.

ANEXOS

Elemento	Y89	Yb172	Hf178	U ²³⁵	U ²³⁸
11	13,27	34,44	45,74	21481,76	36,69
12	1061,43	258,48	8845,31	530,89	210,21
13	860,49	244,17	9074,97	792,6	232,58
14	872,82	223,36	9661,71	1027,07	365,11
15	1258,63	361,23	9287,49	531,57	223,47
16	10004,02	1912,66	12343,01	3222,38	1130,33
17	22364,46	4489,74	13710,37	7981,9	2580,36
18	632,78	189,06	9691,63	501,54	168,25
19	1167,2	355,88	9903,82	1112,1	392,05
20	5037,03	1014,98	10005,62	2673,13	857,75
21	4067,22	1186,05	10244,9	2203,89	647,29
24	2502,48	658,18	10053,63	662,97	225,43
25	965,67	261,76	9890,25	1584,96	525,2
26	7489,99	1830,22	9701,92	3593,48	1220,33
27	1185,65	254,65	6872,2	383,76	158,7
29	3425,49	878,5	10713,34	1637,3	548,31
30	3341,35	914,4	10046,38	8578,66	2843,91
37	10460,05	1825,25	13411,13	4598,19	1531,28
38	1936,69	475,39	9899,95	2236,84	733,64
39	138,23	93,17	10777,1	179,91	62,39
40	8089,49	1614,36	11685,63	3224,53	1088,66
41	3574,37	909,33	7853,15	1854,97	608,47
42	1171,18	330,14	7457,92	192,18	88,3
43	5273,64	1496,58	11745,55	4261,02	1345,47
44	152,32	19,91	0,44	71,86	0,27
45	1083,19	327,89	8826,77	389,02	139,41
46	523,24	154,76	10311,33	1120,38	310,18
47	2058,09	545,54	7385,81	1427,88	541,23
48	2370,68	565,54	7827,86	921,04	327,6
49	2337,58	753,73	11027,44	701,12	218,7
50	3662,91	857,19	9751,89	2901,09	1019,11
51	2169,49	598,6	8580,85	1701,4	571,93
52	1268,08	456,65	7346,2	762,26	215,7
53	761,95	199,06	10626,98	536,95	202,25
54	637,12	196,44	9568,98	467,15	155,04
55	24948,12	5414,25	13559,24	4341,46	1422,6
62	1988,32	645,59	10226,07	1530,2	517,71
63	1517,17	445,64	9103,41	1143,97	344,76
64	1224,16	429,18	8688,62	749,94	230,82
65	19940,05	4214,8	10674,22	11581,08	3862,15
66	14084,45	3363,06	10711,91	8465,24	2937,56
67	4119,24	928,2	7673,31	7530,32	2439,99
68	750,85	229,23	8250,73	411,28	138,6
69	2475,26	641,53	9902,88	1858,51	626,65

Tabela I – Concentração dos elementos traço Y, Yb, Hf, U²³⁵ e U²³⁸ em zircões da amostra 4. Todos valores em ppm (parte por milhão).

375,94	102,68	9867,81	756,98	206,54
698,34	210,19	9059,19	69,43	39,67
460,23	143,53	8162,3	80,44	28,34
22364,84	4860,88	12134,51	4910,45	1684,94
882,84	243,05	7160,33	234,34	97,97
1188,08	447,72	11555,75	1045,63	364,46
7899,7	2060,22	15288,95	3801,15	1134,51
7101,67	1812,07	6524,49	3259,96	981,72
758,12	235,02	10113,13	596,28	196,19
5269,16	1053,6	10919,77	2639,77	895,14
21569,08	3786,6	15554,97	11251,92	3706,85
6779,42	1347,9	9051,04	3880,99	1218,09
6623	1527,16	12245,41	4491,22	1533,12
740,4	242,41	9855,61	459,62	148,25
1510,14	405,84	9884,04	1332,84	447,56
1258,06	400,85	10279,73	834,97	309,24
3523,4	784,77	10751,43	1546,85	515,75
2388,55	593,34	9436,57	2013,92	647,61
9292,92	2423,43	10158,97	4569,64	1477,57
2203,9	613,43	8945,76	781,37	297,69
2457,34	720,7	9884,71	907,49	319,34
1235,16	338,54	9369,7	502,02	145,36
1449,93	422,95	9483,26	1043,49	300,19
10311,05	2504,7	10799,51	6262,19	1920,29
1249,65	325,35	8364,35	314,46	162,74
603,55	225,33	12189,8	993,1	329,77
	375,94 698,34 460,23 22364,84 882,84 1188,08 7899,7 7101,67 758,12 5269,16 21569,08 6779,42 6623 740,4 1510,14 1258,06 3523,4 2388,55 9292,92 2203,9 2457,34 1235,16 1449,93 10311,05 1249,65 603,55	375,94102,68698,34210,19460,23143,5322364,844860,88882,84243,051188,08447,727899,72060,227101,671812,07758,12235,025269,161053,621569,083786,66779,421347,966231527,16740,4242,411510,14405,841258,06400,853523,4784,772388,55593,349292,922423,432203,9613,432457,34720,71235,16338,541449,93422,9510311,052504,71249,65325,35603,55225,33	375,94102,689867,81698,34210,199059,19460,23143,538162,322364,844860,8812134,51882,84243,057160,331188,08447,7211555,757899,72060,2215288,957101,671812,076524,49758,12235,0210113,135269,161053,610919,7721569,083786,615554,976779,421347,99051,0466231527,1612245,41740,4242,419855,611510,14405,849884,041258,06400,8510279,733523,4784,7710751,432388,55593,349436,579292,922423,4310158,972203,9613,438945,762457,34720,79884,711235,16338,549369,71449,93422,959483,2610311,052504,710799,511249,65325,358364,35603,55225,3312189,8	375,94102,689867,81756,98698,34210,199059,1969,43460,23143,538162,380,4422364,844860,8812134,514910,45882,84243,057160,33234,341188,08447,7211555,751045,637899,72060,2215288,953801,157101,671812,076524,493259,96758,12235,0210113,13596,285269,161053,610919,772639,7721569,083786,615554,9711251,926779,421347,99051,043880,9966231527,1612245,414491,22740,4242,419855,61459,621510,14405,849884,041332,841258,06400,8510279,73834,973523,4784,7710751,431546,852388,55593,349436,572013,929292,922423,4310158,974569,642203,9613,438945,76781,372457,34720,79884,71907,491235,16338,549369,7502,021449,93422,959483,261043,4910311,052504,710799,516262,191249,65325,358364,35314,46603,55225,3312189,8993,1

Elemento	Y	Yb	Hf	U ²³⁵	U ²³⁸
7	722,19	224,8	9353,95	373,66	122,53
8	2852,98	754,5	9879,14	1498,56	510,24
9	1679,86	532,49	9763,2	1303,08	452,91
10	612,36	185,92	9562,4	1442,47	464,85
11	2233,18	725,13	8765,76	1492,27	504,96
12	3056,65	758,02	9113,23	2562,11	867,05
13	838,18	333,03	9293,11	977,25	257,8
14	1365,03	383,56	8580,9	459,16	193,43
15	1374,87	336,4	6408,24	316,97	76,77
16	996,5	383,7	10189,51	634,41	226,69
17	1268,98	380,5	7768,03	366,91	136,61
18	291,32	87,19	7839,26	142,11	44,28
19	651,26	222,87	7764,54	310,11	101,42
20	0	15,12	262,21	2860,2	45,97
21	1069,49	378,59	8733	392,85	126,87
27	1069,51	372,45	9813,99	913,2	298,41
28	1072,78	337,23	9330,07	637,94	229,6
29	763,49	232,76	9501,82	929,45	273,74
30	2036,55	620,24	7853,15	1297,53	431,53
31	1039,81	330,28	8361,98	312,81	130,31
32	1841,05	521,16	8887	1649,63	507,48
33	1655,22	460,99	8228,2	694,22	214,65
34	2112,77	611,38	10110,22	2696,07	906,35
35	487,67	154,28	9814,69	1044,25	316,12
36	610,38	266,12	10008,41	831,32	257,83
37	491,37	168,86	9790,57	480,45	179,47
38	1251,81	394,5	8100,69	547,94	185,64
39	1061,21	341,32	9069,5	915,73	289,32
40	1042,92	316,82	8295,34	804,24	284,68
41	632,63	169,56	7936,24	458,72	175,16

Tabela II – Concentração dos elementos traço Y, Yb, Hf, U²³⁵ e U²³⁸ em zircões da amostra 5. Todos valores em ppm (parte por milhão).

	Pb206*	Pb207*	Th/U	207/206	1s	206/238	1s
5.sSMPABC062	611963,5586	74287,60421	0,709876	0,12272	0,00133	0,35057	0,00302
5.sSMPABC008	280656,4537	17612,77871	0,068188	0,05962	0,00063	0,09022	0,0008
5.sSMPABC075	103620	14015	0,82614	0,13144	0,00141	0,37946	0,00352
5.sSMPABC037	89255,76703	4066,97034	0,512437	0,06209	0,0007	0,10693	0,00098
5.sSMPABC028	141833	9554	0,275142	0,06659	0,00072	0,13311	0,00121
5.sSMPABC099	47873,45624	3269,091227	0,154646	0,06373	0,00092	0,11789	0,00116
5.sSMPABC053	329313	38264	0,284511	0,11423	0,00117	0,33212	0,00305
5.sSMPABC022	104958,3918	6573,662995	0,210437	0,06696	0,00075	0,13619	0,00124
5.sSMPABC065	227964	33974	0,449384	0,14542	0,00151	0,42365	0,00395
5.sSMPABC038	82613	10475	1,066228	0,12506	0,00137	0,36755	0,00345
5.sSMPABC031	297119,1053	18400,09094	0,068879	0,05898	0,00063	0,09071	0,00079
5.sSMPABC023	164727,5685	10872,44545	0,082315	0,06654	0,00072	0,13609	0,00124
5.sSMPABC050	207187	33115	0,285071	0,15796	0,00163	0,4591	0,00418
5.sSMPABC039	30001	4036	0,412314	0,13331	0,0018	0,39634	0,00399
5.sSMPABC007	272201,6144	15568,26374	0,070078	0,05865	0,00062	0,0908	0,00079
5.sSMPABC105	108234,9064	7021,385029	0,242529	0,06542	0,00077	0,1322	0,00123
5.sSMPABC080	838167,3517	58078,71836	0,425456	0,07045	0,00073	0,16089	0,00149
5.sSMPABC009	571735,4869	68948,09475	0,380141	0,12	0,00122	0,35978	0,00324
5.sSMPABC089	122109,6282	13731,0606	0,435693	0,11222	0,00127	0,33471	0,003
5.sSMPABC078	216979	29804	0,500664	0,13883	0,00155	0,41593	0,00367
5.sSMPABC032	271335,2478	15275,13472	0,069237	0,05809	0,00062	0,08967	0,00078
5.sSMPABC035	90901,21411	11099,70758	0,59461	0,12126	0,00131	0,36588	0,00341
5.sSMPABC107	167182,1179	9653,389055	0,18149	0,06016	0,00067	0,10352	0,00094
5.sSMPABC054	139007,7165	16836,88018	0,406245	0,12077	0,00133	0,36535	0,00326
5.sSMPABC102	491543,75	62813,97986	0,140342	0,1261	0,00132	0,38266	0,00345
5.sSMPABC042	115132,2024	10116,84473	0,598801	0,08413	0,00093	0,23021	0,00213
5.sSMPABC066	125676,8103	11838,86254	0,252582	0,09424	0,00105	0,27286	0,00247
5.sSMPABC101	720796,978	88041,24599	0,389872	0,11914	0,00123	0,36259	0,00329
5.sSMPABC061	447791,0612	29096,10207	0,335118	0,06556	0,00069	0,14107	0,00129
5.sSMPABC063	216510	19426	0,383156	0,08835	0,00093	0,25622	0,00234
5.sSMPABC051	249538,0746	31369,87147	0,509326	0,1259	0,00133	0,39489	0,00356
5.sSMPABC069	229033,1092	16237,36056	0,061343	0,07148	0,00079	0,19465	0,00175
5.sSMPABC049	71785,47167	4383,580461	0,254065	0,05969	0,00076	0,13244	0,00122

Tabela III – Geocronologia U-Pb de zircões da amostra 4.

207/235	1s	206/207		206/238		207/235		208/232	
5,92538	0,05521	1996,144	19,05	1937,3	14,42	1965	8,1	2197,9	65,51
0,74114	0,0069	589,8112	22,65	556,8	4,71	563,1	4,02	522,3	8,08

6,87366	0,06742	2117,293	18,69	2073,8	16,45	2095,3	8,69	1393	19,75
0,91488	0,00942	677,21	23,88	654,9	5,71	659,6	4,99	498,1	7,06
1,22135	0,01203	824,9765	22,48	805,6	6,9	810,4	5,5	670,6	9,36
1,03627	0,01408	732,682	30,21	718,4	6,68	722,1	7,02	522,2	12,08
5,22845	0,04903	1867,771	18,44	1848,7	14,74	1857,3	7,99	1434,9	20,74
1,25683	0,01275	836,5297	23,13	823,1	7,04	826,5	5,74	712,2	10,56
8,49278	0,08112	2292,753	17,69	2277	17,9	2285,2	8,68	1523,5	22,86
6,33432	0,06374	2029,646	19,27	2017,9	16,28	2023,2	8,82	1625	22,56
0,737	0,00691	566,3579	23,06	559,7	4,7	560,7	4,04	567,9	10,49
1,24782	0,01216	823,4086	22,29	822,5	7,01	822,4	5,49	716,4	11,05
9,99274	0,09322	2433,94	17,43	2435,6	18,45	2434,1	8,61	1951,3	29,57
7,27958	0,09026	2142,02	23,37	2152,2	18,41	2146,3	11,07	1953,5	41
0,73369	0,0068	554,1284	22,96	560,3	4,67	558,7	3,98	551,1	9,36
1,19275	0,013	787,8727	24,63	800,4	7,02	797,2	6,02	521,3	11,99
1,56283	0,01482	941,4975	20,96	961,7	8,25	955,6	5,87	538,6	9,35
5,94977	0,05418	1956,218	17,99	1981,1	15,37	1968,5	7,92	1686,8	21,26
5,17294	0,05206	1835,676	20,42	1861,2	14,5	1848,2	8,56	1743	49,19
7,95175	0,0777	2212,664	19,18	2242	16,72	2225,6	8,81	2373,8	69,43
0,71746	0,00671	533,158	23,68	553,6	4,63	549,2	3,97	579,8	11,2
6,11374	0,06037	1974,847	19,1	2010	16,08	1992,2	8,62	1601,2	21,59
0,85821	0,0086	609,3342	23,79	635	5,47	629,1	4,7	471,9	10,55
6,0776	0,05918	1967,63	19,49	2007,5	15,41	1987	8,49	2077,9	44,33
6,64875	0,06276	2044,295	18,45	2088,7	16,11	2065,8	8,33	1493	33,05
2,66918	0,027	1295,561	21,39	1335,6	11,15	1320	7,47	1101,3	16,86
3,54256	0,03536	1512,929	20,83	1555,3	12,52	1536,8	7,9	1367,7	27,96
5,95414	0,05579	1943,366	18,39	1994,5	15,59	1969,2	8,15	1453,7	28,83
1,27492	0,01227	792,3589	21,95	850,7	7,3	834,6	5,48	645,1	11,63
3,11954	0,02996	1390,106	20,07	1470,5	12,03	1437,5	7,38	1138,1	18,76
6,84825	0,06491	2041,489	18,6	2145,5	16,47	2092	8,4	2490,5	45,41
1,91674	0,01903	971,1718	22,33	1146,5	9,46	1086,9	6,62	1068,6	24,86
1,08916	0,01299	592,3555	26,94	801,8	6,97	748,1	6,31	515,6	9,44

Conc	207/235		206/238		RHO	Melhor idade e	stimada
98,57017	5,92538	0,05521	0,35057	0,00302	0,924551	196	5 8,1
98,86853	0,74114	0,0069	0,09022	0,0008	0,952442	556	,8 4,71
98,96326	6,87366	0,06742	0,37946	0,00352	0,945749	2095	,3 8,69
99,28233	0,91488	0,00942	0,10693	0,00098	0,890102	654	,9 5,71
99,40417	1,22135	0,01203	0,13311	0,00121	0,922888	805	,6 6,9
99,48497	1,03627	0,01408	0,11789	0,00116	0,724188	718	4 6,68
99,53481	5,22845	0,04903	0,33212	0,00305	0,9793	1857	,3 7,99
99,58693	1,25683	0,01275	0,13619	0,00124	0,897517	823	,1 7,04
99,63988	8,49278	0,08112	0,42365	0,00395	0,976139	2285	2 8,68
99,73735	6,33432	0,06374	0,36755	0,00345	0,932804	2023	2 8,82

99,82133	0,737	0,00691	0,09071	0,00079	0,928884	559,7	4,7
100,0122	1,24782	0,01216	0,13609	0,00124	0,935005	822,5	7,01
100,0616	9,99274	0,09322	0,4591	0,00418	0,975988	2434,1	8,61
100,2741	7,27958	0,09026	0,39634	0,00399	0,811925	2146,3	11,07
100,2856	0,73369	0,0068	0,0908	0,00079	0,938739	560,3	4,67
100,3998	1,19275	0,013	0,1322	0,00123	0,85365	800,4	7,02
100,6343	1,56283	0,01482	0,16089	0,00149	0,976609	961,7	8,25
100,636	5,94977	0,05418	0,35978	0,00324	0,988938	1968,5	7,92
100,6985	5,17294	0,05206	0,33471	0,003	0,890606	1848,2	8,56
100,7315	7,95175	0,0777	0,41593	0,00367	0,903	2225,6	8,81
100,7948	0,71746	0,00671	0,08967	0,00078	0,930085	553,6	4,63
100,8856	6,11374	0,06037	0,36588	0,00341	0,943847	1992,2	8,62
100,9291	0,85821	0,0086	0,10352	0,00094	0,906147	635	5,47
101,0212	6,0776	0,05918	0,36535	0,00326	0,916359	1987	8,49
101,0964	6,64875	0,06276	0,38266	0,00345	0,955131	2065,8	8,33
101,168	2,66918	0,027	0,23021	0,00213	0,914681	1320	7,47
101,1895	3,54256	0,03536	0,27286	0,00247	0,906906	1536,8	7,9
101,2685	5,95414	0,05579	0,36259	0,00329	0,968373	1969,2	8,15
101,8926	1,27492	0,01227	0,14107	0,00129	0,950153	850,7	7,3
102,2441	3,11954	0,02996	0,25622	0,00234	0,950937	1437,5	7,38
102,4936	6,84825	0,06491	0,39489	0,00356	0,951134	2092	8,4
105,1984	1,91674	0,01903	0,19465	0,00175	0,905541	1086,9	6,62
106,6974	1,08916	0,01299	0,13244	0,00122	0,772366	801,8	6,97

	Pb206*	Pb207*	Th/U	207/206	1s	206/238	1s	207/235
5.sSMPABC095	133686,8	8078,244	0,350708	0,0678	0,00075	0,13676	0,00124	1,2782
5.sSMPABC126	53158	3623	0,357233	0,06647	0,00083	0,12961	0,00119	1,18754
5.sSMPABC009	305273,3	20625,04	0,36047	0,06642	0,00068	0,13016	0,00116	1,19149
5.sSMPABC049	188636,6	24768,82	0,52393	0,12731	0,00132	0,36849	0,00329	6,46546
5.sSMPABC085	74612,08	5255,347	0,324351	0,06779	0,00081	0,13822	0,00125	1,29133
5.sSMPABC041	258111,9	31022,37	0,233568	0,11809	0,00121	0,34193	0,00306	5,56475
5.sSMPABC081	240322,4	16649,31	0,298887	0,06663	0,00074	0,13265	0,00116	1,21795
5.sSMPABC100	177927,1	12053,39	0,371929	0,06589	0,00073	0,12941	0,00112	1,17526
5.sSMPABC109	168277,5	10569,59	0,241003	0,06682	0,00072	0,13585	0,00121	1,25114
5.sSMPABC080	159312,2	11158,82	0,269394	0,067	0,00072	0,13714	0,00122	1,26643
5.sSMPABC025	143896,6	9421,764	0,229724	0,06713	0,00072	0,13799	0,00124	1,2767
5.sSMPABC070	246529,4	14785,76	0,303237	0,06559	0,00069	0,12989	0,00117	1,17412
5.sSMPABC096	89230,9	6194,125	0,296777	0,06623	0,00076	0,13368	0,0012	1,22041
5.sSMPABC115	124998,2	8324,572	0,238888	0,06658	0,00075	0,13579	0,00122	1,24632
5.sSMPABC129	77175	5196	0,335794	0,06579	0,00077	0,13184	0,00119	1,1956
5.sSMPABC105	205758,6	14398,54	0,170057	0,06654	0,00071	0,13608	0,00121	1,24801
5.sSMPABC030	188867,3	12694,33	0,344257	0,06676	0,0007	0,13836	0,00124	1,27308
5.sSMPABC058	204605	13753	0,179468	0,06599	0,0007	0,13406	0,00121	1,21926
5.sSMPABC053	238357,6	16393,72	0,49743	0,06557	0,00069	0,132	0,00119	1,19288
5.sSMPABC093	232460,7	15626,8	0,384734	0,06519	0,00069	0,13053	0,00116	1,17278
5.sSMPABC064	130403,6	7844,27	0,148881	0,06747	0,00074	0,14334	0,00132	1,33306
5.sSMPABC037	115384,1	7707,365	0,175576	0,06596	0,00072	0,13553	0,00122	1,23207
5.sSMPABC110	92818,5	6180,305	0,28893	0,06651	0,00078	0,13874	0,00128	1,27209
5.sSMPABC111	143082	9614	0,360775	0,06649	0,00079	0,13878	0,0012	1,27161
5.sSMPABC128	116548,9	7140,532	0,170593	0,06596	0,00074	0,13603	0,00122	1,23673
5.sSMPABC107	119832	8071	0,208525	0,06583	0,00073	0,13542	0,00121	1,22878
5.sSMPABC082	153478	10313	0,246832	0,06581	0,00071	0,13541	0,00122	1,22826
5.sSMPABC083	108767,7	7078,763	0,258705	0,06561	0,00073	0,13429	0,00121	1,2142
5.sSMPABC023	347112,5	38601,77	0,193213	0,1094	0,00111	0,32513	0,00288	4,90218
5.sSMPABC039	285876,5	37461,31	0,365765	0,12829	0,0013	0,38588	0,00344	6,82265
5.sSMPABC077	292137,2	18285,8	0,311561	0,06454	0,00068	0,12884	0,00115	1,14607
5.sSMPABC011	230503,3	14806,75	0,295909	0,06458	0,00068	0,1298	0,00113	1,15525
5.sSMPABC015	161313,7	10912,39	0,335197	0,066	0,0007	0,13824	0,00124	1,25748
5.sSMPABC094	103501	6902	0,410343	0,06529	0,00074	0,13424	0,00121	1,20801
5.sSMPABC013	74400	6175	0,220148	0,0815	0,00091	0,21687	0,00198	2,43597
5.sSMPABC116	118879,4	7575,065	0,163274	0,06589	0,00075	0,13812	0,00124	1,2544
5.sSMPABC069	142216	9534	0,252561	0,06565	0,00071	0,13683	0,00122	1,23811
5.sSMPABC026	144872	9773,036	0,266123	0,06637	0,00074	0,14116	0,00128	1,29112
5.sSMPABC108	142836	9627	0,26185	0,06583	0,00072	0,13858	0,00125	1,25743

Tabela IV – Geocronologia U-Pb de zircões da amostra 5.

5.sSMPABC127	142768	8995,326	0,391472	0,06474	0,00073	0,1323	0,00117	1,18059
5.sSMPABC114	155443,4	10304,07	0,337343	0,06505	0,00071	0,13507	0,00121	1,21111
5.sSMPABC051	372891,6	48011,07	0,193258	0,12494	0,00127	0,38185	0,00341	6,57484
5.sSMPABC057	122958	8215	0,274698	0,06561	0,00074	0,13886	0,00125	1,25564
5.sSMPABC091	210418	13946	0,351906	0,06496	0,0007	0,13554	0,00121	1,21352
5.sSMPABC121	161054,7	11070,02	0,410278	0,06521	0,00073	0,13703	0,00123	1,23175
5.sSMPABC079	80574,61	4275,319	0,23512	0,06482	0,00077	0,13485	0,00119	1,20456
5.sSMPABC043	143079	9412	0,169385	0,06474	0,00071	0,13494	0,00122	1,20396
5.sSMPABC014	140443,9	9538,359	0,261013	0,06541	0,00074	0,13928	0,0013	1,25567
5.sSMPABC112	66847	4454	0,169694	0,06507	0,00079	0,13736	0,00125	1,2319
5.sSMPABC028	138319,2	9492,962	0,356042	0,06488	0,00072	0,13639	0,00124	1,21944
5.sSMPABC124	100393	6609	0,233393	0,06436	0,00074	0,13377	0,0012	1,18671
5.sSMPABC027	121261,9	8119,969	0,187603	0,06517	0,00073	0,13897	0,00127	1,24821
5.sSMPABC106	179345	11747	0,372213	0,06413	0,00069	0,13363	0,00118	1,1812
5.sSMPABC071	146762,9	9892,322	0,100271	0,06459	0,0007	0,13812	0,00123	1,22955
5.sSMPABC022	83501,43	5035,994	0,28674	0,06401	0,00072	0,1363	0,00124	1,2024
5.sSMPABC007	119419,4	7899,237	0,244528	0,06414	0,0007	0,13924	0,00126	1,23084
5.sSMPABC052	62725	4027	0,235454	0,06307	0,0008	0,13398	0,00122	1,16468
5.sSMPABC040	153273	10255,5	0,152547	0,06288	0,00069	0,13445	0,0012	1,16518
5.sSMPABC055	155016,3	9336,671	0,290935	0,0636	0,00071	0,1391	0,0013	1,21924
5.sSMPABC122	47674,06	2666,342	0,23591	0,06197	0,00084	0,13363	0,00124	1,14166
5.sSMPABC063	90898,66	5241,86	0,286712	0,06202	0,00073	0,14082	0,00127	1,20372
5.sSMPABC065	109980	6835	0,279103	0,0609	0,0007	0,13603	0,00121	1,1418
5.sSMPABC035	82146,57	5441,662	0,226164	0,05888	0,00074	0,13388	0,00124	1,08624

1s	206/207		206/238		207/235		208/232		Conc
0,01282	862,4463	22,83	826,3	7,04	836,1	5,71	645,7	14,16	98,81399
0,01362	821,2111	26	785,6	6,77	794,8	6,32	520,2	13,78	98,82892
0,01095	819,6395	21,32	788,8	6,64	796,7	5,07	616,6	7,56	98,99848
0,05938	2061,157	18,15	2022,3	15,5	2041,2	8,08	1539,1	23,12	99,06542
0,01387	862,1403	24,49	834,6	7,06	841,9	6,15	578,8	12,44	99,12533
0,05074	1927,522	18,23	1896	14,69	1910,7	7,85	1426	19,97	99,22468
0,01186	826,2296	22,98	803	6,59	808,8	5,43	714,3	17,36	99,27771
0,01133	802,8832	22,94	784,5	6,4	789,1	5,29	640,9	16,48	99,41364
0,01197	832,1682	22,2	821,1	6,87	823,9	5,4	608,4	13,42	99,65899
0,01215	837,7736	22,2	828,5	6,94	830,8	5,44	559,3	10,54	99,72239
0,01223	841,8095	22,07	833,3	7,01	835,4	5,45	510,5	7,09	99,74799
0,01116	793,3186	21,98	787,2	6,68	788,6	5,21	610,3	10,77	99,82215
0,01255	813,6531	23,73	808,8	6,83	810	5,74	633,8	13,92	99,85163
0,01269	824,663	23,42	820,8	6,94	821,7	5,73	666,4	16,88	99,89035
0,01271	799,7015	24,49	798,4	6,76	798,6	5,88	634,8	16,58	99,97495
0,01183	823,4086	22,09	822,5	6,86	822,5	5,34	686,1	15,41	100
0,012	830,2953	21,83	835,4	7	833,8	5,36	648,6	8,79	100,1915

0,01169	806,0585	22,16	811	6,86	809,4	5,35	636,1	10,69	100,1973
0,01133	792,6789	21,98	799,3	6,77	797,3	5,25	588,1	9,05	100,2502
0,01104	780,4744	22,13	790,9	6,59	787,9	5,16	644,3	13,52	100,3793
0,01349	852,3159	22,77	863,5	7,45	860,2	5,87	606,2	10,56	100,3822
0,01219	805,1066	22,84	819,3	6,92	815,3	5,54	591,1	9,04	100,4882
0,01369	822,4672	24,35	837,5	7,23	833,3	6,12	637,2	15,29	100,5015
0,01316	821,8393	24,54	837,7	6,78	833,1	5,88	566,4	18,28	100,5491
0,01249	805,1066	23,32	822,2	6,94	817,4	5,67	682,9	18,21	100,5838
0,01216	800,975	22,97	818,7	6,88	813,8	5,54	632	14,27	100,5985
0,01198	800,3384	22,58	818,7	6,91	813,5	5,46	609,2	11,77	100,6352
0,01222	793,9581	23,28	812,3	6,86	807,1	5,6	566,2	11,2	100,6402
0,04392	1789,445	18,4	1814,7	14	1802,6	7,56	1401,5	18,82	100,6668
0,06167	2074,673	17,79	2103,7	16,02	2088,7	8	1574,1	21,59	100,713
0,0107	759,3761	21,93	781,3	6,55	775,4	5,06	649,7	12,18	100,7552
0,01063	760,6827	21,98	786,7	6,47	779,7	5,01	635,3	9,21	100,8898
0,01197	806,3757	22,04	834,7	7,03	826,8	5,38	578,4	7,42	100,9464
0,01231	783,6953	23,6	812	6,86	804,3	5,66	642,4	13,65	100,9483
0,0246	1233,528	21,74	1265,3	10,48	1253,3	7,27	903,9	12,66	100,9484
0,01278	802,8832	23,53	834	7,05	825,4	5,76	600,7	15,64	101,0312
0,01197	795,2362	22,48	826,7	6,94	818	5,43	615,9	10,74	101,0524
0,01296	818,0664	22,97	851,2	7,25	841,8	5,74	674,6	10,37	101,1043
0,01241	800,975	22,8	836,6	7,07	826,8	5,58	642,8	14,24	101,1714
0,01176	765,8981	23,44	801	6,65	791,6	5,47	646,6	17,99	101,1735
0,01184	775,954	22,78	816,7	6,86	805,7	5,43	604,9	14,33	101,3469
0,05962	2027,947	17,91	2084,9	15,93	2056	7,99	1528,4	23,23	101,3862
0,01267	793,9581	23,38	838,2	7,05	825,9	5,7	674,8	12,21	101,4674
0,0116	773,0412	22,4	819,4	6,85	806,8	5,32	654,3	13,95	101,5377
0,0123	781,1191	23,22	827,9	6,97	815,1	5,6	611,4	16,09	101,5461
0,01273	768,4994	24,85	815,5	6,75	802,7	5,86	670,5	15,63	101,5696
0,01196	765,8981	22,99	816	6,93	802,4	5,51	648,8	10,45	101,6667
0,01309	787,5517	23,56	840,6	7,33	826	5,89	592,2	8,85	101,7369
0,0137	776,6006	25,45	829,7	7,09	815,2	6,23	544,8	14,22	101,7476
0,01227	770,4475	23,18	824,2	7,03	809,5	5,61	574,6	8,32	101,7835
0,01223	753,4831	24,06	809,3	6,8	794,4	5,68	645	17,27	101,8411
0,0127	779,8295	23,29	838,9	7,2	822,6	5,74	627,4	9,45	101,943
0,01133	745,9209	22,67	808,6	6,73	791,9	5,28	603,1	13,98	102,0653
0,01194	761,0091	22,71	834	6,99	814,1	5,44	657,7	12,62	102,3861
0,01227	741,9609	23,63	823,7	7,01	801,7	5,65	576,7	7,85	102,6709
0,01212	746,2504	22,91	840,4	7,1	814,7	5,52	588,5	7,75	103,0581
0,01351	710,5919	26,7	810,6	6,96	784,2	6,34	612,6	11,7	103,2568
0,01144	704,1748	23,22	813,2	6,79	784,4	5,37	582,1	9,83	103,5416
0,01265	728,3554	23,54	839,6	7,36	809,4	5,79	591,7	9,75	103,597
0,01434	673,0735	28,84	808,6	7,04	773,3	6,8	656,1	18,6	104,3656
0,01293	674,7984	25,09	849,3	7,2	802,3	5,96	686,8	12,85	105,534
0,01177	635,704	24,47	822,2	6,88	773,4	5,58	614,3	11,17	105,9353

0,01277	562,6619	27,29	809,9	7,07	746,7	6,21	490,5	8,4 107,8034
						Melhor idad	10	
207/235		206/238		RHO		estimada		
1,2782	0,01282	0,13676	0,00124	0,90401		826,3	7,04	
1,18754	0,01362	0,12961	0,00119	0,800534		785,6	6,77	
1,19149	0,01095	0,13016	0,00116	0,969743		788,8	6,64	
6,46546	0,05938	0,36849	0,00329	0,972141		2041,2	8,08	
1,29133	0,01387	0,13822	0,00125	0,841976		834,6	7,06	
5,56475	0,05074	0,34193	0,00306	0,981475		1910,7	7,85	
1,21795	0,01186	0,13265	0,00116	0,89804		803	6,59	
1,17526	0,01133	0,12941	0,00112	0,897748		784,5	6,4	
1,25114	0,01197	0,13585	0,00121	0,930974		821,1	6,87	
1,26643	0,01215	0,13714	0,00122	0,927258		828,5	6,94	
1,2767	0,01223	0,13799	0,00124	0,938073		833,3	7,01	
1,17412	0,01116	0,12989	0,00117	0,947673		787,2	6,68	
1,22041	0,01255	0,13368	0,0012	0,872925		808,8	6,83	
1,24632	0,01269	0,13579	0,00122	0,882389		820,8	6,94	
1,1956	0,01271	0,13184	0,00119	0,849063		798,4	6,76	
1,24801	0,01183	0,13608	0,00121	0,938047		822,5	6,86	
1,27308	0,012	0,13836	0,00124	0,950792		835,4	7	
1,21926	0,01169	0,13406	0,00121	0,941387		811	6,86	
1,19288	0,01133	0,132	0,00119	0,949161		799,3	6,77	
1,17278	0,01104	0,13053	0,00116	0,94405		790,9	6,59	
1,33306	0,01349	0,14334	0,00132	0,910006		863,5	7,45	
1,23207	0,01219	0,13553	0,00122	0,909821		819,3	6,92	
1,27209	0,01369	0,13874	0,00128	0,85728		837,5	7,23	
1,27161	0,01316	0,13878	0,0012	0,835511		837,7	6,78	
1,23673	0,01249	0,13603	0,00122	0,88805		822,2	6,94	
1,22878	0,01216	0,13542	0,00121	0,902907		818,7	6,88	
1,22826	0,01198	0,13541	0,00122	0,923725		818,7	6,91	
1,2142	0,01222	0,13429	0,00121	0,895284		812,3	6,86	
4,90218	0,04392	0,32513	0,00288	0,988695		1802,6	7,56	
6,82265	0,06167	0,38588	0,00344	0,986246		2088,7	8	
1,14607	0,0107	0,12884	0,00115	0,956037		781,3	6,55	
1,15525	0,01063	0,1298	0,00113	0,946121		786,7	6,47	
1,25748	0,01197	0,13824	0,00124	0,942312		834,7	7,03	
1,20801	0,01231	0,13424	0,00121	0,884537		812	6,86	
2,43597	0,0246	0,21687	0,00198	0,904071		1253,3	7,27	
1,2544	0,01278	0,13812	0,00124	0,881192		834	7,05	
1,23811	0,01197	0,13683	0,00122	0,922239		826,7	6,94	
1,29112	0,01296	0,14116	0,00128	0,903358		851,2	7,25	
1,25743	0,01241	0,13858	0,00125	0,913948		836,6	7,07	
1,18059	0,01176	0,1323	0,00117	0,887805		801	6,65	

_	1,21111	0,01184	0,13507	0,00121	0,916344	816,7	6,86
_	6,57484	0,05962	0,38185	0,00341	0,984815	2056	7,99
	1,25564	0,01267	0,13886	0,00125	0,892116	838,2	7,05
	1,21352	0,0116	0,13554	0,00121	0,933914	819,4	6,85
	1,23175	0,0123	0,13703	0,00123	0,898891	827,9	6,97
	1,20456	0,01273	0,13485	0,00119	0,835018	815,5	6,75
_	1,20396	0,01196	0,13494	0,00122	0,910123	816	6,93
_	1,25567	0,01309	0,13928	0,0013	0,895345	840,6	7,33
	1,2319	0,0137	0,13736	0,00125	0,818285	829,7	7,09
	1,21944	0,01227	0,13639	0,00124	0,903556	824,2	7,03
	1,18671	0,01223	0,13377	0,0012	0,870444	809,3	6,8
	1,24821	0,0127	0,13897	0,00127	0,898187	838,9	7,2
_	1,1812	0,01133	0,13363	0,00118	0,920601	808,6	6,73
	1,22955	0,01194	0,13812	0,00123	0,917044	834	6,99
	1,2024	0,01227	0,1363	0,00124	0,891518	823,7	7,01
	1,23084	0,01212	0,13924	0,00126	0,918979	840,4	7,1
	1,16468	0,01351	0,13398	0,00122	0,785003	810,6	6,96
	1,16518	0,01144	0,13445	0,0012	0,909049	813,2	6,79
	1,21924	0,01265	0,1391	0,0013	0,900772	839,6	7,36
	1,14166	0,01434	0,13363	0,00124	0,738763	808,6	7,04
_	1,20372	0,01293	0,14082	0,00127	0,839588	849,3	7,2
_	1,1418	0,01177	0,13603	0,00121	0,862908	822,2	6,88
	1,08624	0,01277	0,13388	0,00124	0,787845	809,9	7,07

GEO-03015 - PROJETO TEMÁTICO EM GEOLOGIA III

Título da Monografia: Evolução do Grupo Porongos na sua extra	amidade sul, Rio Grande do Sul,
com integração de geologia de campo e datação U-Pb de	zircões
Autor: Laura Costa Martins	
Orientador(es): Prof. Dr. Léo Afraneo Hartmann	
Nota Final (1 até 10): 6,5	
Examinador: Tiago Jalowitzki	Data: 11/12/2015
 O título é informativo e reflete o conteúdo da monografia? 	Sim (x). Nao (). Em parte ().
2. O resumo do trabalho informa sobre os tópicos essenciais da l	monografia ?
	Sim (x). Não (). Em parte ()
3. As ilustrações são úteis e adequadas?	Sim (). Não (). Em parte (x)
4. O manuscrito apresenta estrutura organizada?	Sim (). Não (x). Em parte ()
5. A introdução apresenta os fundamentos para o restante do tex	to da monografia?
	Sim (). Não () Em parte (x)
6. Os materiais e métodos são descritos adequadamente?	Sim (). Não (x). Em parte ()
7. Os resultados são de qualidade e mostrados concisamente?	Sim (x). Não (). Em parte ()
8. As interpretações e conclusões são baseadas nos dados obtic	dos?
	Sim (x). Não (). Em parte ()
9. As referências são convenientes e usadas adequadamente?	Sim (). Não (x). Em parte ()
10. O manuscrito possui boa redação (digitação, ortografia e gra	mática)?
	Sim (). Não (). Em parte (x).
0	

Comentários: Embora a monografia apresente significativos problemas de estrutura e organização, a autora
atendeu aos requisitos necessários para obter o título de Geólogo. As modificações sugeridas pelos membros da
banca devem ser aplicadas antes da entrega da versão final do trabalho.

GEO-03015 - PROJETO TEMÁTICO EM GEOLOGIA III

Título da Monografia: Evolução do Grupo Porongos na sua extre	midade sul, Rio Grande do Sul, com
integração de geologia de campo e data~çao U-Pb em zirco	ões –
Autor: Laura Costa Martins	
Orientador(es): Léo Hartmann	
Nota Final (1 até 10): 65	
Examinador: MF Bitencourt	Data: 11/12/2015
1. O título é informativo e reflete o conteúdo da monografia?	Sim (x). Não (). Em parte ().
2. O resumo do trabalho informa sobre os tópicos essenciais da r	monografia ?
	Sim (). Não (). Em parte (x)
3. As ilustrações são úteis e adequadas?	Sim (x). Não (). Em parte ()
4. O manuscrito apresenta estrutura organizada?	Sim (x). Não (). Em parte ()
5. A introdução apresenta os fundamentos para o restante do tex	to da monografia?
	Sim(). Não(). Em parte(x)
6. Os materiais e métodos são descritos adequadamente?	Sim (x). Não (). Em parte ()
7. Os resultados são de qualidade e mostrados concisamente?	Sim (x). Não (). Em parte ()
8. As interpretações e conclusões são baseadas nos dados obtid	los?
	Sim (x). Não (). Em parte ()
9. As referências são convenientes e usadas adequadamente?	Sim (x). Não (). Em parte ()
10. O manuscrito possui boa redação (digitação, ortografia e gran	mática)?
	Sim (). Não (). Em parte (x).

mentários:	

GEO-03015 - FROJETO TEMATIOO EM	
Evolução de Crupa Paranga	un as extensidate il,
Título da Monografia: Rice (institute che ful, cum)	the character free for the second
Autor: Loia Custa usting	J
Orientador(es): Le AFORVE Hortmann	
Nota Final (1 até 10):	
Examinador: Luna Alberto Vecana	Data: 11/12/2015
1. O título é informativo e reflete o conteúdo da monografia?	Sim (_y). Não (). Em parte ().
O resumo do trabalho informa sobre os tópicos essenciais da n	nonografia ?
	Sim (V). Nau (). Ellipane ()
2. As illustrações são úteis e adequadas?	Sim (). Não (). Em parte (ჯ)

As ilustrações são úteis e adequadas?	
4. O manuscrito apresenta estrutura organizada?	Sim (). Não (). Em parte ()
4. O manuscrito aprocenta estandementos para o restante do text	o da monografia?
5. A introdução apresenta os fundamentos para o rectante de	Sim (). Não (). Em parte ()
o comparatoriais e métodos são descritos adequadamente?	Sim (). Não (). Em parte ();)
6. Os materiais e metodos sub decembo concisamente?	Sim (_X). Não (). Em parte ()
7. Os resultados são de qualidade e mostrados concesarios	oc?
8 As interpretações e conclusões são baseadas nos dados oblid	05:
	Sim (y). Não (). Em parte ()
0. As referências são convenientes e usadas adequadamente?	Sim (⁄v). Não (). Em parte ()
9. As referencias e e e e e e e e e e e e e e e e e e e	mática)?
10. O manuscrito possui boa redação (digitação, ertegranda o	Sim (). Não (). Em parte (IJ.

omentários:				T. L.I.	
inter orning	the c	tinter?	175. S	Alisto her	
the with the					

GEO-03015 - PROJETO TEMÁTICO EM GEOLOGIA III