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ABSTRACT

Wave modeling is a crucial tool in geophysics, for efficient strong motion analysis, risk

mitigation and oil & gas exploration. Due to its simplicity and numerical efficiency, the

finite-difference method is one of the standard techniques implemented to solve the wave

propagation equations. This kind of applications is known as stencils because they consist

in a pattern that replicates the same computation on a multi-dimensional domain. High

Performance Computing is required to solve this class of problems, as a consequence of a

large number of grid points involved in three-dimensional simulations of the underground.

The performance optimization of stencil computations is a challenge and strongly depends

on the underlying architecture.

In this context, this work was directed toward a twofold aim. Firstly, we have led our

research on multicore architectures and we have analyzed the standard OpenMP imple-

mentation of numerical kernels from the 3D heat transfer model (a 7-point Jacobi stencil)

and the Ondes3D code (a full-fledged application developed by the French Geological

Survey). We have considered two well-known implementations (naïve, and space block-

ing) to find correlations between parameters from the input configuration at runtime and

the computing performance; thus, we have proposed a Machine Learning-based approach

to evaluate, to predict, and to improve the performance of these stencil models on the

underlying architecture. We have also used an acoustic wave propagation model provided

by the Petrobras company and we have predicted the performance with high accuracy on

multicore architectures. Secondly, we have oriented our research on heterogeneous ar-

chitectures, we have analyzed the standard implementation for seismic wave propagation

model in CUDA, to find which factors affect the performance; then, we have proposed

a task-based implementation to improve the performance, according to the runtime con-

figuration set (scheduling algorithm, size, and number of tasks), and we have compared

the performance obtained with the classical CPU or GPU only versions with the results

obtained on heterogeneous architectures.

Keywords: HPC. Machine Learning. Multicore. Heterogeneous Architectures. Stencil

Computations. Performance Simulation. Performance improvement.



Optimização de Desempenho de Estênceis Geofísicos sobre Arquiteturas HPC

RESUMO

A simulação de propagação de onda é uma ferramenta crucial na pesquisa de geofísica

(para análise eficiente dos terremotos, mitigação de riscos e a exploração de petróleo

e gáz). Devido à sua simplicidade e sua eficiência numérica, o método de diferenças

finitas é uma das técnicas implementadas para resolver as equações da propagação das

ondas. Estas aplicações são conhecidas como estênceis porque consistem num padrão que

replica a mesma computação num domínio multidimensional de dados. A Computação de

Alto Desempenho é requerida para solucionar este tipo de problemas, como consequência

do grande número de pontos envolvidos nas simulações tridimensionais do subsolo. A

optimização do desempenho dos estênceis é um desafio e depende do arquitetura usada.

Neste contexto, focamos nosso trabalho em duas partes. Primeiro, desenvolvemos nossa

pesquisa nas arquiteturas multicore; analisamos a implementação padrão em OpenMP dos

modelos numéricos da transferência de calor (um estêncil Jacobi de 7 pontos), e o aplica-

tivo Ondes3D (um simulador sísmico desenvolvido pela Bureau de Recherches Géologi-

ques et Minières); usamos dois algoritmos conhecidos (nativo, e bloqueio espacial) para

encontrar correlações entre os parâmetros da configuração de entrada, na execução, e o

desempenho computacional; depois, propusemos um modelo baseado no Aprendizado de

Máquina para avaliar, predizer e melhorar o desempenho dos modelos estênceis na arqui-

tetura usada; também usamos um modelo de propagação da onda acústica fornecido pela

empresa Petrobras; e predizemos o desempenho com uma alta precisão (até 99%) nas ar-

quiteturas multicore. Segundo, orientamos nossa pesquisa nas arquiteturas heterogêneas,

analisamos uma implementação padrão do modelo de propagação de ondas em CUDA,

para encontrar os fatores que afetam o desempenho quando o número de aceleradores é

aumentado; então, propusemos uma implementação baseada em tarefas para amelhorar

o desempenho, de acordo com um conjunto de configuração no tempo de execução (al-

goritmo de escalonamento, tamanho e número de tarefas), e comparamos o desempenho

obtido com as versões de só CPU ou só GPU e o impacto no desempenho das arquite-

turas heterogêneas; nossos resultados demostram um speedup significativo (até ×25) em

comparação com a melhor implementação disponível para arquiteturas multicore.

Palavras-chave: HPC, aprendizado de máquina, multicore, arquiteturas heterogêneas,

computação de estênceis, simulação de desempenho, ganho de desempenho.
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1 INTRODUCTION

The behavior of scientific applications related to High Performance Computing

(HPC) depends on many factors (non-uniform memory access, vectorization, compiler

optimizations, memory policies, scheduling algorithms, etc.) that may severely influence

the performance. At the hardware level, the complexity of available computing nodes is

increasing, this includes several levels of hierarchical memories and more heterogeneous

cores. At the software level, there are currently several programming models to exploit the

architecture (shared memory, message passing, parallel tasks, etc.). These evolutions lead

to redesign the code of scientific applications to obtain the best performance for a spe-

cific architecture with a specific programming model (BUCHTY et al., 2012; MITTAL;

VETTER, 2015).

Examples of HPC applications are the stencil-based applications (a nearest-neighbor

pattern replicated in a data domain), which are used to solve many problems related to

Partial Differential Equations (PDE), the heart of many problems in areas as diverse as

electromagnetics, fluid dynamics or geophysics. This is particularly true in the case of

three-dimensional waves propagation in complex media, it is still one of the main chal-

lenges in geophysics and the Finite-Difference Method (FDM) is a standard technique im-

plemented to solve these equations (MOCZO; ROBERTSSON; EISNER, 2007; DATTA

et al., 2008; NGUYEN et al., 2010).

Additionally, this class of modeling heavily relies on parallel architectures in or-

der to tackle large scale geometries including a detailed description of the physics. Last

decade, significant efforts have been devoted towards efficient implementation of the

FDM on emerging architectures. These contributions have demonstrated their efficiency

leading to robust scientific applications (DATTA et al., 2009; MICHÉA; KOMATITSCH,

2010).

Although a large literature on the optimization of stencil numerical kernels is avail-

able, predicting and optimizing its performance remains a challenge, because many input

parameters are involved and affect the performance. In terms of computational efficiency,

one of the main difficulties is to deal with the disadvantageous ratio between the limited

pointwise computation and the intensive memory access required, leading to a memory-

bound situation (DUPROS et al., 2008; DUPROS; DO; AOCHI, 2013).
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1.1 Research issues

This thesis focuses on the performance optimization of stencil applications on

HPC architectures. We consider classical geophysics numerical stencils that lie at the

heart of earthquake modeling, and 3D underground imaging for the oil and gas industry.

1.1.1 Exploiting multicore architectures

In addition to the challenge of geophysical modeling and the mathematical prob-

lems behind seismic and acoustic wave propagation modeling, one major challenge is to

leverage the various levels of parallelism involved. HPC is actually facing key challenges

on both the hardware and the software sides. Machines are reaching several millions of

cores and the scalability of the applications could become a bottleneck. As reported in

several recent research papers (ROTEN et al., 2016; TSUBOI et al., 2016; BREUER;

HEINECKE; BADER, 2016), various geophysical applications show the variability of

scaling up to thousands of cores. Indeed, regardless of the numerical method involved

(Finite-Difference, Finite-Elements or Spectral-Elements), such applications benefit from

the limited amount of point-to-point communications between neighboring subdomains.

Traditional methods to improve the performance of computing architectures were

to increase the clock frequency, add high-speed, on-chip cache, and to optimize instruc-

tions. Nowadays, companies have turned to offer parallel machines, these architectures

include several processing units on smaller chips to provide several executions of instruc-

tions in the same cycle (BLAKE; DRESLINSKI; MUDGE, 2009). Numerical implemen-

tations are focused on automatic parallelization of stencil codes (SPAZIER; CHRIST-

GAU; SCHNOR, 2016), analysis of the stencil performance on shared memory systems

by compiler optimizations (ZHU et al., 2015), and to apply computational optimizations

that scale the performance over cores and vector units (GAN et al., 2014). At the shared-

memory level, efficient exploitation of the growing number of computing cores available

remains a challenge.
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1.1.2 Machine Learning approaches on HPC platforms

Application tuning represents one methodology to improve the performance on

HPC architectures. In this case, several parameters such as machine architecture, domain

decomposition, compiler flags, scheduling or load balancing algorithms are considered

to achieve the best performance. Unfortunately, this approach lead to the exploration of

a huge set of parameters, thus limiting its interest in complex platforms. Finding the

optimal value for each parameter requires to search on a large configuration set, and

several heuristics or frameworks have been proposed to speed up the process of finding

the best configuration in various contexts (DATTA et al., 2010; CHRISTEN; SCHENK;

BURKHART, 2011; TANG et al., 2011; MIJAKOVIC; FIRBACH; GERNDT, 2016).

At this point, Machine Learning (ML) is a methodology for optimization that

could be applied to find patterns on a large set of input parameters. Recently, ML al-

gorithms have been used on HPC systems under different situations and for various

workloads such as threads mapping and memory accesses (CASTRO; GÓES; MÉHAUT,

2014), I/O scheduling (BOITO et al., 2016; LI et al., 2017), or performance improvement

(GANAPATHI, 2009). Building a suitable ML-based performance model for geophysics

numerical kernels remains a challenge, because the accuracy of current models don’t

achieve the target behavior. In this sense, a model may allow us to predict, to simulate

and to optimize the performance behavior on HPC architectures with a limited amount of

experiments.

1.1.3 Heterogeneous architectures

The importance of Heterogeneous Computing (HC) comes from the fact that a

large fraction of main Top500 and Green500 lists of supercomputers use processors with

both CPUs and coprocessors (TOP500, 2017; GREEN500, 2017). The different archi-

tectures and programming models on heterogeneous architectures also present several

challenges in achieving optimal performance. HC approaches have also been referred

to as collaborative, hybrid, co-operative or synergistic execution, co-processing, divide

and conquer approach and others (MITTAL; VETTER, 2015). In this work, we con-

sider heterogeneous architectures where they are built with CPUs, as main processors,

and accelerated by GPU devices. Early graphics processors were special-purpose accel-

erators suitable only for applications related to graphics, image processing, and video



17

coding. Current GPUs are general-purpose (also known as GPGPU) and programmable,

massively parallel processors (LINDHOLM et al., 2008).

In this sense, an approach called task-based parallelism is a data-oriented program-

ming model used at high-level on heterogeneous architectures, the main idea is to build a

task dependence graph, to create a queue of tasks with data directionality and to schedule

the tasks into all available processors. Task parallelism allows the creation of multiple

threads of control (processes or tasks) that can synchronize and communicate in arbitrary

ways (HASSEN; BAL; JACOBS, 1998). Several runtime systems have been designed

for programming and running applications on heterogeneous platforms, frameworks such

as StarPU (AUGONNET et al., 2011), G-Charm (VASUDEVAN; VADHIYAR; KALÉ,

2013) or PaRSEC (BOSILCA et al., 2013a) have a growing impact in the scientific com-

munity. Nevertheless, the performance gains expected from the use of such runtime sys-

tems come at a price. The challenge is to decouple as much as possible the algorithms and

the knowledge of the underlying architecture (STOJANOVIC et al., 2012), this situation

is rather challenging for heterogeneous platforms and one of the main problems is to deal

with the costly memory transfers (KRAKIWSKY; TURNER; OKONIEWSKI, 2004).

1.1.4 Research context

This research is conducted in the context of joint collaborations between the Insti-

tute of Informatics of the Federal University of Rio Grande do Sul (INF-UFRGS) and the

French Geological Survey (BRGM), Carnot Institute, under the High Performance Com-

puting for Geophysics Applications project (HPC-GA) funded by the FP7-PEOPLE, grant

agreement number 295217. Research has also received funding from the EU H2020 Pro-

gramme and from MCTI/RNP-Brazil under the High Performance Computing for Energy

Project (HPC4E), grant agreement 689772, and the Iberian-American Network for High

Performance Computing (RICAP), partially funded by the Ibero-American Program of

Science and Technology for Development (CYTED), Ref. 517RT0529. This research was

also accomplished in the context of the International Laboratory in High Performance

and Ambient Informatics (LICIA).

At UFRGS, the research has been developed in the Parallel and Distributed Pro-

cessing Group (GPPD). This work has been granted by Coordination for the Improvement

of Higher Education Personnel (CAPES), National Council for Scientific and Technolog-

ical Development (CNPq), Fundação de Amparo à Pesquisa do Estado do Rio Grande do
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Sul (FAPERGS), and Petrobras company.

It was also supported by Intel Corporation under the Modern Code Project. For

computer time, this research partly used the resources of Colfax Research Cluster. Some

experiments presented in this thesis were carried out using the GridUIS-2 experimen-

tal testbed, being developed under the Universidad Industrial de Santander High Perfor-

mance and Scientific Computing Centre (SC3UIS), development action with support from

Vicerrectoría de Investigación y Extensión (VIE-UIS) and several UIS research groups as

well as other funding bodies (<http://www.sc3.uis.edu.co>).

1.2 Objectives and contributions

The main objective of this research is to increase the performance of stencil com-

putations from geophysics models. Many work has been guided in two alternatives: im-

provement of architectural features or improvement of algorithms and implementations

in specific programming models; the first alternative is out of the scope of this research

and second alternative limits the performance for each implementation on the underlying

architecture. Thus, we research into a third alternative that has been recently used: how

to tune the application by finding an optimal input set from a configuration set of run-

time parameters. Then, our hypothesis is: finding the optimal parameters from a input

configuration set improve the performance of stencil applications. Considering our

objective and hypothesis, the steps are:

• To define which parameters from a configuration set, at runtime level, affect the

performance of stencil computations;

• On multicore architectures, to optimize the performance of stencil computations by

finding the optimal input configuration set based on an ML approach; and

• On heterogeneous architectures, to exploit the computing power by searching for

an optimal runtime configuration set that uses all available processing units.

First, and according to our objectives, we contribute to the analysis and character-

ization of stencil computations performance on both multicore and heterogeneous archi-

tectures, they are composed by CPUs and Graphics Processing Units (GPU). On heteroge-

neous architectures, several high-level parameters such as data size, memory capability,

http://www.sc3.uis.edu.co
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scheduling algorithms and the number of processing units have been considered. This

contribution was part of HPC-GA project, the preliminary results were published in:

• Víctor Martínez, David Michéa, Olivier Aumage, Fabrice Dupros, and Philippe

Navaux. "Hybrid CPU-GPU Computing for a Finite-Difference Numerical Seis-

mic Kernel: First Results with StarPU". In: High Performance Computing for

Geophysics Applications, Workshop (HPC-GA). Oral presentation. October, 2014.

Grenoble, France.

On multicore architectures, we studied the influence of several input and runtime

configurations with respect to classical algorithm implementations. This contribution was

part of HPC4E project, the results have been presented in the Latin American High Per-

formance Computing Conference (CARLA 2016) and in the Workshop de Processamento

Paralelo e Distribuído (WSPPD 2016):

• Víctor Martinez, Philippe Navaux, Fabrice Dupros, Hideo Aochi, and Márcio Cas-

tro. "Stencil-based applications tuning for multi-core architectures". In: Latin

American High Performance Computing Conference (CARLA 2016). Oral presen-

tation. August, 2016. Ciudad de México, México. Available in: <https://hpc4e.eu/

sites/default/files/files/presentations/Paper_Victor.pdf>.

• Víctor Martinez, Philippe Navaux, Fabrice Dupros, Hideo Aochi, and Márcio Cas-

tro. "Tuning space optimization for stencil-based applications on multi-core". In:

XIV Workshop de Processamento Paralelo e Distribuído (WSPPD). Oral presenta-

tion. September, 2016. Porto Alegre, Brazil. Available in: <http://www.inf.ufrgs.

br/gppd/wsppd/2016/>.

Second, we introduce a Machine Learning (ML) model to predict and to opti-

mize the performance of stencil computations on multicore architectures. The key idea

is to provide adaptability of the input parameters, a training execution set is used in a

learning process until the model is available to reach the best performance. The final

model could be integrated into auto-tuning frameworks to find the best configuration for

a given stencil application. This contribution was part of HPC4E project, the Modern

Code Project and the Petrobras 2016/00133-9 project, the results are available in the pro-

ceedings of International Conference on Computational Science (ICCS 2017) published

in Procedia Computer Science, proceedings of the Latin American High Performance

Computing Conference (CARLA 2017) published in Communications in Computer and

https://hpc4e.eu/sites/default/files/files/presentations/Paper_Victor.pdf
https://hpc4e.eu/sites/default/files/files/presentations/Paper_Victor.pdf
http://www.inf.ufrgs.br/gppd/wsppd/2016/
http://www.inf.ufrgs.br/gppd/wsppd/2016/
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Information Science, proceedings of 18o Escola Regional de Alto Desempenho do Es-

tado do Rio Grande do Sul (ERAD/RS), and has been published at HPC4E: High Perfor-

mance Computing for Energy Workshop along with The Eighth International Conference

on Smart Grids, Green Communications and IT Energy-aware Technologies (ENERGY

2018):

• Víctor Martínez, Fabrice Dupros, Márcio Castro and Philippe Navaux. "Perfor-

mance Improvement of Stencil Computations for Multi-core Architectures based

on Machine Learning". In: International Conference on Computational Science

(ICCS) Zürich, Switzerland: Procedia Computer Science, 2017, V. 108, pp. 305–

314. DOI:10.1016/j.procs.2017.05.164. Available in: <https://www.sciencedirect.

com/science/article/pii/S1877050917307408>. Qualis: A1.

• Víctor Martínez, Matheus Serpa, Fabrice Dupros, Edson L. Padoin, and Philippe

Navaux. "Performance Prediction of Acoustic Wave Numerical Kernel on Intel

Xeon Phi Processor". In: In: Mocskos E., Nesmachnow S. (eds) High Perfor-

mance Computing. (CARLA 2017). Communications in Computer and Informa-

tion Science, vol 796, pp. 101–110. Springer, Cham. Buenos Aires, Argen-

tine. DOI:10.1007/978-3-319-73353-1_7. Available in: <https://link.springer.com/

chapter/10.1007/978-3-319-73353-1_7>. Qualis: B4.

• Víctor Martínez, and Philippe Navaux. "Performance Prediction of Stencil Appli-

cations on Accelerator Architectures". In: 18o Escola Regional de Alto Desem-

penho do Estado do Rio Grande do Sul (ERAD/RS), 2018. Available in: <http:

//www.inf.ufrgs.br/erad2018/anais/FPG/179903.pdf>.

• Víctor Martínez, Matheus Serpa, Philippe Navaux, Edson L. Padoin, and Jairo

Panetta. "Performance Prediction of Geophysics Numerical Kernels on Accelera-

tor Architectures". Contribution presented at HPC4E: High Performance Comput-

ing for Energy Workshop along with The Eighth International Conference on Smart

Grids, Green Communications and IT Energy-aware Technologies (ENERGY 2018).

Qualis: B5.

Finally, the third contribution of this work is the introduction of a task-based im-

plementation of the elastodynamics equation for heterogeneous architectures. This contri-

bution on heterogeneous architectures use the maximum number of available processing

units and have been demonstrated a better performance than standard implementations.

https://www.sciencedirect.com/science/article/pii/S1877050917307408
https://www.sciencedirect.com/science/article/pii/S1877050917307408
https://link.springer.com/chapter/10.1007/978-3-319-73353-1_7
https://link.springer.com/chapter/10.1007/978-3-319-73353-1_7
http://www.inf.ufrgs.br/erad2018/anais/FPG/179903.pdf
http://www.inf.ufrgs.br/erad2018/anais/FPG/179903.pdf
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This contribution was part of HPC-GA project, the results were published in the proceed-

ings of 27th International Symposium on Computer Architecture and High Performance

Computing (SBAC-PAD 2015):

• Víctor Martínez, David Michéa, Fabrice Dupros, Olivier Aumage, Samuel Thibault,

Hideo Aochi, and Philippe Navaux. "Towards Seismic Wave Modeling on Hetero-

geneous Many-Core Architectures Using Task-Based Runtime System". In: 27th

International Symposium on Computer Architecture and High Performance Com-

puting (SBAC-PAD 2015). Florianópolis, Brazil: IEEE Computer Society, 2015,

pp. 1–8. DOI: 10.1109/SBAC-PAD.2015.33. Available in: <https://ieeexplore.

ieee.org/document/7379827/>. Qualis: B1.

This contribution for heterogeneous architectures has been extended to the analy-

sis of the energy consumption. A low-power many-core heterogeneous architecture was

used as an alternative to solve the seismic model with a better energy efficiency. Our

solution makes a better usage of the available resources (CPU and GPU cores) with a sig-

nificant reduction of the energy consumption and communication cost. This contribution

was a joined work with SC3UIS, the results were presented in the Latin American High

Performance Computing Conference (CARLA 2015) and in the Workshop de Processa-

mento Paralelo e Distribuído (WSPPD 2015):

• Víctor Martínez, John García, Carlos Barrios, Fabrice Dupros, Hideo Aochi, and

Philippe Navaux. "Task-based Programming on Low-power Nvidia Jetson TK1

Manycore Architecture: Application to Earthquake Modelling". In: Latin Ameri-

can High Performance Computing Conference (CARLA 2015). Oral presentation.

August, 2015. Petrópolis, Brazil.

• John García, Víctor Martínez, Philippe Navaux, and Carlos Barrios. eGPU for

Monitoring Performance and Power Consumption on Multi-GPUs. In: XIII Work-

shop de Processamento Paralelo e Distribuído (WSPPD). Oral presentation. Au-

gust, 2015. Porto Alegre, Brazil. Available in: <http://inf.ufrgs.br/gppd/wsppd/

2015/papers/footer/WSPPD_2015_paper_13.pdf>

1.3 Outline

We divided this document into two parts. The First Part focuses on performance

improvement of stencil applications on multicore architectures, and is organized as fol-

https://ieeexplore.ieee.org/document/7379827/
https://ieeexplore.ieee.org/document/7379827/
http://inf.ufrgs.br/gppd/wsppd/2015/papers/footer/WSPPD_2015_paper_13.pdf
http://inf.ufrgs.br/gppd/wsppd/2015/papers/footer/WSPPD_2015_paper_13.pdf
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lows:

• Chapter 2 reviews the fundamental concepts involved in this work. We present the

architectural features of multicore systems and the common parallel programming

models;

• Chapter 3 describes the numerical background for the geophysics numerical ker-

nels, and we characterize the performance of classical implementations on multi-

core architectures;

• Chapter 4 focuses on the use of ML to predict and to optimize the performance of

geophysics numerical kernels on multicore and many-core architectures.

The Second Part is focused on performance improvement of a geophysics numer-

ical stencil on heterogeneous architectures, and corresponds with following chapters:

• Chapter 5 reviews the basic features of heterogeneous architectures and common

programming models;

• Chapter 6 presents the standard implementation of a seismic wave propagation sten-

cil on heterogeneous architectures;

• Chapter 7 details the task-based implementation and compare the performance ob-

tained with the classical CPU or GPU only versions.

Finally, we present the related works and the conclusion of this research in follow-

ing chapters:

• Chapter 8 presents the related works;

• Chapter 9 concludes this document, and presents the perspectives.



Part 1: Performance Optimization on Multicore Architectures
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2 MULTICORE ARCHITECTURES AND PROGRAMMING MODELS

We start the first part of this document with this chapter. We present a background

of the HPC platforms and the programming models. Traditional methods to improve the

performance of computing architectures were to increase the clock frequency, add high-

speed, on-chip cache. These methods worked until physical issues limited the processor

manufacturing. Nowadays, companies have turned to offer parallel machines, these archi-

tectures includes on processors several processing units to provide multiple executions of

instructions in the same cycle. The performance improvement is achieved by replicating

the processing units, adding additional processing instructions, improving communica-

tion between the cores, and the calculations are solved simultaneously, in parallel. In

this context, Moore’s law (BLAKE; DRESLINSKI; MUDGE, 2009) has also driven a

constant increase in parallelism and performance.

2.1 Parallelism

Parallelism is considered for several levels, in (BUCHTY et al., 2012) the authors

present six levels: (1) Instruction Level Parallelism (ILP) provides techniques to parallel

processing at runtime, (2) Data Parallelism (DP) exploited mainly by Single Instruction

Multiple Data (SIMD) processing, (3) Hardware-Supported Multithreading performs a

thread level parallelism (TLP) with simultaneous multithreading (SMT) or HyperThread-

ing (HT), when the inactive resources could be used to execute instructions from another

thread, (4) Core-Level Parallelism builds a homogeneous multicore processor with strong

coupling of cores, (5) Socket-Level Parallelism uses various processing devices (CPUs,

GPUs, FPGAs, etc.), and finally (6) Node Level Parallelism is provided with a set of nodes

connected by specific network topologies.

Performance optimization of parallel architectures is mainly related to adding

more and more processing units, and applications need to be adapted to a wide range

of platforms. Most common parallel architectures are the general-purpose multicore em-

ploying a low number of heavy-weight and highly complex cores, and multilevel cache

hierarchies (i.e., private L1 and L2 caches and a shared L3 cache), as the memory access

time depends on the memory location relative to the processor, each core is addressed to

access its own private local memory, these architectures evolved to Non-Uniform Memory

Access (NUMA) machines.
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2.2 Multicore architectures

Architectural features on parallel architectures can be improved in two ways: First,

multiple pipelines can be added to fetch and issue more instructions in parallel, creating a

superscalar processing element; second, by increasing the number of stages, thus reducing

the logic per stage. These improvements are successful for in-order processing elements.

On the other hand, out-of-order architecture gains as much single thread performance as

possible by dynamic scheduling to keep the pipelines full. This kind of optimization is

implemented on multicore machines.

Multicore architectures can be classified according to their attributes: the applica-

tion domain, the power/performance ratio, the class of processing elements, the memory

system, and accelerators/integrated peripherals (SHUKLA; MURTHY; CHANDE, 2015).

The application domain has two classes of processing: data processing dominated and

control dominated; digital signal processors (DSPs) are the example for data processing-

dominated applications and control-dominated applications include devices for file com-

pression, decompression, and network processing. Power/Performance relation is also an

important goal for multicore processors, power consumption has become a concern for

computers.

At the architectural level, the memory system was a rather simple component,

consisting of a few levels to feed the single processor with a data and instructions pri-

vate cache. In multicores, the caches are just one part of the memory system, the other

components include the consistency model, cache coherence support, and the intrachip

interconnect. A consistency model defines how the memory operations may be reordered

when the code is executing.

Caches have increased importance in multicore processors. They give a fast local

memory to work with processing elements. The amount of cache required depends on

the application. Bigger caches are better for performance but show diminishing returns as

caches sizes grow. The number of cache levels has been increasing as processing elements

get faster and become more numerous. The L1 cache is accessed on every instruction

cycle as part of the instruction pipeline and is broken into separate instruction and data

caches, and it is usually rather small, fast, and private to each processing element. The L2

cache can be private for each core or shared between cores. L3 is a shared cache for all

processing elements and reduced delays in multi-threaded environments.
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2.2.1 Manycore architectures

In this work, we consider the Xeon Phi processor as a special case of multicore

architectures. The Knights Landing (KNL) is the code name for the second-generation

Intel Xeon Phi family. It is a many-core architecture that delivers massive thread paral-

lelism, data parallelism, and memory bandwidth in a CPU form factor for high throughput

workloads. It is a standard, standalone processor that can boot an off-the-shelf operating

system.

The KNL brings two types of memory: multichannel DRAM (MCDRAM) and

double data rate (DDR) memory. MCDRAM is a high bandwidth and low capacity (up

to 16GB) memory comprising eight devices (2 GBytes each) integrated on-package and

connected to the KNL die via a proprietary on-package I/O. All eight MCDRAM de-

vices together provide an aggregate Stream triad benchmark bandwidth of more than 450

GBytes per second. KNL has six DDR4 channels running up to 2,400 MHz, with three

channels on each of two memory controllers, providing an aggregate bandwidth of more

than 90 GBps. Each channel can support at most one memory DIMM. The total DDR

memory capacity supported is up to 384 GBytes.

KNL has three memory modes and can be configured as Cache mode to work as a

third level cache; in Flat mode, both the MCDRAM memory and the DDR memory act as

regular memory and are mapped into the same system address space as a distinct NUMA

node (allocatable memory); and the Hybrid mode, the MCDRAM is partitioned such that

either a half or a quarter of the MCDRAM is used as cache, and the rest is used as flat

memory (SODANI et al., 2016).

2.3 Programming models on HPC architectures

According to the evolution of HPC architectures, the programming models also

have been developed to exploit the processing capability. They mainly involved the fol-

lowing aspects: how to send data in a network of processors and how to share and process

data from the main memory between several cores. Parallel programming models are usu-

ally based on three fields: message passing, shared memory, and data-parallel. The first

provides a high level of controlling architecture mapping and forces the programmer to

detailed partitioning and orchestration. The second has standardized programming envi-

ronments such as OpenMP for targeting compiler-exploitable TLP. The third, well-known
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examples are the Compute Unified Device Architecture (CUDA) and the Open Computing

Language (OpenCL), the first standard for kernel invocation on multiple heterogeneous

systems (NVIDIA, 2016; INC., 2018). CUDA and heterogeneous architectures will be

discussed in Chapter 5

2.3.1 Message Passing Interface

The Message Passing Interface (MPI) is the most common programming model

for parallel machines with distributed memory and has been used widely in parallel and

distributed computing systems. The basic content of MPI is point-to-point communication

between processes and collective communications.

The point-to-point message-passing routines form the core of the MPI standard,

the basic operations being send and receive. They allow messages to be sent between

pairs of processes, with message selectivity based explicitly on message tag and source

process, and implicitly on communication context. MPI defines a group as an ordered set

of process identifiers, each of which is assigned a numerical rank, between zero and the

size of the group. The identifier is used to send/receive data between processors.

Collective communications are provided where all processes in a group are in-

volved in a collective operation. A collective function is called, in a group synchroniza-

tion, when it is necessary; although this is not mandated and some implementations may

not synchronize. These collective communications allow processing activities as broad-

casting or data reducing. (CLARKE; GLENDINNING; HEMPEL, 1994)

2.3.2 Shared-Memory programming

In a shared-memory system, every processor has direct access to the memory of

every other processor, meaning each one can load or store any shared address. The pro-

grammer also can declare data variables as privates to the processor. With shared-memory,

the processes can exchange data more quickly than by MPI by using a designated area of

memory. The data can be made directly accessible to all processes without having to use

the communications (DAGUM; MENON, 1998).

Because of the ability to directly access memory throughout the system (with mini-

mum latency and no explicit address mapping), combined with fast shared-memory locks,
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OpenMP is used to implement the shared-memory applications. At its most elemental

level, OpenMP is a set of compiler directives and runtime library routines that extend

Fortran, C and C++ languages to express shared-memory parallelism. Program execu-

tion begins as a single process. This initial process executes serially and can set up the

problem in a standard sequential manner until encounter a parallel construct defined by

the directive #pragma omp parallel. The runtime forms a team of one or more

threads and creates the data environment for each team member.

Parallel looping

The shared-memory model in OpenMP makes possible to parallelize at loop level

without decomposing the data structures. The construct is #pragma omp for. The

inner iterations from loops are executed by several threads. A parallel construct by itself

creates a Single Program Multiple Data (SPMD) program, each thread redundantly exe-

cutes the same code on different areas from shared data. Usually, there are many more

iterations in a loop than the number of threads. Thus, a scheduling policy is necessary to

assign the loop iterations to the threads.

OpenMP scheduling can be defined in runtime by the OMP_SCHEDULE environ-

ment variable, this variable is a string formatted by two parameters: scheduling policy and

chunk size. Four different loop scheduling policies can be provided to OpenMP: Static

divide the loop into equal-sized chunks; Dynamic uses the internal work queue to give a

chunk-sized block of loop iterations to each thread; Guided is similar to dynamic, but the

chunk size starts off large and decreases to better handle load imbalance between itera-

tions; and Auto, when the decision regarding scheduling is delegated to the compiler. The

optional parameter (chunk), when specified, must be a positive integer and defines how

many loop iterations will be assigned to each thread at a time (INTEL, 2014).

Parallel tasking

Tasks in OpenMP are code blocks that the compiler wraps up and makes available

to be executed in parallel threads. The construct is #pragma omp task. Teams of

threads are created and tasks can be executed in arbitrary order, one per thread. They are

synchronized by the master thread using a barrier, to check when all tasks are completed.

When a thread encounters the task construct, it may execute the task immediately

or delay its execution. If delayed, the task is located in a pool of tasks associated with
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the current parallel region. All threads in a team will take tasks out of the pool and

execute them until the pool is empty. A thread that executes a task might be different

from the thread that originally encountered it. At some point, if the list of delayed tasks

is too long, the runtime may stop the task generating, and switches all threads to execute

already generated tasks

2.3.3 Impact of compilers

Compilers are very important in performance optimization. To handle the multi-

core architectures and to parallelize a program, the compiler must perform three tasks:

first, it analyzes the program to determine the dependencies between instructions; second,

it performs ILP optimizations which remove dependencies between instructions; third, it

reorders the instructions, a process known as code scheduling. For memory accesses, it is

also useful to know if two or more instructions read the same memory location (HWU et

al., 1995).

Optimization in compiling is a process where the control and data flows are an-

alyzed and may transform the order of instructions to satisfy performance requirements.

There are two common compilers for multicore architectures: the GNU Compiler Collec-

tion (GCC) is an integrated distribution of compilers for many programming languages

(C, C++, Objective-C, Objective-C++, Java, Fortran, Ada, and Go) (STALLMAN; COM-

MUNITY, 2017), and the Intel C++ Compiler (ICC) (INTEL, 2018) to compile and gen-

erate applications that can run on the Intel R© 64 and IA-32 architectures (available to

Linux, Windows an MacOS).

The compilers support several optimization levels to control compiling time, mem-

ory usage, speed and code scaling at runtime. But finding optimal performance is quite

difficult because to expand compiler options creates a large set. For example, to evaluate

the compiler optimizations (-O1, -O2, and -O3 flags) of six parallel codes (implemented

in sequential, Pthreads, C++11, OpenMP, Cilk Plus, and TBB) on two different multicore

architectures (Intel Xeon and AMD Opteron) used a total of 240 performance combina-

tions (MACHADO et al., 2017).

Additionally to OpenMP, there are some approaches to exploit the multicore ar-

chitectures based on compiler directives. First, OpenCL is an open standard that provides

a common language, programming interfaces, and hardware abstraction for developing

applications in HPC environments. The environment consists of a host CPU and any at-
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tached accelerator device. OpenCL offers classic compilation and linking features, and

it also supports runtime compilation that allows the execution of kernels on devices un-

available when applications were developed. Runtime compilation in OpenCL allows an

application to be independent of instruction sets of devices.

Second, the OpenACC approach is also represented by a set of compiler direc-

tives. OpenACC is a nonprofit corporation founded by four companies: CAPS Enter-

prise, CRAY Inc., the Portland Group Inc., and NVIDIA. Their objective was to create

a cross-platform API that would easily allow acceleration of applications on manycore

and multicore processors using directives. OpenACC API-enabled compilers and run-

times hide concerns about the initialization of accelerators, or data and program transfer

between the host and the accelerator, inside the programming model. This allows the

programmer to provide additional information to the compilers, including locality of data

to an accelerator and mapping of loops onto an accelerator (CANTIELLO; MARTINO;

MOSCATO, 2014).

Source-to-source transformation

Recent alternatives to support compilers and model programming for multicore

architectures are the source-to-source (S2S) transformers. They convert a program source

written in a given language to a new version in the same language or in a different one,

and are conceived mainly with one or more of the following objectives: to transform a

sequential version of code into a parallel version for a target architecture, to transform

a parallel source code written with a particular paradigm (i.e., OpenMP) to a different

language (i.e., OpenCL), to apply source code optimization on regions of code (i.e., loop-

nests) in order to take advantage of hardware features or to improve data locality.

The process of transformation of code generally is not a priori fixed, but it can be

driven in several ways: by users who can annotate code regions they want to transform,

by analyzing dependences on data inside loop nests, or by the size of the data involved.

There are systems that produce multiple versions of the translated code with software

probes that can select among them at runtime, depending on the architecture performance,

these are known as auto-tuning systems. One example of this is the BOAST framework

(CRONSIOE; VIDEAU; MARANGOZOVA-MARTIN, 2013)



31

2.4 Performance evaluation

To exploit the parallelism, HPC applications must be programmed to consider-

ably reduce the overhead between the processors. Because of the high cost involved in

hardware implementation or software simulation of HPC architectures, a performance

evaluation needs to be carried out through analytic techniques. A mathematical model

to analyze the performance makes it possible to study the efficiency in terms of various

design parameters used as inputs to a performance model. And it is necessary to take a

general approach, independent of the application (BHUYAN; YANG; AGRAWAL, 1989).

In computer systems, performance evaluation is a fundamental phase. The most

direct method of performance evaluation is by the executing applications, collecting the

output, and observing the system performance by analyzing the output. Another method

of performance evaluation is when the architecture is not available, this method helps

to predict the requirements at previous stages of application execution (KUMAR; BAL-

AMURUGAN, 2017). Furthermore, characterizing and predicting the performance of

applications at runtime on multicore architectures help to design best performing config-

urations and to optimize the execution of applications on new systems. To build linear

models to predict the performance in different chips is useful to characterize the perfor-

mance of common HPC applications (ROSALES et al., 2017).

2.4.1 Hardware performance counters

Knowing the status on multicore architectures, when they are running the applica-

tions, allows to improve the performance. In this sense, the hardware performance coun-

ters exist as a small set of registers that counts the occurrences of specific signals related

to the processor functions (cache misses, cycles, branch instructions, FLOPS, etc.). Mon-

itoring these events facilitates correlation between the structure of code and the efficiency

of that code to the underlying architecture.

In this work, we use a common library to access the registers from hardware coun-

ters called the Performance Application Programming Interface (PAPI). It provides two

interfaces to the underlying counter hardware: a high-level interface for the acquisition

of measurements, it provides the ability to start, stop and read the counters for a spec-

ified list of events, and a low-level interface that deals with hardware events in groups

called EventSets. An EventSet consists of countable events that the user can count as
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part of a group, it can reflect how the counters are most frequently used, such as taking

simultaneous measurements of different hardware events (MUCCI et al., 1999).

2.4.2 Roofline model

The Roofline model (WILLIAMS; WATERMAN; PATTERSON, 2009) is a per-

formance model used for kernel computations and combines together the floating-point

performance, the operational intensity, and memory performance in a 2D graph. The peak

floating-point performance can be found through hardware specifications or microbench-

marks. The operational intensity means the operations per byte of DRAM traffic, defining

total bytes accessed as those bytes that go to the main memory after they have been filtered

by the cache hierarchy.

The graph is on a log-log scale. The y-axis is the floating-point performance.

The x-axis is the operational intensity. The Roofline model provides several upper bound

to performance that gives this model its name, the horizontal lines represent the paral-

lel optimizations (TLP, ILP, SIMD, and floating-point balance) and diagonal lines rep-

resent the peak memory bandwidth and related optimizations (restructure loops for unit

stride accesses, memory affinity, and software prefetching). An example of the Roofline

model for an Intel Xeon multicore architecture is illustrated in Figure 2.1. The red ver-

tical dashed lines indicate the operational intensity for different kernels (7-point stencil,

Lattice-Boltzmann MagnetoHydro-Dynamics, and 3D the Fast Fourier Transform), the X

marks the performance achieved for each kernel. As we can see, the different kind of

applications and the parallelism level achieve different performance.

Figure 2.1: Example of the Roofline model for an Intel Xeon (Clovertown) multicore
architecture.
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not those systems are parallel. 
One advantage of using these high-

er-level descriptions of programs is 
that we are not tied to code that might 
have been originally written to opti-
mize an old computer to evaluate fu-
ture systems. Another advantage of the 
restricted number is that efficiency-lev-
el programmers can create autotuners 

for each kernel that would search the 
alternatives to produce the best code 
for that multicore computer, includ-
ing extensive cache optimizations.13 

Table 2 lists the four kernels from 
among the Seven Dwarfs we use to dem-
onstrate the Roofline model on the four 
multicore computers listed in Table 1; 
the autotuners discussed in this sec-

tion are from three sources:12, 28, 29  

For these kernels, there is sufficient 
parallelism to utilize all the cores and 
threads and keep them load balanced; 
see online Appendix A.2 for how to han-
dle cases when load is not balanced. 

Roofline models and results. Figure 
3 shows the Roofline models for Xeon, 
X4, and Cell. The pink vertical dashed 
lines indicate the operational inten-
sity and the red X marks performance 
achieved for that particular kernel. 
However, achieving balance is difficult 
for the others. Hence, each computer 
in Figure 3 has two graphs: the left one 
has multiply-add balance as the top 
ceiling and is used for Lattice-Boltz-
mann Magnetohydrodynamics (LB-
MHD), Stencil, and 3D FFT; the right 
one has multiply-add as the bottom 
ceiling and is used for SpMV. Since the 
T2+ lacks a fused multiply-add instruc-
tion nor can it simultaneously issue 
multiplies and adds, Figure 4 shows a 
single roofline for the four kernels on 
the T2+ without the multiply-add bal-
ance ceiling. 

The Intel Xeon has the highest peak 
double-precision performance of the 
four multicores. However, the Roofline 
model in Figure 3a shows this level of 
performance can be achieved only with 
operational intensities of at least 6.7 
Flops/Byte; in other words Clovertown 
requires 55 floating-point operations 
for every double-precision operand 
(8B) going to DRAM to achieve peak 
performance. This high ratio is due in 
part to the limitation of the front-side 
bus, which also carries the coherency 
traffic that can consume up to half the 
bus bandwidth. Intel includes a snoop 
filter to prevent unnecessary coheren-
cy traffic on the bus. If the working set 
is small enough for the hardware to fil-
ter, the snoop filter nearly doubles the 
delivered memory bandwidth. 

The Opteron X4 has a memory 
controller on chip, its own path to 
667MHz DDR2 DRAM, and separate 
paths for coherency. Figure 3 shows 
that the ridge point in the Roofline 
model is to the left of the Xeon, at an 
operational intensity of 4.4 Flops/Byte. 
The Sun T2+ has the highest memory 
bandwidth so the ridge point is an ex-
ceptionally low operational intensity 
of just 0.33 Flops/Byte. It keeps mul-
tiple memory transfers in flight by us-
ing many threads. The IBM Cell ridge 

Figure 3a–3c: Roofline model for Intel Xeon, AMD Opteron X4, and IBM Cell. 
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2.5 Target machines

Characteristics of multicore architectures used in this research are described in Ta-

ble 2.1. Although these machines are quite different in terms of the number of cores and

memory size, the processor architecture is similar: a multicore chip with a memory hier-

archy of several levels of cache. They are located at BRGM (France) and at Informatics

Institute of UFRGS (Brazil).

Table 2.1: Configurations of multicore machines.
Hostname Viking (UFRGS) Cryo (BRGM) Server 185 (BRGM) Turing (UFRGS) KNL (UFRGS)

Processor Xeon E5530 Xeon E5-2650 Xeon E5-4650 Xeon X7550 Xeon Phi 7520

Clock (GHz) 2.40 2.00 2.70 2.00 1.40

Physical cores 4 8 8 8 68

Sockets 2 2 4 4 1

Threads 16 16 32 64 272

Cache (MB) L3 (8) L3 (20) L3 (20) L3 (18) L2 (34)

Compiler gcc 4.6.4 gcc 5.4.0 gcc 5.4.0 gcc 4.6.4 icc 18.0.1

Topology of Viking node is presented in Figure 2.2 and is a typical multicore ma-

chine. Each core runs two threads simultaneously (TLP) by the HyperThreading tech-

nology, and the memory hierarchy is easily exposed: the data and instruction L1 private

caches for each core, it continues with an L2 private cache, also for each core, and the last

level cache (L3) is a shared memory for all cores in the same socket.

Figure 2.2: Architeture of Viking multicore machine presented in Table 2.1.
Machine (24GB total)
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2.6 Concluding remarks

In this chapter we presented the basis of common multicore architectures and how

they are evolved in complex systems with many components, and how there is a constant

increase in parallelism. In this context, programming models have to take into account

the particular characteristics of different architectures to improve the performance. Thus,

programming of hardware devices and scalability of software need to be optimized to

reach the theoretically available performance.

With the rising of multicore architectures for several application domains, it is

important to understand the common characteristics among all platforms (processing ele-

ments, memory hierarchy, and power/performance rates). However, as long as there is no

convergence towards unified programming approaches applicable to a variety of different

architectures, efforts into general solutions are a challenge. The solution for performance

improvement is frequently one particular application for one detailed architecture. More-

over, although current compilers can deal with parallelism, freeing the programmer from

the task of parallelizing and orchestrating is quite difficult to obtain the optimal process-

ing, much of the responsibility is still put on the programmer.

Trending of current efforts may be focused on multicore aware algorithms, mul-

ticore enabled libraries, and multicore capable tools. The goal is not to design isolated

solutions for particular configurations but to develop methodologies and concepts that

apply to a wide range of problem classes and architectures. It is important for multi-

core systems to be able to satisfy the different computing requirements of a large fraction

of users with multicore resources. To predict and to improve the performance on these

systems depend on the underling architecture.

The research is necessary for exploring new models of performance optimization

that are well adapted to the prerequisites of hardware and programming models. The

approach of hardware aware computing is trying to find a balance between programmer

capabilities from best performing implementations and the compiler based optimizations.

Currently, restructuring of algorithms is needed to optimize the performance and to mini-

mize the execution time.
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3 NUMERICAL BACKGROUND: GEOPHYSICAL KERNELS ON MULTICORE

PLATFORMS

In this chapter, we present the geophysics numerical models. Because of its sim-

plicity, the Finite-Difference Method (FDM) is widely used to design the geophysics mod-

els, when discretizing Partial Differential Equations (PDE). From the numerical analysis

point of view, the FDM computational procedure consists in using the neighboring points

in horizontal, vertical or diagonal directions to calculate the current point.

3.1 Stencil applications

In the case of a 3D Cartesian grid, the computational procedure consists in using

the neighboring points in the north-south, east-west and forward-backward directions to

evaluate the current grid point. The stencil sweep can be expressed as iterative time do-

main (represented by the first loop controlled by n_times variable), and a triply nested

parallel loop presented in Algorithm 1. The algorithm then moves to the next point ap-

plying the same stencil computation until the entire spatial grid have been traversed, and

the time domain is completed. The number of points used in each direction depends on

the order of the approximation and is of great importance for the overall performance.

Algorithm 1: Pseudocode for stencil algorithms
1: for t = 1 to n_times do

2: compute in parallel

3: for i = 1 to SIZE_X_direction do

4: for j = 1 to SIZE_Y _direction do

5: for k = 1 to SIZE_Z_direction do

6: compute stencil(3D tile)

7: end for

8: end for

9: end for

10: end for
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3.1.1 7-point Jacobi stencil

The 7-point Jacobi stencil is a reference example of numerical kernel used in vari-

ous context in order to evaluate the impact of advanced reformulation or the impact of the

underlying architecture. This numerical kernel can be described as a proxy of complex

stencils like those corresponding to geophysical applications. A review can be found in

(DATTA et al., 2010). This stencil model also corresponds to the standard discretization

of the elliptic 3D Heat equation 3.1.

Bi,j,k =αAi,j,k + β(Ai−1,j,k + Ai,j−1,k + Ai,j,k−1 + Ai+1,j,k + Ai,j+1,k + Ai,j,k+1) (3.1)

Representation of stencil size is presented in Figure 3.1. Calculation of this nu-

merical equation needs 7 values, one from current point plus 6 from neighbor points (one

previous and one next on 3D axes).

Figure 3.1: Size of 7-point Jacobi stencil and its neighbor points.

xy
z

Source: (NGUYEN et al., 2010)

A standard metric available to characterize a stencil kernel is the Arithmetic In-

tensity (AI) that can be defined as the ratio between the floating point operations and the

memory transfers. In the case of the Seven-point Jacobi kernel, the lower-bound of the

arithmetic intensity is 0.18. A synthetic pseudo-code of this kernel could be found in

Algorithm 2.
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Algorithm 2: Pseudo-code for the Seven-point Jacobi stencil.
for i = 1 to Nx do

for j = 1 to Ny do

for k = 1 to Nz do

Xn+1(i, j, k) = Xn(i, j, k) +Xn(i, j, k + 1) +Xn(i, j, k − 1)

+Xn(i, j + 1, k) +Xn(i, j − 1, k)

+Xn(i+ 1, j, k) +Xn(i− 1, j, k)

end for

end for

end for

3.1.2 Seismic wave propagation stencil

Evaluation of damages occurred during strong ground motion is critical for urban

planning. The seismic wave equation waves radiated from an earthquake are often simu-

lated under the assumption of an elastic medium although the waves attenuate due to some

anelasticity. If it considers a 3D isotropic elastic medium, the seismic wave equation is

given by equation 3.2:

ρ
∂vi
∂t

=
∂σij
∂j

+ Fi (3.2)

The discretization of previous equation using a finite-difference method gives the

following system of equations:


ρ ∂
∂t
vx = ∂

∂x
σxx + ∂

∂y
σxy + ∂

∂z
σxz + fx

ρ ∂
∂t
vy = ∂

∂x
σyx + ∂

∂y
σyy + ∂

∂z
σyz + fy

ρ ∂
∂t
vz = ∂

∂x
σzx + ∂

∂y
σzy + ∂

∂z
σzz + fz

(3.3)

Additionally, the constitutive relation in the case of an isotropic medium is pre-

sented in equation 3.4.

∂σij
∂t

= λδij

(
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

)
+ µ

(
∂vi
∂j

+
∂vj
∂i

)
(3.4)
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)
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)
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∂
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σxy = µ

(
∂
∂y
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)
∂
∂t
σxz = µ

(
∂
∂z
vx + ∂

∂x
vz
)

∂
∂t
σyz = µ

(
∂
∂z
vy + ∂

∂y
vz

)
(3.5)

In the previous equations 3.3 and 3.5, v and σ represent the velocity and the stress

field respectively and f denotes a known external source force. The medium is character-

ized by the elastic (Lamé) parameters λ and µ and ρ is the density. A time derivative is

denoted by ∂
∂t

and a spatial derivative with respect to the i-th direction is represented by
∂
∂i

. The Kronecker symbol δij is equal to 1 if i = j and zero otherwise. Exponents i, j, k

indicate the spatial direction with σijk = σ(i∆s, j∆s, k∆s), ∆s corresponds to the space

step and ∆t to the time step.

Due to its simplicity, the finite-difference method is widely used to compute the

propagation of seismic waves. The numerical kernel under study relies on the classical

4-th order in space and second-order in time approximation (VIRIEUX, 1986; MOCZO;

ROBERTSSON; EISNER, 2007). Considering the classical 4-th order in space and second-

order in time approximation, the stencil applied for the computation of the velocity com-

ponent in the x-direction is given by equation 3.6. The same numerical scheme is used to

compute the stress components.

v
(l+ 1

2
)jk

x

(
l +

1

2

)
= v

(i+ 1
2)jk

x

(
i− 1

2

)
+ a1F

(i+ 1
2)jk

x

+ a2

[
σ
(i+1)jk
xx −σijk

xx

∆x
+

σ
(i+1

2)(j+1
2)k

xy −σ
(i+1

2)(j− 1
2)k

xy

∆y
+ σ

(i+1
2)j(k+1

2)
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2)j(k− 1

2)
xz

∆z

]

− a3

[
σ
(i+2)jk
xx −σ(i−1)jk
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∆x
+

σ
(i+1

2)(j+3
2)k

xy −σ
(i+1

2)(j− 3
2)k

xy

∆y
+ σ

(i+1
2)j(k+3

2)
xz −σ

(i+1
2)j(k− 3

2)
xz

∆z

]
(3.6)

Figure 3.2 illustrates the size of the seismic stencil. In this case, the stencil needs

13 values, one from current point plus 12 from neighbor points (2 previous and 2 next on

3D axes).
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Figure 3.2: Size of seismic stencil to calculate velocity and stress components.

Source: (MICHÉA; KOMATITSCH, 2010)

The governing equations associated with the three-dimensional modeling of seis-

mic wave propagation in elastic media are implemented by finite-difference discretization

for x86 cores and for GPU platforms corresponding to Ondes3D application developed

by the French Geological Survey (BRGM). Algorithm 3 provides an overview of the com-

putational flowchart. The stress and velocity components are evaluated following an odd-

even dependency (i.e.the computation of the stress field reuses the results of the update of

the velocity field).

Algorithm 3: Pseudo-code of the stress component (σxx) in the seismic

wave kernel.
for i = 1 to Nx do

for j = 1 to Ny do

for k = 1 to Nz do

σn+1
xx (i, j, k) = σnxx(i, j, k)

+ A1[a1(V n
x (i+ 1

2
, j, k)− V n

x (i− 1
2
, j, k))

+ a2(V n
y (i, j + 1

2
, k)− V n

y (i, j − 1
2
, k))

+ a3(V n
z (i, j, k + 1

2
)− V n

z (i, j, k − 1
2
))]

+B1[a1(V n
x (i+ 3

2
, j, k)− V n

x (i− 3
2
, j, k))

+ a2(V n
y (i, j + 3

2
, k)− V n

y (i, j − 3
2
, k))

+ a3(V n
z (i, j, k + 3

2
)− V n

z (i, j, k − 3
2
))]

end for

end for

end for
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3.1.3 Acoustic wave propagation stencil

Acoustic wave propagation approximation is the current backbone for seismic

imaging tools. It has been extensively applied for imaging potential oil and gas reser-

voirs beneath salt domes. The problem to simulate the propagation of a single wavelet

over time is solved by the isotropic acoustic wave propagation (Equation 3.7), and the

isotropic acoustic wave propagation with variable density (Equation 3.8) under Dirich-

let boundary conditions over a finite three-dimensional rectangular domain, prescribing

p = 0 to all boundaries, where p(x, y, z, t) is the acoustic pressure, V (x, y, z) is the prop-

agation speed and ρ(x, y, z) is the media density.

1

V 2
.
∂2p

∂t2
= ∇2p (3.7)

1

V 2
.
∂2p

∂t2
= ∇2p− ∇ρ

ρ
.∇p (3.8)

The Laplace Operator is discretized by a 12th order finite differences approxima-

tion on each spatial dimension. The derivatives are approximated by a 2nd finite differ-

ences operator. Propagation speed depends on variable density, the acoustic pressure,

and the media density. Numerical solution is detailed in (VILELA, 2017). Figure 3.3

illustrates the size of the acoustic wave propagation stencil, it needs 19 values, one from

current point plus 18 from neighbor points (3 previous and 3 next on 3D axes)

Figure 3.3: Size of acoustic wave propagation stencil and its neighbor points.
Pzz

Pxx

Pyy

Source: (VILELA, 2017)

The numerical method is solved by Algorithm 4; and Petrobras, the leading Brazil-

ian oil company, provides a standalone mini-app of the numerical method. The code was

written in standard C and leverage from OpenMP directives for shared-memory paral-

lelism. But Indeed, the parallelization strategy relies on the decomposition of the three-

dimensional domain based on OpenMP loop features.
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Algorithm 4: Pseudo-code of the acousitc wave propagation kernel.
for i = 1 to Nx do

for j = 1 to Ny do

for k = 1 to Nz do

Ci,j,k = a0Ci,j,k

+ a1(Ci−1,j,k + Ci+1,j,k + Ci,j−1,k + Ci,j+1,k + Ci,j,k−1 + Ci,j,k+1)

+ a2(Ci−2,j,k + Ci+2,j,k + Ci,j−2,k + Ci,j+2,k, + Ci,j,k−2 + Ci,j,k+2)

+ a3(Ci−3,j,k + Ci+3,j,k + Ci,j−3,k + Ci,j+3,k + Ci,j,k−3 + Ci,j,k+3)

end for

end for

end for

3.2 Standard implementations of numerical stencil

In this section, we present the implementation of stencil algorithms for parallel

platforms, and we will analyze the performance on common HPC architectures. Classical

implementations on multicore architecture are related to how the threads solve each point

on the space and time domain.

3.2.1 Naïve

On shared-memory architectures, a popular way to extract the parallelism for such

applications is to exploit the triple nested loops coming from the spatial dimensions of the

problem under study. This strategy allows straightforward benefits of OpenMP directives.

Additional optimizations should be considered in order to limit the impact of NUMA

architectures (DUPROS et al., 2008).

3.2.2 Space Tiling

The second algorithm uses the cache blocking technique (DUPROS; DO; AOCHI,

2013). The standard simulation algorithm typically scans an array spanning several times

the size of the cache using each retrieved grid point only for a few operations. There-
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fore, the cost to bring the needed data from the main memory to the fast local cache

memories accounts for an important share of the total simulation time, especially for a

three-dimensional problem. In this case, the main idea is to exploit the inherent data

reuse available in the triple nested loop of the kernel by ensuring that data remains in

cache across multiple uses, this is achieved by creating blocks to improve data locality.

Dependency between blocks is exploited to implement a space-time decomposition.

The advantage of space tiling algorithm is to improve the computational intensity

by keeping a relatively small amount of data in cache memory and by performing many

more floating-point operations on them. Figure 3.4 shows the solution space of each

algorithm. Each color represents a thread when solving one point or a set of points.

Figure 3.4: Representation of solution by thread, for naive and space tiling algorithms.

(a) Naive: one point by thread (b) Space tiling: a group of points by
thread.

Source: The Author

3.3 Performance charaterization of numerical stencils

In order to understand the performance of numerical kernels, we used two multi-

core architectures to run a set of experiments for the 7-point Jacobi stencil by varying the

available runtime parameters in OpenMP. The machines are NUMA platforms. Configu-

rations of testbed (nodes Viking and Turing) have been listed in Table 2.1 from Chapter

2. A configuration runtime input vector was created and its corresponding performance

output vector was obtained, for each stencil experiment. Parameters for input vector are

listed in Table 3.1. Common measures to performance characterization are executing time

and speedup, defined as a ratio of the time of a given program on a single core processor

over the performance obtained in a multicore architecture (KRISHNAN; VEERAVALLI,

2014).
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Table 3.1: Measures for the parameters of input vector.

Total configurations

Viking Turing

Thread counting 3 6

Problem size 3 3

Parallel looping 2 2

Scheduling 3 3

Chunk size 4 4

Algorithm 2 2

Total 432 864

The input parameters are related to code optimization and execution runtime. The

first parameter is the thread counting, and it is determined by the OMP_NUM_THREADS

variable. Second, the problem size determines the memory size and the total of compu-

tations, we used three sizes labeled as small, medium, and large. Next, related to code

optimization, we used one parameter for parallel looping, we implemented the #pragma

omp parallel for directive to parallelize the triple nested loops with collapse

option, and the #pragma omp task directive, in the second forwithout collapse.

Later, one parameter for scheduling policy used by OpenMP (Static, Guided and Dy-

namic) and one parameter for the chunk size configured by the OMP_SCHEDULE variable.

Finally, we used the two standard implementations (Naive and Space Tiling) described in

section 3.2. The performance vector is determined with following values:

• Time, which corresponds to the total execution time to solve the stencil.

• Speedup, it was calculated as the ratio between the execution time on the multicore

machine and the single core execution time on Turing machine as the reference

value.

• GFLOPS, it was calculated from the execution time, the 3D domain size and the

stencil size.

• Total cache misses L3, it was obtained through PAPI_L3_TCM event.

• Total cache access L3, it was obtained through PAPI_L3_TCA event.

Each one of experiments was executed 15 times to compute the average, and the
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Shapiro-Wilk test to time measurement was performed to confirm normality, and we ob-

tained that all data were normally distributed.

3.3.1 Scalability

Related to the scalability of stencil applications, we measured the execution time

for different values of threads on each machine. The results are presented in Figure 3.5

and show an expected behavior: when the number of threads (on the same machine)

is increased the performance also increases. But, the performance improvement is not

optimal. The speedup is under-linear and not correspondent with the number of threads.

Figure 3.5: Impact of performance measures by number of threads.
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Problem size

To confirm the assumption that runtime parameters affect the performance, we also

analyzed three different values for the 3D problem size (it represents small, medium and

large memory usage), because this parameter is associated with memory consumption.

The maximum number of threads was considered on each node. Figure 3.6 illustrates the

performance by 3D Cartesian grid size.

We noted when the small and the medium problems are executed on the simplest

machine the speedup is better. On the contrary when the large problem is executed on

the more complex machine (Turing) speedup is better for both the problem size and the

multicore architecture, as it has be shown in Figure 3.6b.
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Figure 3.6: Impact of performance measures by problem size.
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Parallel loop vs tasking

The 3D stencil is calculated by three for loops, as explained in section 3.1. Then

we compare two possible parallel implementations relevant to code optimization: i) by

collapsing all for loops and performed the parallelization with #pragma omp for

collapse(3); and (ii) by using #pragma omp task in the second for to create

parallel tasks and a taskwait directive at the end of this for. Figure 3.7 presents the

results for each node with the maximum number of available threads in each platform. As

it can be observed, the parallel for implementation achieved better performance

than tasking. The main reason is that it creates a lot of parallel tasks and each thread has

to solve a set of task and to wait and to synchronize them with each other as a result of

taskwait clause.

Figure 3.7: Impact of performance measures by code optimization.
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To confirm this fact, the execution was traced with pajeNG1 and it was found

that task implementation takes more time to synchronize all the threads than for

collapse implementation.

Figure 3.8: Traces of one-time iteration for 7-point stencil execution.
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1https://github.com/schnorr/pajeng
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Figure 3.8 shows the traces of threads (y axis) in the time domain (x axis), at first

iteration represented by the n_times variable in Algorithm 1. The traces measured in

a execution of for implementation show that OMP parallel for distribute all the

computations between the available threads, and calculate the nested loops in a parallel

way. To calculate the next iteration in the time domain, the threads have to wait in the

OMP implicit barrier to complete the 3D space domain. In correspondent, the

traces measured in task implementation show a different behavior. The threads solve

the computations by segmented calculations assigned by OMP task. Some threads stay

all time in a OMP Task wait process, or when threads complete the computations they

enter in this waiting process. Later, when the time iteration finishes, the threads have to

wait in the OMP implicit barrier. We can see that threads in task take more

time in waiting than for implementation. We also noted that one-time iteration for all

the 3D space is solved near to 750 seconds, in the for implementation; at this time, the

task implementation is just starting the threads synchronization.

Scheduling policies

Loop scheduling on OpenMP is defined by two parameters of OMP_SCHEDULE

variable: policy and chunk size (INTEL, 2016). Analyzing how these parameters influ-

ence the overall performance is important to reach optimal performance in complex archi-

tectures. As it was mentioned in section 2.3.2, the first parameter of loop scheduling is the

policy. We used the available strategies in OpenMP: Dynamic, Guided and Static. Figure

3.9 presents the impact of scheduling policies on the Turing machine. In consequence,

we found that policy does improve the performance of more complex platforms.
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Figure 3.9: Impact of performance measures by scheduling policy.
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Chunk size

The second parameter in the OMP_SCHEDULE variable is the chunk size, it de-

fines the loop iterations to be assigned to each thread. Our minimum value correspond to

the default value for Static scheduling, and the maximum value of chunk size correspond

to the size of the 3D Cartesian grid. In Figure 3.10, we can observe two aspects: because

the standard deviation of time in the experiments, we can say that chunk size is not signif-

icant. But, actually, a small chunk size has more overhead because there are more threads

solving the stencil. In the same context, if we have a chunk size quite similar to problem

size the stencil is solved by few threads. The performance would be affected by these

conditions. In terms of scheduling policy, we can see that Dynamic is more affected if the

chunk is undersized.
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Figure 3.10: Impact of performance measures by scheduling and chunk size on Turing
machine.
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Algorithms

Then, we analyzed the impact of algorithm implementations on the performance.

Each algorithm presents a different performance for each machine. Results are presented

in Figure 3.11, it shows that best performance on node Viking is achieved with Space

tiling algorithm whereas on node Turing the naive algorithm achieves the best perfor-

mance.

Figure 3.11: Impact of performance measures by stencil algorithm.
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Performance fitting and cache misses predictors

In this section, we present a previous statistical analysis and fitting of data. This

would be useful to construct predictors for some parameters. Performance and cache

misses are compared for all experiments. As is noticed in Figure 3.12, if we compare L3

cache misses with execution time, some input parameters tend to create separable groups

in the graphical representation. Actually, this condition is clearly presented in Figures

3.12a, and 3.12d; instead, in Figures 3.12b and 3.12c the separation by their values is

quite difficult.

Figure 3.12: Performance vs cache misses by input parameters in Turing machine
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Linear fitting of L3 cache

Naive algorithm offers poor cache reuse. Thus, understanding and predicting

cache behavior would help to optimize the algorithm performance. For each machine
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and according to the problem size we found a linear correlation between cache misses

and cache access. The correlation coefficient (Table 3.2) was calculated and confirmed a

linear dependency between the number of L3 cache misses and cache accesses.

Table 3.2: Correlation coefficient of cache access vs cache misses

Problem size Small Medium Large

Viking 0.9984507 0.9997246 0.9999551

Turing 0.9716369 0.9995467 0.9969517

Therefore a linear fitting by least squares was built to predict L3 cache behavior.

Figure 3.13 shows this adjust.

Figure 3.13: Linear fitting of cache memory by problem size and machine
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We used the Root Mean Squared Error (RMSE), the Standard Deviation (SD),

and the Coefficient of Determination (R-SQUARE) to describe the accuracy of our fitting

model. Results are calculated in Table 3.3. If we compare RMSE and SD we find that

error is quite lower than the standard deviation, thus it shows that good predictions can
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be made by linear fitting. To confirm this fact, the R-SQUARE presents accuracy of

prediction near to 99%; then our fitting model of cache memory helps to predict the cache

access.

Table 3.3: RMSE, SD and R-SQUARE of cache fitting
RMSE SD R-SQUARE

Problem size Small Medium Large Small Medium Large Small Medium Large

Viking 96207.09 1322882 58487888 1761918 57443329 6291905304 0.9968 0.9994 0.9999

Turing 222768 979262.6 73942621 950870.9 32830986 956618380 0.9407 0.9990 0.9938

Exponential fitting of performance

As performance (Gflops) depends on the execution time, the idea in this section is

to build a predictor for this parameter. We used the spline fitting because an exponential

dependency was found. Figure 3.14 illustrates the fitting for the naïve and space tiling

algorithm.

Figure 3.14: Exponential fitting for problem size
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Table 3.4 presents RMSE, SD and R-SQUARE for exponential fitting. In the same

way that linear fitting, measures of statistical estimators show that a good performance

predictor for Gflops and execution time was found.

Table 3.4: RMSE, SD and R-SQUARE of exponential fitting
RMSE SD R-SQUARE

Problem size Small Medium Large Small Medium Large Small Medium Large

Naive 0.0004 0.0032 0.0014 1.1797 2.9209 3.5935 0.9999 0.9999 0.9999

Space tiling 0.0004 0.0002 0.0003 0.5369 0.8307 0.7338 0.9999 0.9999 0.9999

3.4 Concluding remarks

In this chapter, we presented the stencil applications, the basis of geophysics nu-

merical kernels, and their common implementations. Shared-memory programming is

the most common model for this kind of applications. We studied the influence of sev-

eral input configurations for runtime (problem size, threads, looping, scheduling policy,

chunk size and algorithm implementation) to the performance on multicore architectures.

It was observed that two known algorithms (naive and space tiling) may present different

performance in several scenarios.

For more complex architectures, input parameters like chunk size and scheduling

algorithms play an important role and can contribute to achieving a peak of performance

when threads do not perform intensive data communications (MARTINEZ et al., 2016).

It was possible to tune the stencil execution until to reach a peak of performance, with an

acceleration up to 23 and 34 times (for naive and space tiling algorithm respectively) com-

pared to the sequential solution. Moreover, we also observed that tasks looping achieves

better performance when the algorithm does not use cache intensively (space-time tiling)

on architectures with few cores.

Finally, some of these parameters can be predicted by simple and common fitting.

For example, the number of cache misses can be approximated by linear fitting depending

on the number of cache access; whereas the performance in Gflops could be predicted by

spline exponential fitting of execution time. The accuracy of statistical estimators shows

a good precision and this prediction could help to make performance predictors more

complex.
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4 MACHINE LEARNING STRATEGY FOR PERFORMANCE IMPROVEMENT

ON MULTICORE ARCHITECTURES

In this Chapter, a model to optimize the input configuration set at runtime to pre-

dict and to improve the performance of geophysics numerical kernels on multicore archi-

tectures is presented. First, we introduce how to improve the performance based on new

approaches; second, we propose the general model for performance prediction; third, we

present an implementation of the model applied on two multicore architectures and two

different algorithm implementations; fourth, the characteristics of model for manycore

architectures are described and implemented to three stencil applications. Finally, we

discuss how this model could be used to improve the performance.

4.1 Performance improvement by Machine Learning models

The term Machine Learning (ML) was coined by (SAMUEL, 1959), the main

idea was to program computers to learn from experience using the game of checkers

through spanning the possible solutions and to select the better way by scoring the results.

Applications of ML algorithms have been developed for various fields: pattern and object

recognition, text categorization, time-series prediction, bioinformatics, etc.

The model of learning proposed by ML algorithms can be described by three com-

ponents: 1) a generator of random vector x; 2) a supervisor that returns an output vector

y for each input vector x, according to a conditional function P (y|x); and 3) a learning

machine capable of implementing a set of functions f(x, α). The problem of learning is

that of choosing from a set of functions f(x, α) the one which predicts the supervisors’

response in the best possible way (VAPNIK, 1999).

ML algorithms can be classified by the following two tasks: 1) supervised al-

gorithms in which the input vector is identified to a predefined output, 2) unsupervised

algorithms (e.g., clustering) in which the input vector is assigned to an unknown class or

response. The pattern recognition problem is posed as a classification or categorization

task, where the classes are either defined by the system designer (in supervised classifi-

cation) or are learned based on the similarity of patterns (in unsupervised classification)

(JAIN; DUIN; MAO, 2000; XU; WUNSCH, 2005).

Kernel-based algorithms are common ML methods. They are used for both classi-
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fication and regression. The task of classification is to find a rule, which, based on external

observations, assigns an object to one of several classes, it is made by a hyperplane cre-

ated by one function. When the kernel function approximates another unknown function

we obtain the solution for regression problems. The goal of learning is to find the kernel

function that minimizes the error between observed values and values obtained by the ML

algorithm (MULLER et al., 2001).

Recently, ML algorithms have been used on HPC systems in different situations.

In (WANG; O’BOYLE, 2009) the authors presented ML-based predictors to map paral-

lelism to multicores. They considered several different parameters such as the number

of threads and scheduling policies in OpenMP programs. In (VLADUIC; CERNIVEC;

SLIVNIK, 2009) the authors used ML algorithms to select the best job scheduling algo-

rithm on heterogeneous platforms whereas in (CASTRO; GÓES; MÉHAUT, 2014) the

authors proposed an ML-based approach to automatically infer a suitable thread mapping

strategy for a given application. In (BOITO et al., 2016) the authors proposed an ML-

based scheme to select the best I/O scheduling algorithm for different applications and

input parameters.

4.2 General model for performance prediction

The proposed model is based on Support Vector Machine (SVM) method, which

is a kernel-based and supervised approach proposed in (CORTES; VAPNIK, 1995) and

it was extended to regression problems where support vectors are represented by kernel

functions (DRUCKER et al., 1997). The main idea of SMV is to expand hyperplanes

through the output vector. It has been employed to classify non-linear problems with non-

separable training data by a decision surface, as we presented in Figure 3.12 from Section

3.3.1. Our model was implemented using e1071 R package (MEYER et al., 2015).

4.2.1 Architecture of geophysics prediction model

The General Model for Performance Prediction of Geophysics Stencils based on

Machine Learning (Golem) is built on top of three consecutive layers, where the output

values of a layer are used as the input values of the next layer. Figure 4.1 shows the

flowchart of this strategy.
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The input layer contains the runtime configuration parameters from the input vec-

tor. The hidden layer contains a set of SVMs and takes the values from input vector to

simulate the available hardware counters on the HPC architecture, measures for training

stage were taken by PAPI library (MUCCI et al., 1999). Because hardware counters have

very large values it was necessary to perform a dynamic range compression (log trans-

formation) between the hidden and the output layers (GONZALEZ; WOODS, 2002).

Finally, the output layer contains another set of SVMs and takes each value from hard-

ware counters layer to obtain the corresponding predicted performance (GFLOPS, and

execution time).

Figure 4.1: Flowchart of General Model for Performance Prediction of Geophysics Sten-
cils based on Machine Learning (Golem).
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We use two separated experiment sets for training and testing stages. The train-

ing set is used for input, hidden and output layers. Since the model has been trained we

use an input testing set to predict the performance and we compare the output perfor-

mance between predicted and actual values to obtain the regression accuracy. Finally, we

search into these predicted values the maximum of GFLOPS, the minimum of time, and

its corresponding input configuration to optimize the execution time.
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Statistical analysis

We conduct two statistical analysis. First, before training stage and in order to re-

fine the results, we applied the Analysis of Variance (ANOVA) statistical model to analyze

if variables for hardware counters and performance measures have different populations

affected by the input values.

We assume the hypothesis that different populations for each variable have equal

mean, it is called H0. Thus, we compute the statistical significance (p-value) to determine

whether the hypothesisH0 must be rejected or not: if this value is lower than 0.05 then the

hypothesis H0 is rejected and populations have different means, that is hardware counters

and performance measures are affected by input parameters with statistical significance.

This analysis was divided into two classical ANOVA models: one-way ANOVA, when

only one factor affects all populations; and two-way ANOVA, when two factors affect all

populations.

The second statistical analysis is related to the accuracy of the regression model,

we evaluate the trained model with two statistical estimators: the root mean square error

(RMSE) and the coefficient of determination (R-square). The former represents the stan-

dard deviation of the differences between predicted values and actual values whereas the

latter represents how close the regression approximates the actual data (R-square equal to

1 indicates a perfect fit of data regression).

4.2.2 Performance prediction on multicore architectures

Figure 4.2 presents the flowchart of Golem approach on multicore architectures,

and we made the experiments with naive and space tiling implementations, explained in

Section 3.2 from Chapter 3, for 7-point Jacobi and seismic wave propagation stencils. We

note that quantity of available hardware counters depends on each HPC architecture.
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Figure 4.2: Flowchart of Golem on multicore architectures.
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The parameters in each layer are described as:

• Input Layer: Values in the input vector depend on algorithm implementation, and

they are defined by the runtime parameters listed in Table 4.1. In both algorithms,

OpenMP runtime parameters are considered, such as the number of threads defined

by the OMP_NUM_THREADS environment variable, that will perform the compu-

tation in parallel, loop scheduling policy (Static and Dynamic) and the chunk size

defined by the OMP_SCHEDULE environment variable. For the space tiling algo-

rithm, the block size in the X and Y domains are also considered.

Table 4.1: Parameters of input vector for each algorithm.

Naive Space tiling

Number of threads

Scheduling policy

Chunk size

Number of threads

Scheduling policy

Chunk size

Block size X

Block size Y

• Hardware Counters Layer: The metrics considered in this layer depend on the

number of available PAPI events. Because stencil computations are a memory-

bound problem, we choose as the most relevant events the L3 total cache misses
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(PAPI_L3_TCM), the data translation lookaside buffer misses (PAPI_TLB_DM)

and the total of cycles (PAPI_TOT_CYC).

• Output Layer: The performance vector contains the measure of the billions of

floating-point operations per second (GFLOPS) and the execution time to solve de

geophysics stencil.

Testbed and configuration domain

Two multicore platforms were used to carry out the experiments, their hardware

configurations are shown in Table 2.1 from Chapter 2 (Cryo and Server 185 Nodes).

Based on these platforms, Table 4.2 details all the available configurations for the opti-

mization categories. As it can be observed, a brute force approach would be unfeasible,

requiring more than 3 millions in simulations for the space tiling algorithm.

Table 4.2: Optimizations set for multicore architectures

Optimization Parameters
Total configurations

Cryo Server 185

Number of threads 1 8 12

Scheduling policy 1 2 2

Chunk size 1 32 32

Block size X 1 64 64

Block size Y 1 64 64

Total for Naive 3 512 768

Total for Space Tiling 5 2,097,152 3,145,728

Analysis of variance and hardware counters behavior

In this analysis, GFLOPS, L3 cache misses, TLB data misses and the number

of cycles were used as population variables and factors are defined by all parameters in

vector input (the number of threads, the scheduling policy, and the chunk size). The

results of p-value for the ANOVA of GFLOPS variable for naive algorithm are presented

in Table 4.3. As it can be observed, all factors rejected the hypothesis for the 7-point

Jacobi, since the p-value is lower than 0.05. In other words, the statistical significance

indicates that variable GFLOPS have different populations.
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Table 4.3: p-value of one-way ANOVA for the GFLOPS variable in the naive algorithm
experiments.

7-point Jacobi Seismic Wave

Scheduling policy 2.58e-16 0.5284

Chunk size 1.37e-12 0.9985

Num. of threads <2.2e-16 <2.2e-16

Num. of cores <2.2e-16 <2.2e-16

For seismic stencil, the hypothesis cannot be rejected, for scheduling and chunk

size variables. Then, we also used a two-way ANOVA to determine if combined variables

affect populations. Table 4.4 shows the results that combine scheduling and chunk size,

with executed and available threads, the p-value rejects the hypothesis, and variables have

the statistical difference if two factors are combined. Then, analysis of variance introduces

first assumption: the input factors (number of cores, number of threads, scheduling policy,

and chunk size) produce statistical significance into selected GFLOPS variable in the

naive algorithm experiments.

Table 4.4: p-value of two-way ANOVA for the seismic wave kernel.

p-value

Scheduling policy:Num. of threads <2.2e-16

Scheduling policy:Num. of cores 0.4664

Chunk:Num. of threads <2.2e-16

Chunk:Num. of cores <2.2e-16

We also performed the one-way ANOVA to data from Space tiling algorithm ex-

ecutions, for the same variables, and a two-way ANOVA for block size X and block size

Y variables. Results are presented in Table 4.5. For these analyses all the p-value were

<0.05; then, the hypothesis is also rejected and the input factors (number of cores, num-

ber of threads, scheduling policy, chunk size, block size X and block size Y) affects the

GFLOPS variable in the Space tiling algorithm experiments.
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Table 4.5: p-value of one-way and two-way ANOVA for the GFLOPS variable in Space
tiling algorithm experiments.

7-point Jacobi Seismic Wave

Scheduling policy <2.2e-16 4.08e-05

Chunk size <2.2e-16 <2.2e-16

Num. of threads <2.2e-16 <2.2e-16

Num. of cores <2.2e-16 <2.2e-16

Block size X:Block Size Y <2.2e-16 <2.2e-16

About hardware counters behavior, Figure 4.3 illustrates how the performance

of the 7-point Jacobi kernel is affected by the input variables and their relations with

hardware counters, creating the non-separable training data surfaces.

Figure 4.3: Hardware counter behavior of 7-point Jacobi on Node Cryo.
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Each point represents one experiment. For instance, Figure 4.3a shows the impact
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of the scheduling policy that creates two separated areas when the GFLOPS values are

analyzed with respect to the L3 cache misses. The same behavior is observed in Figure

4.3b for the chunk size when the GFLOPS values are observed with respect to the total

number of cycles. The situation is rather different when the GFLOPS values are related

to the amount of TLB data misses as we can see in 4.3c.

Training and validation sets

A random training set was created by selecting a subset from the experiments

set with random input values (number of threads, chunk size, scheduling policy, block

size X and block size Y). For each input configuration, the hardware counters (L3 cache

misses, data translation lookaside buffer misses and total cycles) and performance values

(GFLOPS and execution time) were measured.

A random testing set was used since all SVMs in both hidden and output layers

are trained to calculate new GFLOPS and execution time values through simulation. After

that, it was measured the accuracy of the model using statistical estimators. Finally, the

maximum value of GFLOPS and the minimum value of the execution time are selected

and matched with their input values. Simulated and real values are compared to determine

if simulated best performance is the same as the real best performance. Table 4.6 presents

the total number of experiments that were performed to obtain the training and validation

sets.

Table 4.6: Total number of experiments.

Naive Space tiling

Stencil Set Cryo Server 185 Cryo Server 185

7-point Jacobi

Total 55 48 44794 49152

Training 44 38 2355 4054

Testing 11 10 589 1014

Seismic Wave

Total 264 297 6849 1020

Training 211 237 2176 371

Testing 53 60 544 93

Accuracy of predictive modeling

As it can be observed in Table 4.7, the regression model is highly accurate. For

the naive algorithm, the model presented an accuracy of up to 99.70% and 99.87% for
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the GFLOPS and execution time metrics, respectively. For the space tiling algorithm,

on the other hand, the model presented an accuracy of up to 98.22% and 99.71% for

the GFLOPS and execution time metrics, respectively. These results are similar to the

prediction of multicore architectures presented in (CRUZ; ARAYA-POLO, 2015).

Table 4.7: RMSE and R-square for predicted values of the 7-point Jacobi and the Seismic
Wave kernels.

Naive Space tiling

Cryo Server 185 Cryo Server 185

7-point

RMSE
Gflops 0.7941 1.0179 1.4185 1.6065

Time 0.6642 2.5089 2.2537 3.4211

R-square
Gflops 0.9782 0.9313 0.9627 0.8540

Time 0.9879 0.8689 0.8881 0.8049

Seismic

RMSE
Gflops 0.2273 0.6351 0.3158 0.4597

Time 13.5391 212.282 15.6548 347.4940

R-square
Gflops 0.9970 0.8334 0.9822 0.7313

Time 0.9987 0.6263 0.9971 0.7494

Performance optimization

Since the goal is to obtain the best performance, the model was compared with

measurements from all actual data. Figure 4.4 presents the results of this comparison.

Blue bars represent the normalized output of the predicted best performance from the

ML-based model (maximum GFLOPS) whereas red bars represent the normalized best

performance from actual data. Perfect fit of best performance is obtained when the pre-

dicted values are the same (or very close) to actual best performance values. This means

that the predicted best performance actually matches the best performance from all data.

Best performance for space tiling algorithm is the human-optimized implementation de-

scribed in (DUPROS et al., 2015).

For 7-point Jacobi stencil, Figures 4.4a and 4.4b compare the performance of pre-

dicted and actual data: the model achieves the best performance for the naive algorithm on

these multicore architectures but predicted values for space tiling algorithm did not reach

exactly the same best performance, although they are close. For the Seismic Wave kernel,

Figures 4.4c and 4.4d show predicted performance is so close to the best performance,

then our model achieves the best performance.
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Figure 4.4: Normalized performance comparison between predicted results from the
ML-algorithm and results from the best performance experimens on multicore

architectures
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(b) GFLOPS for 7-point Jacobi: Node
Cryo.
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(c) GFLOPS for Seismic Wave: Node
Server 185.
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(d) GFLOPS for Seismic Wave: Node
Cryo.

Source: (MARTINEZ et al., 2017)

Approximation of best performance for 7-point Jacobi was 97.46% and 95.61% for

naive in node Server 185 and node Cryo respectively; for space tiling, it was 76.79% and

87.01% in node Server 185 and node Cryo respectively. For seismic, the approximation

was 97.78% and 97.04% for naive in node Server 185 and node Cryo respectively, for

space tiling in node Server 185 was 99.62% and it outperformed by 1.06% in node Cryo.

Prediction for naive is easier than space tiling because the model has fewer parameters

to build and it used all configurations described in Table 4.6. The speedup of the best

performance for 7-point Jacobi stencil was ×5.57 and ×12.57, for naive and space tiling

respectively, compared to the worst performance. For the seismic stencil, the speedup of

best performance was ×9.33 and ×18.88, for naive and space tiling respectively.
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4.2.3 Performance prediction on manycore architectures

In this section, we present the results of our prediction model on many-core archi-

tectures. We used the stencil naive for 7-point Jacobi, the seismic and the acoustic wave

propagation with a three-dimensional grid of size 512x512x512, and 190 time iterations,

as the benchmark for our experiments. Figure 4.5 presents the flowchart to this approach.

Figure 4.5: Flowchart of Golem on manycore architectures.
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Parameters in each layer are defined as:

• Input Layer:, As well as the model for multicore architectures, values for the input

vector depend on OpenMP runtime parameters, as the number of threads defined by

the OMP_NUM_THREADS environment variable, the loop scheduling policy (Static,

Dynamic and Guided) and the chunk size defined by the OMP_SCHEDULE envi-

ronment variable; additionally, for this architecture we also considered the memory

mode explained in Section 2.2.1 (cache and flat).

• Hardware Counters Layer: We choose as the most relevant events the L2 total

cache misses (PAPI_L2_TCM), and the total of cycles (PAPI_TOT_CYC).

• Output Layer: The performance vector contains the execution time to solve de

geophysics stencil.
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Testbed and configuration domain

We used one manycore platform o carry out the experiments, an Intel Xeon Phi

processor shown in Table 2.1 from Chapter 2. Based on this platform, Table 4.8 details

all the available configurations for the optimization categories. As it can be observed, a

brute force selection would take many time on experiments.

Table 4.8: Available configurations for optimization procedure.

Optimization Parameters Total configurations

Number of threads 1 272

Chunk size 1 272

Scheduling policy 1 3

Memory mode 1 2

Total 4 443,904

Analysis of variance and hardware counters behavior

In this analysis, the execution time, the number of L2 cache misses, and the num-

ber of cycles were used as population variables and factors are defined by all values in

vector input (the number of threads, the scheduling policy, the chunk size and memory

mode). The results of p-value for the 7-point Jacobi, seismic and acoustic wave propaga-

tion stencils are presented in Table 4.9.

Table 4.9: p-value of one-way ANOVA for the manycore architecture.
Execution time L2 cache misses Cycles

Jacobi Seismic Acoustic Jacobi Seismic Acoustic Jacobi Seismic Acoustic

Scheduling policy 1.26e-13 1.000 1.95e-08 <2e-16 0.992 <2e-16 <2e-16 1.000 <2e-16

Chunk size <2e-16 0.949 <2e-16 <2e-16 0.927 <2e-16 <2e-16 0.956 <2e-16

Num. of threads <2e-16 <2e-16 0.444 1.82e-10 <2e-16 0.000757 <2e-16 <2e-16 2.80e-07

Memory mode 0.77 0.949 <2e-16 0.132 0.919 0.424529 0.969 0.915 5.81e-05

General considerations can be observed with results from Table 4.9. First, the

memory mode is a factor with no statistical significance in most of variables and stencils,

only for the acoustic stencil, the memory mode produces statistical significance in exe-

cution time and cycles variables. It could be explained because the code optimizations

made for this stencil (SERPA et al., 2017); the Jacobi and seismic stencils have been im-

plemented with no code optimization for the Xeon Phi architecture. Second, the Jacobi

stencil has statistical significance in all variables (execution time, L2 cache misses and cy-
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cles) for the other factors. Third, variables for seismic stencil have statistical significance

by threads counting. Fourth, the acoustic stencil has statistical significance for almost all

variables, except for execution time by thread counting. Finally, we calculate a two-way

ANOVA to determine if combined variables affect the seismic stencil performance. Table

4.10 shows the results of two-way ANOVA.

Table 4.10: p-value of two-way ANOVA for the seismic wave kernel.

Execution time L2 cache misses Cycles

Scheduling policy:Chunk 1.000 0.997 1.000

Scheduling policy:Num. of threads <2e-16 <2e-16 <2e-16

Chunk:Num. of threads 0.992 0.956 0.988

Results in Table 4.10 show that combining scheduling and thread counting, in the

seismic stencil, rejects the hypothesis, and the variables have the statistical difference

if the two factors are combined. But, when we combine chunk with another factor, we

still do not find statistical significance. Then, we can summarize that most of the input

variables produce statistical significance into performance variables, except the chunk

size.

On manycore architectures, Figure 4.6 illustrates how the hardware counters mea-

surements are affected by the input variables. Each point represents one experiment when

varying the input parameters described in Section 4.2.2, X domain represents the L2

cache misses, Y axis represents the total cycles, and the color represents the different

values for the input parameter. For instance, Figure 4.6a represents the scheduling policy

(green is dynamic, red is guided, and blue is static) for the Jacobi stencil, we can see

how the static scheduling tends to be separated from other values. Figure 4.6b shows the

number of threads used to solve the seismic stencil, we can see how each value create

one easily separated area; this fact also confirms the ANOVA results of statistical signifi-

cance by the number of threads. Figure 4.6c also presents how chunk size tends to create

separated areas for the acoustic stencil.

We can resume this behavior as follows, changing values in input parameters af-

fects the application performance and creates several separated areas in the graphic rep-

resentation, as each color represents a different value for the input value these areas could

be separated by hyperplanes from an SVM.
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Figure 4.6: Hardware counters behavior on Manycore Node.
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Training and validation sets

We also created a training set by randomly selecting a subset from the configu-

ration parameters presented in Table 4.8. Then, for each experiment, we measured the

hardware counters (L2 cache misses, and total cycles) and performance (execution time).

The random testing set was used since all SVMs in both the hidden and the output layers

are trained to predict the execution time values.

After that, we measured the accuracy of the model using the statistical estimators

explained in 4.2.1. Table 4.11 presents the total number of experiments that were per-

formed to obtain the training and validation sets. It is remarkable that the total number

of experiments used for testing and validation, for each stencil, is lower than 1% of total

configurations described in Table 4.8.
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Table 4.11: Number of experiments

Training Testing Total

Jacobi 334 3007 3341

Seismic 346 3122 3468

Acoustic 335 3021 3356

Accuracy of predictive modeling

Table 4.12 presents the results for accuracy of the regression model. For the 7-

point Jacobi implementation, the model presented an accuracy of up to 97.39%. For the

seismic wave implementation, on the other hand, the model presented an accuracy of up

to 85.62% and the acoustic wave propagation model has 93.2% of accuracy.

Table 4.12: Statistical estimators of our prediction model

RMSE R-squared

Jacobi 2.9894 0.9739

Seismic 21.0183 0.8562

Acoustic 40.0748 0.9322

Performance optimization

On manycore architectures, we use the same strategy to obtain the best perfor-

mance on multicore architecture. The model was compared with measurements from all

actual data. Figure 4.7 present results of this comparison. Blue bars represent the nor-

malized output of the predicted best performance from the ML-based model (minimum

execution time) whereas red bars represent the normalized best performance from actual

data.

Perfect fit of best performance is obtained when the predicted values are the same

(or very close) to actual best performance values. For Jacobi stencil, the model achieves

the best performance with accuracy of 98.88%. While for the Seismic and the Acoustic

kernel, the best execution time was outperformed in 12.95% and 0.59% respectively. The

speedup of best performance was×49.76,×35.53 and×39.83 for 7-point Jacobi, seismic

and acoustic stencils respectively, compared to worst performance.
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Figure 4.7: Normalized performance comparison between predicted results from the ML-
algorithm and results from the best performance experimens on manycore architectures.
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4.3 Concluding remarks

In this chapter, we proposed an ML-based model to predict the performance of

stencil computations on multicore and manycore architectures when using a shared mem-

ory programming model. We showed that performance of three different stencil kernels

(7-point Jacobi, seismic wave, and acoustic wave propagation) and two classical algo-

rithm implementations (naive and space tiling) can be predicted with a high accuracy

using the hardware counters measurements and the best configuration can be obtained

with this methodology.

ML approaches appear as an efficient way to predict the performance of stencil

computations. It allows finding the optimal input configuration to improve the perfor-

mance. One major limitation on this model is related with the size of training and testing

sets; for this situation, the challenge of performance prediction in real time may be ob-

tained by research on unsupervised ML algorithms.

In this sense, complementary works would be researched towards to extend ML

methodologies in order to capture complex behaviors on advanced architectures (compil-

ers flags, vectorization, space-time blocking algorithms, or heterogeneous architectures);

second, the proposed prediction model could be integrated into an auto-tuning framework

to find the best performance configuration for a given stencil kernel; it may be ease by

using automatic S2S transformations like a target (i.e, BOAST framework) (VIDEAU et

al., 2018).



Part 2: Performance Improvement on Heterogeneous Architectures
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5 HETEROGENEOUS ARCHITECTURES AND PROGRAMMING MODELS

The second part of this work starts with this chapter. Heterogeneous architec-

tures are growing fast. Commodity NVIDIA’s GPUs are the most popular accelerators,

they are built with several stream processors with SIMD elements. Another common het-

erogeneous architecture is the Accelerated Processing Architecture (APU) from AMD,

where CPU and GPU cores are integrated into one chip as System-on-a-Chip (SoC). The

main problem on these parallel platforms is related to data movement from main memory

to accelerator memory, a Dynamic RAM (DRAM). Hence, memory-aware programming

is strongly recommended to achieve maximum performance.

CPUs and GPUs possess distinct architectural features. Modern multicore CPUs

use up to a few tens of cores, they run at high frequency and use large-sized caches to

minimize the latency of a single thread. Clearly, CPUs are suited for latency-critical ap-

plications. In contrast, GPUs use a much larger number of cores, which are in-order

cores that share their control unit. GPU cores use a lower frequency and smaller-sized

caches. In some cases, for applications where data transfers dominate execution time

or branch divergence does not allow for the uninterrupted execution on all GPU cores,

CPUs can provide better performance than GPUs. There are factors relating to architec-

ture of Heterogeneous Computing Systems (HCS) to be taken into account: computation

power of the Processing Units (PU), current load on PUs to achieve load balancing be-

tween them, memory bandwidth and CPU-GPU data transfer overhead, size of GPU and

CPU memory, number of GPU threads and CPU cores, reduced performance of GPU for

double-precision computations, etc.

At the application level, the performance of HCS is affected by nature of algo-

rithms, amount of parallelism, the presence of branch divergence, subdividing the work-

load and selecting suitable work sizes to be allocated to all PUs and data dependencies.

Workload division between CPU and GPU is used into two criteria: dynamic division, the

decision about running the subtasks or program phases or code portions on a particular

PU is taken at runtime; and static division, the subtasks that are executed on a particular

PU are already decided before program execution; in other words, the mapping of sub-

tasks to PUs is fixed. The decision about where a subtask should be mapped depends on

which PU provides higher performance and which mapping helps in achieving load bal-

ancing. However, if subtasks differ, it may be more suitable to map a particular subtask to

a particular PU; for example, highly parallel subtasks can be mapped to the GPU, while
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the sequential subtasks can be mapped to the CPU. Workload division techniques sched-

ule tasks on devices based on several factors such as the contention of devices, historical

performance data, number of cores, processor speed, problem size, device status (busy or

free), and location of data.

5.1 Streaming Multiprocessors

The GPUs are addressed to problems that express data-parallel computations (the

same program is executed on many data elements in parallel). Because the same program

is executed for each data element, there is a lower requirement for sophisticated flow con-

trol, and because it is executed on many data elements and has high arithmetic intensity,

the memory access latency can be hidden with calculations instead of big data caches.

Data-parallel processing maps data elements to parallel processing threads. Many appli-

cations that process large data sets can use a data-parallel programming model to speed

up the computations. The most common example is the image processing algorithms,

large sets of pixels are mapped to parallel threads; similarly, many algorithms outside

this field are accelerated by data-parallel processing, from general signal processing or

physics simulation to computational finance or computational biology (NVIDIA, 2016).

In this way, the main architectural component on a GPU is the Streaming Multiprocessor

(SM).

The principal components of an SM are the cores and the several memories. There

are also thousands of registers that can be partitioned among threads of execution and

warp schedulers that can quickly switch contexts between threads and issue instructions

to warps that are ready to execute. The cores of the most recent SM are specialized

for integer and single-precision floating point operations, double-precision floating point,

Load/Store Units, and Special Function Units (SFUs) for single-precision floating-point

transcendental functions such as sin, cosine, reciprocal, and square root. Figure 5.1 rep-

resents the block diagram of the common SM from an NVIDIA GPU. The memory of

an SM is composed by the shared memory for fast data interchange between threads,

constant caches for a fast broadcast of reads from constant memory, texture caches to

aggregate bandwidth from texture memory, and an L1 cache to reduce latency to local or

global memory.
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Figure 5.1: Block diagram of a NVIDIA GPU SM.

WarpWarp  schedulersschedulers

InstructionInstruction  buffersbuffers

DispatchDispatch  unitsunits

SpecialSpecial
FunctionsFunctions

unitsunits

Texture cachesTexture caches

InstructionInstruction cache cache

Single PSingle Precision recision corescores

SharedShared  memorymemory

LoadLoad
StoreStore

DoubleDouble
PPrecisionrecision

corescores

L1 cacheL1 cache

RegistersRegisters File File

Source: The author

5.2 Programming models on heterogeneous architectures

The common programming model for NVIDIA GPUs is the CUDA programming.

The CPU is known as the host and the GPU is known as the device, the data is transferred

from the main RAM memory by the PCI express (PCIe) bus to the DRAM on GPU.

CUDA comes with a software environment that allows developers to use C as a high-level

programming language, and at its core are three key abstractions: a hierarchy of thread

groups, shared memories, and barrier synchronization. CUDA C extends C by defining

C functions called kernels that are executed N times in parallel by N different CUDA

threads. A kernel is defined using the __global__ declaration and the number of

CUDA threads that execute that kernel is specified using a KernelName<<<...>>>

execution configuration syntax. Each thread that executes the kernel is given a unique

thread ID that is accessible within the kernel through the built-in threadIdx variable

that is a 3-component vector. The threads can be identified using a one-dimensional,

two-dimensional, or three-dimensional thread index, forming a block of threads. Blocks

are organized into a one-dimensional, two-dimensional, or three-dimensional grid as pre-
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sented in Figure 5.2. The number of thread blocks in a grid is usually dictated by the size

of the data being processed or the number of processors in the system. There is a limit

to the number of threads per block since all threads of a block are expected to reside on

the same processor core and must share the limited memory resources of that core. On

current GPUs, a thread block may contain up to 1024 threads (NVIDIA, 2016).

Figure 5.2: Representation of a grid with the thread blocks.

Source: (NVIDIA, 2016)

CUDA threads may access data from multiple memory spaces during their execu-

tion as presented in Figure 5.3. Each thread has private local memory. Each thread block

has shared memory visible to all threads of the block. All threads have access to the same

global memory. There are also two additional read-only memory spaces accessible by

all threads: the constant and texture memory spaces. The global, constant, and texture

memory spaces are optimized for different memory usages. Texture memory also offers

different addressing modes, as well as data filtering, for some specific data formats. The

global, constant, and texture memory spaces are persistent across kernel launches by the

same application (NVIDIA, 2016).
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Figure 5.3: Representation of memory hierarchy for threads, blocks and grids.

Source: (NVIDIA, 2016)

The heterogeneous programming model proposed by CUDA is presented in Figure

5.4, the model assumes that the threads execute on the device that operates as a copro-

cessor to the host running the C program. The programming model also assumes that

both the host and the device maintain their own memory spaces. Therefore, a program

manages the global, constant, and texture memory spaces visible to kernels through calls

to the CUDA runtime. This includes device memory allocation and deallocation as well

as data transfer between host and device memory (NVIDIA, 2016).
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Figure 5.4: Heterogeneous CUDA programming model.

Source: (NVIDIA, 2016)

5.2.1 OpenCL programming model

The OpenCL is another programming model for heterogeneous architectures. It

is a low-level API that runs on GPUs. Using the OpenCL API, developers can launch

compute kernels written using the C programming language. OpenCL is a cross-vendor

programming language used for massively parallel multi-core graphic processors, and

OpenCL kernel functions define the operations carried out by each data-parallel hardware-

thread (MAGNI; DUBACH; O’BOYLE, 2014). OpenCL is also a framework for writing

programs for heterogeneous systems. The framework defines resources and a set of inter-

faces that programmers use to construct an application. The OpenCL specification defined

a hierarchy of models (BALAJI, 2015):
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• Platform model: It defines the heterogeneous system available for computations.

An OpenCL platform consists of a single host resource, this is a general-purpose

computer. Connected to the host are one or more OpenCL devices. An OpenCL

device can be a CPU, a GPU, an FPGA, or a specialized processor. For OpenCL, the

device is decomposed into one or more compute units each of which is composed

of one or more processing elements.

• Execution model: It defines how a computation is launched and executed on the

platform. The computation occurs on the device and this execution model is based

on the kernel parallelism design pattern. A function is provided by the programmer

to execute on the device. This is called a kernel. The kernel is submitted to a

command queue for execution. A command is anything submitted by the host to

the queue.

• Memory model: The OpenCL memory is organized into regions. The Host mem-

ory is available and managed by the host and provided by the native host platform.

The Global memory is a memory region that is globally accessible to all work-items

executing within a context; the Constant memory is defined as a region that is glob-

ally accessible on the device that can be read only during the execution of a kernel;

the Local memory is a memory region associated with a computing unit and visible

to the work-items within a work-group; and the Private memory region associated

with a processing element and visible only within a work-item.

• Programming model: defines the fundamental abstractions used to map an algo-

rithm onto source code. OpenCL supports two basic programming models. The

Data parallelism, a single sequence of instructions is applied concurrently to each

element of a data structure; and the Task parallelism, a task is a sequence of instruc-

tions and the data required by those instructions. In task parallelism, multiple tasks

are run concurrently.

5.3 Evolution of NVIDIA GPU Architectures

The NVIDIA’s Tesla architecture, introduced in November 2006, was one the ear-

liest improvements on GPUs, this architecture was based on a scalable processor array

with 128 streaming-processor cores organized as 16 SMs in eight independent processing
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units called texture/processor clusters (TPCs) (LINDHOLM et al., 2008). Consequently,

NVIDIA GPU architectures have been evolved through the time, they have been released

by family codenames and the principal features are the following:

Fermi

This architecture was the first with implementation of real floating point (single

and double precision), the Error Correcting Codes (ECC) on main memory and caches,

a single 64-bit address to unify the memory space, and atomic instructions to read from

a shared location in memory, to check its value, and to write a new value back without

any other processors being able to change the memory value during the execution of the

atomic instruction (PATERSON, 2009; NVIDIA, 2009). Figure 5.5 illustrates the SM of

Fermi architecture.

Figure 5.5: Architecture of the Fermi SM.

Source: (NVIDIA, 2009)
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Kepler

The principal improvements on this architecture were the Dynamic Parallelism

and the Hyper-Q. First, it allows the GPU device to generate new work for itself, synchro-

nize on results, and control the scheduling of that work via dedicated, accelerated paths,

all without involving the CPU host. Second, it allows more connections from multiple

CUDA streams, from multiple MPI processes, or from multiple threads by allowing 32

simultaneous, hardware-managed connections (NVIDIA, 2014b). Figure 5.6 illustrates

the SM of Kepler architecture.

Figure 5.6: Architecture of the Kepler SM.

Source: (NVIDIA, 2014b)
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Maxwell

It improves on Kepler by separating shared memory from the L1 cache, providing

a dedicated 64KB shared memory in each SM. This architecture introduces native shared

memory atomic operations for 32-bit integers and native shared memory 32-bit and 64-

bit compare-and-swap (CAS) (HARRIS, 2014). Figure 5.7 illustrates the SM of Maxwell

architecture.

Figure 5.7: Architecture of the Maxwell SM.

Source: (HARRIS, 2014)
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Pascal

The main feature improvements on Pascal architecture are the Unified Memory,

a significant advancement for NVIDIA GPU computing and software-based feature that

provides a single, seamless unified virtual address space for CPU and GPU memory, it

provides a memory accessible from all CPUs and GPUs in the system as a single, coherent

memory image with a common address space, and the Compute Preemption, this allows

compute tasks running on the GPU to be interrupted at instruction-level granularity, and

their context swapped to GPU DRAM. The Pascal architecture is also optimized to better

performance of algorithm implementations for Artificial Intelligence (NVIDIA, 2017).

Figure 5.5 illustrates the SM of Pascal architecture.

Figure 5.8: Architecture of the Pascal SM.

Source: (NVIDIA, 2017)

5.4 Assymetric low power architectures

The Asymmetric Manycore Processor (AMP) is a special case of HCS, which

uses cores of different types in the same processor and thus embraces heterogeneity as
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a first principle. Different cores in an AMP may be optimized for power/performance,

different application domains or for exploiting different levels of parallelism (ILP, TLP,

or Memory-Level Parallelism, MLP). They are used mainly in mobile systems because

they are important to optimize energy for prolonging battery life during idle periods as it

is to optimize performance for multimedia applications and data processing during active

use.

Although big and little cores generally provide better performance and energy

efficiency, respectively, in several scenarios no single winner may be found on the metric

of energy-delay product (EDP). The big core may show better EDP in applications that

compute intensive and have predictable branching and high data reuse. By contrast, the

small core may be better for memory-intensive applications and applications with many

atomic operations and little data reuse. Reconfigurable AMPs facilitate flexibly scaling

up to exploit MLP and ILP in single-threaded applications and can scale down to exploit

TLP in multithreaded (MT) applications.

Several challenges must be addressed to fully realize the potential of AMPs: The

heterogeneous nature of AMPs demands complete re-engineering of the whole system.

The cores of an AMP may have different supply voltages and frequencies, which presents

manufacturing challenges; some techniques use offline analysis to perform static schedul-

ing; however, they cannot account for different input sets and application phases; in static

AMPs, thread migration may take millions of cycles, for example, in a big.LITTLE sys-

tem with Cortex A15 and A7 processors the latency of moving tasks from the A15 to

A7 and vice versa could be 3.75ms and 2.10ms; thread schedulers, threads running on an

AMP may be unfairly slowed down, which leads to starvation and unpredictable per-task

performance. (MITTAL, 2016)

5.5 Target machines

Examples of HCS and AMP architectures used in this work are presented in Table

5.1 and Figure 5.9 presents the architecture of asymmetric node called Tegra K1. These

machines are located at Industrial University of Santander (Colombia), BRGM (France)

and Informatics Institute of UFRGS (Brazil).
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Table 5.1: Heterogeneous architecture configurations.
BRGM Salmão node Guane-1 Tegra K1

Processor i7-3720QM i7-930 Xeon E5645 ARM Cortex-A15
Clock (GHz) 2.60 2.80 2.40 2.3
CPU Cores 4 4 6 4

CPU Sockets 1 1 2 1
Accelerator GeForce GTX 670M Tesla K20c Tesla M2075 NVIDIA Kepler GPU
Architecture Fermi Kepler Fermi Kepler
GPU Cores 336 2496 448 192

GPU Sockets 1 1 8 1
GPU RAM (GB) 1.3 5 4.9 2

Figure 5.9: Architecture of Tegra machine presented in Table 5.1.
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NVIDIA Tegra K1 – A New Era in Mobile Computing 
NVIDIA’s latest and most advanced mobile processor, the Tegra® K1, creates a major discontinuity in the 

state of mobile graphics by bringing the powerful NVIDIA Kepler™ GPU architecture to mobile and 

delivering tremendous visual computing capabilities and breakthrough power efficiency. The NVIDIA 

Tegra K1 mobile processor is designed from the ground up to create a major discontinuity in the 

capabilities of mobile processors, and delivers the industry’s fastest and most power efficient 

implementation of mobile CPUs, PC-class graphics, and advanced GPU-accelerated computing 

capabilities. 

Some of the key features of the Tegra K1 SoC (System-on-a-Chip) architecture are: 

x 4-PLUS-1 Cortex A15 “r3” CPU architecture that delivers higher performance and is more power 

efficient than the previous generation. 

x Kepler GPU architecture that utilizes 192 CUDA cores to deliver advanced graphics capabilities, 

GPU computing with NVIDIA CUDA 6 support, breakthrough power efficiency and performance 

for the next generation of gaming and GPU-accelerated computing applications. 

x Dual ISP Core that delivers 1.2 Giga Pixels per second of raw processing power supporting 

camera sensors up to 100 Megapixels.  

x Advanced Display Engine that is capable of simultaneously driving both the 4K local display and 

a 4K external monitors via HDMI  

x Built on the TSMC 28 nm HPM process to deliver excellent performance and power efficiency. 

 

 

Figure 1 NVIDIA Tegra K1 Mobile Processor Source:(NVIDIA, 2014a)

5.6 Concluding remarks

In this chapter, we introduced the heterogeneous architectures. We focused on

platforms composed by the CPU host and the GPU devices. Improvements on GPUs are

evolved to efficient float point precision work, and the limitations on these architectures

are related to data movement between main memory and accelerator memory, and the idle

time of free CPUs cores while GPU is computing. The GPU memory is a limitation that

could be a bottleneck for the processing of large-scale problems. Consequently, for the

CPU/GPU systems, out-of-core data management techniques are required to tackle the

memory overflow problem in the GPU, when the size of a data exceeds the capacity of

the DRAM. Although, the strategy of data partitioning between CPU memory and GPU

memory could also affect the quality and efficiency of data processing when these out-of-
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core techniques are applied due to the several data transferences between main memory

and DRAM.

The most common programming model for NVIDIA GPUs is CUDA, it is very

easy to use as programming procedure. CUDA is a conventional C adding a few of GPU

platform specific keywords and syntax to define the parallel kernels. Older implemen-

tations of CUDA applications had to consider an explicit data movement from the main

memory to DRAM, with unified memory lets programmers focus on developing parallel

code without getting bogged down in the details of allocating and copying device memory.

Taking into account architectural improvements and limitations, the GPUs offer a

platform for efficiency and speed-up optimization to applications with the possibility of

data parallelism. In this sense, the geophysics numerical stencils are the kind of appli-

cations that can be implemented into these architectures with a well-suited performance

improvement.
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6 NUMERICAL IMPLEMENTATION OF GEOPHYSICS STENCILS ON HET-

EROGENEOUS PLATFORMS

The main idea is to divide the 3D grid into 2D slices. In this manner, each core of

stream multiprocessors exploits the multi-threading parallelism to solve each point on this

slice. In (MICIKEVICIUS, 2009), the authors use GPUs to solve a 3D stencil from the

finite difference discretization of the wave equation. They create a 2D tile and their halos

that are loaded into shared memory, then each thread block computes the 2D stencil. They

also extended the solution for multi GPUs: first, they divided each slice into 2 GPUs and

a computation of order k in space, data is partitioned by assigning each GPU half the data

set plus (k/2) slices of ghost nodes. Each GPU updates its half of the output, receiving the

updated ghost nodes from the neighbor; and second, in order to maximize scaling, they

overlap the exchange of ghost nodes with each kernel execution.

In (ABDELKHALEK, 2007; ABDELKHALEK et al., 2009), the authors solve the

acoustic wave equation and the Reverse Time Migration (RTM), a technique for creating

seismic images in areas of complex wave propagation, and they used two approaches:

first, they limited the stencil domain to use global memory on each GPU and to dedicate a

CUDA thread for each grid point in the space domain; and second, instead of dedicating

a thread to each grid point, they used a sliding window algorithm, creating slices in the z

direction.

We used a standard implementation of seismic wave propagation model described

in (MICHÉA; KOMATITSCH, 2010), the authors also subdivided the 3D space in 2D

tiles, in the X and Y directions, and each tile corresponding to a block of threads for the

GPU, to iterate along the third direction, in this case, the Z direction. The data of the 2D

mesh tile and its halos are loaded in shared memory from global memory. Data sharing

between GPUs is performed by Message Passing Interface. Figure 6.1 represents the data

domain and the tiling division.
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Figure 6.1: Tiling division of 3D data domain, each slice is computed by the GPU.

Source: (MICHÉA; KOMATITSCH, 2010)

6.1 Setup and Performance Measurement

In order to analyze the workload on a cluster of GPUs, the seismic model (Ondes

3D) was executed on the HCS called Guane-1 (SANTANDER, 2015). Experiments were

considered as follows: first, execution of seismic model in one GPU as the baseline to

compare the application performance; second, to increment the number of GPUs to get

an unbalanced problem, when the GPUs show an uneven utilization; third, to measure

the time for execution and communication, the load and the memory usage of GPU; fi-

nally, to compare measures to find a relation between unbalanced load and the measures

involved in this problem. The objective of this section is to find correlations between time

(execution and communications), GPU load and memory usage. For each experiment was

measured following data:

• Timeloop: average time to solve the model on each GPU (Kernel 1 plus Kernel 2)

• Kernel 1: time to calculate the stress kernel in the model.

• Comm 1: time of kernel 1 used to wait communications.

• Kernel 2: time to calculate the velocity kernel in the model.

• Comm 2: time of kernel 2 used to wait communications.

• GPU load: percent of GPUs utilization.

• GPU memory: percent of available memory usage.
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6.2 Elapsed Time

Performance on HCS can be improved by increasing the number of GPUs, Fig-

ure 6.2 shows the minimum time, the average time and the maximum time of stencil

execution on a multi-GPU node, we found a typical behavior for parallel applications, if

the number of GPUs is incremented the execution time will be reduced, but the speedup

of GPU implementation is not optimal, average execution with 8 GPUs is almost a ×3

acceleration.

Figure 6.2: Timeloop and speedup measures of Ondes 3D application when increasing
the number of GPUs.
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Another measure to analyze the performance of HCS is the communication time

between the host and the device. The seismic model executes two kernels on each GPU

(Stress and velocity calculation). Figure 6.3 shows average time for kernel 1 and kernel

2. It shows that time for each one is quite similar. Another thing remarkable about this

figure is that communication is increasing when the number of GPUs is increasing, the

average time is almost the same for all executions.
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Figure 6.3: Kernel execution and communication time of Ondes 3D application when
increasing the number of GPUs.
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Measures presented in Figure 6.4 in this experiment are as expected, for one GPU

there are no communication on kernels because there is only one GPU executing the

simulation and GPU load is almost 100%. We measured for complete simulation since

the time that CPU is processing to make the stencil and to send data to GPU memory. At

the start of the simulation, the GPU is not working and waits until getting all data. It is

remarkable that not all memory is used, almost 1/4 of memory is used in the simulation.

This was one of the limitations related to (MICHÉA; KOMATITSCH, 2010).

If the number of GPUs is increased, the experiments start to reveal something that

appears with many more GPUs. There is two kind of GPUs, the first solve the domain

boundaries of simulation and for these, the load is greater than the other GPUs; the second,

GPUs with lower load is solving the inner domain in grid space. Another thing, GPUs in

the inner domain is using less memory than the others. Then, we can say that there are

two factors affecting the load balancing: the first, data is not located in the GPU when

is requiered; and second, getting new data causes waste of time for communications.

Another factor that could be affecting the load balancing is the geometry in the simulation.

GPUs that are solving the grid points near in the Y-axis have lower load than the GPUs

that are solving the grid on the greatest values.

The experiment with the worst load balancing was with 8 GPUs, then we can

say that uneven balance is caused by GPUs with high rates of communication has lower

utilization, GPUs with greater load are solving the inner domain and values near to lowest

values on Y-axis, for the grid space, GPUs with lower load is using less memory than the
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others with higher load.

Figure 6.4: Measures (time, load and memory consumption) of Ondes 3D on a cluster of
GPUs.
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6.3 GPU Load and Memory Usage

We found there are four factors that are affecting the load balancing for the seismic

model, then we evaluate if these factors actually have influence for this problem, to prove

this situation we measured GPUs load and memory usage and communication and we

present these measures in Figure 6.5.

Figure 6.5: Statistical estimators (average and standard deviation) of Ondes 3D for GPU
load and memory usage.
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Figure 6.5 presents average values for GPU load (red bars) and memory usage

(blue bars) when we increased the number of GPUs, it shows clearly how the average

load on GPUs is affected when more GPUs are used. Another situation in this figure

is that memory usage has a similar behavior than the GPU load. Then, we estimate the

correlation coefficient between these measures, and founded that this value is 0.88; be-

cause of this correlation between memory and load we can prove that these two factors

are highly correlated, that is if GPUs will have a lower load on execution they will have

lower utilization of memory. Instead, if we estimate the value of the correlation coeffi-

cient between the GPU load and the kernel communications the result is -0.30, this value

is not enough to prove any correlation between them.

Now, we will analyze the standard deviation (error bars) of these measures. We

can see that multi-GPU experiment with 7 GPUs has the better balance and the experi-

ment with 8 GPUs has the worst. The increment of standard deviation indicates a major

difference between the values of this measure. Another thing we found on this figure is

that a better-balanced experiment has a major value on the standard deviation of memory
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usage. Then we estimate the correlation between the standard deviation of load an mem-

ory usage, this value is -0.71. Again, this new value is proving the correlation between

load and memory usage, in this case, indicates if an experiment is unbalanced there is

a high correlation to get lower utilization of memory. On the other hand, we estimate

the correlation between the standard deviation of load and communications, the value is

0.80. In this case, the value is shown that there is a high correlation between unbalanced

experiments and time of communication, proving that these measures are also correlated.

6.4 Concluding Remarks

In this chapter, we presented another classical alternative to solve the geophysics

numerical kernels. The standard implementation (based on Message Passing and CUDA)

on heterogeneous architectures shows a performance improvement in terms of speedup

and execution time.

Although there is a performance improvement, the available architecture is un-

derused most of the time, and the unbalanced performance is increased for multi-GPU

settings. In this sense, the performance for GPU-only systems remains not optimal. Fur-

thermore, after allocating the workload to the GPU (i.e., starting the kernel) the CPU usu-

ally stays idle and waiting for the GPU to finish. The GPU memory bandwidth would act

as a bottleneck (i.e., kernel communications), and the computational resources of GPUs

could remain underutilized. This situation can be solved by data prefetch mechanisms

on most recent architectures. Another challenge with standard implementation on HC is

that the input configuration at runtime depends only on the number of GPUs and number

of threads used by block, and there are no scheduling, or load balancing, strategies to

improve the computing use of available heterogeneous cores.

One alternative to solve the unbalance problem, when increasing the number of

available GPUs, could be to research on non-classical implementations to involve the free

CPU cores into computations, and to avoid unnecessary memory transfers; in this sense,

one challenge on HC is to exploit its computing capability, because common program-

ming models on HC uses the CPU only as manager of the GPU device.
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7 TASK-BASED APPROACH FOR PERFORMANCE IMPROVEMENT ON HET-

EROGENEOUS PLATFORMS

Task-based parallelism is a data-oriented programming model at the high level

for heterogeneous architectures. The main idea is to build a task dependence graph, the

runtime creates a queue of tasks with data directionality and schedules them into available

processors. This programming model is exploited and developed mainly at Barcelona

Supercomputing Center (BSC). Tasking works well when computations can be divided

into blocks. The programmer specifies the distribution of data structures, and the compiler

takes care of low-level details, such as the generation of messages and synchronization

(HASSEN; BAL; JACOBS, 1998).

7.1 Runtime systems for task-based programming

One of these runtime systems is SMP superscalar (SMPSs), a programming en-

vironment focused for shared memory systems, as multicore and SMP platforms. A pro-

gram in SMPSs follows the model of #pragma sentences that identify atomic parts and

functions in the code that are candidates to be run in parallel in the different cores. Data

directionality of parameters is explicit by input (Read only), output (Write only) and

inout (Read/Write) clauses. At execution time, the runtime takes the memory address,

size and directionality of each parameter at each task invocation and uses them to analyze

the dependencies between them. Whenever a task is called, a node in a task graph is

added for each task instance and a series of edges indicating their dependencies. At the

same time, the runtime schedules the tasks to the different processors when their input de-

pendencies are satisfied. Threads consume ready tasks from their own list in LIFO order,

they get tasks from the main list in FIFO order, and they can steal from other threads in

FIFO order. (PEREZ; BADIA; LABARTA, 2008; PEREZ; BADIA; LABARTA, 2010)

Recently works at BSC are oriented on a family of task-based runtime systems

called StarSs. In this context, they are developed OmpSs, based on OpenMP for a task-

based programming model with the indication of data directionality (DURAN et al.,

2011). OmpSs specification includes a target device clause, for example, CUDA

or OpenCL, the programmer needs to provide the code of the kernel for each one, and this

code can be part of a task. Another support of OmpSs is the possibility of providing more
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than one version of a given task (implements clause). The versions can target one or

more devices. At runtime, the scheduler will decide which version should be scheduled

taking into account some parameters such as execution time or locality of the data (FER-

NÁNDEZ et al., 2014). They have also integrated OmpSs with OpenCL framework to

exploit the underlying hardware platform with greater ease in programming and to gain

significant performance using data parallelism (ELANGOVAN; BADIA; PARRA, 2013).

Another framework is PaRSEC, it employs the dataflow programming and ex-

ecution model to provide a dynamic platform that can handle heterogeneous hardware

resources. The runtime combines the source program and the data flow information with

supplementary information provided by the user and orchestrates task execution on the

available processors. When a task is completed, the runtime reacts by examining the data

flow to find what tasks can be executed and handles the data exchange between nodes.

When no tasks are triggered because the hardware is busy executing application code,

the runtime gets out of the way, allowing all hardware resources to be devoted to the

application execution (BOSILCA et al., 2013b).

XKaapi is a task-based framework with locality-aware work-stealing algorithm

to manage data locality and scheduling, fully asynchronous task execution strategy on

GPUs, a light representation of tasks that allows to generate high degree of parallelism

at low cost, and lazy computation of dependencies with an optimization that enables to

move the overhead on the critical path rather than on the work (GAUTIER et al., 2013).

StarPU is also a task-based runtime and it will be discussed in the next section.

7.2 StarPU runtime system

The StarPU runtime system performs well on task graphs with less regular pat-

terns (matrix factorization, n-body problems using the fast multipole method, sparse lin-

ear algebra, h-matrix linear algebra). The main characteristics that may results in good

or bad performance results are the amount of parallelism (if too few tasks are available

for scheduling due to dependences, this may result in a bottleneck) and the granularity of

tasks which must be heavy enough to limit the scheduling overhead, but high enough to

allow for a good load balancing (AUGONNET et al., 2011).

Communication costs are evaluated by sampling the bus transfer performance be-

tween every pair of computing units (main CPU and accelerators). If several CPU sockets

are available on the system, the transfer capability between each socket and each acceler-
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ator is measured to account for non-uniform memory access effects (if an accelerator is

closer from a given socket than from another socket). The results about bus performance

sampling are stored in a file, for each computer node, and it is reused for subsequent runs

unless a re-calibration is requested.

The StarPU runtime system developed by STORM Team provides a framework

for task scheduling on heterogeneous platforms. It is able to calibrate the relative perfor-

mance of multiple, heterogeneous implementations of computing stencils, as well as the

cost of data transfers between the main memory space and accelerator memory spaces,

such as to optimize work mapping dynamically among heterogeneous computing units,

during the execution of the application. This scheduling framework jointly works with

a distributed shared-memory manager in order to optimize data transfers, to perform

replication and consistency management for avoiding redundant transfers, and to overlap

communications with computations. A complete description of the available schedulers

could be found in (BORDEAUX; CNRS; INRIA, 2014). StarPU considers the following

scheduling algorithms:

eager: A central queue from which all workers pick tasks concurrently.

prio: A set of central queues, each associated with a priority level, from which all worker

pick tasks concurrently.

ws: A work-stealing scheduler, where idle workers may steal work from busy workers.

random: A scheduler that maps work randomly among per-worker queues, according to

the assumed worker performance.

dm: The Deque Model (DM) scheduler maps tasks onto workers using an history-based

stencil performance model.

dmda: An variant of the DM scheduler also taking transfer costs into account.

dmdas: A variant of the DMDA scheduler such that per-worker task queues are sorted

according to the priority of tasks.

dmdar: A variant of the DMDA scheduler such that per-worker task queues are sorted

according to the number of already available dependent pieces of data.

peager: A variant of the eager scheduler with the ability to schedule parallel tasks on

multiple CPU cores.
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pheft: A variant of the DMDA scheduler with the ability to schedule parallel tasks on

multiple CPU cores.

7.3 Elastodynamics over runtime system

Finite-difference methods naturally express data parallelism whereas the model

works at tasks level. In order to express task-based parallelism with such a numerical

approach, one needs to split the model into a fine-grained grid of blocks where each part

of the code (mainly the update of the velocity and the stress components) is executed on

a single block as a computing task. Each block includes inner grid-points corresponding

to the physical domain and outer ghosts zones for the grid points exchanged between

neighboring subdomains (Figure 7.1). The three-dimensional domain is cut along the

horizontal directions as models in seismology often describe a thin and wide crust plate

in order to evaluate surface effects. A naive implementation would require expensive

copies between blocks because the boundary data are not contiguous in memory (several

calls of memcpy, or cudaMemCpy, for small size data). Therefore the GPU RAM buffer

which is filled using a CUDA kernel is created and then copied only once.

Figure 7.1: Grid of blocks including inner grid-points corresponding to the physical do-
main and outer ghosts zones

Source: (MARTINEZ et al., 2015b)

The task-based parallelism model leads to the creation of a large number of tasks,

ideally loosely coupled. These tasks could be arranged as a Directed Acyclic Graph

(DAG) according to the data dependencies. Typically, it can identify the tasks devoted

to data transfers (used to save data from block boundaries to buffers and vice versa) and
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the two computing kernels (computation of the six stress and the three velocity compo-

nents). For each time step, the same pattern of task creation is repeated. At this stage,

it has simplified the original implementation by discarding the absorbing boundary con-

ditions. As these numerical conditions introduce load imbalance at the boundaries of the

computational domain, it makes much more complex the analysis of the results on hetero-

geneous platforms. The time spent in data management kernels is very small compared to

the elapsed time for the computation kernels. Nevertheless, these tasks are crucial as they

express the dependencies between blocks that are adjacent in horizontal directions.

Figure 7.2: Tasks dependency on a grid of 3×3 blocks

Source: (MARTINEZ et al., 2015b)

Figure 7.2 illustrates this situation considering a grid of 3×3 blocks. For instance,

if a single task is scheduled on slow computing resources and the remaining tasks are

executed on faster resources, the colored tasks cannot be scheduled before finishing the

first one. The main programming effort has been the creation of the relevant CPU and the

GPU kernels corresponding to the numerical scheme.

7.4 Experiments

In this section, the architectures and configuration used for experiments are de-

scribed. Experiments were executed on BRGM (Desktop) and GUANE-1 (HPC) nodes,

and configuration of heterogeneous testbed are listed in Table 5.1 from Chapter 5.

Several scenarios for each node have been created, based on the memory con-

sumption in the GPU (in-core, the data domain fits into GPU RAM, and out-of-core, the
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data domain do not fit on GPU RAM) and the number of parallel tasks. The first example

is based on a Cartesian mesh of an average of 2 million of grid points in order to fit in the

memory available on the GPU. For the out-of-core example, requiring several data trans-

fers between global and GPU RAM, it was selected two different sizes of the problem,

for the commodity node was used a three-dimensional grid of approximately 32 million

of points and 80 million of points for the HPC node. The other parameters (number of

tasks for instance) strongly depends on the block size variable. Table 7.1 presents memory

consumption and the number of tasks to be scheduled.

Table 7.1: Memory consumption, number of blocks and number of parallel task for the
simulated scenarios

In-core Out-of-core
BRGM node GUANE-1 node

Memory (GB) 0.18 2.71 6.57
Number of blocks 1 9 16
Computation Tasks 40 200 600
Communication Tasks 0 424 1800

Experiments were performed using several configurations in terms of processing

cores usage. For pure GPU experiments, the model is simulated only using the GPU

cores available on the target architecture. Symmetrically, the pure CPU executions only

target x86 cores. The hybrid experiments tackle all the computing cores available (CPU

and GPU cores). It is because StarPU runtime system has two flags for heterogeneous

cores utilization (workers): STARPU_NCPU to define the number of CPU cores and

STARPU_NCUDA to define the number of GPU cards to be used on the computation of

stencils. According to each node, the number of cores for CPU computation corresponds

to the number of available physical cores (each GPU need a CPU core to management).

The STARPU_CUDA_ASYNC flag enables concurrent stencil execution on graphics cards

that support this feature (BORDEAUX; CNRS; INRIA, 2014). In this case, this flag is

available on both machines.

7.4.1 Scheduling strategies

One of the key contributions of StarPU runtime system is to provide several schedul-

ing algorithms adapted to various computing load and hardware heterogeneity. In this

section, several different schedulers are compared. Figure 7.3 shows the speedup over

the worst result on each platform. On the commodity-based platform, it considers one



99

GPU and three CPU cores. In this case, the best results are provided by the DMDAR

algorithm that takes into account the cost of data transfers. Eager and Work Stealing

algorithm appear like alternatives to DMDAR. These two algorithms do not use informa-

tion from the memory bus. The rather good results underline the limited contention at

the memory bus level for this configuration. The situation is rather different on the HPC

node. The best results are also obtained with the DMDAR algorithm but the performance

with the other schedulers is very poor. In this case, it uses eight GPU and four CPU

cores and data transfers optimization is critical, especially for multi-accelerator platforms

with major bottlenecks. The scheduling strategy can be selected by the STARPU_SCHED

environment variable.

Figure 7.3: Impact of the scheduling algorithms for experiments on heterogeneous
platforms. Relative speedup over the worst situation on each platform.
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7.4.2 Size of the block

Selecting the best granularity is crucial to maximizing the performance. Consider-

ing heterogeneous platforms, this parameter is of great importance. Figure 7.4 shows the

speedups over one CPU core for in-core and out-of-core data set. The results have been

obtained on the commodity node. It can be observed that depending on the hardware con-

figuration, the most efficient granularity may vary. In both cases, the efficiency with one

GPU is optimal with a block size of 256. When it decreases the size of the block the GPU

efficiency is significantly reduced (from ×17.3 to ×4.3 for in-core problems). This is

because GPU architecture could deliver an optimal level of performance when all stream

processors are used. Then, it means that larger block performs better on such architecture.
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The situation is rather different on CPU platforms as tiny blocks could improve

locality and cache effects. In this case, using a large number of blocks is also mandatory

to extract enough concurrency from the task-based algorithm. Indeed, the wavefront de-

composition reaches a good level of efficiency with blocks of the size equal to 64 or less

for the in-core problem. For the out-of-core problem, it generates enough tasks to benefit

from the four CPU cores in all cases. The bigger problem size corresponding to more

computing tasks explains this result.

Figure 7.4: Impact of the granularity on the efficiency of seismic wave modeling on
GPUs+CPUs.
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Indeed, the choice of the appropriate granularity relies on a tradeoff between the

performance level of the computing tasks depending on their sizes and the suitable number

of tasks necessary to provide enough parallelism. Obviously, the optimal configuration

is not always possible depending on the overall size of the domain and speedup ratio

between the processing units.

7.4.3 In-core dataset

In this section, the overall performance is analyzed considering a problem size that

fit in the GPU memory. Obviously, this situation is not the most suitable to benefit from

the heterogeneous implementation as the price to pay for data transfers between the CPU

and the GPU may overcome expected gains from the additional CPU cores.

Table 7.2 shows the results obtained on the commodity computing node (the elapsed

time for pure CPU cores is the baseline). Firstly, it can be noticed that the speedup mea-

sured with one GPU over four CPU cores (×5.03) is in the same order of magnitude of
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Table 7.2: Speedup on the commodity-based hardware configuration (in-core dataset)
over multicore execution

pure GPU hybrid (dmdar) hybrid (ws)
Speedup ×5.03 ×5.02 ×0.42

the results reported in (ABDELKHALEK et al., 2012; MARTINS et al., 2014; MICIKE-

VICIUS, 2009). In this case, the overhead coming from StarPU runtime system is limited

as the number of blocks is very small and the computing stencils are solely scheduled on

the GPU.

Hybrid simulations are supposed to exploit both GPU and CPU cores with the

DMDAR scheduler that takes into account the cost of data transfer. Indeed, this strategy

schedules all the computing tasks on the GPU because of the high cost of data transfers.

As a result, the similar level of performance is observed if compare to the pure GPU im-

plementation. In order to force the usage of both type of cores, the scheduling policy was

changed using the work-stealing algorithm. This strategy simply implements a situation

where idle workers steal work from busy workers. The results are very poor as the original

and elapsed time is almost multiplied by a factor of ×2.3.

Figure 7.5 shows the results for the HPC computing node (the twelve CPU cores

results are the baseline). Similarly to the previous results, the speedup measured with one

GPU appears consistent with the scientific literature (×6.94). The impact of the Tesla

card available on the HPC node is significant, a ratio of 4.27 is observed between the pure

GPU results on these two architectures. Previous remarks on the DMDAR and the work-

stealing algorithm remain also valid. In this case, a stronger degradation of the speedup is

noticed when using all the CPU cores compared to previous experiments. This probably

could be explained by the higher level of performance of the GPU on this machine. The

situation is even worst when eight GPU and four CPU cores are used. The elapsed time

is increased by more than a factor due to the data transfers and the poor usage of the

available resources. The granularity of the problem also plays an important role in this

degradation.

7.4.4 Out-of-core dataset

This section discusses the results on heterogeneous architectures when the size of

the data exceeds the memory available on the GPU. In this case, the accelerators are fully

used as additional computing resources to the computing power delivered by the CPU
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Figure 7.5: Speedup on the HPC node (in-core dataset) over multicore execution
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cores. Data transfers are of great importance and should be carefully controlled by the

scheduling strategies.

Performance obtained on the commodity node is detailed in Table 7.3. Four CPU

cores results are used as a baseline. With one GPU, the simulation is slowed down in

comparison with the baseline configuration. It is because of the price of data movements

between the CPU and the GPU main memory. Indeed, the idle time ratio for the GPU

cores reaches a maximum of 80.16% preventing any acceleration over the pure CPU ver-

sion.

Table 7.3: Speedup on the commodity-based configuration (out-of-core dataset) over mul-
ticore execution

pure GPU hybrid (4 CPU cores and 1 GPU)
Speedup ×0.92 ×1.32

The heterogeneous results are slightly better with a speedup of ×1.32. The best

results are obtained with the DMDAR scheduler that takes into account the cost of data

transfers. Contrary to the results obtained with the in-core dataset, the fine-grained of the

decomposition of the large problem (at least 624 tasks) allows to schedule the comput-

ing load on all the computing resources available. Nevertheless, the usage of the cores

remains low. The idle time for the three CPU cores varies between 41% and 79%, with

maximum value for the GPU.

Results on the HPC node are summarized in Figure 7.6. All configurations show

a speedup over the baseline results. For the pure GPU experiments, the acceleration re-

ported (×1.72) demonstrates the benefits from task-based programming even when only

the GPU card is used. In comparison with the commodity-based architecture, it bene-

fits from larger bandwidth at the I/O bus level. This value is still far from the average
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acceleration reported when the problem fits in the GPU memory (×6.94).

Combining one GPU and the eleven remaining CPU cores leads to an increase of

the speedup compared with the GPU only configuration. In this case, our implementation

is able to smoothly benefits from this additional computing power by almost doubling the

performance level obtained with one GPU. Using both GPU and CPU cores could pro-

vide more flexibility for the scheduling of the computing tasks. As a side effect, it also

observed a better usage of the GPU resources. The multi-GPU results confirm this trend

with a maximum speedup of ×25.22. Considering the various parameters that need to be

taken into account, any tentative of exhaustive scalability analysis would be false. Indeed,

this result should be compared to the corresponding speedup for the in-core dataset with

one GPU (×6.94) to understand the remaining effort to fully optimized our implementa-

tion on multi-GPU.

Figure 7.6: Speedup for out-of-core dataset when running on the HPC node over multicore
execution.
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7.5 Summary of runtime parameters

At this point, we found that proposed implementation for heterogeneous archi-

tectures is also influenced by an input configuration set. The parameters are determined

by environment variables defined by StarPU as STARPU_NCPU, STARPU_NCUDA and

STARPU_SCHED, analogously to the environment variables in OpenMP, and changing

these parameters allows to improve the performance of the seismic stencil kernel. In this

sense, the proposed implementation reach a well-performed execution when compared to

multicore architectures. The input parameters are listed in Table 7.4.
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Table 7.4: List of runtime parameters that affect the performance of task-based imple-
mentation on heterogeneous architectures

Parameter Description

Number of GPUs StarPU allows to use a multi-GPU cluster, this value is determined by

STARPU_NCUDA environment variable.

Number of CPU cores It depends on number of free CPU cores, because each GPU needs one

CPU core for its management, and describes the available CPU cores

to compute tasks, this value is determined by STARPU_NCPU environ-

ment variable

Task size This parameter determines the number of points to be solved by each

task.

Number of tasks It depends on size of problem to be solved and can be defined by a rate

between the data domain, the whole 3D grid, and the task size.

Scheduling algorithm The scheduling strategy distribute the tasks into CPUs and GPUs cores,

it can be selected by STARPU_SCHED environment variable.

Memory consumption Two situations are considered: in-core data, when the data domain from

complete 3D grid fits on DRAM; out-of-core data, when the data do-

main requires several data transferences.

7.6 Task-based implementation for energy efficiency

As a supplementary result, one of the advantages of task-based implementation

is that can be executed on recent heterogeneous architectures oriented to energy saving.

The objective of this section is to demonstrate that Nvidia Jetson manycore architecture

represents an alternative for energy efficient seismic wave modeling. We used a sim-

ulation scenario for the three-dimensional model that includes a Cartesian mesh of 7.2

million grid points (300×300×80). The memory consumption for this problem is 625

MB of memory. Based on StarPU task-based implementation, the two computing stencils

(velocity and stress components) must be scheduled to use 36 parallel computing tasks

and 144 parallel communication tasks (data sharing between blocks). DMDAR sched-

uler maps tasks onto workers using an history-based stencil performance mode such that

per-worker task queues are sorted according to the number of already available depen-

dent pieces of data. Experiments were executed on BRGM, Guane-1 and Tegra K1 nodes

listed in Table 5.1, from Chapter 5. In this case, we used three metrics to discuss the

performance:
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• Time-to-solution (execution time for the simulation)

• Energy consumption (using platform sensors by NVPROF).

• Energy efficiency (FLOPS/Watt)

7.6.1 Computing time

The results described in Figure 7.7 confirm the first assumption, Nvidia Jetson

board exhibits poor performance considering the time-to-solution metrics. The Guane-1

node is×2.05 faster than the Nvidia Jetson board. For the commodity-based architecture,

the ratio is×1.59x. This is mainly coming from the different levels of performance of the

GPU available on each platform.

Figure 7.7: Comparison of Time-to-solution metrics for Tegra K1 (Jetson), Guane-1 (HPC
server) and BRGM node (Desktop platform).
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If we considered the ratio between computation time (tasks to solve velocity and

stress stencils) and communication time (tasks to transfer data between global RAM and

GPU RAM, and thread synchronization) Jetson board is processing 66.40% of the time,

while desktop and server are processing only 29.39% and 53.11% of time respectively.

This is because the Jetson has a shared memory between CPU cores and GPU. As a result,

it only pays the costs of threads synchronization of GPU stencils and CPU functions. Due

to the size of the test-case (625 MB) and the speedup ratio between the GPU and the

CPU cores, StarPU uses both CPU and GPU cores to schedule the computing tasks on the

Nvidia Jetson board. For the desktop machine and the server node, the runtime system



106

only schedules the computation tasks on the GPU and the remaining communication tasks

on the CPU cores.

7.6.2 Energy efficiency

We also analyzed the energy consumption. For Jetson board we assumed that

power consumption corresponds to 4W because we can not measure it, this value repre-

sents an upper-bound when CPU and GPU cores are working and interface ports (USB,

HDMI) are disabled (NVIDIA, 2014a); for desktop and server machines power measures

are measured from Nvidia Profiler. For the computation phase, power consumption is

83.40W and 123.49W for the desktop machine and the server node respectively.

If we compared energy consumption presented on Figure 7.8 (left), Jetson board

reduces the energy consumption by a factor ×12.21 in comparison with the server node

and by a factor ×2.08 with respect to the desktop machine. Obviously, the desktop ma-

chine is tuned for energy-efficiency contrary to high-end HPC node.

Figure 7.8: Energy measures for the earthquake modeling on three heterogeneous archi-
tectures.
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Finally, the flops/watt ratio for each platform (Figure 7.8, right) was measured.

Jetson board is ×5.82 more efficient than desktop machine and ×2.99 than a standard

HPC node. One important remark should be underlined at this stage. The problem under

study is tailored to fit in the memory available on the Nvidia Jetson Card (2 GB). This

parameter is of great importance to discuss the overall performance as the size of the

problem (and the number of blocks) could significantly influence the speedup on GPU

architectures (MICHÉA; KOMATITSCH, 2010; MARTINEZ et al., 2015b).
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7.7 Concluding remarks

We introduced a task-based implementation and analyzed its performance, with

this approach we obtained a significant performance improvement when compared to mul-

ticore architectures. We demonstrated that changes on input configuration set at runtime,

as scheduling policies combined with different task sizes, may considerably affect the

efficiency and performance of the seismic wave kernels (MARTINEZ et al., 2015b). Re-

visiting the standard data-parallelism arising from the finite-difference numerical method,

stencil computations, therefore, benefit from StarPU runtime system in order to smoothly

schedule the DAG (Directed Acyclic Graph) on the current heterogeneous platform. In

this way, the numerical algorithm and the underlying architecture are decoupled by fully

exploiting the versatility of modern runtime systems. This approach allows tackling the

complexity of this memory-bound problem by minimizing data movements to and from

the accelerators.

The efficiency of stencil computation on two heterogeneous architectures, using

the maximum number of processing units available, consider a real problem that could

not fit in the DRAM memory, for example, a maximum speedup of 25.22 using four CPU

cores and eight GPU in comparison with the same experiments using twelve CPU cores.

Using a commodity-based architecture with four CPU cores and one GPU was obtained

an acceleration of 32% over the CPU version. The analysis of the performance underlines

the significant impact of the granularity and the scheduling strategy.

A detailed comprehension of the tradeoff between the granularity and the schedul-

ing policies is necessary in order to tackle more complex architecture. For instance, the

regularity of the finite-differences numerical method could allow deriving a cost-model

that could help the runtime system to improve task scheduling. This includes potential

irregularity in the granularity of the task to maximize efficiency on multiple devices. In-

cluding absorbing boundary conditions generates load imbalance that could be smoothly

reduced by the fine-grained task-based programming model. Difficulties on this model

are related to runtime configuration (i.e., scheduling algorithm, size and number of tasks,

choosing of processing units).

As an additional advantage of the proposed task-based implementation, a low-

power manycore architecture can be an alternative to compute stencils of seismic model-

ing with a better energy efficiency, better usage of the available resources (CPU and GPU

cores) and a significant reduction of the communication cost (33.60%). Good results in
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terms of energy-to-solution compared to common HPC systems are possible. But the

size of problems that could be tackled is limited by the amount of memory available on

these boards. Finally, the emerging of integrated cores architectures that deliver higher

bandwidth between GPU and CPU appears like an opportunity to tackle both the PCIe

bottleneck and the energy-efficiency challenge.
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8 RELATED WORK

In this chapter, we present the several works that are related to performance op-

timization of stencil computations. A large scientific literature has been devoted to the

adaptation of stencil algorithms on HPC architectures. It involves from hardware im-

plementations, low-level optimization, compiler flags, application tuning, programming

of new algorithms, ML models to improve the performance of these applications, and

task-based implementations of numerical stencils.

8.1 Perfomance improvement of stencil applications on multicore architectures

Parallelism and HPC are the basis to develop the stencil algorithm and multicore

architectures were extensively used to improve the performance of these computations.

Performance improvement can be reached by algorithm implementations and cache op-

timization is a common way to reach a better performance on multicore architectures.

These works oriented the performance characterization presented in Chapter 3.

In (DATTA et al., 2009), the authors use a methodology to optimize stencil com-

putations for multiple architectures (multicore and accelerators). Their work reuse cache

and methodologies across single and multiple stencil sweeps, examining cache-aware al-

gorithms as well as cache-oblivious techniques. Their results demonstrated that recent

trends in the memory system organization have reduced the efficacy of traditional cache-

blocking optimizations.

In (DUPROS; DO; AOCHI, 2013), the authors review the scalability issues of

seismic wave propagation numerical kernels on x86 architectures, they have underlined

the limitations coming from the fine-grained parallelism leading to a degradation of the

load balance.

In (MALAS et al., 2015), the authors combine the multicore temporal blocking

and a diamond tiling to reduce the memory pressure, the results show performance ad-

vantages in bandwidth-starved situations.

In (DUPROS et al., 2015) the authors also implement stencil algorithms focused

on cache improvement by spacetime blocking. The trend for these HPC applications is to

pay a higher cost in order to optimize the overall performance. In this work is explained

the Naive and Space tiling algorithm implementations analyzed in our research.

In (SAXENA; JIMACK; WALKLEY, 2016) we found another work related to
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cache optimization, the authors optimize the cache reuse for stencil-based PDE discretiza-

tions by a domain decomposition that minimizes cache misses in structured 3D grids.

In terms of regression models and performance prediction applied to multicore ar-

chitectures, the impact of different optimizations is difficult to predict due to the influence

of load imbalance, synchronization overhead, and cache locality.

In (RAHMAN; YI; QASEM, 2011), the authors present a performance study for

stencil computations on the Intel Nehalem multicore architecture, they model the overall

performance of differently optimized code based on the impact of optimizations on in-

dividual architectural components measured by hardware counters, and apply regression

analysis to a large collection of empirical data to derive the model and verify the precision

of the approach.

In (STENGEL et al., 2015), the authors use the Execution-Cache-Memory (ECM)

model, it delivers a prediction of the number of CPU cycles required to execute a cer-

tain number of iterations nit of a given loop on a single core, and use this methodology

to quantify the performance bottleneck of stencil algorithms on an Intel SandyBridge

processor, and they study the impact of typical optimization approaches such as spatial

blocking, strength reduction, and temporal blocking.

8.2 Advanced optimizations, low-level and auto-tuning strategies

Application tuning represents a classical methodology to improve the performance

on multicore architectures. Finding the optimal value for each parameter requires to

search on a large set of configurations and several heuristics or frameworks have been pro-

posed to speed up the process of finding the best configuration for scientific applications.

Unfortunately, application tuning leads to the exploration of a huge set of parameters, thus

limiting its interest on complex platforms.

In (DURSUN et al., 2009), the authors propose a multilevel parallelization frame-

work that combines inter-node parallelism by spatial decomposition, intra-chip paral-

lelism through multithreading, and data-level parallelism via single-instruction multiple-

data (SIMD) techniques.

In (MERCERAT; GUILLOT; VILOTTE, 2009), the authors present an efficient

numerical spacetime decomposition for acoustic wave propagation based on the Parareal

algorithm, it is based on a decomposition of the time interval in time slices. It involves a

serial prediction step based on a coarse approximation, and a correction step (computed
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in parallel) based on a fine approximation within each time slice.

In (KAMIL et al., 2010), the authors present a stencil auto-tuning framework for

multicore architectures that converts a sequential stencil expression into tuned parallel

implementations. The algorithm creates a large space of preceding optimizations, run

each one of these combinations and reports fastest parameter combination. Overall, the

main problem of these works is that the search domain can be very large and searching

the best configuration would take too much time.

In (CRUZ; ARAYA-POLO, 2011), the authors predict the performance behavior

of stencil computations by using a model based on cache misses and prefetching. They

create one configuration vector and one performance vector and use (BACH; JORDAN,

2003) to obtain auto-tuned best configuration.

In (TANG et al., 2011), the authors present the Pochoir framework, it allows a pro-

grammer to write a simple specification of a stencil in a domain-specific stencil language

embedded in C++ which the Pochoir compiler then translates into high-performing Cilk

code that employs an efficient parallel cache-oblivious algorithm.

In (CHRISTEN; SCHENK; CUI, 2012), the authors introduce a code generation

and auto-tuning framework for stencil computations targeting modern multi and many-

core processors. The goals of the framework are productivity and portability for achieving

high performance on the underlying platform.

In (MIJAKOVIC; FIRBACH; GERNDT, 2016), the authors develop a tuning frame-

work that integrates and automates performance analysis and performance tuning. They

introduce the Periscope Tuning Framework (PTF), a flexible plugin mechanism and pro-

vides tuning plugins for various different tuning aspects. The output of the framework is

tuning recommendations that can be integrated into the code.

In (BREUER; HEINECKE; BADER, 2016), the authors present a detailed de-

scription of a clustered local time stepping scheme for the seismic simulation package

SeisSol and optimize the performance by clustering elements of a similar time step. They

turned the experiments on the SuperMUC Phase 2 (TOP500, 2017).

8.3 Machine Learning approaches

Because ML is a methodology for optimization that could be applied to find pat-

terns on a large set of input parameters, recent works use this approach to improve the

performance and to build regression models of HPC applications. Many of these works



112

use cache-related metrics.

In (RAI et al., 2009), the authors compare ML algorithms for characterizing the

shared L2 cache behavior of programs on multicore processors. The results show that

regression models trained on a given L2 cache architecture are reasonably transferable to

other L2 cache architectures.

In (GANAPATHI et al., 2009) the authors apply ML techniques to explore stencil

configurations (code transformations, compiler flags, architectural features and optimiza-

tion parameters). Their approach is able to select a suitable configuration that gives the

best execution time and energy consumption.

In (EOM et al., 2013), the authors compare workloads of applications executed on

the cloud, they use several ML techniques (Trees, Neural Networks, Bayesian methods)

to improve scheduling decisions in mobile offloading. Parameters in input set are local

execution time, size of data to be transferred, network bandwidth and the number of

invocations for an argument setup.

In (PUSUKURI; GUPTA; BHUYAN, 2013), the authors introduce a framework

for co-scheduling of simultaneous programs based on supervised learning techniques for

identifying the effects of the interference between multithreaded programs on their per-

formance, a statistical model is trained to predict similar output values when similar input

values are observed.

In (WENG; LIU; GAUDIOT, 2013) the authors propose a dynamic scheduling

policy based on a regression model to ensure that is capable of responding to the changing

behaviors of threads during execution, their scheduling policy could achieve up to 29%

speedup.

In (SUKHIJA et al., 2014), the authors improve the performance by selecting a

portfolio dynamic loop scheduling (DLS) using supervised ML techniques to build em-

pirical robustness prediction models that are used to predict DLS algorithm’s robustness

for given scientific application characteristics and system availabilities.

And in (CRUZ; ARAYA-POLO, 2015), the authors improve the performance of

stencil computations by using a model based on hardware counter behavior and ML. They

have included several features in the model such as multi and many-core support, hard-

ware prefetching modeling, cache interference and capacity misses and other optimization

techniques such as spatial blocking and Semi-stencil. If we compare our proposed ML

model with this work we have obtained a better accuracy of the prediction results.
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8.4 Heterogeneous computing

Seismic wave modeling faces a major challenge to exploit current heterogeneous

systems. Moreover, every vendor is actually working on next generation of machines that

will drive the community to the Exascale, with millions of heterogeneous cores. Several

strategies, frameworks, and programming models have been proposed mainly to optimize

CPU and GPU implementations.

In (AUGONNET et al., 2011), the authors introduce a runtime system for hetero-

geneous platforms called StarPU and based on the integration of the data-management

facility with a task execution engine. It includes a high-level description of every piece

of data manipulated by the task and how they are accessed, it also offers a low-level

scheduling mechanism, as we presented in Chapter 7, so that scheduler programmers can

use them in a high level.

In (DURAN et al., 2011), the authors introduce OmpSs, a programming model

based on OpenMP and StarSs, that can also incorporate the use of OpenCL or CUDA

kernels. It implements the data dependencies and offers asynchronous parallelism in the

form of tasks. A task can be annotated with data directionality clauses that specify the

data used by it, and how it will be used (read-only, write-only, read-write)

In (GAUTIER et al., 2013), the authors introduce the XKaapi for data-flow task

programming model on heterogeneous architectures, a tasking API that provides numer-

ical kernel designers with a convenient way to execute parallel tasks over the heteroge-

neous hardware on the one hand, and easily develop and tune scheduling algorithms on

the other hand.

In (VASUDEVAN; VADHIYAR; KALÉ, 2013), the authors introduce G-Charm,

a generic framework with an adaptive runtime system for efficient execution of message-

driven parallel applications on hybrid systems. The framework is based on a message-

driven programming environment. It includes dynamic scheduling of work on CPU and

GPU cores, maximizing reuse of data present in GPU memory, data management in GPU

memory, and combining multiple kernels.

In (BOSILCA et al., 2013a), the authors introduce PaRSEC, an approach based

on task parallelism. This strategy allows the algorithm to be decoupled from the data

distribution and the underlying hardware, the algorithm is expressed as flows of data.

PaRSEC is an event-driven system. When an event occurs, such as task completion, the

runtime reacts by examining the data flow to discover what future tasks can be executed
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based on the data generated by the completed task.

In (LACOSTE et al., 2014), the authors compare StarPU and Parsec runtime sys-

tems, they conclude that both runtime systems are able to benefit from heterogeneous

platforms with comparable levels of performance.

The runtime systems can be also defined for code optimization such as in BOAST,

it applies an automatic S2S transformation to optimize the performance of HPC archi-

tectures (CRONSIOE; VIDEAU; MARANGOZOVA-MARTIN, 2013; VIDEAU et al.,

2018).

Several references implement stencil applications on these architectures and these

runtimes, but most of these works don’t exploit all the computing resources available or

depend on a low-level programming approach.

In (MICIKEVICIUS, 2009), the authors describe a GPU parallelization approach

for the 3D finite difference stencil computation, and they also describe the approach for

utilizing multiple GPUs to solve the problem, achieving linear scaling with GPUs by

using asynchronous communication and computation.

In (MICHÉA; KOMATITSCH, 2010), the authors describe the implementation

of the code in CUDA to simulate the propagation of seismic waves in a heterogeneous

elastic medium. They also implement convolution perfectly matched layers on GPUs

to efficiently absorb outgoing waves on the fictitious edges of the grid. We used this

implementation to analyze the standard implementation in Chapter 6

In (AGULLO et al., 2011a; AGULLO et al., 2011b), the authors implement LU

and QR decomposition algorithm for heterogeneous architectures exploiting task-based

parallelism on top of the StarPU runtime system and present two alternative approaches,

respectively based on static and dynamic scheduling.

In (ABDELKHALEK et al., 2012), the authors design a fast parallel simulator that

solves the acoustic wave equation on a GPU cluster. They considered a finite difference

approach on a regular mesh, in both two dimensional and three dimensional cases, and

studied different implementations and their impact on the application performance

In (CALANDRA et al., 2013) the authors evaluate a 3D finite difference stencil,

that is optimized and tuned in OpenCL, executed on CPUs, APUs, and GPUs. Their

results show that APU integrated GPUs outperform CPUs and that integrated GPUs of

upcoming APUs may match discrete GPUs for problems with high communication re-

quirements.

In (CASTRO et al., 2014), the authors analyzed the use of a low-power manycore
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processors for seismic wave propagation simulations, they look at its characteristics such

as limited amount of on-chip memory and describe the solution to deal with the processor

features, and compared the performance and energy efficiency of a seismic wave prop-

agation model on MPPA-256 to other commonplace platforms such as general-purpose

processors and a GPUs.

In (BOILLOT et al., 2014), the authors study the applicability of task-based pro-

gramming in the case of a Reverse Time Migration (RTM) application for Seismic Imag-

ing. The initial MPI-based application is turned into a task-based code executed on top of

the PaRSEC runtime system. Their results show that the approach can exploit much more

efficiently complex hardware such as the Intel Xeon Phi accelerator.

In (ROTEN et al., 2016), the authors have implemented a seismic model in both

the CPU and GPU versions. The optimized CUDA kernels utilize the GPU memory

bandwidth more efficiently and the application has resulted in a significant increase of

performance and accuracy for simulations in realistic earth structures. They turned the

experiments on the NCSA Blue Waters and the OLCF Titan (TOP500, 2017).

In (TSUBOI et al., 2016), the authors realize large-scale computations by opti-

mizing a widely used community software code (SPECFEM3D_GLOBE) to efficiently

address all hardware parallelization, especially thread-level parallelization to solve the

bottleneck of memory usage for coarse-grained parallelization. They perfomed the exper-

iments on the K computer (TOP500, 2017).
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9 CONCLUSION AND PERSPECTIVES

Scientific applications have been developed to understand the physical phenom-

ena. In the case of geological studies, strong motion models have been used to mitigate

the risk of building damages derivated from earthquakes. Moreover, geophysics explo-

ration remains fundamental to the modern world to keep up with the demand for energetic

resources, oil and gas industries rely on software as an economically viable way to reduce

production costs. The fundamentals of many software mechanisms for geophysics are

based on simulation engines. For instance, on seismic imaging, geological modeling,

migration and inverse problems use simulators of wave propagation at the core.

Wave propagation model approximations are the current backbone for many geo-

physics simulations. These simulation engines are built based on PDEs solvers. The

PDEs in each case define the accuracy of the approximation to the real physics when a

wave travels through the earth. It has been extensively applied for earthquake modeling

and imaging potential of oil and gas reservoirs, for the last years.

The most common numerical model used to solve the PDEs is the FDM method,

it also lies at the heart of a significant fraction of numerical solvers in other fields (i.e.,

fluids dynamic, or climate modeling); and solving the geophysics simulation models from

an FDM method requires a huge quantity of computations. With this in mind, HPC ar-

chitectures are exploited to develop the geophysics applications and the overall parallel

methodology is based on a classical Cartesian grid partitioning with the exchange of in-

formation on common edges.

One major challenge in HPC applications is to obtain the optimal performance.

The trend at the hardware level is to increase the complexity of available computing node.

This includes several levels of hierarchical memories, increasing number of heteroge-

neous cores or low-level optimization mechanisms. Another concern is coming from the

increasing gap between the computing power and the cost of data transfers.

At the software level, the challenge is to develop as much as possible algorithm

implementations independent of the knowledge of the underlying architecture. Many

programming models that have been developed are oriented into the architecture. Princi-

pal methodologies are supported in shared-memory and message passing, for multicore

architectures, and streaming multiprocessing, for heterogeneous architectures. But, the

evolution of HPC paradigms leads to progressively re-design the current applications that

mainly exploit standard programming models.
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Additionally, in spite of the good speedups usually reported, the performance ob-

tained with standard implementations of geophysics models on HPC nodes could remain

not optimal from the best performance. In this context, the performance improvement

implies to search in a large set of programming models, runtime configurations, and ar-

chitectural features.

Consequently, this research was addressed on the hypothesis that performance op-

timization of geophysics applications can be done by searching the optimal input config-

uration set, at runtime. In this sense, our work was focused on developing a model based

on an ML approach to finding the input configuration, on multicore architectures, and

researching into new programming model implementations to exploit all the computing

resources on heterogeneous architectures.

9.1 Contributions

The first part was dedicated to the performance analysis and efficient program-

ming models of geophysics numerical kernels on multicore architectures (Chapter 2). We

presented that the performance of numerical stencils if affected by the runtime parameters

(Chapter 3). The challenge to find the optimal performance is related to searching in a

large set of input configurations (number of threads, problem size, code optimization of

looping, scheduling, and implemented algorithms). We considered that the performance

measures are not only related to the execution time and the speedup. Hardware counter

events (i.e., cache behavior) can also describe the performance of scientific applications,

and understanding their correlations can help us to explain the architecture behavior.

We discussed that finding the optimal runtime set is quite difficult because there

are several parameters that influence the performance measures. Thus, we introduced an

ML-based model to predict the application performance, to find the optimal input config-

uration and to improve the performance of stencil applications on multicore architectures

(Chapter 4). We presented that the ML-based model can be adapted according to the al-

gorithm implementations (i.e., naive and space tiling) and the architectural features (i.e.,

number of available hardware counters, and memory mode on many-core architectures).

Since the prediction model have been trained, it can be used to find the input configu-

ration set to reach the optimal performance. The results of proposed ML model proved

that performance prediction of geophysics numerical kernels can be done by building a

regression model with high accuracy (up to 99%), by using a tiny set of experiments (less
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than 1% of configuration set).

The second part was oriented to the performance analysis and efficient program-

ming models of geophysics numerical kernels on heterogeneous architectures (Chapter

5). In this circumstances, we used a standard implementation of seismic wave propaga-

tion, implemented in CUDA, to analyze the performance of the application (Chapter 6).

As we presented, the performance increments when we increment the number of available

accelerators; but, there are other factors that also increase (data movement and commu-

nications, unbalancing processing, and memory consumption), and it does not allow to

reach an optimal performance. On the other hand, the CPU processors are only used to

manage the co-processing work, neither of them is used to stencil computing.

To exploit all the available computing power on heterogeneous architectures is

necessary to implement new programming models, beyond the standard implementations.

In this sense, we introduced a task-based implementation of a seismic wave propagation

model (Chapter 7). This implementation allows a set of input parameters from a run-

time configuration set to improve the performance. We analyzed this implementation by

changing the input parameters: the type of processing units (CPU only, GPU only, and

CPU/GPU hybrid), the memory consumption (related to data movement and communica-

tions), the scheduling algorithms (related to cost of computing on CPU or GPU cores), and

the task size (related to the number of parallel task). This implementation is faster and

gained a better performance when compared with standard implementations. The pro-

posed heterogeneous task-based implementation can reach a performance improvement

near to 25 times when compared to multicore architectures.

9.2 Future Work

This research can be extended in several ways, and we delight three possibilities

as follows:

• Exploring on new input configurations. We proposed an improvement of perfor-

mance based on the finding of optimal input configuration at runtime. We proved

that in shared-memory programming the performance can be predicted by a trained

ML-based model, and this prediction helps to find the optimal performance. We

used a set of available parameters in OpenMP defined by OMP_NUM_THREADS and

OMP_SCHEDULE variables. We believe that other parameters can be included as in-
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put variables of the ML-based model for performance prediction. These parameters

could be related to programming models (i.e., MPI-based, over-decomposition in

virtual processes), compiler options (i.e., optimization flags, SIMD vectorization),

or architectural features (i.e., FPGAs, embedded systems).

• Extending the ML-based model to heterogeneous architectures. The perfor-

mance of our task-based implementation for the seismic wave propagation model is

affected by an input configuration set. The different scheduling algorithms, the type

of processing units and the variation in task size exhibited changes of application

performance. Making decisions, as choosing if computations run on GPU or CPU

cores, depend on parameters like memory consumption. Expanding the possibilities

in configuration runtime create a large set of input parameters. As we demonstrated,

this optimal input set can be found by an ML-based model. Then, one direction of

future work could be to develop a prediction model based on available hardware

performance counters in heterogeneous architectures.

• Developing a new model based on unsupervised ML algorithms. The main lim-

itation of the proposed ML-based model is related to the time consumed in train-

ing and testing stages because we used a supervised method. We think that an

unsupervised-based model would find the input set by auto-tuning techniques that

converge to optimal performance. In this context, we may address the research to-

wards clustering methods, genetic algorithms, or neural networks as self-organizing

maps.
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