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ABSTRACT

Nowadays, there are several different architectures available not only for the industry
but also for final consumers. Traditional multi-core processors, GPUs, accelerators such
as the Xeon Phi, or even energy efficiency-driven processors such as the ARM family,
present very different architectural characteristics. This wide range of characteristics
presents a challenge for the developers of applications. Developers must deal with differ-
ent instruction sets, memory hierarchies, or even different programming paradigms when
programming for these architectures. To optimize an application, it is important to have a
deep understanding of how it behaves on different architectures. Related work proved to
have a wide variety of solutions. Most of then focused on improving only memory per-
formance. Others focus on load balancing, vectorization, and thread and data mapping,
but perform them separately, losing optimization opportunities.

In this master thesis, we propose several optimization techniques to improve the perfor-
mance of a real-world seismic exploration application provided by Petrobras, a multi-
national corporation in the petroleum industry. In our experiments, we show that loop
interchange is a useful technique to improve the performance of different cache memory
levels, improving the performance by up to 5.3x and 3.9x on the Intel Broadwell and
Intel Knights Landing architectures, respectively. By changing the code to enable vector-
ization, performance was increased by up to 1.4x and 6.5x. Load Balancing improved
the performance by up to 1.1 x on Knights Landing. Thread and data mapping techniques
were also evaluated, with a performance improvement of up to 1.6x and 4.4x. We also
compared the best version of each architecture and showed that we were able to improve
the performance of Broadwell by 22.7x and Knights Landing by 56.7 x compared to a

naive version, but, in the end, Broadwell was 1.2 faster than Knights Landing.

Keywords: Performance evaluation. source code optimizations. many-core. HPC.






Otimizacoes de Codigo Fonte para Reduzir Gargalos de Desempenho em

Multi-core e Many-core

RESUMO

Atualmente, existe uma variedade de arquiteturas disponiveis ndo apenas para a indus-
tria, mas também para consumidores finais. Processadores multi-core tradicionais, GPUs,
aceleradores, como o Xeon Phi, ou até mesmo processadores orientados para eficiéncia
energética, como a familia ARM, apresentam caracteristicas arquiteturais muito diferen-
tes. Essa ampla gama de caracteristicas representa um desafio para os desenvolvedores de
aplicagdes. Os desenvolvedores devem lidar com diferentes conjuntos de instrugdes, hie-
rarquias de memoria, ou até mesmo diferentes paradigmas de programagdo ao programar
para essas arquiteturas. Para otimizar uma aplicacdo, é importante ter uma compreensao
profunda de como ela se comporta em diferentes arquiteturas. Os trabalhos relacionados
provaram ter uma ampla variedade de solug¢des. A maioria deles se concentrou em melho-
rar apenas o desempenho da memoria. Outros se concentram no balanceamento de carga,
na vetorizacdo e no mapeamento de threads e dados, mas os realizam separadamente,
perdendo oportunidades de otimizacao.

Nesta dissertacdo de mestrado, foram propostas varias técnicas de otimizagao para melho-
rar o desempenho de uma aplicacdo de exploracao sismica real fornecida pela Petrobras,
uma empresa multinacional do setor de petréleo. Os experimentos mostram que loop in-
terchange € uma técnica util para melhorar o desempenho de diferentes niveis de memoria
cache, melhorando o desempenho em até 5,3x e 3,9 nas arquiteturas Intel Broadwell
e Intel Knights Landing, respectivamente. Ao alterar o c6digo para ativar a vetorizagao,
o desempenho foi aumentado em até 1,4x e 6,5x. O balanceamento de carga melhorou
o desempenho em até 1,1 x no Knights Landing. Técnicas de mapeamento de threads e
dados também foram avaliadas, com uma melhora de desempenho de até 1,6 e 4,4x.
O ganho de desempenho do Broadwell foi de 22,7x e do Knights Landing de 56,7 x em
comparacao com uma versao sem otimizagdes, mas, no final, o Broadwell foi 1,2 x mais

rapido que o Knights Landing.

Palavras-chave: avaliacdo de desempenho, otimizacdes de cddigo fonte, many-core,
HPC.
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1 INTRODUCTION

High-performance computing (HPC) has been responsible for a scientific revo-
lution. The evolution of computer architectures improved the computational power, in-
creasing the range of problems and quality of solutions that could be solved in the required
time, e.g., weather forecast. The introduction of integrated circuits, pipelines, increased
frequency of operation, out-of-order execution and branch prediction are an important part
of the technologies introduced up to the end of the 20th century. Recently, the concern
about energy consumption has grown, with the goal of achieving computation at the Ex-
ascale level in a sustainable way (HSU, 2016). The technologies so far developed do not
enable Exascale computing, due to the high energy cost of increasing the frequency and
pipeline stages, as well as the fact that we are at the limits of exploration the instruction-
level parallelism (ILP) (BORKAR; CHIEN, 2011; COTEUS et al., 2011).

In order to increase computational power, the industry has shifted its focus to
parallel and heterogeneous architectures in recent years. The main feature of parallel ar-
chitectures is the presence of several processing cores operating concurrently. To use such
an architecture, an application must be programmed by separating it into several tasks that
communicate with each other. Heterogeneous architectures, on the other hand, have dif-
ferent environments in the same system, each one with its specialized architecture for task
type. The usage of accelerators is one of the main forms of heterogeneous architectures,
in which a generic processor is mostly responsible for managing the system, and several
accelerators present in the system perform the computation of specific tasks to which they
are tuned and expected to perform well.

Several challenges must be addressed to support these architectures better and
thereby achieve high performance (MITTAL; VETTER, 2015). Applications need to be
coded considering the particularities of each environment, as well as considering their
distinct architectural characteristics (GROPP; SNIR, 2013). For example, in the memory
hierarchy, the presence of several cache memory levels, some shared and others private
introduces non-uniform access times, which impact applications’ performance (CRUZ et
al., 2016a). It is even more critical in heterogeneous architectures since each accelerator
can have its own, distinct, memory hierarchy. Also, in heterogeneous architectures, the
number of functional units may vary between different accelerators, and the instruction
set itself may not be the same. In this context, it is essential to analyze the behavior of

architectures, in order to provide better support for optimizing applications performance.
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1.1 Contributions of this research

The main objective of our research is to evaluate multi-core and many-core ar-
chitectures and reduce the performance bottlenecks using source code optimization tech-

niques. Considering these goals, our main contributions are the following:

e We analyze a set of performance metrics on several applications with distinct par-
allel execution characteristics aiming to find a correlation between the metric and

the application performance (IPC).

e We addressed a set of performance optimization strategies, aiming to increase the
performance of a real-world seismic exploration application. The techniques em-
ployed were: loop interchange to improve cache memory usage; vectorization to
increase the performance of floating point computations; loop scheduling and col-
lapse to improve load balancing; and thread and data mapping to better use the

memory hierarchy.

1.2 Document Organization

The document is organized as follows. Chapter 2 presents a background on the
topics of this dissertation and discusses related work in performance optimization. Chap-
ter 3 presents the results of our evaluation of the performance bottlenecks. In chapter 4,
we addressed some performance optimization strategies and optimized a real-world ap-
plication. Finally, chapter 5 draws conclusions based on our findings and presents some

future work insights.



25

2 MULTI-CORE AND MANY-CORE: OVERVIEW AND RELATED WORK

The following sections explain some concepts that serve as a base for this dis-
sertation. Two state-of-art architectures for High-Performance Computing is presented.
Furthermore, this chapter also details related work on performance optimization for these

architectures.

2.1 Multi-core and Many-core Architectures

Technological innovations brought up powerful single-core processors with high
clock frequencies. However, because of technological and power limitations, multicore
and many-core processors emerged as new computer architectures (KIRK; WEN-MEI,
2016). These architectures rely on both instruction-level parallelism (ILP) and thread-
level parallelism (TLP) to achieve high performance. Today’s multicore and many-core
processors differ in the number of cores, the memory hierarchy, and their interconnection.

The design of multicore and many-core architectures is different to the point that
depending on the application, the performance can be high in one architecture and low in
the other (COOK, 2012). The multicore architecture uses sophisticated control logic to
allow single-threaded statements to run in parallel. Large cache memories are provided
to reduce access latencies to instructions and application data. Finally, the operations of
the arithmetic logic units (ALUs) are also designed to optimize latency.

Many-core architecture takes advantage of a large number of execution threads.
Small cache memories are provided to prevent multiple threads accessing the same data
from having to go to main memory. Besides, most of the chip is dedicated to floating-
point units. Such architectures are designed as floating-point computing mechanisms and

not for conventional operations, which are better executed by multicore architectures.

2.1.1 The Broadwell Architecture

The Broadwell architecture (NALAMALPU et al., 2015) is a non-uniform mem-
ory access architecture. In such architectures, the latency in the access to the main mem-
ory will change, as it depends on which memory bank is being accessed (CRUZ et al.,

2016a). Each processor in the system contains a memory controller, composing one
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Figure 2.1: Example of the memory subsystem in the Broadwell architecture. In this fig-
ure there are 2 processors, each constituting a NUMA node. Each processor is composed
of 22 physical processing cores, each executing 2 logical threads. There are 3 levels of
cache memory.

Processor Processor
Core Core Core Core
2-SMT 2-SMT 2-SMT 2-SMT

L1/1L.2 L1/1L.2 L1/1.2 L1/L.2
| |

| Interconnection |

Source: The Author.

NUMA node. Each physical core executes 2 logical threads by employing simultaneous
multi-threading (SMT). The connection between different processors is made through In-
tel’s QuickPath Interconnect (QPI) (ZIAKAS et al., 2010). The memory hierarchy of this
system is illustrated in Figure 2.1.

To exemplify how the memory hierarchy can impact a memory access latency,
Figure 2.1 shows an example of a system where there are different possibilities for ac-
cesses to memory. Threads might access memory by obtaining their data from the private
L1 or L2 caches in each core, obtaining high-speed access. A significant change in the
Broadwell architecture, when compared to the previous Intel processors, is the duplica-
tion of available bandwidth in the private cache memories. The L1 cache memory has
2 load ports and 1 store port, thus it supports 2 concurrent load requests given no bank
conflict between the accesses. Threads might also access the L3 cache memory, which is
shared between all cores, taking 3 to 4 times longer than accessing the L2 cache, and up
to 10 times longer than accessing the L1 cache. If the requested data is not found in the
local caches, the request is snooped by remote caches in the other NUMA nodes, which
might have the data. If the data is still not found, then the main memory of the NUMA

node responsible for the address is accessed.

2.1.2 The Knights Landing Architecture

The Knights Landing (KNL) architecture (SODANI et al., 2016) is shown in Fig-
ure 2.2. The architecture is organized in tiles and has a distributed tag directory, and has

a mesh interconnection. Each tile contains two cores, with private L1 caches, a shared
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Figure 2.2: Example of the memory subsystem in the Knights Landing architecture. In
this figure there are 4 tiles, each with 2 cores. The processor is composed of 57 physical
processing cores, each executing 4 logical threads. There are 2 levels of cache memory.
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Source: The Author.

L2 cache and a tag directory (omitted in the figure). The architecture, besides memory
controllers to access external DDR4 memory, includes an MCDRAM memory, which
can work as a cache to the DDR4 memory (cache mode). We used this mode in the ex-
periments, or as a separate memory in the same address space (flat mode). The cores
in KNL implement an out-of-order pipeline and can execute 4 threads in parallel using
simultaneous multithreading (SMT).

In KNL, in case of a cache miss, the corresponding tag directory is checked, and
the data is forwarded from another cache if present there. If no cache of any tile has
the data, two behaviors are possible. First, in cache mode, the MCDRAM works as an L.3
cache, such that the processor first checks if the data is cached in it, and if not, the memory
controller is accessed to fetch the data from the DDR4 memory. Second, in flat mode, the
memory address determines if the data is stored in the MCDRAM or the DDR4 memory.
The distribution of memory addresses between the tag directories and memory controllers
can also be configured, which is called clustering mode. The two main configurations for
clustering modes are: quadrant, where the tiles are split to 4 quadrants, and the addresses
are divided between the quadrants by the hardware; and sub-NUMA clustering, where
each memory controller and MCDRAM form a NUMA node, and the operating system is

responsible for selecting the node that stores each page.
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2.2 Related Work

In this section, the most representative works that evaluate and optimize applica-

tions performance are discussed. They are listed by property in chronological order.

2.2.1 Memory Optimization

Falch and Elster (FALCH; ELSTER, 2014) proposed the usage of a manually
managed cache to combine the memory from multiple threads. Using their technique,
they achieved a speedup of up to 2.04 in a synthetic stencil. They concluded that manual
caching is an effective approach to improve memory access and that applications with
regular access patterns are suitable to implement their technique.

A mechanism is proposed by Jia, Shaw and Martonosi (JIA; SHAW; MARTONOSI,
2014) to balance memory accesses. The authors’ motivation is that the design of cache
memories used in GPU architectures are the same as those designed for CPU archi-
tectures, which is unfit for their operation. The massive use of threads through block-
threading in warps means that normal caches provide few bytes per thread, and when all
threads need the cache, the data is thrown away without being reused (thrashing). When
threads from multiple warps share the cache, there is contention for the request queue it-
self, which cannot timely serve requests from such a large number of threads. The authors
propose two solutions: queue request reordering and cache bypassing. Through queues
that use block identifiers, it is possible to separate the requests and prioritize all requests
of 1 block, to make use of the spatial and temporal localities of this block. To avoid
starving and contention, additional policies were developed to balance use cases, such as
prioritizing a full queue that receives a new request. Because caches are also not designed
for so many threads, some warps have all their accesses redirected directly to main mem-
ory, effectively avoiding cache accesses. It improves the access of all the requests to the
cache memory, since the waiting delays in the queue of the accesses that go to the cache
are reduced, and the accesses that do not have access to the cache because they do not
have priority would probably be missed in the cache. By avoiding waiting and useless
accesses, requests are serviced faster by being forwarded directly to main memory.

Maruyama and Aoky (MARUYAMA; AOKI, 2014) present a method for stencil
computations on the NVIDIA Kepler architecture that uses shared memory for better

data locality combined with warp specialization for higher instruction throughput. Their
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method achieves approximately 80% of the value from roofline model estimation.

In Ausavarungnirun et al. (AUSAVARUNGNIRUN et al., 2015), the authors pro-
posed a mechanism to balance the memory accesses. The main observation of the article
is that a warp with several hits in the L2 cache, which also generates misses in the cache
L2, has as bottleneck these same misses, despite all the hits, which become unutilized.
Hits on warps with lots of misses are also useless since the worst access time always
defines the execution of warp. Through changes in the memory subsystem, prioritizing
warps accesses with most hits and redirecting warps accesses with most misses directly
to the main memory, the technique can improve application performance, on average, by
21%. The work exploits an inherent architectural feature of the stream processor model,
mitigating the problem of divergence of memory accesses in individual warps. The re-
search considered in this article deals with issues related to the pressure of several threads
of scalable benchmarks at a system level, although they are related problems when con-
sidering the level of the stream processor.

Sao et al. (SAO et al., 2015) presented a sparse direct solver for distributed mem-
ory subsystems comprising hybrid multi-core CPU and Intel Xeon Phi coprocessors,
which combines the use of asynchrony with the accelerated offload, lazy updates, and
data shadowing to hide and reduce communication costs.

Heinecke et al. (HEINECKE et al., 2016) optimized seismic simulations in the
Knights Landing architecture, exploiting its two-level memory subsystem and 2D mesh
interconnect.

Nasciutti and Panetta (NASCIUTTI; PANETTA, 2016) did a performance analy-
sis of 3D stencils on GPUs focusing on the proper use of the memory hierarchy. They
conclude that the preferred code is the combination of read-only cache reuse, inserting

the Z loop into the kernel and register reuse.

2.2.2 Vectorization

Wang et al. (WANG et al., 2016) introduced a fast tridiagonal algorithm for the
Intel MIC architecture, achieving the best utilization of vectorization and registers.

Hasib et al. (HASIB et al., 2017) investigate the effects on performance and energy
from a data reuse methodology combined with parallelization and vectorization in multi-

core and many-core processors. They achieve a speedup of 17x using AVX2 and 35x

using AVXS512.
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2.2.3 Load Balancing

The work of Lastovetsky, Szustak and Wyrzykowski (LASTOVETSKY; SZUS-
TAK; WYRZYKOWSKI, 2017) have used load imbalance (different work partition sizes)
as a way to improve performance in a KNC platform. As their application of inter-
est, MPDATA, sometimes shows a decrease in execution time for larger domain (data)
partitions, they use a self-adaptable implementation to benchmark some balanced (same
size of subdomain among groups of threads) and imbalanced (half of the threads have a
slightly larger subdomain) partitions, and then choose the best partition among the mea-
surements, achieving performance improvements of 15% over the balanced distribution.
Nevertheless, this work distribution algorithm is limited to well-behaved, iterative, static

applications.

2.2.4 Thread and Data Mapping

Tousimojarad and Vanderbauwhede (TOUSIMOJARAD; VANDERBAUWHEDE,
2014) show that the default thread mapping of Linux is inefficient when the number of
threads is as large as on a many-core processor and presents a new thread mapping policy
that uses the amount of time that each core does useful work to find the best target core
for each thread.

Liu et al. (LIU et al., 2015) propose an approach based on profiling to determine
thread-to-core mapping on the Knights Corner architecture that depends on the location of
the distributed tag directory, achieving significant reductions on communication latency.

On Cruz et al. (CRUZ et al., 2016b), a method that uses the time that an entry
stays in the TLB and the threads that access that page as a metric to perform thread and
data mappings better is presented, achieving great performance improvements with low
overhead.

Diener et al. (DIENER et al., 2016b) proposes kmaf, a kernel-based framework
that uses page faults of parallel applications to profile their memory access pattern and
improve the thread and data mapping online (DIENER et al., 2016b).

He, Chen and Tang (HE; CHEN; TANG, 2016) introduces NestedMP, an extension
to OpenMP that allows the programmer to give information about the structure of the tasks
tree to the runtime, which then performs a locality-aware thread mapping.

Cruz et al. (CRUZ et al., 2018) improve state of the art by performing a very
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detailed analysis of the impact of thread mapping on communication and load balanc-
ing in two many-core systems from Intel, namely Knights Corner and Knights Landing.
They observed that the widely used metric of CPU time provides very inaccurate infor-
mation for load balancing. They also evaluated the usage of thread mapping based on the
communication and load information of the applications to improve the performance of
many-core systems.

Serpa et al. (SERPA et al., 2018) focus on Intel’s multi-core Xeon and many-core
accelerator Xeon Phi Knights Landing, which can host several hundreds of threads on
the same CPU. They study the impact of mapping strategies, revealing that, with smart
mapping policies, one can indeed significantly speed up machine learning applications on
many-core architectures. Execution time was reduced by up to 25.2% and 18.5% on Intel

Xeon and Xeon Phi Knights Landing, respectively.

2.2.5 Combined Different Properties

A memory model to analyze algorithms for many-core systems is presented in Ma,
Agrawal and Chamberlain (MA; AGRAWAL; CHAMBERLAIN, 2014). The model con-
siders several architectural parameters, such as the latency for accessing the memory, the
number of cores, the number of words that can be read from memory, the size of cache
memory and the number of threads per core. It also considers the total number of oper-
ations that the running application must perform, as well as the total number of memory
operations, cache memory usage and the number of threads. The authors conclude that
applications with similar characteristics can have different performance using different
architectural parameters.

In Andreolli et al. (ANDREOLLI et al., 2015), the authors focused on acoustic
wave propagation equations, choosing the optimization techniques from systematically
tuning the algorithm. The usage of collaborative thread blocking, cache blocking, register
reuse, vectorization and loop redistribution resulted in significant performance improve-
ments.

Mei and Chu (MEI; CHU, 2015) analyzed the characteristics of the memory sub-
system in 3 different GPU architectures: Fermi, Kepler, and Maxwell. They used a
pointer-chasing benchmark and observed the memory access latencies to define the char-
acteristics of all memories within each GPU. In doing so, they were able to identify in-

teresting features, such as a line replacement policy different from the expected Least
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Recently Used (LRU) in the L2 cache memory. The authors conclude that the Kepler
architecture planning was aggressive in its memory bandwidth, which has often been un-
derused, and that, in the Maxwell architecture, more resources were invested in shared
memory, generating a more efficient and balanced system.

Slota, Rajamanickam and Madduri (SLOTA; RAJAMANICKAM; MADDURI,
2015) presented a methodology for graph algorithm design on many-core architectures,
such as NVIDIA and AMD GPUs and the Intel Xeon Phi MIC coprocessor, considering
thread synchronization and access to global and shared memory, as well as load balancing.

Research efforts such as the presented in Castro et al. (CASTRO et al., 2016)
improved and evaluated the performance of the acoustic wave propagation equation on
Intel Xeon Phi and compared it with MPPA-256, general-purpose processors and a GPU.
The optimizations include cache blocking, memory alignment with pointer shifting and
thread affinity. They show that the best results are obtained from a combination of the
first two and also that the performance with the Xeon Phi is close to the GPU.

Serpa et al. (SERPA et al., 2017) propose several optimization strategies for a wave
propagation model for six architectures: Intel Broadwell, Intel Haswell, Intel Knights
Landing, Intel Knights Corner, NVIDIA Pascal and NVIDIA Kepler. The results show
that current GPU NVIDIA Pascal improves over Intel Broadwell, Intel Haswell, Intel
Knights Landing, Intel Knights Corner, and NVIDIA Kepler performance by up to 8.5 x.

Deng et al. (DENG et al., 2018) analysis the performance difference between
Sandy Bridge, MIC, and Kepler. They also proposed some memory optimizations that
improve the performance of an ADI solver by up to 5.5 on a Kepler GPU in contrast to

two Sandy Bridge CPUs.

2.3 Summary

In this chapter, we analyzed the related work on memory optimization, vectoriza-
tion, load balancing and mapping. The related work proved to have a wide variety of
solutions, with very different characteristics, in which we summarize in Table 2.1.

With the analysis of the related work, we can conclude that deep knowledge of
the application behavior at the architectural level allows developing techniques to gain
performance. Our work goes beyond analysis and looks for a greater understanding of
the performance of different applications on different multi-core and many-core systems.

We decide for using multi-core and many-core architectures because their programming
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Table 2.1: Summary of related work. Each line represents a related work. Each column
represents a desired property.

Many-core
Vectorization
Load Balancing
Mapping

\ Multi-core

Falch e Elster (2014)

Jia, Shaw e Martonosi (2014)

Ma, Agrawal e Chamberlain (2014)
Maruyama e Aoki (2014)
Tousimojarad e Vanderbauwhede (2014) v’
Andreolli et al. (2015) v’
Ausavarungnirun et al. (2015)

Liu et al. (2015)

Mei e Chu (2015)

Sao et al. (2015) v’
Slota, Rajamanickam e Madduri (2015)
Castro et al. (2016)

Cruz et al. (2016b)

Diener et al. (2016b)

He, Chen e Tang (2016)

Heinecke et al. (2016)

Nasciutti e Panetta (2016)

Wang et al. (2016)

Hasib et al. (2017)

Lastovetsky, Szustak e Wyrzykowski (2017)
Serpa et al. (2017)

Cruz et al. (2018)
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This Thesis

<
NAVANAN Memory

<

NAVANERANERAN
NAVANAVERAN

NANAN
ANAYANAN

NAN

MRS

<

NASAANEAN
N ANANANANANANANERAN
<
<
ANANERANAN

Source: The Author.

style is similar, different from a GPU architecture that has a very different and unusual
programming style.

The related work also shows that most of the work is focused on memory opti-
mizations, but several works aimed at vectorization, load balancing and mapping. In this
way, we decide to perform the four optimizations together on a real-world application.

The next chapters describe our proposals in detail.
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3 ANALYSIS OF PERFORMANCE BOTTLENECKS

Nowadays, there are several different architectures available not only for the in-
dustry but also for final consumers. Traditional multi-core processors and many-core
accelerators such as the Xeon Phi present very different architectural characteristics. This
wide range of characteristics present a challenge for the developers of applications be-
cause the same application can perform well when executing on one architecture, but
poorly on another architecture.

To better explain our motivation, we show how parallel applications perform on
these architectures. Figure 3.1 shows the IPC (instructions per cycle) metric, which in-
dicates the average number of instructions executed per cycle, for 18 benchmarks from
the Rodinia suite (CHE et al., 2010). As expected, the performance of each application
depends on the architecture. There are three groups of applications: better on Broadwell;
better on Knights Landing; and almost the same performance in both architectures.

It motivates the study of applications and architectural characteristics, aimed to un-
derstand what limit applications performance and how to improve that. We used hardware
performance counters to gather accurate measurements of the actual impact of different
factors that influence the performance. By doing so, we arrive the conclusion that some
metrics help in understand applications performance, but there are cases where a metric
alone is not representative. Such study served as a basis for the next chapter where we

optimize a real-world seismic exploration application.

Figure 3.1: Performance of different architectures (higher IPC is better).
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Table 3.1: Execution Environment.

System Parameter Value
Broadwell Processor 2 x Intel Xeon E5-2699 v4, 2 x 22 cores, 2-SMT cores
multi-core Threads 88

Microarchitecture Broadwell-EP
Caches/processor 22 x 32 KByte L1, 22 x 256 KByte L2, 55 MByte L3

Memory 256 GByte DDR4-2400
Environment Linux 4.4, Intel Compiler 18.0.1
Knights Landing Processor Intel Xeon Phi 7250, 68 cores, 4-SMT cores
many-core Threads 272
Microarchitecture  Knights Landing
Caches 68 x 32 KByte L1, 68 x 512 KByte L2
Memory 96 GByte DDR4, 16 GByte MCDRAM
Environment Linux 4.4, Intel Compiler 17.0.4

Source: The Author.

The remainder of this Chapter is organized as follows. First, we discuss the
methodology, introducing the architectures used to perform the experiments of this disser-
tation and the benchmark suite applications. Then, the results on Broadwell and Knights

Landing are presented. Finally, we discuss and summarize the conclusions of this study.

3.1 Methodology

The experiments were performed in the Broadwell and Knights Landing system
environments. The Broadwell system is composed of two Intel Xeon E5-2699 v4 pro-
cessors, where each processor consists of 22 physical cores, allowing execution of 44
threads with 2-SMT Hyper-Threading. The Knights Landing system is an Intel Xeon Phi
7250 processor with 68 physical cores and 272 threads with 4-SMT Hyper-Threading. It
also has a 16 GB MCDRAM memory which is almost four times faster than the DRAM.
Table 3.1 exhibits the details of each system.

The experiments shown in the next sections present the average of 30 random ex-
ecutions. The standard deviation presented is given by the t-Student distribution with a
95% confidence interval. Moreover, we also investigate other metrics such as bandwidth
and cache hit ratio in the memory subsystem. The Intel PCM (INTEL, 2012) and In-
tel VTune (INTEL, 2016) tools were used to obtain data for the Broadwell and Knights
Landing.
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3.1.1 Workloads

As workloads, we used the OpenMP implementation of the Rodinia Benchmark,
v3.1 (CHE et al., 2010). The benchmark suite Rodinia was chosen since it implements
a set of applications with distinct parallel execution characteristics. We configured the
benchmarks to run with the number of virtual cores of the architecture. The applications
used were the following:

Back Propagation (BP): BP is an iterative algorithm used to train the weights of
the connections between neurons in a multi-layer neural network. The training is per-
formed in two phases: the Forward Phase, in which the activations are propagated from
the input to the output layer, and the Backward Phase, in which the error between the
observed and requested values in the output layer is propagated backward to adjust the
weights and bias values. In each layer, the processing of all the nodes can be done in
parallel.

Breadth-First Search (BFS): BES implements breadth-first search traversal of an
arbitrary graph. The application read a graph specification from a file. The result of the
traversal is an array of integers where each element is the distance from the source node
to the node with the element’s index. The traversal starting node is picked randomly by
the application. The host performs traversal in a loop until every node is visited.

B+ Tree (B+): B+tree implements queries on large n-ary trees. The benchmark
constructs the tree as a dynamic data structure of heap allocated nodes. As the size of the
tree grows, the cost of conversion increases substantially. If the tree is modified, the entire
tree must be converted again. The application reads the query commands from a file, one
command at a time, and processes them immediately.

CFD Solver (CFD): CFD solves the 3D Euler equations for a zero density, com-
pressible fluid. The algorithm is implemented as an unstructured grid finite volume solver,
where each thread operates on a block of the 3D space.

Heart Wall Tracking (HW): HW implements the tracking stage of the Heart Wall
application. The application comes with a single input AVI file containing the sequence
of ultrasound images. The kernel is invoked once for each frame in the video sequence.
Thus the application is a wrapper for the kernel implementing the tracking stage of the
Heart Wall application.

HotSpot 2D (HS2D): HS2D estimates the temperature of a logic circuit given the

initial temperature and the power dissipation of each logic cell. The temperature value
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of all cells is calculated in parallel and stops after a predetermined number of timesteps.
This benchmark can be classified as Structured Grid.

HotSpot 3D (HS3D): HS3D performs the same calculations as HS2D but for a
tridimensional integrated circuit.

K-Means (KM): A set of k initial centers is generated in the same multidimen-
sional space as the data set one wishes to cluster. The algorithm assigns each point to the
center that is closer to it. After that, the center of these clusters is calculated, and the pro-
cess is repeated with the new centers for a predetermined number of iterations. The main
computation performed is calculating the Euclidean distance between the points, and that
is done in parallel. The problem is classified as Dense Linear Algebra.

LavaMD (MD): MD calculates the movement of particles due to the forces from
other particles in a large tridimensional space. The 3D space is first divided into boxes.
Then, for every particle in a box, the loop processes the interactions with other particles
in this box and then with particles in the neighbor boxes. The processing of each particle
consists of a single stage of calculation that is enclosed in the innermost loop. The nested
loops in the application were parallelized in such a way that at any point of time wavefront
accesses adjacent memory locations.

Leukocyte Tracking (L.C): Detect and track rolling leukocytes in video microscopy
of blood vessels, useful for medical imaging. The cells are detected on the first frame by
computing the Gradient Inverse Coefficient of Variation score for every pixel across a
range of possible ellipses that could be the contour of the cell. The application then com-
putes the Motion Gradient Vector Flow matrix in the area around each cell to track the
flow of the blood. The dwarf classification is Structured Grid.

LU Decomposition (LUD): LUD performs the LU Decomposition of a matrix,
that means decomposing an input matrix into two triangular matrices and a diagonal ma-
trix. The factorization is a sum of products and is made in parallel. It is a Dense Linear
Algebra application.

Myocyte Simulation (MS): MS is a simplified implementation of the simulation
that models the heart muscle cell. The simulation is based on ordinary differential equa-
tions (ODE) describing the activity in the cell. It uses the Runge-Kutta-Fehlberg method
to find approximate solutions for the ODE. The simulation is performed for a number of
steps in the time interval specified as a parameter on the command line. The number of
ODEs is 91, and the parameters and the initial data that specify the ODEs are read from
the input files.
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K-Nearest Neighbors (KNN): The KNN is a simple clustering algorithm that
attributes to each point the label of its nearest neighbor. The main computational task
performed is calculating the distance between the points, which is done in parallel and
behaves as a Dense Linear Algebra dwarf.

Needleman-Wunsch (NW): The NW algorithm is an algorithm for sequence align-
ments, which obtains the best alignment by using optimal alignments of smaller subse-
quences. It is often used in bioinformatics to align protein or nucleotide sequences. It
consists of three steps: initialization of the score matrix, calculation of scores, and deduc-
ing the alignment from the score matrix. The second step is parallelized. Because NW
has diagonal stride memory access pattern, it is hard to exploit data locality to improve
performance.

Particle Filter (PF): PF is a probabilistic model for tracking objects in a noisy
environment using a given set of particle samples. The application has several parallel
stages, and implicit synchronization between stages is required. It is a Structured Grid
dwarf application.

Pathfinder (PATH): Pathfinder finds the shortest path in a 2D grid using dynamic
programming. It computes row by row, achieving the smallest sum of weights between
the beginning and the end of the path. In each iteration, the shortest path calculation is
parallelized.

Stream Cluster (SC): Given a stream of input points, SC calculates median points
and assigns each point of the input stream to the cluster created from the median that
is closer to it. The main computational work in the benchmark is calculating the cost
of opening new centers and the distance of the points from those centers, and so these
calculations are made in parallel. In both, the distance between two points is the most
time-consuming task. It is a Dense Linear Algebra application.

Speckle Reducing Anisotropic Diffusion (SRAD): SRAD performs a Speckle
Reducing Anisotropic Diffusion on an image, frequently used on radar and ultrasonic
imaging applications. In each iteration of the method, the whole image is updated. Each
thread computes on a slice of the input matrix, providing high thread locality, and thus

good scalability. The dwarf classification of this benchmark is Structured Grid.
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3.2 Results on Broadwell

The Broadwell architecture obtains data by accessing the private L1 and L2 caches
of each core, the L3 cache shared by all cores of the same processor, or the main mem-
ory. Figures 3.2(a), 3.2(b) and 3.2(c) show the respective hit ratios of each cache level.
Figure 3.2(d) shows the combined hit rate, which is the number of memory transactions
serviced by any cache. The x-axis presents the name of each application ordered by the
IPC (smaller shown first), and the y-axis indicates the hit ratio in percentage. The L1
cache is the fastest and smallest memory and is private to each core. The average L1 hit
ratio was 96.5%. Even with an average close to 100%, small variations in the L1 hit ratio
implies in significant variations in performance, and therefore it is not a good predictor
of IPC by itself. Applications such as MD, NW, KNN, PATH, HS3D, and BFS have L1
hit rates up to 99.9% due to their data accesses pattern. On the other hand, applications
such as BP, SRAD, LUD, CFD, and PF, have lower hit rates (86.4% in PF), affecting
their performance because they access slower memories more frequently. The L2 cache
is also private to each core. LUD, KNN, LC, HW, and PF are applications that take advan-
tage of the L2 cache and thus have better performance results. The L2 hit ratios in these
applications were up to 98.9%.

The L3 cache, the last-level cache in the Broadwell architecture, is shared between
all cores of the same processor. It helps several applications by reducing the accesses
in the main memory. The applications SC, MS, and LC, have an L3 hit ratio close to
100%, which means that their entire data fit in the L3. On the other hand, HS2D has
an L3 hit equals to 22.5%, which is low compared to the average (56.2%), and yet the
application performs above average when compared to the other applications. Most likely,
the majority of its accesses were already filtered by the higher level caches.

We can observe, in the combined hit ratio, that most of the applications with the
highest hit ratios are the ones with the highest IPCs, which indicates that the cache mem-
ories have a significant impact on the performance. For instance, PF has the best IPC
even without the highest L1 hit ratio, but it has a very high combined hit ratio. To im-
prove the performance, techniques such as loop interchange and loop tiling can be used.
Using these techniques, more data is fetched to the cache memories, the data reuse in the
caches increase, and cache line prefetchers can fetch data from the main memory more

accurately.



Figure 3.2: Cache hit ratio in Broadwell architecture.
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Figures 3.3(a) and 3.3(b) show results of dynamic random-access memory (DRAM)
transactions per second and Quickpath Interconnect (QPI) transactions per second. Ap-
plications with low cache hit ratios have a large number of DRAM and QPI transactions,
which reduce their performance by accesses to local and remote memories. The DRAM
transactions per second were in average 13.1 x 10° which is 6.5 times less than the max-
imum value that is 84.9 x 10° (in SRAD). The applications SRAD, LUD, and CFD, have
the highest values of transactions per second, which limit their performance. Transactions

across the QPI also reduce the performance of applications.

3.3 Results on Knights Landing

This architecture has private L1 and L2 caches. Thus, the cores can allocate data
into its private L1 and L2, but on an L2 cache miss, the other L2 caches can be accessed

remotely by the coherence protocol. Figures 3.4(a) and 3.4(b) show the L1 and L2 hit
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Figure 3.3: Memory operations in the Broadwell architecture. The y-axis is in logarithmic
scale in both figures.
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ratio of the applications in the Knights Landing architecture. Figure 3.4(c) shows the
combined hit ratio. Most applications have L1 hit ratios greater than 80%. However,
some applications, including NW, KM, PATH, MS, and BFS, have L1 hit ratios from 56.6%
to 66.4%. These applications performances are affected by the latency of L2 and main
memory, which are longer than L1 latency.

The L2 cache is the last level cache in the Knights Landing architecture and its
hit ratio impacts directly in applications’ performance. For instance, HW has one of the
highest performances and also high L2 hit ratio of 82.6%. This application has high
hit ratios in L1 and L2, performing better than other applications. The opposite occurs
with NW, KM, and PATH, which have low L1 and L2 hit ratios and consequently the worst
performances in a Knights Landing. Analyzing the combined hit rate, we can observe that
in most cases, applications with a higher combined hit ratio have a better performance.
Therefore, the conclusion we arrive is similar to the one in Broadwell. It is more relevant
to have a hit on any cache and avoid access to the main memory than to have a high hit
rate on any specific level.

The number of memory accesses is also crucial to the performance of the Knights
Landing architecture. Figures 3.5(a) and 3.5(b) show results of DRAM and MCDRAM
transactions per second, respectively. Applications with low cache hit ratios have a large
number of DRAM and MCDRAM transactions, which reduce their performance by ac-
cesses to local and remote slow memories. The DRAM transactions per second were in
average 0.29 x 10° which is 9.6 times less than the maximum value that is 2.79 x 10° (in
SRAD). The applications SRAD, NW, and LUD, have the highest values of transactions per

second, which limit their performance. MCDRAM transactions also reduce performance,
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Figure 3.4: Cache hit ratio in the Knights Landing architecture.
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but it degrades the performance less than DRAM transactions. Applications with the
highest IPC such as MD, LUD, and HW have more MCDRAM transactions that DRAM.
The MCDRAM transactions per second were in average 15.25 x 10°. The conclusion is
that we should reduce the DRAM and MCDRAM accesses, but is better to have access to
MCDRAM than DRAM.

3.4 Conclusions

In this chapter, we performed experiments in two architectures aiming to investi-
gate the performance bottlenecks. We discussed the performance of 18 applications of the
Rodinia benchmark. The results show that some metrics help in understand applications
performance, but there are cases where a metric alone is not representative. In the next

chapter, we use this knowledge to optimize a real-world seismic exploration application.
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Figure 3.5: Memory operations the Knights Landing architecture. The y-axis is in loga-
rithmic scale in both figures.
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4 OPTIMIZATION STRATEGIES FOR MULTI-CORE AND MANY-CORE

Chapter 3 investigates multi-core and many-core architectures performance bot-
tlenecks. Based on that, we address some performance optimization strategies aiming
to reduce the impact of performance bottlenecks. We first employ the loop interchange
technique to improve cache memory usage. Afterward, we put vectorization into account
intending to increase the performance of floating-point computations. Later, we apply
loop scheduling and collapse to improve load balancing; Finally, we increase the memory
hierarchy performance by use thread and data mapping.

Therefore, in order to validate our assumptions, we improve the performance of a
real-world seismic exploration application provided by Petrobras. It implements an acous-
tic wave propagation approximation which is the current backbone for seismic imaging
tools. It has been extensively applied for imaging potential oil and gas reservoirs beneath
salt domes for the last five years. Such acoustic propagation engines should be continu-
ously ported to the newest HPC hardware available to maintain competitiveness.

The remainder of this Chapter is organized as follows. First, we introduced the
seismic exploration application. Then, we present the optimization techniques and the
results for both architectures. Finally, we discuss and summarize the conclusions of this

Chapter.

4.1 Seismic Exploration Application

Geophysics exploration remains fundamental to the modern world to keep up with
the demand for energetic resources. This endeavor results in expensive drilling costs
(100M$-200M8$), with less than 50% of accuracy per drill. Thus, Oil & Gas industries rely
on software focused on High-Performance Computing (HPC) as an economically viable
way to reduce risks. The fundamentals of many software mechanisms for exploration
geophysics are based on wave propagation simulation engines. For instance, on seismic
imaging tools, modeling, migration and inversion use wave propagators at the core. These
simulation engines are built as Partial Differential Equation (PDE) solvers, where the PDE
solved in each case defines the accuracy of the approximation to the real physics when a
wave travels through the Earth’s internals.

In this dissertation, we focus on improving the performance of a Reverse Time

Migration (RTM) program provided by Petrobras, the leading Brazilian oil company.
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The program simulates the propagation of a single wavelet over time by solving the
isotropic acoustic wave propagation (Equation 4.1), and the isotropic acoustic wave prop-
agation with variable density (Equation 4.2) under Dirichlet boundary conditions over a
finite three-dimensional rectangular domain, prescribing p = 0 to all boundaries, where
p(z,y, z,t) is the acoustic pressure, V (z,y, z) is the propagation speed and p(z,y, z) is
the media density. The Laplace Operator is discretized by a 12" order finite differences
approximation on each spatial dimension. A 2"¢ finite differences operator approximates

the derivatives.

1 0% 2
vige ~ VP 4.1)
1 9% Vp

Next section present the performance evaluation results where we employ the same
experimental setup and methodology described in Section 3.1. The difference is the work-
load that in this chapter is the seismic exploration application. The seismic code was writ-
ten in standard C and leverage from OpenMP directives for shared-memory parallelism.
The stencil used in the experiments was 1024 x 256 x 256 resulting in total memory us-

age of 2.5 GB.

4.2 Results

The following subsections present the optimizations techniques we used to im-
prove the performance of a real-world application and the experiments performed to val-
idate them. We describe the optimizations and analyze how they address the challenges

imposed by multi-core and many-core architectures.

4.2.1 Memory Access Pattern to Improve Data Locality

Current computer architectures provide caches and hardware prefetchers to help
programmers manage data implicitly (LEE et al., 2010). The loop interchange technique
can be used to improve the performance of both elements by exchanging the order of two

or more loops. It also reduces memory bank conflicts, improves data locality and helps
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to reduce the stride of an array computation. In this way, more data that is fetched to the
cache memories are effectively accessed, the data reuse in the caches is increased, and
cache line prefetchers are able to fetch data from the main memory more accurately. In
this application, we have three loops that are used to compute the stencil. They can be
executed on any order without changing the results. The default loop sequence was xyz.

We propose to change the loop sequence from Xxyz to all possible combinations.
The outermost loop is the one that was always parallelized using threads. In Figure 4.1,
we show in the X-axis the sequences and in the Y-axis the speedup versus the xyz se-
quence. The bars represent the architecture. Loop sequence zyx has better performance
and combined cache hit ratio results in Broadwell. The speedup compared with the xyz
version is 5.3 x. This sequence is better than others because the data is accessed in a way
that benefits more from the caches, as can be observed in the cache hit rates shown in
Figure 4.2(a). The L2 cache hit rate was improved from 14.9% to 77% when the loop
sequence was changed to zyx. The L3 cache hit was also improved from 76.2% to 92%
in Broadwell. However, this was not the case with the L1 cache, as its hit rate decreases
from 82.3% to 73%. In Knights Landing, version yzx have better performance and com-
bined cache hit ratio results. The speedups were up to 3.9 x showing that this optimization
impact less on the performance of Knights Landing than Broadwell. The cache hit rates
are shown in Figure 4.2(b). The L2 cache hit rate was improved from 9.6% to 95.9%.
Although L1 cache hit rate decreases in both architectures, it shows that the best option
aiming performance is to increase the last level cache (LLC) hit rates, even when the
cache hit rate of any other level decreases.

The differences in cache miss happened because the data access stride becomes
different when changing the loop sequence, influencing both spatial and temporal local-
ities. Despite the reductions in the L1 hit rate, the increase of the LLC hit rates resulted
in the highest performance improvement and is, therefore, the best choice for this appli-
cation since LLC caches have the highest latencies per access and increase their hit rates
consequently reduces latency. The performance improvement in the Knights Landing is
lower than in Broadwell because the amount of cache memory available per thread in the
Knights Landing is much lower. The best loop sequence for Broadwell is zyx while for
Knights Landing is yzx. This difference is due the L2 cache size which is 512 KB per
core Knights Landing and 256 KB in Broadwell.
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Figure 4.1: Speedup over the xyz sequence.
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Figure 4.2: Cache hit ratio on different architectures.
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4.2.2 Exploiting SIMD for Floating-point Computations

Recent hardware approaches increase performance by integrating more cores with
wider SIMD (single instruction, multiple data) units (SATISH et al., 2012). This data
processing technique, called vectorization, has units that perform, in one instruction, the
same operation on several operands. To maximize the effectiveness of vectorization, the
memory addresses accessed by the same instruction on consecutive loop iterations must
also be consecutive. In this way, the compiler can load and store the operands of con-
secutive iterations using a single load/store instructions, optimizing cache memory usage,
since data is already fetched in blocks from the main memory. More recent processors in-
troduce the support for gather and scatter instructions, which reduce the overhead
of loading/storing non-consecutive memory addresses. Nevertheless, the performance is
still much higher when the addresses are consecutive. In this context, we modified the
source code such that the memory addresses accessed by the same instruction were con-

secutive along loop iterations.
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Figure 4.3: Performance gain using vectorization.
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We used the Advanced Vector Extensions (AVX) instructions, which is an instruc-
tion set architecture extension to use SIMD units to increase the performance of the float-
ing point computations. These instructions use specific floating point units that can load,
store or perform calculations on several operands at once. As previously described, the
efficiency of AVX is better when the elements are accessed in the memory contiguously,
as they can be loaded and stored in blocks. We show the execution time speedup in Fig-
ure 4.3. The speedup shown is relative to the loop sequence without AVX. The sequences
yzx and zyx have better results because they have more elements being accessed contigu-
ously. The performance gain differs from architecture to architecture. In Broadwell, the
improvement was up to 1.4 x. In the Knights Landing architecture, the improvement was
up to 6.5x. These differences are due to the size of each architecture’s vector unit and the

number of cores used.

4.2.3 Improving Load Balancing

Some applications have regions with different computation load requirements, e.g.
boundaries, potentially causing unevenness in the computing time among the threads. The
time to execute a parallel application is determined by the task that takes the most time to
finish, and thereby by the core with the highest amount of work. Hence, by distributing the
work more evenly among the cores, we can reduce the execution time of an application.
Load balancing techniques reduce these disparities and thereby improve resource usage
and performance. In the context of multi-core and many-core systems, load balancing is
even more important due to a large number of cores.

The OpenMP specification has a directive to indicate whether the scheduling is
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static, dynamic or guided. The static scheduling is the default value and it assigns chunks
to threads in a round-robin fashion before the computation starts. The dynamic and guided
approaches distribute the work during runtime as thread request, but in dynamic, all the
chunks have the same size, while guided assigns larger chunks first, and their size de-
creases along the iterations. In addition, loop collapse also helps to improve load balanc-
ing, because it increases the total number of iterations partitioned across the threads by
collapsing two or more loops.

We investigated the impact of different OpenMP scheduling policies with and
without loop collapse. Figures 4.4 and 4.4(b) show the speedup of each combination of
schedule policy in the Broadwell and Knights Landing architectures. The baseline used to
calculate the speedup is the execution time of the default schedule policy, which is static
with a chunk size equal to the number of iterations divided by the number of threads.

Figures 4.4 and 4.4(b) present the results for Broadwell and Knights Landing. In
the experiments without the collapse, we split the outer loop between the threads. The
best speedup without collapse in Broadwell was using the guided scheduling policy. It
was up to 1.06 x faster than the default scheduler. This approach is useful to applications
whose workload changes in runtime or have some regions with unbalanced workloads. In
Knights Landing, the performance was almost the same as without any scheduler.

A way to improve the performance with larger chunks is collapsing the loops.
The idea is that, with more work to be divided between the threads, larger chunks can
be used while keeping a good load balance. In order to investigate this, we collapsed the
outer loops and evaluated different combinations of the scheduler. Results show that for
Broadwell, the best policy is the static scheduler. In Knights Landing, the best policy with
collapse is the guided scheduler. The performance in Broadwell was improved by up to

1.04x while in Knights Landing by up to 1.11x.

4.2.4 Optimizing Memory Affinity

The goal of mapping mechanisms is to improve resource usage by arranging
threads and data according to a fixed policy, where each approach may target different
aspects to enhance. For example, there are techniques focused on improving locality, to
reduce cache misses and remote memory accesses, as well as traffic on inter-chip inter-
connections (CRUZ et al., 2016). Other policies seek a uniform load distribution among

the cores and memory controllers.
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Figure 4.4: Loop collapse and scheduling performance gain.
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We evaluate different thread and data mapping techniques. We combine thread and
data mapping techniques because together they improve the performance even more (DI-

ENER et al., 2016a). The following thread mapping policies were evaluated:

Default (baseline) The default thread mapping of the Linux kernel (WONG et al., 2008),
focused on load balancing.

Compact Thread Mapping A compact thread mapping that arranges neighbor threads
to closer cores according to the memory hierarchy (EICHENBERGER et al., 2012).

Scatter Thread Mapping A Scatter thread mapping distributes the threads as evenly as
possible across the entire system, which is the opposite of compact.

RoundRobin Thread Mapping A RoundRobin thread mapping distributes the threads

to the cores in order from 0 to the number of cores minus 1.

The following data mapping policies were evaluated:

Default (baseline) The default data mapping of Linux, the first-touch data mapping pol-
icy, where the page is mapped to the NUMA node of the core that accessed the page
for the first time.

NUMA Balancing Data Mapping The NUMA Balancing data mapping (CORBET, 2012)
migrates pages along the execution to the NUMA node of the latest thread that ac-
cessed the page. The NUMA node is detected by introducing artificial page faults

along the execution.

Interleave Data Mapping The interleave data mapping arranges consecutive pages to
consecutive NUMA nodes. In the Knights Landing architecture, due to having the
DRAM and MCDRAM NUMA nodes, we also evaluate the Interleave MCDRAM
policies, which distribute pages only to MCDRAM nodes.
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The results obtained from different mapping policies in the Broadwell and Knights
Landing architectures are shown in Figures 4.5 and 4.6. The speedup was normalized to
the baseline mapping with the corresponding loop sequence, such that we can measure
the benefits from mapping more precisely. The results of the cache miss, previously
shown in Figure 4.2, can help us understand the behavior from different mapping policies.
The reason for this result is that most of the improvements from mapping are due to the
reduction of accesses to the main memory, but these benefits are mitigated if the cache hit
rate is high.

It can be observed that the xyz variant, which benefited most from mapping, also
had most cache misses. In the other configurations, since the L3 cache hit rate is very high,
we have few accesses to the main memory, such that, as explained, the benefit from the
mapping is lower. The usage of an interleaved data mapping provided a better distribution
of the load between the memory controllers, with the cost of additional inter-chip traffic.
Despite the trade-off between the load and inter-chip traffic, the interleaved data mapping
provided the best improvements overall.

On the Broadwell architecture, the best speedup was 1.6, achieved for round-
robin with interleave mapping for the xyz version. It combines an even thread distribu-
tion with a balanced distribution of the pages. We combine both thread and data mapping
because, in most applications, the effectiveness of data mapping depends on thread map-
ping.

For the experiments in the Knights Landing architecture, we analyze the same
techniques as in Broadwell plus interleave using MCDRAM nodes. The best speedup
was 4.4 x for scatter with interleave MCDRAM for the xyz version. We can observe that
in Knights Landing, the best improvements usually happened with policies that focus on
load balancing, such as the scatter thread mapping and interleave data mapping.

The difference in the memory locality between the cores affects these architectures
performance and scalability. In NUMA systems, the time to access the main memory de-
pends on the core that requested the memory access and the NUMA node that contains the
destination memory bank. If the core and destination memory bank belong to the same
node, we have a local memory access. On the other hand, if the core and the destination
memory bank belong to different NUMA nodes, we have a remote memory access. Local
memory accesses are faster than remote memory accesses. By mapping the threads and
data of the application in such a way that we increase the number of local memory ac-

cesses over remote memory accesses, the average latency of the main memory is reduced.



53

Figure 4.5: Mapping results on Broadwell.
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Figure 4.6: Mapping results on Knights Landing.
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Figure 15 shows the number of remote memory accesses that were reduced when we
use mapping techniques. For xyz version, we reduced up to 150 GB of remote accesses

improving application performance and scalability.

4.3 Conclusions

In this chapter, we applied and analyzed the performance of a set of optimization
techniques on multi-core and many-core architectures. We showed that all techniques
together could improve the performance of a real-world seismic exploration application
by up to 22.7x and 56.7 x on Broadwell and Knights Landing, respectively. Regarding the
performance, the best was 259.9 GFLOPS on the Broadwell architecture. We emphasize
that the optimizations presented in this chapter can also be applied to other applications

and architectures.
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5 CONCLUSION AND FUTURE WORK

This work performs a detailed analysis of multi-core and many-core architectures
and optimizes their performance using different strategies. We evaluated 18 benchmarks
and used hardware performance counters to gather accurate measurements of the actual
impact of different factors that influence the performance. This evaluation has shown that
some metrics help in understand applications performance, but there are cases where a
metric alone is not representative.

We use our performance bottlenecks study as a basis for optimizing a real-world
geophysics model. We applied the following optimization techniques: (1) loop inter-
change to improve cache memory usage; (2) vectorization to increase the performance of
floating point computations; (3) loop scheduling and collapse to improve load balancing;
and (4) thread and data mapping to better use the memory hierarchy. These optimizations
can also be applied to other applications and architectures.

In our performance optimization experiments, we show that loop interchange is a
useful technique to improve the performance of different cache memory levels, being able
to improve the performance by up to 5.3x and 3.9x on Broadwell and Knights Landing,
respectively. These improvements happened because we were able to increase the last
level cache hit ratio by up to 95.9%. Furthermore, by changing the code such that ele-
ments are accessed contiguously between loop iterations, we were able to vectorize the
code, which improved performance by up to 1.4x and 6.5 x. Load Balancing and collapse
techniques were also evaluated, but the application balance mitigated their performance
improvements. These techniques improve the performance of Knights Landing by up to
1.1x. Thread and data mapping techniques were also evaluated, with a performance im-
provement of up to 1.6 and 4.4 x We also compared the best version of each architecture
and showed that we were able to improve the performance of Broadwell by 22.7x and
Knights Landing by 56.7x compared with a naive version but at the end, Broadwell was

1.2 faster than Knights Landing.

5.1 Future Work

Future work will focus on proposing an automatic mechanism to optimize the per-
formance of multi-core and many-core architectures. Furthermore, we plan on expanding

our evaluation of the performance bottlenecks by using newer architectures and evaluate
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energy consumption.
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APPENDIX A — RESUMO EM PORTUGUES

In this chapter, we present a summary of this master thesis in the portuguese lan-
guage, as required by the PPGC Graduate Program in Computing.
Neste capitulo, € apresentado um resumo desta dissertacao de mestrado na lingua

portuguesa, como requerido pelo Programa de P6s-Graduacdo em Computacio.

A.1 Introducio

A computagdo de alto desempenho (CAD) tem sido responsdvel por uma grande
revolugdo cientifica. Através dos computadores, problemas que até entdo nao podiam ser
resolvidos, ou que demandavam muito tempo para serem solucionados, passaram a estar
ao alcance da comunidade cientifica. A evolucdo das arquiteturas de computadores acar-
retou no aumento do poder computacional, ampliando a gama de problemas que pode-
riam ser tratadas computacionalmente. A introducdo de circuitos integrados, pipelines,
aumento da frequéncia de operacdo, execucao fora de ordem e previsao de desvios con-
stituem parte importante das tecnologias introduzidas até o final do século XX. Recente-
mente, tem crescido a preocupagdo com o gasto energético, com o objetivo de se atingir
a computacdo em nivel exascale de forma sustentavel (HSU, 2016). Entretanto, as tec-
nologias até entdo mencionadas ndo possibilitam atingir tal objetivo, devido ao alto custo
energético de se aumentar a frequéncia e estagios de pipeline, assim como a chegada nos
limites de exploracdo do paralelismo em nivel de instru¢do (BORKAR; CHIEN, 2011;
COTEUS et al., 2011).

A fim de se solucionar tais problemas, arquiteturas paralelas e heterogéneas foram
introduzidas nos ultimos anos. A principal caracteristica de arquiteturas paralelas € a pre-
senga de vdrios nucleos de processamento operando concorrentemente, de forma que a
aplicacdo deve ser programada separando-a em diversas tarefas que se comunicam en-
tre si. Em relacdo as arquiteturas heterogéneas, sua principal caracteristica € a presenca
de diferentes arquiteturas em um mesmo sistema, cada um com sua prépria arquitetura
especializada para um tipo de tarefa. A utilizagdo de aceleradores é uma das principais
formas adquiridas por arquiteturas heterogéneas, no qual um processador genérico € re-
sponsavel principalmente pela geréncia do sistema, e diversos aceleradores presentes no
sistema realizam a computacao de determinados tipos de tarefas.

A utilizacdo de arquiteturas paralelas e heterogéneas impde diversos desafios para
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se obter um alto desempenho (MITTAL; VETTER, 2015). As aplica¢des precisam ser
codificadas considerando as particularidades e restricdes de cada arquitetura, assim como
suas caracteristicas arquiteturais distintas (GROPP; SNIR, 2013). Por exemplo, na hierar-
quia de memoria, a presenca de diversos niveis de memoria cache, alguns compartilhados
e outros privados, bem como se os bancos de memoria encontram-se centralizados ou
distribuidos, introduz tempos de acesso ndo uniformes, o que gera um grande impacto
no desempenho (CRUZ et al., 2016a). Isso é ainda mais critico em arquiteturas het-
erogé€neas, visto que cada acelerador pode possuir sua prépria, e distinta, hierarquia de
memoria. Além disso, nas arquiteturas heterogéneas, o nimero de unidades funcionais
pode variar entre os diferentes aceleradores, sendo que o proprio conjunto de instrugdes
pode também nao ser o mesmo. Neste contexto, € importante desenvolver técnicas para
andlise de desempenho e do comportamento de arquiteturas paralelas e heterogéneas, a

fim de se propiciar um melhor suporte para otimizar o desempenho de aplicacdes.

A.1.1 Contribuicoes

O principal objetivo desta pesquisa € avaliar arquiteturas multi-core € many-core,
e reduzir os gargalos de desempenho através de otimizacdes para codigo fonte.

Considerando os objetivos, as principais contribui¢des deste trabalho sao:

e Um conjunto de métricas de desempenho foi analisado sobre aplicagdes com carac-
teristicas distintas de execucdo paralela, com o objetivo de encontrar uma correlagcdo
entre a métrica e o desempenho da aplicacao (IPC).

e Um conjunto de estratégias de otimizagdo de desempenho foi aplicado, com o obje-
tivo de aumentar o desempenho de uma aplicacdo de exploragdo sismica no mundo
real. As técnicas empregadas foram: loop interchange para melhorar o uso da
memoria cache; vetorizacdo para aumentar o desempenho de cédlculos de ponto
flutuante; load balancing e collapse para melhorar o balanceamento de carga; e

mapeamento de threads e dados para melhor usar a hierarquia de memoria.

A.2 Arquiteturas Multi-core e Many-core

Desde 2003, a industria vem seguindo duas abordagens para o projeto de micro-

processadores (KIRK; WEN-MEI, 2016). A abordagem multi-core é orientada a laténcia,
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onde instrugdes sdo executadas em poucos ciclos de clock. Por outro lado, as arquiteturas
many-core tem uma abordagem focada na vazao, ou seja, um grande ndimero de instrugdes
sdo executadas por unidade de tempo.

O projeto das arquiteturas multi-core € many-core € diferente ao ponto que, de-
pendendo da aplicacdo, o desempenho pode ser muito grande em uma arquitetura € muito
pequeno na outra (COOK, 2012). A arquitetura multi-core utiliza uma légica de cont-
role sofisticada para permitir que instrucdes de uma unica thread sejam executadas em
paralelo. Grandes memorias cache sdo fornecidas para reduzir laténcias de acesso as
instrucdes e dados de aplicagdes que tem acesso predominante a memoria. Por fim, as
operacoes das Unidades Logicas e Aritméticas (ULA) também sdo projetadas visando
otimizar a laténcia.

A arquitetura many-core tira proveito de um grande nimero de threads de exe-
cucdo. Pequenas memdrias cache sio fornecidas para evitar que multiplas threads, aces-
sando os mesmos dados, precisem ir até a memdria principal. Além disso, a maior parte
do chip é dedicada a unidades de ponto flutuante. Arquiteturas desse tipo sdo projetadas
como mecanismos de calculo de ponto flutuante e ndo para operacdes convencionais,
que sdo realizadas por arquiteturas multi-core. Algumas aplicacdes poderdo utilizar tanto
multi-core quanto many-core em conjunto, sendo cada arquitetura melhor para um tipo de

operagao.

A.2.1 Trabalhos Relacionados

Com a andlise dos trabalhos relacionados, foi possivel concluir que o conheci-
mento profundo do comportamento da aplicac¢do no nivel arquitetural permite desenvolver
técnicas para obter desempenho. Este trabalho vai além da andlise e busca uma maior
compreensdo do desempenho de diferentes aplicacdes em sistemas multi-core € many-
core. Arquiteturas multi-core € many-core porque seu estilo de programacgdo € semel-
hante, diferente de uma arquitetura de GPU que tem um estilo de programagdo muito
diferente e incomum. Os trabalhos relacionados também mostram que a maior parte do
trabalho € focada em otimizacdes de memoria, mas varios trabalhos visam a vetorizagao,
balanceamento de carga e mapeamento. Desta forma, foram realizadas quatro otimizagdes
juntas em uma aplicacdo do mundo real. Os préximos capitulos descrevem as propostas

em detalhes.
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A.3 Analise dos Gargalos de Desempenho

Atualmente, existem vdrias arquiteturas diferentes disponiveis ndo apenas para a
inddstria, mas também para consumidores finais. Processadores multi-core e many-core
apresentam caracteristicas muito diferentes. Essa ampla gama de caracteristicas repre-
senta um desafio para os desenvolvedores de aplicacdes, porque a mesma aplicagdo pode
ter um bom desempenho quando executado em uma arquitetura, mas mal em outra ar-
quitetura.

Para explicar melhor a motivag¢do, o comportamento de um conjunto de aplicacdes
paralelas nessas arquiteturas ¢ mostrado. A Figura A.1 mostra a métrica IPC (instrugdes
por ciclo), que indica o nimero médio de instrucdes executadas por ciclo, para 18 apli-
cacOes da suite Rodinia (CHE et al., 2010). Como esperado, o desempenho de cada apli-
cacdo depende da arquitetura. Existem trés grupos de aplicacdes: melhor em Broadwell;
melhor em Knights Landing; e quase o mesmo desempenho em ambas as arquiteturas.

Isso motiva o estudo de aplicagdes e caracteristicas de arquituras, com o objetivo
de entender por que uma aplicagao funciona melhor em uma arquitetura e como melhorar
seu desempenho. Contadores de desempenho de hardware foram utilizados para coletar
medidas precisas do impacto real de diferentes fatores que influenciam o desempenho.
Ao fazer isso, uma compreensao detalhada de como os diferentes aspectos da arquitetura
afetam o desempenho das aplicacdes foi obtida. Este estudo serviu de base para a proxima

secdo, onde uma aplicagcdo de exploracao sismica no mundo real foi otimizada.

A.4 Estratégias de Otimizacao para Multi-core e Many-core

A Secdo A.3 investiga os gargalos de desempenho de arquiteturas multi-core e
many-core. Os resultados mostraram que um dos aspectos mais importantes é o com-
portamento da memoria cache, ja que a memoria cache desempenha um papel crucial no
desempenho. Da mesma forma, a hierarquia de memdoria, composta de varias camadas de
cache e controladores de memdria, tem um impacto significativo no desempenho.

Com base nisso, algumas estratégias de otimizacdo de desempenho foram abor-
dadas com o objetivo de reduzir o impacto desses gargalos. Primeiro, a técnica de loop
interchange foi empregada para melhorar o uso da memoria cache. A seguir, a vetoriza-
cdo foi considerada para aumentar o desempenho dos calculos de ponto flutuante. Apos,

load balancing e collapse foram aplicadas para melhorar o balanceamento de carga; Fi-
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nalmente, o desempenho da hierarquia de memoria foi aumentado usando o mapeamento
de threads e dados.

Portanto, a fim de validar nossas suposi¢des, o desempenho de uma aplicacdo de
exploracdo sismica real fornecida pela Petrobras foi melhorado. A aplica¢do implementa
uma aproximag¢do de propagacdo de onda acustica, que € a referéncia atual para ferra-
mentas de imagens sismicas. A aplicacdo tem sido amplamente aplicada para geracdo de
imagens de reservatérios de petréleo e gds nos dltimos cinco anos. Esses mecanismos
de propagacdo acustica devem ser continuamente portados para o mais novo hardware

disponivel para manter a competitividade.

A.4.1 Padrao de Acesso a Memoria para Melhorar a Localidade dos Dados

As arquiteturas de computador atuais fornecem caches e prefetchers de hardware
para ajudar os programadores a gerenciar dados implicitamente (LEE et al., 2010). A
técnica de loop interchange pode ser usada para melhorar o desempenho de ambos os el-
ementos, trocando a ordem de dois ou mais lagcos. Essa técnica também reduz os conflitos
do banco de memdria, melhora a localidade dos dados e ajuda a reduzir o fluxo de uma
computacdo de matriz. Dessa forma, mais dados que sdo buscados para as memdrias de
cache sdo efetivamente acessados, a reutilizagdo de dados nas caches é aumentada, e os
prefetchers de linha de cache sdo capazes de buscar dados da memdria principal com mais
precisdo. Nessa aplicacdo, temos trés lacos que sdo usados para calcular o esténcil. Eles
podem ser executados em qualquer ordem sem alterar os resultados. A sequéncia de laco
padrio é xyz.

A sequéncia do laco foi alterada de xyz para todas as permutacdes possiveis. O
lago mais externo € aquele que foi paralelizado usando threads. A sequéncia de laco zyx
tem um desempenho melhor e resultados de taxa de acertos combinada no Broadwell.
O aumento de desempenho comparado com a versdo xyz € de 5,3 x. Essa sequéncia é
melhor que outras porque os dados sdo acessados de uma maneira que se beneficia mais
das caches. A taxa de acertos da cache L2 foi melhorada de 14,9% para 77% quando
a sequéncia do lago foi alterada para zyx. O impacto do cache L3 também melhorou
de 76,2% para 92% no Broadwell. No entanto, esse ndo foi o caso do cache L1, ja
que sua taxa de acertos diminui de 82,3% para 73%. Na Knights Landing, a versao yzx
apresenta melhor desempenho e de taxa de acertos combinada. Os ganhos de desempenho

foram de até 3,9, mostrando que essa otimizacdo impacta menos no desempenho da
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arquitetura Knights Landing do que da Broadwell. A taxa de acertos na cache L2 foi
melhorada de 9,6% para 95,9%. Embora a taxa de acertos da cache L1 diminua em
ambas as arquiteturas, isso mostra que a melhor op¢ao visando o desempenho é aumentar
as taxas de acerto da cache de ultimo nivel, mesmo quando a taxa de acertos do cache de

qualquer outro nivel diminui.

A.4.2 Explorando SIMD para Computacio de Ponto Flutuante

Abordagens recentes de hardware aumentam o desempenho integrando mais nu-
cleos com unidades mais amplas de SIMD (udnica instru¢ao, multiplos dados) (SATISH
et al., 2012). Essa técnica de processamento de dados, denominada vetorizag¢do, possui
unidades que executam, em uma Unica instru¢do, a mesma operacao em Varios operan-
dos. Para maximizar a eficdcia da vetorizacdo, os enderecos de memoria acessados pela
mesma instrucdo, em iteracdes de laco consecutivas, também devem ser consecutivos.
Dessa forma, o compilador pode carregar e armazenar os operandos de iteracdes consec-
utivas usando uma unica instrucdo load / store, otimizando o uso da memoria cache, ja
que os dados ja sdo buscados em blocos da memdria principal. Os processadores mais
recentes introduzem o suporte para as instru¢des gather e scatter, que reduzem a
sobrecarga de carregar / armazenar enderecos de memoria ndo consecutivos. No entanto,
o desempenho ainda é muito maior quando os enderecos sdo consecutivos. Nesse con-
texto, o codigo-fonte foi modificado de modo que os enderecos de memoria acessados
pela mesma instrug@o fossem consecutivos ao longo das iteracdes do laco.

As instrucdes AVX (Advanced Vector Extensions), que € uma extensao de arquite-
tura de conjunto de instrucdes para usar unidades SIMD para aumentar o desempenho dos
calculos de ponto flutuante foi utilizada. Essas instru¢cdes usam unidades especificas de
ponto flutuante que podem carregar, armazenar ou executar cdlculos em vérios operandos
de uma sé vez. Como descrito anteriormente, a eficiéncia do AVX € melhor quando os
elementos sdo acessados na memoria de forma contigua, pois podem ser carregados e ar-
mazenados em blocos. O aumento de velocidade mostrado € relativo a sequéncia do lago
sem 0 AVX. As sequéncias yzx e zyx tém melhores resultados porque t€m mais elementos
sendo acessados de forma contigua. O ganho de desempenho difere de arquitetura para a
arquitetura. Na Broadwell, a melhoria foi de até 1,4x. Na arquitetura Knights Landing, a
melhoria foi de até 6,5 x. Essas diferencas se devem ao tamanho da unidade de vetor de

cada arquitetura e ao nimero de nucleos usados.
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A.4.3 Melhorando o Balanceamento de Carga

Algumas aplicacdes tém regides com diferentes requisitos de carga de computagao,
por exemplo contornos, potencialmente causando irregularidade no tempo de computacao
entre as threads. O tempo para executar um aplicagdo paralela € determinada pela tarefa
que leva mais tempo para ser concluida e, portanto, pelo nicleo com a maior quantidade
de trabalho. Portanto, ao distribuir o trabalho de maneira mais uniforme entre os nucleos,
o tempo de execucdo da aplicacdo é reduzido. As técnicas de balanceamento de carga
reduzem essas disparidades e, portanto, melhoram o uso e o desempenho dos recursos.
No contexto de sistemas com multi-core € many-core, o balanceamento de carga ¢ ainda
mais importante devido a um grande nimero de nucleos.

A especificagdo OpenMP possui uma diretiva para indicar se o escalonamento é
estdtico, dinamico ou guiado. O escalonamento estético € o padrao, e atribui iteracdes as
threads seguindo um algoritmo round-robin antes do inicio do cdlculo. As abordagens
dindmicas e guiadas distribuem o trabalho durante o tempo de execu¢do de acordo com
as solicita¢des das threads, mas, no dindmico, todos os blocos t€m o mesmo tamanho,
enquanto no guiado, os primeiros blocos sdo maiores e seu tamanho diminui ao longo
das iteracdes. Além disso, o loop collapse também ajuda a melhorar o balanceamento de
carga, pois aumenta o nimero total de iteragdes particionadas nas threads ao reduzir dois
ou mais lagos.

o impacto de diferentes politicas de escalonamento do OpenMP com e sem o loop
collapse foi investigado. Nos experimentos sem collapse, o laco externo foi dividido
entre as threads. A melhor aceleragdo sem collapse no Broadwell estava usando a politica
guiada. Foi até 1,06 x mais rapido que o padrao. Essa abordagem € util para aplicacdes
cuja carga de trabalho muda em tempo de execuc@o ou possui algumas regides com cargas
de trabalho desequilibradas. No Knights Landing, o melhor desempenho foi o uso do
escalonamento estatico com um aumento de velocidade de 1,01 x.

Uma maneira de melhorar o desempenho com trechos maiores € com collapse. A
ideia € que, com mais trabalho a ser dividido entre as threads, pedagos maiores podem
ser usados, mantendo um bom balanceamento de carga. A fim de investigar isso, 0s
dois lagos mais externos foram agregados e diferentes combina¢des do escalonador foram
avaliadas. Os resultados mostram que, para o Broadwell, a melhor politica é o escalonador
estatico. No Knights Landing, a melhor politica com collapse é a guiada. O desempenho

no Broadwell foi melhorado em até 1,04 x, enquanto no Knights Landing em até 1,11 x.
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A.4.4 Otimizando a Afinidade de Memoria

O objetivo dos mecanismos de mapeamento € melhorar o uso de recursos, orga-
nizando threads e dados de acordo com uma politica fixa, onde cada abordagem pode
direcionar diferentes aspectos para melhorar. Por exemplo, existem técnicas focadas em
melhorar localidade, para reduzir os erros de cache e 0s acessos 2 memoria remota, bem
como o trafego nas interconexdes inter-chips (CRUZ et al., 2016). Outras politicas bus-
cam uma distribui¢do de carga uniforme entre os nticleos e controladores de memoria.

Na arquitetura de Broadwell, o melhor ganho de desempenho foi de 1,6%, al-
cangada para técnica round-robin com interleave para a versdao xyz. Ele combina uma
distribui¢do de threads uniforme com uma distribui¢do equilibrada das pdginas. O mapea-
mento de threads e de dados foi combinado porque, na maioria das aplicagoes, a eficicia
do mapeamento de dados depende do mapeamento de threads.

Na Knights Landing, as técnicas avalidas foram as mesmas que na Broadwell
mais interleave usando MCDRAM. O melhor ganho foi 4,4 x para scatter com interleave
MCDRAM para a versao xyz. Podemos observar que, na Knights Landing, as melhores
melhorias geralmente acontecem com politicas que se concentram no balanceamento de

carga, como o mapeamento de threads de scatter € o mapeamento de dados de interleave.

A.5 Conclusao e Trabalhos Futuros

Este trabalho realiza uma anélise detalhada dos gargalos de desempenho em multi-
core e many-core e otimiza seu desempenho usando diferentes estratégias. Avaliamos 18
aplicacdes e usamos contadores de desempenho de hardware para coletar medi¢des pre-
cisas do impacto real de diferentes fatores que influenciam o desempenho. Essa avaliacao
mostrou que algumas métricas ajudam a entender o desempenho das aplicacdes, mas ha
casos em que uma métrica sozinha nao € representativa.

Usamos nosso estudo de gargalos de desempenho como base para otimizar um
modelo de geofisica do mundo real. Aplicamos as seguintes técnicas de otimizacao: (1)
loop interchange para melhorar o uso da memoria cache; (2) vetorizagdo para aumentar o
desempenho dos célculos de ponto flutuante; (3) load balancing e collapse para melhorar
o balanceamento de carga; e (4) mapeamento de threads e dados para melhor usar a hier-
arquia de memoria. Essas otimizac¢Oes também podem ser aplicadas a outras aplicagdes e

arquiteturas.
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Em nossos experimentos de otimizacdo de desempenho, mostramos que loop in-
terchange € uma técnica util para melhorar o desempenho de diferentes niveis de memoria
cache, sendo capaz de melhorar o desempenho em até 5.3x e 3.9x na Broadwell e
Knights Landing, respectivamente. Essas melhorias ocorreram porque a taxa de acer-
tos da cache de dltimo nivel foi aumentada em até 95,9%. Além disso, alterando o c6digo
de modo que os elementos sejam acessados de forma contigua entre as iteracdes do lago,
o cddigo foi vetorizado, o que melhorou o desempenho em até 1.4x e 6.5x. As técnicas
de balanceamento de carga e de collapse também foram avaliadas, mas o balanceamento
da aplicacdo atenuou as melhorias de desempenho. Essas técnicas melhoraram o desem-
penho do Knights Landing em até 1,1 x. As técnicas de mapeamento de threads e dados
também foram avaliadas, com uma melhoria de desempenho de até 1,6 x e 4,4x. O ganho
de desempenho do Broadwell foi de 22,7 x e do Knights Landing de 56,7 x em compara-
cdo com uma versao sem otimizagdes, mas, no final, o Broadwell foi 1,2x mais rdpido

que o Knights Landing.

A.5.1 Trabalhos Futuros

Os trabalhos futuros se concentrardo em propor mecanismos automaticos para
otimizar o desempenho de arquiteturas multi-core € many-core. Além disso, a avaliagdo
dos gargalos de desempenho serd expandida usando arquiteturas mais recentes e avaliando

o consumo de energia.
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Figure A.1: Desempenho de diferentes arquiteturas (maior IPC € melhor).
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