
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

FERNANDO BARDEN RUBBO

Inference Rules for Generic Code
Migration of Aspect-Oriented

Programs

Thesis presented in partial fulfillment
of the requirements for the degree of
Master of Computer Science

Prof. Dr. Daltro José Nunes
Advisor

Porto Alegre, August 2009

CIP – CATALOGING-IN-PUBLICATION

Rubbo, Fernando Barden

Inference Rules for Generic Code Migration of Aspect-
Oriented Programs / Fernando Barden Rubbo. – Porto Ale-
gre: PPGC da UFRGS, 2009.

92 p.: il.

Thesis (Master) – Universidade Federal do Rio Grande
do Sul. Programa de Pós-Graduação em Computação, Porto
Alegre, BR–RS, 2009. Advisor: Daltro José Nunes.

1. Generics. 2. Refactoring. 3. Aspect-oriented. I. Nunes,
Daltro José. II. Title.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Vice-Reitor: Prof. Rui Vicente Oppermann
Pró-Reitor de Pós-Graduação: Prof. Aldo Bolten Lucion
Diretor do Instituto de Informática: Prof. Flávio Rech Wagner
Coordenador do PPGC: Prof. Álvaro Freitas Moreira
Bibliotecária-Chefe do Instituto de Informática: Beatriz Regina Bastos Haro

TABLE OF CONTENTS

LIST OF ACRONYMS . 5

LIST OF LISTINGS . 6

LIST OF FIGURES . 7

LIST OF TABLES . 8

ABSTRACT . 9

1 INTRODUCTION . 10

2 BACKGROUND . 14

2.1 Generic Java . 14

2.1.1 Generic Classes . 14

2.1.2 Invariant Subtyping . 15

2.1.3 Raw Type and Type Erasure . 16

2.1.4 Generic Methods . 18

2.1.5 Wildcards . 18

2.2 Generic AspectJ . 19

2.2.1 The Polymorphic Support . 20

2.2.2 Matching Generic Types . 20

2.2.3 Inter-type and Parent Declarations 22

2.2.4 Generic Aspect . 23

2.3 Final Considerations . 23

3 TYPE CONSTRAINT RULES . 25

3.1 Basic Concepts and Functions . 26

3.2 Aspect-Aware Type Constraints 29

3.2.1 Assignment, Cast and Expression Rules 30

3.2.2 Method Call Rules . 34

3.2.3 Overriding Rules . 40

3.2.4 Advices Rules . 41

3.2.5 Other Rules . 46

3.3 Final Considerations . 47

4 GENERIC CODE MIGRATION . 49
4.1 Motivational Examples . 50
4.1.1 Poor Inference . 50
4.1.2 Ill-typing . 51
4.1.3 Pointcut’s Fragility . 52
4.1.4 Inference of Wildcards . 52
4.1.5 Unsafe Type System . 53
4.2 The Algorithm . 54
4.2.1 Generation of Constraints . 55
4.2.2 Constraints Solving . 56
4.2.3 Code Rewrite . 58
4.3 Discussion . 58
4.3.1 Design Decisions . 59
4.3.2 Migrating Motivational Examples . 61
4.3.3 Parallel between Generic Migration Solutions 65

5 CONCLUSION . 67
5.1 Future Work . 68

APPENDIX A . 69
A.1 Poor Inference . 69
A.2 Ill-typing . 73
A.3 Pointcut’s Fragility . 76
A.4 Inference of Wildcards . 77
A.5 Unsafe Type System . 82

REFERENCES . 89

LIST OF ACRONYMS

GJ Generic Java

GA Generic AspectJ

OO Object-Oriented

AO Aspect-Oriented

JVM Java Virtual Machine

AFGJ Aspect Featherweight Generic Java

API Application Program Interface

JDK Java Development Kit

AST Abstract Syntax Tree

AOP Aspect Oriented Programming

IDE Integrated Development Environment

CU Compilation Unit

LIST OF LISTINGS

2.1 Generic classes . 14
2.2 Generic classes inheritance . 15
2.3 Generic class instantiation . 15
2.4 Examples of raw type usage . 16
2.5 Bytecode of a method using a parameterized type 17
2.6 Generic methods . 18
2.7 Generic methods with the same name 18
2.8 Example of wildcard usage . 19
2.9 Example of java.util.Collection . 19
2.10 Example of Collection.addAll(..) usage 19
2.11 Ill-defined pointcut expression . 20
2.12 Using parameterized types in pointcuts 21
2.13 Args usage example . 21
2.14 Matching against type variables . 22
2.15 Inter-type declaration example . 22
2.16 Generic aspect . 23
2.17 Sub-aspects of generic aspect . 23
3.1 Inter-type declaration . 28
3.2 Parent declaration . 28
3.3 Generic types may be complex . 29
3.4 Simple generic hierarchy . 31
3.5 Generic declaration and assignment 32
3.6 Method calls . 36
3.7 Method overiding . 40
3.8 Before advice using args(..) . 43
3.9 Around advice . 44
4.1 Poor inference . 50
4.2 Ill-typing . 51
4.3 Pointcut’s fragility . 52
4.4 Inference of wildcards . 53
4.5 Unsafe type system . 53

LIST OF FIGURES

2.1 Example of Generic Java hierarchy 16

3.1 Notation . 26
3.2 Basic functions . 26
3.3 Constraints between generic types 30

4.1 Algorithm overview . 55
4.2 Algorithm overview - Phase 1 . 56
4.3 Algorithm overview - Phase 2 . 57
4.4 Intersection of constraint variable estimates 57
4.5 Algorithm overview - Phase 3 . 59
4.6 Bytecode remains unchanged. 61

LIST OF TABLES

3.1 Summary of constraints generated for Listing 3.5 34
3.2 Summary of constraints generated for Listing 3.6 39
3.3 Summary of constraints generated for Listing 3.9 46

4.1 Parallel between Generic Migration Solutions 66

A.1 Poor Inference - Final result of Phase 1 71
A.2 Ill-typing - Final result of Phase 1 74
A.3 Pointcut’s Fragility - Final result of Phase 1 77
A.4 Inference of Wildcards - Final result of Phase 1 80
A.5 Unsafe Type System - Final result of Phase 1 85

ABSTRACT

The latest versions of AspectJ – the most popular aspect oriented extension for
Java – must cope with complex changes that occurred in the Java type system,
specially with the parametric polymorphism which aims to improve the type safety
and the readability of the source code. However, for legacy and non-generic con-
structions to take advantage of this pervasive feature, they must be migrated to
explicitly supply actual type parameters in both declarations and instantiations of
generic classes. Even though the type systems of Java and AspectJ were designed to
support this kind of migration in a gradual way, this process is somewhat complex
and error prone. The reason behind this assertion is that actual type parameters
must be inferred to remove as much unsafe downcasts as possible without affecting
the original semantics of the program. Therefore, tools are essential to minimize the
effort of a manual application of the refactoring steps and to prevent the introduction
of new errors. Since current automated solutions focus only on Java programs, they
do not consider the use of aspects to encapsulate crosscutting concerns. Thus, this
dissertation proposes a novel collection of inference rules to derive type constraints
for the polymorphic version of AspectJ. These rules were used together with an
existing generic migration algorithm to enable the conversion of non-generic legacy
code to add actual type parameters in both Java and AspectJ languages.

Keywords: Generics, refactoring, aspect-oriented.

10

1 INTRODUCTION

The Java language evolved and came to include, in its version 1.5, parametric
polymorphism1 for classes, interfaces and methods (BRACHA et al., 1998). In
Java, the parametric polymorphism, also known as Generic Java (GJ), is mainly
used to provide better compile-time type checking and to improve the source code
readability – since types help document program’s functionalities and programmer’s
intentions. Naturally, such improvements raised concerns about compatibility with
legacy programs in both source and bytecode levels.

The source level compatibility issue was solved by expanding the type system to
support parameterless instantiation of parametrized types, the so called raw types
(BRACHA et al., 1998). The raw type design was created to provide a convenient
support for non-generic legacy code through the generic software evolution. In other
words, legacy classes can be gradually transformed into polymorphic versions with-
out imposing dependencies between software modules developed independently.

The compatibility issue in the bytecode level was solved using type erasure. This
means that, after type checking, the Java compiler erases type parameter information
in order to generate a bytecode very close to the older non-generic one.

Using these strategies, the Generic Java platform does not provide a full and
sound reification2 of the generic type system (GOSLING et al., 2005). But, it
provides a good support for evolving existing non-generic code to take advantage of
generic types. The simple example shown below depicts this evolution:

Non-Generic Code

1 List l = new ArrayList();

2 l.add(new Integer(1));

3 String s = (String)l.get(0); // well-typed

Generic Code

1 List<Integer> l = new ArrayList<Integer>();

2 l.add(new Integer(1));

3 String s = (String)l.get(0); // ill-typed

This example presents a non-generic legacy code on the left side and the equiv-
alent generic version on the right side. On the left side, the List declaration and the
ArrayList instantiation (line 1) were written in a way that, though old-fashioned, is
still well-typed in the GJ type system. On the other hand, as it can be seen in the
last line of the same example, the legacy non-generic support allows the programmer
to write code that may cause type conversion errors during the program execution
(note that, in this line, an object of the type Integer is being cast to String). By

1According to Cardelli and Wegner (1985), parametric polymorphism – also known as generics
– is obtained when an object or a function works uniformly on a set of types, which is normally
provided through explicit or implicit parameters.

2In Java programming language there exist ”reifiable types”. These types are not affected by
type erasure, and therefore, are completely available at runtime.

11

providing all type parameters for generic classes and removing redundant downcasts
(as demonstrated in the right side), the Java compiler is capable of identifying more
type errors at compile-time than the legacy non-generic support (see the line 3 on
the right side).

The AspectJ language (KICZALES et al., 2001) is a super set of Java that
adds some aspect-oriented (AO) abstractions, such as: pointcuts, advices, inter-
type declarations and others. Following Java 1.5, AspectJ has also added support
for parametric polymorphism. As a result, parameterized types may be freely used
within aspects. Consider the following piece of code:

Non-Generic Code

1 class C{

2 void m(List l){

3 Integer i = (Integer)l.get(0);

4 // do something

5 }

6 }

7 aspect A{

8 before(List l):

9 execution(void C.m(..)) && args(l) {

10 Integer i = (Integer)l.get(0);

11 // do something

12 }

13 }

14

15 ..

16 List l = new ArrayList();

17 l.add(new Integer(1));

18 new C().m(l);

Generic Code

1 class C{

2 void m(List<Integer> l){

3 Integer i = (Integer)l.get(0);

4 // do something

5 }

6 }

7 aspect A{

8 before(List<Integer> l):

9 execution(void C.m(..)) && args(l) {

10 Integer i = (Integer)l.get(0);

11 // do something

12 }

13 }

14

15 ..

16 List<Integer> l = new ArrayList<Integer>();

17 l.add(new Integer(1));

18 new C().m(l);

The above example defines a be f ore advice (line 8) that will be triggered by the
execution of method m (line 2). Note that, in the left side, a cast is required every
time an element is retrieved from objects of the type List (lines 3 and 10). As it was
seen previously, this kind of construct is not safe and may cause errors at runtime.
Conversely, on the right side, actual type parameter annotations were included in
all declarations of List (lines 2, 8 and 16) and in the instantiation of ArrayList (line
16). Because of that, the casts became redundant and then were removed (lines 3
and 10). This generic version of the code guarantees that the program will be type
safe at compile-time, even in the presence of aspect A.

It is important to emphasize that the parametric polymorphism of both Java
and AspectJ improves the type safety and the expressiveness of the source code.
However, for non-generic code to take advantage of this pervasive feature, it must
be migrated to explicitly supply actual type parameters in both declarations and
instantiations of generic classes.

Even though the type systems of both languages were designed to support such
migration, this process – when performed manually – can be tedious, time consum-
ing and error prone (DINCKLAGE; DIWAN, 2004; MUNSIL, 2004; DONOVAN
et al., 2004). The reason behind this assertion is that actual type parameters must
be inferred to remove as much unsafe downcasts as possible without affecting the
original semantics of the program. This is known in the generic migration literature
as the instantiation problem (DONOVAN et al., 2004).

There are several approaches that aim to help solving this problem (DONOVAN
et al., 2004; DINCKLAGE; DIWAN, 2004; FUHRER et al., 2005; CRACIUN et al.,
2009). In general, they analyze the source code looking for gaps of type information
and then rewrite a new semantically equivalent generic version of the program, in

12

which actual type parameters are automatically inserted and redundant downcasts
are removed.

These solutions have been successfully used for migrating pure object-oriented
(OO) software, but they are not able to ensure that the migration will be successful
in the presence of aspects. There are several subtleties involving both AspectJ’s
type system, inter-type declarations, parent declarations and pointcut expressions
that make this task more complex and error prone. Therefore, approaches focused
on the aspect-oriented context must deal with the following:

∙ Poor inference: aspect-oriented constructs must be considered during the
program transformation since they may change the inference results. Without
analyzing such constructs, the inferred types may not be as good as expected
and the code inside aspects will not be improved;

∙ Ill-typing: since inter-type and parent declarations are implicitly woven into
the application, actual type parameters inferred may become ill-typed when
the weaver adapts the structure or the hierarchy of a class;

∙ Pointcut’s fragility: pointcuts can match elements across the entire base
code. Thus, reasoning about the correctness of a pointcut requires a deep
understanding of the internal structure of the software (YE; VOLDER, 2008;
WLOKA et al., 2008). Therefore, the task of adding actual type parameters
to raw declarations and instantiations, for example, can be troublesome;

∙ Inference of wildcards: since aspects are specifically designed to deal with
crosscutting concerns, the use of wildcards in some declarations (such as, args(..)
pointcut primitives and a f ter() returning(..) advices) allows the removal of more
unsafe downcasts than the use of a specific type;

∙ An unsafe type system: there are AspectJ’s constructs that are not type
safe even with the use of parameterized types. This happens because there
are some typing rules that severely restrict advice definitions obligating the
matching against type variables to happen against their erasure.

This dissertation presents a novel collection of type constraint rules for the poly-
morphic version of AspectJ. These rules were used together with an existing generic
migration algorithm to address the instantiation problem in the AO context, en-
abling the conversion of non-generic legacy code to add actual type parameters in
both Java and AspectJ languages.

Even though the idea of extending existing approaches to perform this kind of
migration in the AO context has been previously suggested (HANNEMANN, 2006),
a concrete proposal has not been found. Therefore, it is important to highlight what
the main distinctive characteristics of this work are:

∙ The improvement of existing object-oriented support. The aspect-
aware generic code migration proposed in this dissertation generates actual
type parameters for several OO constructions that were not considered in the
original solution (FUHRER et al., 2005): (i) raw types used in the signature
of methods declared into generic classes; (ii) calls to methods defined in the
super generic class; and (iii) subclasses of generic classes considering the case
where no types can be inferred due to GJ limitation;

13

∙ The inference of wildcards. The solution proposed in this work generates,
for both Java and AspectJ constructs, wildcard constraints when applicable;

∙ The aspect-oriented support. The proposed solution also considers the use
of aspects to encapsulate crosscutting concerns. This enables existing AspectJ
code to take advantage of the polymorphic support provided by the platform;

∙ The aspect-aware type constraint framework. The aspect-aware type
constraint framework was used in this work for generic migration. However,
there are other refactorings, such as generalizations (TIP et al., 2003), param-
eterization of non-generic classes (KIEŻUN et al., 2007) and the customization
of container classes (SUTTER; DOLBY, 2004), that can also be extended to
transform AO programs using the type constraint framework proposed in this
study.

The remainder of this dissertation is organized as follows. Chapter 2 provides
an overview the Java and the AspectJ generic type systems including their main
design decisions. Chapter 3 presents the inference rules for deriving type constraints.
Chapter 4 describes the use of these rules in an existing generic migration algorithm
and discusses a couple of examples which claim for migration to take advantage
of generics. Chapter 5 includes some concluding remarks and, finally, Appendix A
presents the detailed application of the algorithm steps in some examples.

14

2 BACKGROUND

This chapter describes some of the background areas which help understand the
main issues of this dissertation. In summary, it overviews how Generic Java (GJ)
and Generic AspectJ (GA) type systems were designed; the main advantages of
performing generic code migration; the main features that may be employed during
this kind of migration and; the limitations imposed by some design decisions, such
as raw types and type erasure.

These and other relevant information, including syntax and semantics of GJ and
GA, are informally discussed in the remainder of the chapter. For more details, the
reader is encouraged to take a look at the GJ foundation (ODERSKY; WADLER,
1997; BRACHA et al., 1998; IGARASHI et al., 2001a,b; GOSLING et al., 2005)
and at the GA basis (ASPECTJ, 2005; JAGADEESAN et al., 2006; RUBBO et al.,
2008; AVGUSTINOV et al., 2007).

2.1 Generic Java

According to Gosling et al. (2005), Generic Java – the parametric polymorphism
for Java – is a key feature that allows us to take advantage of homogeneous data
structure libraries in a flexible way. Using the GJ support, it is possible to specify
and utilize generic classes, interfaces and methods to obtain a better compile-time
type checking and to improve the source code readability (since types help document
program’s functionalities and programmer’s intentions).

2.1.1 Generic Classes

In order to declare a generic class, it is necessary to define its formal type param-
eters just after the class name. These type parameters can be used as normal types1

in non-static declarations within the class. Syntactically, if C represents the class
name, the formal type parameters must follow C’s declaration in a list separated by
commas and between ⟨ and ⟩. Then, upper bounds may be specified for each type
parameter using the keyword extends. Moreover, in cases where multiple bounds are
required, they must be separated by &. If no bound information is provided, Ob ject
is assumed.

Listing 2.1: Generic classes
1 class C1<F1> { . . }
2 c l a s s C2<F2 extends Number , F3> { . . }
3 c l a s s C3<F4 extends MyClass & MyInterface >{ . .}

1There exists some limitations that will be briefly discussed in Section 2.1.3.

15

In Listing 2.1, there are three generic classes that attempt to demonstrate dif-
ferent possibilities for class parameterization. The first class, C1, was declared with
one formal type parameter, F1, which defines implicitly Ob ject as its upper bound.
Class C2 specifies two formal type parameters, F2 and F3, which define respectively
Number and Ob ject as their bounds. Finally, class C3 specifies only one formal type
parameter, F4, with two bounds (MyClass and MyInter f ace). In the last case, if both
MyClass and MyInter f ace define a method with the same signature, any reference to
that method will be ambiguous and then will cause an error at compile-time.

Generic Java also allows a given class C to inherit from a generic class B. In this
kind of inheritance, if there are formal type parameters specified in C, the variables
bounded to those parameters may be used as real types during the instantiation of
its super class B. As an example, consider the fragment of code depicted in Listing
2.2.

Listing 2.2: Generic classes inheritance
1 c l a s s C4<F1 extends Number> { . . }
2 c l a s s C5<F2 extends Number> extends C4<F2> { . . }
3 c l a s s C6 extends C4<Integer> { . . }

In this example, class C4 declares a formal type parameter, F1, with Number as
its upper bound. Class C5 declares the formal type F2 (also bounded to Number) and
passes it as an actual type to its super class C4. At last, C6 (which does not have
type parameters) always passes Integer to its super class.

Once a given generic class C defines a list of formal type parameters, ⟨F1, ..,Fn⟩, its
declarations and/or instantiations require that all actual type parameters, ⟨A1, ..,An⟩,
be informed. Each actual type, A j (where 1≤ j≤ n), must respect the bounds defined
in the corresponding formal declaration, Fj. Thus, looking at Listing 2.2, it is possible
to see that C4 and C5 instantiations must inform one of the valid Number’s subtypes
(i.e. Float, Integer and etc.) as the actual type parameter. On the other hand, for the
instantiation of C6 no type parameter has to be informed because it is not a generic
class. Consider the following example:

Listing 2.3: Generic class instantiation
1 C5<Float> a1 = new C5<Float >() ;
2 C4<Integer> a2 = new C6() ;

In the first line, the variable a1 is both declared and instantiated as an object
whose type is C5⟨Float⟩. In line 2, variable a2 is being declared as C4⟨Integer⟩ and
instantiated as C6. Note that, even though C6 has no type parameters, the statement
is considered well-typed because the declaration of this class (see Listing 2.2) is
passing Integer as the actual type parameter to its super class C4.

2.1.2 Invariant Subtyping

Different instances of generic classes are not related by “normal” type hierarchy,
in which a given object is an instance of Number if it was created from one of the
Number’s subtypes (such as Integer, Float and etc). Unlike arrays, generic types are
not co-variant2. This means, in a scenario where C5 extends C4 (see the classes

2In the current Java specification (GOSLING et al., 2005), arrays of generic types (such as,
new ArrayList⟨String⟩[0]) are not allowed.

16

declaration in Listing 2.2), C5⟨A1⟩ is a subtype of C4⟨A2⟩ if and only if A1 is equal to
A2.

Figure 2.1: Example of Generic Java hierarchy

Figure 2.1 (extracted and modified from (DONOVAN et al., 2004)) depicts an
example of the generic type hierarchy in the Java language. In this example, it is
possible to notice that C5⟨Integer⟩ is not a valid subtype of C4⟨Number⟩ even knowing
that Integer is a subtype of Number. As a rule, it can be assumed that whenever
a given class C is a subtype of another class B all type parameters defined in this
hierarchy must be invariant. That is the reason why C5⟨Integer⟩ is a valid subtype of
C4⟨Integer⟩.

2.1.3 Raw Type and Type Erasure

The GJ type system assumes that a declaration or an instantiation of a generic
class passing no actual type parameters is a raw type. Raw types were created
to ensure that legacy “monomorphic”3 code could coexist with the newer polymor-
phic version without the necessity of modifying existing source codes. This design
provides a convenient support for non-generic classes through the generic software
evolution (BRACHA et al., 1998; IGARASHI et al., 2001b). In other words, legacy
classes can gradually be transformed into polymorphic versions without imposing
dependencies between independently developed modules.

In short, a raw type is a generic type in which each actual type parameter may
be faced as an existential type, such as C⟨∃x . x ≤ Ob ject⟩4. Since always there is a
valid x that is a subtype of Ob ject, anyone can instantiate a generic class C without
informing the actual type parameters (e.g., new C()). Based on Figure 2.1, it is
possible to create some examples to demonstrate the raw type usage:

Listing 2.4: Examples of raw type usage
1 C4 a1 = new C5() ;
2 C4 a2 = new C5<Integer >() ;
3 C4<Integer> a3 = a2 ;
4 C4<Float> a4 = a2 ;

3In this work the term “monomorphic” is used as a synonym for non-generic.
4At this point, relation ≤ is used to express Java subtype relationship.

17

In line 1, the variable a1 is a raw type because no actual type parameters are
provided either in C4’s declaration or in C5’s instantiation. Similarly, in line 2, a2
is also considered a raw type because C4’s declaration does not inform the required
type parameter. Conversely, the variables a3 and a4 (in line 3 and 4, respectively) are
cooked types5 since their declarations inform what are the type parameters being
used.

If on one hand raw types can accommodate interaction with legacy code, on
the other hand they obligate the type system to have some type rules that are
deliberately unsound (IGARASHI et al., 2001b). To illustrate such circumstance,
take a look at the assignment declared in line 4 of Listing 2.4. In this case, an object
of type C5⟨Integer⟩ is being assigned to a variable declared as C4⟨Float⟩. As it was
discussed previously, subtyping in GJ is invariant, hence this construction should
be an ill-typed statement. However, because of the raw type design, the assignment
is considered well-typed at compile-time but will cause a type conversion error at
runtime.

In order to make Java programs type safe, it is strongly recommended that raw
types be refactored to inform required type parameters (GOSLING et al., 2005;
DONOVAN et al., 2004; KIEŻUN et al., 2005; DINCKLAGE; DIWAN, 2004). In
an effort to simplify this task, the Java compiler warns the programmer saying that
some expressions can not be fully type checked, and therefore, they may cause errors
during the program execution.

While raw types provide a way of ensuring backward compatibility in the source
code, the type erasure design aims to solve the compatibility issue in the bytecode.
This means that, after type checking, the Java compiler erases all type parameter
information and inserts the necessary downcasts in an effort to create a semantically
equivalent bytecode that is very close to the legacy non-generic version.

Due to both raw type and type erasure designs, information about type param-
eters are not available at runtime and, consequently, operations such as instanceo f
are not able to check generic data in the current GJ specification (GOSLING et al.,
2005). In order to make some generic information available through reflection, the
specification defines a new bytecode element called Signature. This element gives
enough support to retrieve declared type parameters of attributes, methods, classes
and interfaces. However, it is important to highlight that it is still not possible to
retrieve the actual type parameters since the Java Virtual Machine (JVM) does not
keep track of this information.

Listing 2.5: Bytecode of a method using a parameterized type
1 // Method de s c r i p t o r #17 (Ljava/ u t i l / L i s t)V
2 // Signature : (Ljava/ u t i l / Lis t<Ljava/ lang / Integer >)V
3 // Stack : 0 , Locals : 2
4 void m(java . u t i l . L i s t e) ;
5 . . .

In order to exemplify the result of the type erasure process, it is shown in Listing
2.5 the bytecode of a method called m. As it can be seen in line 4, this method seems
to be declaring a formal parameter e with type java.util.List. However, the truthful
declared type information of this method is only available in the Signature element
depicted in line 2. Looking carefully at this line, it is possible to infer that m is

5A cooked (or also known as parameterized) type, is a fully defined type. Which means that
the whole type information is provided for a given generic class.

18

actually declaring (in the source code) its parameter e as java.lang.List⟨Integer⟩ instead
of the raw java.lang.List.

2.1.4 Generic Methods

Likewise classes, a list of formal type parameters can also be associated with
methods. Such parameter list must be specified at the beginning of the generic
method6 signature following the list of modifiers. For example:

Listing 2.6: Generic methods
1 pub l i c <F1> F1 m1(F1 ar r) { . . }
2 pub l i c <F2 , F3 extends F2> void m2 (F2 a , F3 b) { . . }

In line 1, the method declaration specifies an unbounded formal type parameter
F1 which is being used to express type interdependency between the parameter and
the return. Similarly, in line 2, the unbounded type parameter F2 is being used as
the upper bound for the type parameter F3. In Java, it is illegal to declare two
methods with the same signature in the same class. This definition is also extended
to generic methods, hence if two methods have the same name and the same number
of arguments, at least one type parameter must have different bounds. For example:

Listing 2.7: Generic methods with the same name
1 <F1 , F2 extends F1> void m (F1 a , F2 b) { . . . }
2 <F3 extends Number , F4> void m (F3 a , F4 b) { . . . }

The two generic methods declared in Listing 2.7 have the same signature but
different limits (upper bounds) for their type variables. This can be noticed looking
at the first formal type parameter of each declaration7. While the first method (line
1) bounds Ob ject to F1, the second (line 2) bounds Number to F3.

It is also important to mention that there is no need to use a special syntax
to invoke generic methods. The Java compiler is smart enough to implicitly infer
the actual type parameters for each invocation. Therefore, generic methods can
be called exactly in the same way as non-generic ones – this means that no type
parameter has to be informed8.

2.1.5 Wildcards

Wildcards (TORGERSEN et al., 2004) are special constructs that may be used
as type parameters in declarations of generic classes to provide variance to the
Java invariant subtyping. Usually they are useful in situations where only partial
knowledge about the type parameter is required. Wildcard types were included into
the GJ type system because it augments the expressiveness and the flexibility of
generic declarations (GOSLING et al., 2005).

As with raw types, wildcards can also be considered as an existential type. The
main difference between the two is that for wildcards it is possible to specify upper
and lower bounds (? extends C and ? super C, respectively). If no bounds are defined,

6A generic method is a method which has type parameters declared in its signature.
7Note that different type variable names (F1 and F3) were used to disambiguate. However, the

same name could be used since the variables were declared in different scopes.
8The GJ specification defines a special syntax to explicitly inform the type parameter list during

generic method invocation. However, since this usage is rare in practice this dissertation does not
go into details about this subject.

19

Ob ject is assumed as the upper bound. Take the following method declaration as an
example:

Listing 2.8: Example of wildcard usage
1 void m(Co l l e c t i on <? extends Number> c o l l) {
2 for (Number n : c o l l) {
3 . . .
4 }
5 }

In this example, the method parameter Collection⟨? extends Number⟩ coll speci-
fies that the caller must pass a collection of something that extends Number (i.e.
Collection⟨∃x . x≤Number⟩). Note that a similar result can be obtained using a generic
method. But, according to Gosling et al. (2005), generic methods should be used
only to express type interdependency between arguments, exceptions and/or return.
In the lack of this interdependency, wildcards should be preferred.

Listing 2.9: Example of java.util.Collection
1 public interface Co l l e c t i on<E> extends I t e r ab l e<E>{
2 boolean addAll (Co l l e c t i on <? extends E> c) ;
3 . . .
4 }

A good example of upper bound wildcard usage is the method addAll defined in
java.util.Collection (see Listing 2.9). In this case, the wildcard declared as ? extends E
specifies that the method addAll accepts collections of objects that extends the type
parameter E, which is informed during the instantiation of the class. To understand
the power of this wildcard usage take a look at the following example:

Listing 2.10: Example of Collection.addAll(..) usage
1 Co l l e c t i on<Integer> c Int = new ArrayList<Integer >() ;
2 . . .
3 Co l l e c t i on<Number> cNumber = new ArrayList<Number>() ;
4 cNumber . addAll (c In t) ;

In line 4, all elements of cInt are being added into cNumber (line 4), even knowing
that cNumber and cInteger are collections parameterized with different types (Number
and Integer, respectively). It is important to highlight that, if the parameter of
the addAll method were declared as Collection⟨E⟩ instead of Collection⟨? extends E⟩, the
operation shown in line 4 would cause a compilation error because the code would
violate the invariant subtyping described in Section 2.1.2.

2.2 Generic AspectJ

AspectJ is an aspect-oriented (AO) language (KICZALES et al., 2001) based on
Java. Besides the usual OO constructs (classes, methods, fields and etc), the lan-
guage provides abstractions related to aspects implementation, such as: pointcuts,
joinpoints, advices and inter-type declarations.

In the AspectJ terminology, the specification of what to do is called advice and
the specification of when to do is called pointcut. In summary, pointcuts group
joinpoints – which are well-defined points in the execution flow of a program – by
the definition of a predicate that, whenever satisfied, causes the associated advices
to be executed. State or behavior can also be introduced into existing components

20

through inter-type declarations. A collection of pointcuts, advices and inter-type
declarations organized to perform a coherent task is called aspect9.

Since AspectJ is a superset of Java, it is natural that the language has followed
the GJ design adding support for parametric polymorphism. As a result, parame-
terized types can freely be used within aspects, including pointcut expressions and
inter-type declarations.

2.2.1 The Polymorphic Support

AspectJ 5 provides full support for all of the Java 5 language features, including
generic types (ASPECTJ, 2005). Consequently, every syntax, semantics and design
decisions discussed so far also apply to AspectJ.

In summary, the AspectJ’s polymorphic support – also known as Generic As-
pectJ – is an extension of the Generic Java with the addition of the possibility of
using parameterized types within aspect members. However, due to some GJ design
decisions (see Section 2.1.3), the AspectJ’s type system was obliged to cope with
the lack of type information during the weaving-time – which takes place just after
the erasure process.

With regards to pointcut expressions, both raw and cooked types may be used.
However, the target matching class must be a raw type, otherwise the construction
will be ill-defined. For instance, consider the following advice declaration:

Listing 2.11: Ill-defined pointcut expression
1 before () : execution (void C<Str ing >.m()) {
2 System . out . p r i n t l n (”Executing foo in C<Str ing>”) ;
3 }

The advice shown in Listing 2.11 aims to print a message before each execution
of method m; but only when it is called from an object of the type C⟨String⟩. Although
this seems to be a valid declaration, it is considered ill-typed by the AspectJ type
system. This happens because at weaving-time there is no way to distinguish be-
tween C⟨String⟩ and C⟨Integer⟩, for example. This limitation is imposed by the erasure
design, and therefore, AspectJ only accepts raw types as valid targets in pointcut
expressions.

Besides that, there are other cases also affected by the erasure design. Usually
they are primitive pointcut constructions, such as this(..) and target(..), which depend
on the runtime type of their arguments to define if a determined advice matches or
not a given joinpoint. In these cases, AspectJ’s type system also disallow the use of
cooked types.

2.2.2 Matching Generic Types

The matching mechanism has also been adapted to support the AspectJ’s poly-
morphic type system. Likewise Java, it uses raw types to maintain the source level
backward compatibility. Meaning that those types, when used in pointcut expres-
sions and type patterns, ensure that pointcuts already written, in existing non-
generic code, will continue to work as expected when it is migrated to a new generic
version.

9The text comprising the remainder of this dissertation is assuming that the reader has, at
least, a basic knowledge about the aspect-oriented definitions used by AspectJ.

21

In contrast, cooked types, when used in pointcut’s signature, aim to restrict
advice matchings. This is achieved by specifying a parameterized type at the ap-
propriate point in the signature pattern. To illustrate how these types can be used,
consider the following example:

Listing 2.12: Using parameterized types in pointcuts
1 class C{
2 void m1(List<Integer> e) { . . } // matches
3 void m2(List<Double> e) { . . } // do not match
4 }
5
6 . . .
7 be f o r e () : execution (void ∗(L i s t<Integer >)) { . . }

The advice depicted in line 7 of the above listing declares a pointcut that matches
any method which has a unique parameter of the type List⟨Integer⟩. Note that, in this
example the advice is matching only method m1 (declared in line 2); but, if a raw List
were used in the signature pattern instead of the cooked List⟨Integer⟩, both methods
m1 and m2 would be matched.

It is important to understand that the matching of parameterized types is only
possible because of the new bytecode element called Signature. As it was discussed in
Section 2.1.3, this element stores the full declared type information in the bytecode.
Then, AspectJ uses it during the weaving process to decide which members have a
match.

When wildcards come to pointcut’s signature, the parameterized type using a
generic wildcard (List⟨?⟩, for example) is a distinct type. This means that List⟨?⟩ is a
very different type when compared with List⟨String⟩, even though a variable of type
List⟨String⟩ can be assigned to a variable of type List⟨?⟩.

Additionally, as it was seen previously, some primitive pointcuts (such as this(..)
and target(..)) do not support parameterized types. But, cooked types may be used
in conjunction with args(..) primitive and a f ter() returning(..) advices. According to
AspectJ discussion forum10, these constructions should work like Java casting con-
version (GOSLING et al., 2005) with a subtle difference: instead of throwing a
ClassCastException when an invalid cast is found, it should not execute the advice. To
illustrate the usage of parameterized types along with args(..) constructions, take a
look at the following example:

Listing 2.13: Args usage example
1 pub l i c class A<E extends Number> {
2 void m1(List<Integer> e) {} // match
3 void m2(List<? extends Number> e) {} // unsafe match
4 void m3(List<Number> e) {} // does not match
5 }
6
7 . .
8 be f o r e () : execution (void ∗ (. .)) && args (L i s t<Integer >){}

Although the signature matching part (execution(void ∗(..))) of the pointcut expres-
sion shown in line 8 aims to match any method whose return is void, the primitive
args(List⟨Integer⟩) tells the weaver that only methods with one parameter that can be
cast to List⟨Integer⟩ must have a match. That is the reason why methods m1 and m2

10Differently than Java, AspectJ does not have a semi-formal specification. Moreover, its main
generics documentation (ASPECTJ, 2005) is incomplete and ambiguous. That is why the following
thread was started: http://dev.eclipse.org/mhonarc/lists/aspectj-users/msg09949.html.

http://dev.eclipse.org/mhonarc/lists/aspectj-users/msg09949.html

22

(lines 2 and 3, respectively) have a match and method m3 (lines 4) does not. It is
important to highlight that in the case of method m2, the weaver marks the advice
with an appropriate warning; since casting List⟨? extends Number⟩ to List⟨Integer⟩ is an
insecure conversion.

In addition to these generic peculiarities, the matching is also affected by type
erasure. As it was already discussed, no generic information remains in the bytecode
and, therefore, AspectJ is not capable to match against type variables. Hence,
joinpoints that have this kind of variables as part of their signature are matched by
their erasure. For instance, consider the following declarations:

Listing 2.14: Matching against type variables
1 class C<E extends Number>{
2 void m1(E e) { . . }
3 void m2(List<E> e) { . . }
4 }
5
6 . . .
7 be f o r e () : execution (void C.m1(E)) { . . } // does not match
8 before () : execution (void C.m1(Number)) { . . } // matches m1
9 before () : execution (void C.m2(Lis t<E>)) { . . } // does not match

10 before () : execution (void C.m2(L i s t)) { . . } // matches m2

The advices declared at lines 7 and 9 will not match any method because AspectJ
does not allow the matching against type variable references. On the other hand,
since type variables must be matched by their erasure, the advices declared at lines
8 and 10 will match methods m1 and m2, respectively.

2.2.3 Inter-type and Parent Declarations

Inter-type and parent declarations introduce state or behavior in an existing class,
aspect or interface. While inter-types allow us to define methods and attributes
that will be added to a specified class/aspect during the weaving process, declare
parents constructs augment the type hierarchy as long as it results in a well-formed
structure in accordance with Java’s subtyping rules. It is important to highlight
that those declarations can adapt class structures without modifying the adapted
implementation module. However, the adapted code can be inconsistent if it is not
combined with the aspect module that makes its structure well-formed. For example:

Listing 2.15: Inter-type declaration example
1 class C{
2 void m1(L i s t l) {
3 m2(l) ;
4 }
5 }
6 aspect A{
7 void C.m2(L i s t l) {
8 . . .
9 }

10 }

Class C is well-formed only in the presence of aspect A, since C depends on A
to declare method m2. Although this kind of definition provides a modular way to
organize the code that deals with crosscutting concern, they can make it difficult
to reason about the behavior of the program. Those constructions, also make it
difficult to infer the right actual type parameter during the generic code migration
because the aspect weaving, in the AspectJ platform, takes place only in a bytecode

23

level.

2.2.4 Generic Aspect

Similarly to classes, a list of formal type parameters can also be specified for
abstract aspects. These type parameters must be declared just after the aspect name
and they may be used in the same way that those declared in generic classes. Since
AspectJ does not allow the weaving of abstract aspects, only concrete constructs with
all their type parameters fully defined are actually weaved. Consider the following
example:

Listing 2.16: Generic aspect
1 class C{
2 void m1(List<Integer> l) { . . }
3 }
4 abs t r a c t aspect A<E extends Number>{
5 before () : execution (void C.m1(Lis t<E>)) // does not match
6 { . . }
7 }

Listing 2.16 presents a generic aspect (line 4) which declares a type parameter
E bounded to Number. Even though Integer extends Number, the advice defined at line
5 does not match method m1 (declared at line 2). This happens because AspectJ
requires that all type parameters be informed in order to weave a generic aspect11.
Thus, this kind of construction is useless if no concrete sub-aspect is defined.

Listing 2.17: Sub-aspects of generic aspect
1 aspect A2 extends A<Integer >{}

To exemplify the utility of a generic aspect, the above code defines a concrete
aspect A2 which informs Integer as the actual type parameter to its super-aspect A.
Thus, in place of E, the weaver uses Integer to check whether members have or not
a match. In the presence of A2, method m1 (declared at line 2 of Listing 2.16) is
advised by the advice declared in line 5 of the same example.

2.3 Final Considerations

This chapter discussed the main design decisions of Generic Java and Generic
AspectJ type systems. For sure that raw types and type erasure guarantee backward
compatibility and simplify the migration of a non-generic code to take advantage
of the generic support. But, the price of this compatibility is that a full and sound
reification of the generic type system is not possible, at least while the migration is
taking place (GOSLING et al., 2005).

Both raw types and type erasure cause the absence of type information during
the execution of the program. The AspectJ language deals with this by disallowing
the use of parameterized type in some constructs or simply warning the programmer
during compilation.

According to Dincklage and Diwan (2004), Munsil (2004) and Donovan et al.
(2004), the task related to adding actual type parameter to generic classes declara-
tions and instantiations is complex and error prone. When aspects are considered,

11In the lightweight calculus proposed by Jagadeesan et al. (2006) (named as Aspect Feather-
weight Generic Java (AFGJ)) the weaving of generic aspects is allowed.

24

subtleties involving both the absence of type information, inter-type declarations,
advices and pointcuts must be taken into account since they may affect the result
of the refactoring. Therefore, tools to help this migration are essential to minimize
the transformation effort and to prevent the introduction of new errors.

The remainder of this dissertation focus on a proposal that gives the main steps
to automatize this process. While Chapter 3 presents an aspect-aware type con-
straint framework – which generates constraints between types of expressions and
declarations comprising each program construct –, Chapter 4 describes an iterative
type inference algorithm which aims to provide automatically actual type parameter
for each raw declaration.

25

3 TYPE CONSTRAINT RULES

Type constraints are a formalism for expressing subtype relationship between
program entities. This formalism can be used for type checking, type inference,
preserving the type-correctness of programs in refactorings, and others. Consider
the assignment x = y. In this example, the constraint [y]≤ [x] states that the type of y
(represented by [y]) must be a subtype of the type of x. Hence, the assignment x = y
is type-correct only if that constraint holds.

This chapter extends a model of type constraints used and modified by several
authors (TIP et al., 2003; FUHRER et al., 2005; KIEŻUN et al., 2007; SUTTER;
DOLBY, 2004); which was initially presented by Palsberg and Schwartzbach (1993).
This extension proposes a set of constraint generation rules for the polymorphic
version of AspectJ. These rules are concerned with deriving types and imposing
constraints between the types of expressions and the types of declarations.

The main foundation of this work (FUHRER et al., 2005) focuses on OO code,
more specifically on Java language. Deriving type constraints for AspectJ is signifi-
cantly more complex than studies concentrated on pure Java programs: beyond all
OO subtleties, it involves the use of aspects to encapsulate crosscutting concerns
and working with a vague semantics of advice matching1. This requires non-trivial
modification of the original type constraint rules, including most notably:

∙ the matching simulation for capturing advices being combined with the code;

∙ the analysis of AspectJ’s parent declarations in subtype relationships;

∙ the analysis of AspectJ’s inter-type declarations in almost all program con-
structs;

∙ the introduction of wildcard constraint variables to accommodate wildcard
types.

In the remainder of this chapter, P denotes the original program and type con-
straints are generated from its abstract syntax tree (AST). For each program con-
struct in P a non-empty set of constraints that expresses relationship between types
is generated. These constraints expose the restrictions that P must have to be
type-correct. By definition, a program is type-correct if the type constraints of all
constructions are satisfied (FUHRER et al., 2005).

1It is not clear, even for the AspectJ development team, how matching should work in the
presence of generic types. See the AspectJ bug https://bugs.eclipse.org/bugs/show_bug.

cgi?id=253109.

https://bugs.eclipse.org/bugs/show_bug.cgi?id=253109
https://bugs.eclipse.org/bugs/show_bug.cgi?id=253109

26

3.1 Basic Concepts and Functions

Before the framework of type constraints be presented, it is important to describe
the notation, basic functions and concepts required to the best comprehension of the
rules discussed in this chapter.

v variables

m method names

f field names

M methods

F fields

C classes, interfaces or aspect

T type variables

I interfaces

A aspects

AD advices

E expressions/declarations

τ,α types

Figure 3.1: Notation

The main notation used in this work is depicted in Figure 3.1. Let M and F
be a method and a field declaration, respectively. These declarations include the
complete signature and the reference to declaring class (or aspect). If they represent
inter-type declarations, the on type is also available. Let C represent both generic
and non-generic classes, interfaces or aspects, depending on each context. Let T
represent type variables, A aspects, AD advices and E expressions or declarations.
Finally, consider τ and α as any valid AspectJ type (i.e. classes, interfaces, aspects,
type variables and wildcards).

[E] type of expression/declaration E

[E]p type of E in the original program

[M] declared type of method return

[F] declared type of field

T(E) actual type for T in expression E

T(C) actual type for T in class C

Decl(M) type which declares method M

Decl(F) type which declares field F

Param(M,i) the ith formal parameter of method M

Param(M,e) the formal parameter of method M

which is related to args(..e..)

Param(AD,e) the formal parameter of advice AD

which is related to args(..e..)

NrParams(M) number of parameters of method M

Figure 3.2: Basic functions

Figure 3.2 depicts a set of basic functions for obtaining information about: the
type of expressions ([E] and [E]p); the declared type of a field or the return of a
method ([F] and [M], respectively); the actual type parameter bound to a given
type variable T (T (E) and T (C)); the type declaring a method or a field (Decl(M)

and Decl(F)); and the formal parameter declared in methods or advices (Param(M, i),
Param(M,e) and Param(AD,e)).

bounds(τ,rec) =⎧⎨⎩
{Ob ject} i f τ is declared as T
{bounds(τ0,rec), ..,bounds(τn,rec)} i f τ is declared as T extends τ0 &, ..,& τn ∧ rec = true
{τ0, ..,τn} i f τ is declared as T extends τ0 &, ..,& τn ∧ rec = f alse
{C} i f τ is C
{C⟨τ1, ..,τn⟩} i f τ is C⟨τ1, ..,τn⟩

The function presented above is used to obtain all existing upper bounds of a
given type variable. If the first argument, τ, is not a type variable (i.e. it is a reifiable,
a cooked or a raw type) the function returns the parameter itself. Otherwise, if τ is a
type variable, the function returns the set of bounds defined in τ’s declaration. Note
that this function accepts a second argument called rec. When rec is true, bounds(..) is
executed recursively up until a concrete type for each bound of τ be found.

27

bound(τ) = f irst(bounds(τ, true))

Analogous to bounds(..), the above function is also used to obtain the upper bound
of a type variable. The main difference between them is that bound(..) is concerned
with retrieving only the first bound, while bounds(..) retrieves the whole set of bounds.
In current Java specification (GOSLING et al., 2005), the first concrete bound is
the one put in place of the corresponding type variable during the erasure process.

wildbound(τ) =

⎧⎨⎩ τ ′ i f τ is ? extends τ ′

τ ′ i f τ is ? super τ ′

τ otherwise

There are some constraint generation rules that will need to retrieve the bound
of a given wildcard. This task is performed by the above wildbound(..) function. The
main goal of this function is to retrieve the upper bound when τ is an extends wildcard
and the lower bound when τ is a super wildcard.

head(C⟨τ0, ..,τn⟩) = C
head(C) = C

The head(..) function is the one responsible for returning the raw type of a given
cooked type. Note that since only classes, aspects and interfaces are valid param-
eters, it is undefined for type variables. Hence, before calling the head(..) function
with a type variable it is necessary to get the bound of such variable as it is shown
in the following definition.

∣τ∣ = head(bound(τ))

The above function simulates the GJ type erasure process by removing all actual
type parameters from parameterized types. In summary, it returns the raw version
of τ’s most important bound (i.e. the first concrete bound). Consider the following
as some examples of the applicability of this function.

Examples of erasure function usage
|List⟨Integer⟩| = List
|T| where T is declared as: T extends MyClass & MyInter f ace = MyClass
|Integer| = Integer

The erasure of the parameterized type List⟨Integer⟩, is its raw List. The erasure of
the type variable T is its first concrete bound, MyClass. The erasure of the reifiable
type Integer is itself.

OnType(M) ={
τ i f Decl(M) is an Aspect ∧ M is an inter− type decl τ.m
Decl(M) otherwise

OnType(F) ={
τ i f Decl(F) is an Aspect ∧ F is an inter− type decl τ. f
Decl(F) otherwise

The OnType(..) function depicted above is the responsible for discovering what
is the declaration type of a method (or field) independently if it is an inter-type
declaration or not. In other words, when a given method M (or a field F) is declared
in an aspect A but on behalf of a class C, this function always returns C. For example:

28

Listing 3.1: Inter-type declaration
1 class MyClass { . . }
2 aspect MyAspect{
3 void MyClass .m() { . . }
4 }

Listing 3.1 shows method m being implicitly declared on MyClass through the
inter-type declaration defined in line 3. Thus, the OnType(..) function returns MyClass
when it is called passing m as argument. Note that the type declaring m is MyAspect
but the on type is MyClass.

SuperClass(C) =⎧⎨⎩
C1 i f C extends C1
C2 i f ∃1 Aspect A that declares parent : C extends C2
A1 i f C is an Aspect ∧ C extends A1 ∧ A1 is an abstract Aspect
Ob ject otherwise

Inter f aces(C) =⎧⎨⎩
{I ∣ C implements I}
∪ {I1 ∣ Aspect A declares parent : C implements I1} i f C is a Class ∨ an Aspect

{I2 ∣ C extends I2}
∪ {I3 ∣ Aspect A declares parent : C extends I3} i f C is an Inter f ace

Similarly to OnType(..) function, SuperClass(..) and Inter f aces(..) are responsible for
discovering what are the supertypes of a given class, interface or aspect – indepen-
dently if they are parent declarations or not. Note that these functions are only
defined for classes, interfaces and aspects. In other words, both SuperClass(..) and
Inter f aces(..) are undefined for type variables because type variables do not have su-
pertypes, they only have bounds. See the following listing as an example:

Listing 3.2: Parent declaration
1 c l a s s C{ . . }
2 i n t e r f a c e I { . . }
3 aspect A{
4 de c l a r e parents : C implements I ;
5 }

Listing 3.2 shows the aspect A declaring the interface I on behalf of class C (line
4). Therefore, calling SuperClass(C) results in Ob ject and calling Inter f aces(C) results
in the set {I}. Note that these results are only possible because both functions take
into account the use of aspects to encapsulate crosscutting concerns.

When aspects are considered, the subtype relationship may be affected by parent
declarations. In face of that, the rules that define such relation are shown as follow.

τ0 ≤ τ0 (s1)
τ0 ≤ τn i f f τ0 ≤ τ1 ∧ .. ∧ τn−1 ≤ τn (s2)
C0 ≤C1 i f f C1 = SuperClass(C0) ∨ C1 ∈ Inter f aces(C0) (s3)
T0 ≤ τ1 i f f τ1 ∈ bounds(T0, f alse) (s4)
τ0⟨α ′0, ..,α ′k⟩ ≤ τ1⟨α0, ..,αn⟩ i f f τ0 ≤ τ1 ∧ τ1 is declared as C⟨T0, ..,Tn⟩ (s5)

∧ Ti(τ0) = Ti(τ1) ∧ 0≤ i≤ n
τ0⟨α0, ..,αk⟩ ≤ τ1 i f f τ0 ≤ τ1 ∧ (τ1 is a raw type ∨ τ1 is not a generic type) (s6)
τ0 ≤ τ1⟨α0, ..,αk⟩ i f f τ1⟨α0, ..,αk⟩ ≤ τ0 (s7)

The subtyping relationship (≤) is the reflexive and transitive closure (s1 and s2,
respectively) of the extends/implements relation between types. Relation s3 states that
a given type C0 is a subtype of another type C1 if C0 extends/implements directly or
indirectly – through a parent declaration – C1. Relation s4 says that a given type
variable T0 is a subtype of any of its bounds. Relation s5 assumes that whenever

29

there is a type τ0 that is a subtype of a generic type τ1, all type parameters defined
in τ1 must be invariant. Relation s6 states that the cooked type C⟨Integer⟩, for
example, is a subtype of the raw type C. To provide compatibility with old code
that instantiates classes without type parameters, raw types are used in place of
cooked types even knowing that these constructions are not safe. The rule for this
unsafe type judgments is provided by relation s7.

Since the above subtyping relationship understands parent declarations, it is
possible to create a definition of AspectJ’s method overriding as follows:

Definition 3.1.1 A virtual method M0 in type τ0 ≡ OnType(M0) overrides a virtual
method M1 in type τ1 ≡ OnType(M1) iff M0 and M1 have identical signatures or M0 is a
sub-signature2 of M1 and τ0 ≤ τ1 but τ0 ∕= τ1.

The above definition allows the creation of the RootDe f s(..) function, which returns
the roots of a method declaration, independently of whether the hierarchy is built
by aspects using parent declaration or not.

RootDe f s(M) =
{OnType(M1) ∣ M overrides M1 ∧ there exists no M2 (M2 ∕= M1) such that M1 overrides M2}

Finally, it is presented as follows the syntax of type constraints. Each side of the
relationship is called constraint variable. A constraint variable is a type associated
with a program construct which must be one of the following: (i) a type constant;
(ii) the type of an expression; (iii) the declared type of a method or a field; or (iv)
the formal parameter declared in a method.

τ0 = τ1 type τ0 must be the same as type τ1
τ0 ≤ τ1 type τ0 must be the same as, or a subtype o f type τ1

3.2 Aspect-Aware Type Constraints

This section presents a set of rules for deriving type constraints from Java and
AspectJ programs. These rules extend Fuhrer et al.’s (2005) proposal by providing
the generation of constraints for wildcards and the most important constructs of
AspectJ. Additionally, these rules accommodate subclasses of generic classes and
generate constraints for OO constructions that were not considered in the original
proposal: raw types used in the signature of methods declared into generic classes
and calls to methods defined in generic superclasses.

The strategy used in the remainder of this chapter for the generation of type
constraints is based on small steps. This means that, instead of checking if a generic
type C1 is a subtype of another generic type C2, the verification is broken into little
pieces. As an example, consider the assignment shown in line 5 of Listing 3.3.

Listing 3.3: Generic types may be complex
1 class C1<F1 , F2> { . . }
2 c l a s s C2<F3 , F4> extends C1<F3 , F4>{ . .}
3 . .
4 C2<Integer , C2<Integer , Number>> y = null ;
5 C1<Integer , ? extends C1<Integer , ? super Double>> x = y ;

2The notion of sub-signature is used to express a relationship between two methods whose
signatures are not identical, but in which one overrides the other (GOSLING et al., 2005).

30

As it was seen previously, the constraint [y]≤ [x] must be satisfied in order to an
assignment be type-correct . However, the generic types used in the above example
make the solution of this simple constraint somewhat difficult. Therefore, in order
to identify if [y] is a subtype of [x], it is necessary to compare each type parameter
individually as it can be seen in Figure 3.3.

Figure 3.3: Constraints between generic types

This figure shows how the type of y (left hand side) must be constrained with
the type of x (right hand side). To simplify the resolution, the same strategy is used
in this dissertation. Thus, instead of generating a unique restriction saying that [y]

must be a subtype of [x], this work generates constraints for each part of each type.
In other words, each red arrow represents a type constraint that must be satisfied.

3.2.1 Assignment, Cast and Expression Rules

For creating constraints between expressions and declarations the
NonContextCgen(..) function presented below is used in a recursive manner. This
function is defined by case analysis on its third argument, τ. Cases n1− n3 are
applied when τ is a reifiable type (e.g. Integer, Double, etc). Cases n4−n6 are applied
when τ is a type parameter. Cases n7 and n8 are applied when τ is an upper- or a
lower-bounded wildcard. Note that in n7 and n8 the function makes a recursive call
changing the fourth argument, useWild, to indicate that wildcard type constraints
must also be generated. Finally, n9−n11 are applied when τ is a parameterized type
and n12−n14 when τ is a raw type.

NonContextCgen(α,op,τ,useWild) =⎧⎨⎩

α op C when τ ≡C ∧ useWild = ∙ (n1)
α op C ∨ α ∈ {? extends τ ′ ∣ τ ′ ≤C} when τ ≡C ∧ useWild = ⊲ (n2)
α op C ∨ α ∈ {? super τ ′ ∣ τ ′ ≥C} when τ ≡C ∧ useWild = ⊳ (n3)

α = T when τ ≡ T ∧ useWild = ∙ (n4)
α = T ∨ α ∈ {? extends T ′ ∣ T ′ ≤ T} when τ ≡ T ∧ useWild = ⊲ (n5)
α = T ∨ α ∈ {? super T ′ ∣ T ′ ≥ T} when τ ≡ T ∧ useWild = ⊳ (n6)

31

Continue . . .
NonContextCgen(α,op,τ,useWild) =⎧⎨⎩

NonContextCgen(α,≤,τ ′,⊲) when τ ≡? extends τ ′ (n7)
NonContextCgen(α,≥,τ ′,⊳) when τ ≡? super τ ′ (n8)

α op C when τ ≡C⟨τ1, ..,τk⟩ ∧ useWild = ∙ (n9)
∧ NonContextCgen(Ti(α),=,τ i,∙) where C is decl as C⟨T1 , ..,Tk⟩ ∧ 1≤i≤k

(α op C ∨ α ∈ {? extends head(C′) ∣ C′ ≤C}) when τ ≡C⟨τ1, ..,τk⟩ ∧ useWild = ⊲ (n10)
∧ NonContextCgen(Ti(α),=,τ i,∙) where C is decl as C⟨T1 , ..,Tk⟩ ∧ 1≤i≤k

(α op C ∨ α ∈ {? super head(C′) ∣ C′ ≥C}) when τ ≡C⟨τ1, ..,τk⟩ ∧ useWild = ⊳ (n11)
∧ NonContextCgen(Ti(α),=,τ i,∙) where C is decl as C⟨T1 , ..,Tk⟩ ∧ 1≤i≤k

α op C when τ ≡ rawtype C ∧ useWild = ∙ (n12)
∧ (Ti(α) = Ti(C) ∨ Ti(C) ∈ Wild(Ti(α))) where C is decl as C⟨T1 , ..,Tk⟩ ∧ 1≤i≤k

(α op C ∨ (α ∈ {? extends head(C′) ∣ C′ ≤C}) when τ ≡ rawtype C ∧ useWild = ⊲ (n13)
∧ (Ti(α) = Ti(C) ∨ Ti(C) ∈ Wild(Ti(α))) where C is decl as C⟨T1 , ..,Tk⟩ ∧ 1≤i≤k

(α op C ∨ (α ∈ {? super head(C′) ∣ C′ ≥C}) when τ ≡ rawtype C ∧ useWild = ⊳ (n14)
∧ (Ti(α) = Ti(C) ∨ Ti(C) ∈ Wild(Ti(α))) where C is decl as C⟨T1 , ..,Tk⟩ ∧ 1≤i≤k

It is important to say that constraints generated by this function respect the
Java invariant subtyping. When variance is allowed (i.e. in declaration sites), this
function generates wildcards accordingly. Note that in cases n12−n14 wildcard type
constraints are generated using a recursive helper function called Wild(..). The main
goal of this function is to produce a set containing all possible wildcards based on
a given type. Since Wild(..) depends on Ti(α) (see n12− n14), this function must be
executed only when a fully defined type be estimated for α – which normally happens
after all constraint are generated in a constraint solver stage.

Listing 3.4: Simple generic hierarchy
1 class C1<F2> {}
2 class C2<F1> extends C1<F1>{}

Listing 3.4 shows a simple generic hierarchy in which C2 is a subtype of C1. Based
on this hierarchy, two examples of Wild(..) usage are presented below:

Wildcard generation examples
Example 1:

Wild(C2) = {? extends C2, ? extends C1, ? extends Object}

Example 2:

Wild(C2<C2>) = { C2<? extends C2>, C2<? extends C1>, C2<? extends Object>,

? extends C2<C2>, ? extends C2<? extends C2>, ? extends C2<? extends C1>,

? extends C2<? extends Object>, ? extends C1<C2>, ? extends C1<? extends C2>,

? extends C1<? extends C1>, ? extends C1<? extends Object>, ? extends Object}

In Example 1 the set of wildcards is based on type C2, while in Example 2 the
set of wildcards is based on type C2⟨C2⟩. Note that all possibilities of upper-bounded
wildcards were generated by Wild(..) function and that the order of this set – which
is the lowest in the hierarchy must come first – is important because it simplifies the
constraint resolution further discussed in Section 4.2.2.

While NonContextCgen(..) accepts, in its second argument op, an operation that
indicates what will be the relationship (≤ for subtype and = for equals) of the
constraints, RNonContextCgen(..) (depicted below) generates only type constraints that
obligates α to be exactly equals to τ. Note that the recursion is very similar to
NonContextCgen(..) function with a subtle difference: it only generates equals relation-
ship between types.

32

RNonContextCgen(α,τ,useWild) =⎧⎨⎩

α = C when τ ≡C ∧ useWild = ∙ (rn1)
α = ? extends C when τ ≡C ∧ useWild = ⊲ (rn2)
α = ? super C when τ ≡C ∧ useWild = ⊳ (rn3)

α = T when τ ≡ T ∧ useWild = ∙ (rn4)
α = ? extends T when τ ≡ T ∧ useWild = ⊲ (rn5)
α = ? super T when τ ≡ T ∧ useWild = ⊳ (rn6)

RNonContextCgen(α,τ ′,⊲) when τ ≡? extends τ ′ (rn7)
RNonContextCgen(α,τ ′,⊳) when τ ≡? super τ ′ (rn8)

α = C ∧ RNonContextCgen(Ti(α),τ i,∙) when τ ≡C⟨τ1, ..,τk⟩ ∧ useWild = ∙ (rn9)
where C is decl as C⟨T1, ..,Tk⟩ ∧ 1≤i≤k

α = ? extends C ∧ RNonContextCgen(Ti(α),τ i,∙) when τ ≡C⟨τ1, ..,τk⟩ ∧ useWild = ⊲ (rn10)
where C is decl as C⟨T1, ..,Tk⟩ ∧ 1≤i≤k

α = ? super C ∧ RNonContextCgen(Ti(α),τ i,∙) when τ ≡C⟨τ1, ..,τk⟩ ∧ useWild = ⊳ (rn11)
where C is decl as C⟨T1, ..,Tk⟩ ∧ 1≤i≤k

α = C ∧ Ti(α) = Ti(C) when τ ≡ rawtype C ∧ useWild = ∙ (rn12)
where C is decl as C⟨T1, ..,Tk⟩ ∧ 1≤i≤k

α = ? extends C ∧ Ti(α) = Ti(C) when τ ≡ rawtype C ∧ useWild = ⊲ (rn13)
where C is decl as C⟨T1, ..,Tk⟩ ∧ 1≤i≤k

α = ? super C ∧ Ti(α) = Ti(C) when τ ≡ rawtype C ∧ useWild = ⊳ (rn14)
where C is decl as C⟨T1, ..,Tk⟩ ∧ 1≤i≤k

Now, a few of the type constraint generation rules that use the functions discussed
so far are presented as follow:

P contains explicit declaration o f a variable : τ v
RNonContextCgen([v],τ ,∙)

(r1)

P contains cast expression E ≡ (C)E0

RNonContextCgen([E],C,∙)
(r2)

Rule R1 states that the type of a given variable v is the type of its declaration
τ. For a casting expression (C)E0, rule R2 says that the type of the entire expression
(C)E0 is the same as the target type C referred to in the cast. Note that both R1

and R2 use RNonContextCgen(..) to recursively generate type constraints because the
program constructs related to these rules require, in order to be type-correct, that
the types be exactly the same.

P contains downcast expression E ≡ (C)E0
C is not an inter f ace [E0] is not an inter f ace

NonContextCgen([E0],≥,C,∙)
(r3)

P contains assignment E1 = E2

NonContextCgen([E2],≤, [E1],∙)
(r4)

Rule R3 is related to downcasts and it requires that C be a subtype of the type
of the expression E0 being casted. Rule R4 states that an assignment E1 = E2 is type-
correct if the type of E2 is a subtype of [E1]. Note that both R3 and R4 allow subtype
relationships. Hence, there is a set of valid types (instead of a unique type) that
satisfies the constraints generated by these rules. Moreover, since R3 and R4 use
NonContextCgen(..), the type being assigned (C for R3 and [E1] for R4) may also declare
a wildcard.

Listing 3.5: Generic declaration and assignment
1 class C<T>{
2 void m(List<T> l) {

33

3 ArrayList<T> l 2 = (ArrayList<T>) l ;
4 . . .
5 }
6 }

Consider Listing 3.5 as a simple example to show how these few rules discussed
up until now are used to generate type constraints. The piece of code presented
in this listing has a generic variable declaration at line 2 (List⟨T ⟩ l) and another
at line 3 (ArrayList⟨T ⟩ l2); and, a cast expression ((ArrayList⟨T ⟩) l) and an assignment
(l2 = (ArrayList⟨T ⟩) l) also at line 3. First of all, take a look on both declarations.

Constraint generation for Listing 3.5 - declarations
Line 2 - declaration: List<T> l

R1−→ RNonContextCgen([l], List<T>, ∙)
rn9−→ [l] = List ∧ RNonContextCgen(E([l]), T, ∙)
rn4−→ [l] = List ∧ E([l]) = T

Line 3 - declaration: ArrayList<T> l2

R1−→ RNonContextCgen([l2], ArrayList<T>, ∙)
rn9−→ [l2] = ArrayList ∧ RNonContextCgen(E([l2]), T, ∙)
rn4−→ [l2] = ArrayList ∧ E([l2]) = T

When the AST is being visited, the generic declaration List⟨T ⟩ l is found.
Then, applying R1 to this construct generates the following type constraints:
[l] = List ∧ E([l]) = T . These constraints state that the type of variable l is List
and the actual type parameter E for variable l is T . Similarly, R1 is also applied
to the generic declaration ArrayList⟨T ⟩ l2 and the following constraints are generated:
[l2] = ArrayList ∧ E([l2]) = T .

Constraint generation for Listing 3.5 - casting
Line 3 - casting: (ArrayList<T>) l

R2−→ RNonContextCgen([(ArrayList<T>) l], ArrayList<T>, ∙)
rn9−→ [(ArrayList<T>) l] = ArrayList ∧ RNonContextCgen(E([(ArrayList<T>) l]), T, ∙)
rn4−→ [(ArrayList<T>) l] = ArrayList ∧ E([(ArrayList<T>) l]) = T

R3−→ NonContextCgen([l], ≥, ArrayList<T>, ∙)
n9−→ [l] ≥ ArrayList ∧ NonContextCgen(E([l]), =, T, ∙)
n4−→ [l] ≥ ArrayList ∧ E([l]) = T

For the casting expression (ArrayList⟨T ⟩) l, rules R2 and R3 are the responsible
for generating type constraints. While R2 says that the whole cast expression has
the type ArrayList⟨T ⟩ (see the application of rn4 in the above example), R3 says that
the type of l must be a supertype of ArrayList and the actual type parameter E for
variable l must be equal to T (see the application of n4 in the same example).

Constraint generation for Listing 3.5 - assignment
Line 3 - assignment: l2 = (ArrayList<T>) l

R4−→ NonContextCgen([(ArrayList<T>) l], ≤, [l2], ∙)
−→NonContextCgen([(ArrayList<T>) l], ≤, ArrayList<T>, ∙)

n9−→ [(ArrayList<T>) l] ≤ ArrayList ∧ NonContextCgen(E([(ArrayList<T>) l]), =, T, ∙)
n4−→ [(ArrayList<T>) l] ≤ ArrayList ∧ E([(ArrayList<T>) l]) = T

34

In the above constraint generation, rule R4 is used to generate type constraints
for the assignment l2 = (ArrayList⟨T ⟩) l. Since the type of l2 is already known (i.e.
ArrayList⟨T ⟩), R4 generates a type constraint saying that the type of the cast expres-
sion must be a subtype of ArrayList ([(ArrayList⟨T ⟩) l]≤ArrayList) and the type parameter
of the cast expression must be T (E([(ArrayList⟨T ⟩)l]) = T).

Table 3.1: Summary of constraints generated for Listing 3.5
Code Type constraint(s) Rule(s)

List⟨T ⟩ l [l] = List ∧ E([l]) = T R1

ArrayList⟨T ⟩ l2 [l2] = ArrayList ∧ E([l2]) = T R1

(ArrayList⟨T ⟩) l [(ArrayList⟨T ⟩) l] = ArrayList ∧ E([(ArrayList⟨T ⟩) l]) = T R2

ArrayList≤[l] ∧ E([l]) = T R3

l2 = (ArrayList⟨T ⟩) l [(ArrayList⟨T ⟩) l]≤ArrayList ∧ E([(ArrayList⟨T ⟩) l]) = T R4

Table 3.1 summarizes the full set of generics-related type constraints computed
for the example shown in Listing 3.5. This table indicates what are the constraints
that were generated for each program construct (in the first and the second columns)
and what are the rules that were used in each case (in the last column).

Looking at this table it is possible to infer that the fragment of code presented
in Listing 3.5 is type-correct since: according to R1, l has the type List⟨T ⟩ and l2 has
the type ArrayList⟨T ⟩; according to R2, the cast expression (ArrayList⟨T ⟩) l has the type
ArrayList⟨T ⟩; Therefore, since ArrayList is a subtype of [l] (i.e. List) and E([l]) is equal
to T , R3 holds; and since the type of casting expression is ArrayList⟨T ⟩, R4 also holds.

3.2.2 Method Call Rules

The constraint generation ContextCgen(..) is the recursive helper function used to
create type constraints for generic and non-generic method calls. It depends on the
calling context (which is represented by the fourth argument E) to create constraints
between the type of the method’s declaration and the type of method’s clients. Note
that Furher et al. (2005) have defined a similar solution, but their proposal does
not generate wildcard type constraints and it only works for generic classes3. The
function presented below generates wildcard constraints when applicable and works
for both generic and non-generic classes.

ContextCgen(α,op,τ,E,useWild) =⎧⎨⎩

α op C when τ ≡C ∧ useWild = ∙ (c1)
α op C ∨ α ∈ {? extends τ ′ ∣ τ ′ ≤C} when τ ≡C ∧ useWild = ⊲ (c2)
α op C ∨ α ∈ {? super τ ′ ∣ τ ′ ≥C} when τ ≡C ∧ useWild = ⊳ (c3)

α op T (E) when τ ≡ T ∧ useWild = ∙ (c4)
α op T (E) ∨ α ∈ {? extends τ ′ ∣ τ ′ ≤ T (E)} when τ ≡ T ∧ useWild = ⊲ (c5)
α op T (E) ∨ α ∈ {? super τ ′ ∣ τ ′ ≥ T (E)} when τ ≡ T ∧ useWild = ⊳ (c6)

ContextCgen(α,≤,τ ′,E,⊲) when τ ≡? extends τ ′ (c7)
ContextCgen(α,≥,τ ′,E,⊳) when τ ≡? super τ ′ (c8)

α op C when τ ≡C⟨τ1, ..,τk⟩ ∧ useWild = ∙ (c9)
∧ ContextCgen(Ti(α),=,τ i,E,∙) where C is decl as C⟨T1, ..,Tk⟩ ∧ 1≤i≤k

(α op C ∨ α ∈ {? extends head(C′) ∣ C′ ≤C}) when τ ≡C⟨τ1, ..,τk⟩ ∧ useWild = ⊲ (c10)
∧ ContextCgen(Ti(α),=,τ i,E,∙) where C is decl as C⟨T1 , ..,Tk⟩ ∧ 1≤i≤k

(α op C ∨ α ∈ {? super head(C′) ∣ C′ ≥C}) when τ ≡C⟨τ1, ..,τk⟩ ∧ useWild = ⊳ (c11)
∧ ContextCgen(Ti(α),=,τ i,E,∙) where C is decl as C⟨T1 , ..,Tk⟩ ∧ 1≤i≤k

3Furher et al.’s (2005) proposal defines a set of rules for non-generic classes, another set of rules
for generic classes and some closure rules to fill the gap between these sets.

35

Continue . . .
ContextCgen(α,op,τ,E,useWild) =⎧⎨⎩

α op C when τ ≡ rawtype C ∧ useWild = ∙ (c12)
∧ (Ti(α) = Ti(C) ∨ Ti(C) ∈ Wild(Ti(α))) where C is decl as C⟨T1 , ..,Tk⟩ ∧ 1≤i≤k

(α op C ∨ (α ∈ {? extends head(C′) ∣ C′ ≤C}) when τ ≡ rawtype C ∧ useWild = ⊲ (c13)
∧ (Ti(α) = Ti(C) ∨ Ti(C) ∈ Wild(Ti(α))) where C is decl as C⟨T1 , ..,Tk⟩ ∧ 1≤i≤k

(α op C ∨ (α ∈ {? super head(C′) ∣ C′ ≥C}) when τ ≡ rawtype C ∧ useWild = ⊳ (c14)
∧ (Ti(α) = Ti(C) ∨ Ti(C) ∈ Wild(Ti(α))) where C is decl as C⟨T1 , ..,Tk⟩ ∧ 1≤i≤k

Similarly to NonContextCgen(..), the above function generates type constraints based
on its third argument, τ, for: non-generic and generic classes (c1−c3 and c9−c14, re-
spectively); type parameters (c4−c6) and; wildcards (c7 and c8). The main difference
between these two functions is centered in cases c4, c5 and c6. While NonContextCgen(..)

works without any context, ContextCgen(..) uses its forth argument E to discover what
are the actual type parameters being used by the method caller.

RContextCgen(α,τ,E,useWild) =⎧⎨⎩

α = C when τ ≡C ∧ useWild = ∙∣∘ (rc1)
α = ? extends C when τ ≡C ∧ useWild = ⊲ (rc2)
α = ? super C when τ ≡C ∧ useWild = ⊳ (rc3)

α = T (E) when τ ≡ T ∧ useWild = ∙ (rc4)
α = wildbound(T (E)) when τ ≡ T ∧ useWild = ∘ (rc5)
α = ? extends T (E) when τ ≡ T ∧ useWild = ⊲ (rc6)
α = ? super T (E) when τ ≡ T ∧ useWild = ⊳ (rc7)

RContextCgen(α,τ ′,E,⊲) when τ ≡? extends τ ′ (rc8)
RContextCgen(α,τ ′,E,⊳) when τ ≡? super τ ′ (rc9)

α = C ∧ RContextCgen(Ti(α),τ i,E,∙) when τ ≡C⟨τ1, ..,τk⟩ ∧ useWild = ∙∣∘ (rc10)
where C is decl as C⟨T1 , ..,Tk⟩ ∧ 1≤i≤k

α = ? extends C ∧ RContextCgen(Ti(α),τ i,E,∙) when τ ≡C⟨τ1, ..,τk⟩ ∧ useWild = ⊲ (rc11)
where C is decl as C⟨T1 , ..,Tk⟩ ∧ 1≤i≤k

α = ? super C ∧ RContextCgen(Ti(α),τ i,E,∙) when τ ≡C⟨τ1, ..,τk⟩ ∧ useWild = ⊳ (rc12)
where C is decl as C⟨T1 , ..,Tk⟩ ∧ 1≤i≤k

α = C ∧ Ti(α) = Ti(C) when τ ≡ rawtype C ∧ useWild = ∙∣∘ (rc13)
where C is decl as C⟨T1 , ..,Tk⟩ ∧ 1≤i≤k

α = ? extends C ∧ Ti(α) = Ti(C) when τ ≡ rawtype C ∧ useWild = ⊲ (rc14)
where C is decl as C⟨T1 , ..,Tk⟩ ∧ 1≤i≤k

α = ? super C ∧ Ti(α) = Ti(C) when τ ≡ rawtype C ∧ useWild = ⊳ (rc15)
where C is decl as C⟨T1 , ..,Tk⟩ ∧ 1≤i≤k

Analogous to RNonContextCgen(..), the above function generates constraints that
obligate the argument α to be exactly equal to τ. Note that this function differs
from RNonContextCgen(..) when type parameters are considered (cases rc4−rc7). Before
creating the type constraints, it uses E to discover what are the actual type pa-
rameters being passed by the method caller. Beyond such detail, the first recursion
(which is represented by the symbol ∘ in the fourth argument useWild) is also dif-
ferentiated because the type parameter defined in context E may be, in some cases,
a wildcard. In those cases, getting information from a generic container (such as
List⟨? extends Number⟩) must return the bound of the wildcard. Such condition will be
better explained forward with the example of Listing 3.6.

Once these recursive helper functions were defined, the following rules are re-
quired to create type constraints for method constructs:

τ = OnType(M)
M contains an expression E ≡ this

[E] = τ
(r5)

Rule R5 states that the type of the expression this depends on M’s on type. In
other words, if there exists an inter-type declaration void C.m(){ this.m2(); } into an

36

aspect A, for example, the type of this is C even knowing that it was declared inside
of A.

M contains an expression return E0

NonContextCgen([E0],≤, [M],∙)
(r6)

Since the use of wildcards is allowed in method declarations, rule R6 states
that the return of the method M must be a wildcard or the type of the returning
expression, [E0], must be a subtype of the method’s return, [M].

P contains call E0.m(E1, ..,Ek) to virtual method M
RootDe f s(M) = {τ1, ..,τq}

[E0]≤ τ1 ∨ .. ∨ [E0]≤ τq
(r7)

1≤ i≤ k
P contains call E ≡Erec.m(E1, ..,Ek) to virtual method M

RContextCgen([E], [M]p,Erec,∘) ContextCgen([Ei],≤, [Param(M, i)]p,Erec,∙)
(r8,r9)

1≤ i≤ k
M′ contains call E ≡m(E1, ..,Ek) to method M
α ′ ≡ OnType(M′) α ≡ OnType(M) α ′ = α

RNonContextCgen([E], [M]p,∙) NonContextCgen([Ei],≤, [Param(M, i)]p,∙)
(r10,r11)

The above rules (R7-R11) are concerned with calls to methods in both generic
and non-generic classes. For each method call, these rules create a set of constraints
related to the method’s return and to the method’s parameters. While rules R7, R8

and R9 are responsible for creating constraints for virtual method calls, rules R10

and R11 are responsible for creating constraints for local method calls.
Rule R7 states that a declaration of a method with the same signature as M

must occur in some supertype of [E0]. The complexity in this rule stems from the
fact that M may override one or more methods declared in supertypes τ1 . . .τq, and
the type-correctness of the method call requires that the type of receiver expression
E0 be a subtype of one of these τi. This is expressed by way of a disjunction using
the auxiliary function RootDe f s(..).

Rule R8 defines the type of the entire call-expression E to be the same as M′s
return and R9 requires that the type of each parameter Ei be the same as or a
subtype of the correspondent formal declaration [Param(M, i)]p. Note that R8 uses
RContextCgen(..) and R9 uses ContextCGen(..). This is required because both the re-
turn and the parameters of the method’s declaration may define wildcards. As an
example, take the following listing:

Listing 3.6: Method calls
1 c l a s s C{
2 void m(List<? extends Number> l) {
3 Number n = l . get (0) ;
4 . .
5 }
6 public void main (St r ing args []) {
7 List<Integer> l I n t = . .
8 new C() .m(l I n t) ;
9

10 List<Double> lDouble = . .
11 new C() .m(lDouble) ;
12 }
13 }

Note that Listing 3.6 depicts one call to method m passing a list of integers (line
8) and another call to the same method passing a list of doubles (line 11). In this

37

example, there are two interesting segments that must be highlighted. The first one
is the variance of the parameter List⟨? extends Number⟩ on method m declaration (line
2) and the second one is the expression l.get(0) that is returning Number instead of
? extends Number (line 3). In order to demonstrate how the rules presented so far can
be employed to generate constraints for these cases, take the following:

Constraint generation for Listing 3.6
Line 2 - declaration: List<? extends Number> l

R1−→ RNonContextCgen([l], List<? extends Number>, ∙)
rn9−→ [l] = List ∧ RNonContextCgen(E([l]), ? extends Number, ∙)
rn7−→ [l] = List ∧ RNonContextCgen(E([l]), Number, ⊲)
rn2−→ [l] = List ∧ E([l]) = ? extends Number

Line 3 - declaration: Number n

R1−→ RNonContextCgen([n], Number, ∙)
rn1−→ [n] = Number

Line 6 - declaration: List<Integer> lInt

R1−→ RNonContextCgen([lInt], List<Integer>, ∙)
rn9−→ [lInt] = List ∧ RNonContextCgen(E([lInt]), Integer, ∙)
rn1−→ [lInt] = List ∧ E([lInt]) = Integer

Line 9 - declaration: List<Double> lDouble

R1−→ RNonContextCgen([lDouble], List<Double>, ∙)
rn9−→ [lDouble] = List ∧ RNonContextCgen(E([lDouble]), Double, ∙)
rn1−→ [lDouble] = List ∧ E([lDouble]) = Double

Line 3 - virtual method call: l.get(0)

R7−→ [l] ≤ List
R8−→ RContextCgen([l.get(0)], E, l, ∘)

rc5−→ [l.get(0)] = wildbound(E(l))

R9−→ ContextCgen([0], ≤, int, l, ∙)
c1−→ [0] ≤ int

−→ Integer ≤ int

Line 3 - assignment: n = l.get(0)

R4−→ NonContextCgen([l.get(0)], ≤, [n], ∙)
−→NonContextCgen([l.get(0)], ≤, Number, ∙)

n1−→ [l.get(0)] ≤ Number

The first four reductions show how R1 is used to create type constraints for
variable declarations of Listing 3.6. Looking at these cases it is possible to see that:
the type of the variable n is Number; the type of variables l, lInt and lDouble is List
and; the actual type parameter E of l, lInt and lDouble are ? extends Number, Integer
and Double, respectively;

The remainder of the reductions are related to line 3 of the same listing. Note
that, in this line, the result of l.get(0) expression is being assigned to a local vari-
able n – which type is Number. In order to that piece of code be type-correct, the
constraint [l.get(0)] ≤ Number (created by rule R4) must be satisfied. The interesting
point here is: the method get(..) declared into List returns E and the actual type
parameter E defined for the variable l is, in this example, ? extends Number. Thus,
the type of the entire expression l.get(0) is ? extends Number. Even knowing that there
is no subtype relationship between ? extends Number and Number (see the subtyping
definition on Section 3.1), the assignment n = l.get(0) is considered well-typed. This

38

happens because R8 has generated the following constraint: [l.get(0)] = wildbound(E(l)).
Since E(l) is ? extends Number and wildbound(? extends Number) is Number, the constraint
created by R4 ([l.get(0)]≤ Number) holds because the subtype relationship is reflexive.
In other words, Number is a subtype of itself.

Another important item to discuss in this example is related to boxing and
unboxing type conversions (GOSLING et al., 2005). In Java, every primitive type
has an immutable wrapper object version. The conversion from primitive to wrapper
is known as boxing and from wrapper to primitive is known as unboxing. In short,
from a programming point of view, a primitive and its corresponding wrapper may
be faced as the same type since the JVM is responsible to perform such conversion.
That is the reason by which the constraint generated by rule R9 (i.e. Integer ≤ int)
also holds.

Besides these constraints, it is still necessary to create type constraints for calls
to method m – which happens at lines 7 and 10:

Constraint generation for Listing 3.6 - virtual method calls
Line 7 - virtual method call: new C().m(lInt)

R7−→ [new C()] ≤ C
R9−→ ContextCgen([lInt], ≤, List<? extends Number>, new C(), ∙)

c9−→ [lInt] ≤ List ∧ ContextCgen(E([lInt]), =, ? extends Number, new C(), ∙)
c7−→ [lInt] ≤ List ∧ ContextCgen(E([lInt]), ≤, Number, new C(), ⊲)
c2−→ [lInt] ≤ List ∧

(E([lInt]) ≤ Number ∨ E([lInt]) ∈ {? extends τ | τ ≤ Number})

Line 10 - virtual method call: new C().m(lDouble)

R7−→ [new C()] ≤ C
R9−→ ContextCgen([lDouble], ≤, List<? extends Number>, new C(), ∙)

c9−→ [lDouble] ≤ List ∧ ContextCgen(E([lDouble]), =, ? extends Number, new C(), ∙)
c7−→ [lDouble] ≤ List ∧ ContextCgen(E([lDouble]), ≤, Number, new C(), ⊲)
c2−→ [lDouble] ≤ List ∧

(E([lDouble]) ≤ Number ∨ E([lDouble]) ∈ {? extends τ | τ ≤ Number})

In the above constraint generation, rule R7 states that the type of the constructor
call new C() must be less or equal to C. For expression new C().m(lInt), rule R9 requires
that the type of the variable lInt be a subtype of List and, the actual type parameter
E be a subtype of Number or a wildcard. The same happens for the variable lDouble
in expression new C().m(lDouble).

1≤ i≤ k
P contains constructor call

E ≡ new C(E1, ..,Ek) to constructor M
RNonContextCgen([E],C,∙) ContextCgen([Ei],≤, [Param(M, i)]p,E,∙)

(r12, r13)

Other important rules are R12 and R13. These rules are concerned to create
constraints for constructor calls. Similar to method calls, rule R13 states that the
type of each actual parameter Ei must be the same as or a subtype of the type of
the corresponding formal parameter [Param(M, i)]p. On the other hand, rule R12 says
that the type of a constructor call new C(E1, ..,Ek) has the same type defined for C.
Note that RNonContextCgen(..) was used in R12. It is required because C may also be
a generic type.

Constraint generation for Listing 3.6 - constructor call

39

Type of constructor call: new C()

R12−→ RNonContextCgen([new C()], C, ∙)
rn1−→ [new C()] = C

The above reduction shows how the type of a constructor call is derived.
Note that Listing 3.6 contains two calls to method m (i.e. new C().m(lInt) and
new C().m(lDouble)). In both cases, it is necessary to obtain the type of new C() in
order to be able to conclude the constraints derived so far. For that, rule R12 must
be applied and, as the result, it says that the type of new C() is equals to C. Note
that, since C is a non-generic class, no constraints for type parameters were created.

Table 3.2 aims to summarize the result of the constraint generation for the piece
of code depicted in Listing 3.6.

Table 3.2: Summary of constraints generated for Listing 3.6
Code Type constraint(s) Rule(s)

List⟨? extends Number⟩ l [l] = List ∧ E([l]) = ? extends Number R1

Number n [n] = Number R1

List⟨Integer⟩ lInt [lInt] = List ∧ E([lInt]) = Integer R1

List⟨Double⟩ lDouble [lDouble] = List ∧ E([lDouble]) = Double R1

l.get(0) [l]≤List R7

[l.get(0)] = Number R8

Integer≤int R9

n = l.get(0) [l.get(0)]≤Number R4

new C().m(lInt) [new C()]≤C R7

[lInt]≤List ∧ (E([lInt])≤Number ∨ R9

E([lInt]) ∈ {? extends τ ∣ τ≤Number})

new C().m(lDouble) [new C()]≤C R7

[lDouble]≤List ∧ (E([lDouble])≤Number ∨ R9

E([lDouble]) ∈ {? extends τ ∣ τ≤Number})

new C() [new C()] = C R12

Looking at this table it is possible to identify that E(lInt) may be Integer (at
row 3) or any subtype of Number (at row 7). Since the intersection between Integer
and any subtype of Number is Integer, this type is assumed for E(lInt). A similar
situation happens for E([lDouble]), in which Double is the type selected. Therefore,
since E([lInt]) is Integer, E([lDouble]) is Double, [new C()] is C and Integer is the wrapper of
int, it is possible to infer that all type constraints depicted in Table 3.2 are satisfied.
Meaning that the fragment of code presented in Listing 3.6 is type-correct.

3.2.2.1 Static and Generic Methods

Constraint generation for static and generic method calls are very similar to those
presented so far for “normal method”4 calls. The main different between them are:

∙ Generic method calls : while rules for non-generic method calls lookup type
variables from the class declaration, a generic method call must lookup those
variables from the method declaration before going to the class.

4The term “normal methods” refer to non-generic and non-static methods.

40

∙ Static method calls : since static methods can not use type variables defined
in the class, those variables must be looked exclusively up from the method’s
declaration.

It is important to highlight that the rules for both static and generic method
calls differ from “normal method” ones only in the way they lookup the declaration
of a given type variable reference. Since all other aspects remain the same this
dissertation omits the detail of these rules for brevity.

3.2.3 Overriding Rules

Both Java and AspectJ languages support overriding of methods as described
in Definition 3.1.1. Therefore, constraint generation rules for method overriding are
a requisite to verify the type-correctness of classes and aspects. But, before going
into details about these rules, it is necessary to show how actual type parameters
are propagated in the GA hierarchy.

Ti(α) exists α is declared as C⟨T0, ..,Tk⟩ 0≤ i≤ k
C2⟨τ0, ..,τn⟩= SuperClass(C) ∨ C2⟨τ0, ..,τn⟩ ∈ Inter f aces(C)

C2 is declared as C2⟨T ′0 , ..,T ′n⟩ 0≤ j ≤ n
ContextCgen(T ′j (α),=,τ j,α,∙)

(r14)

Rule R14 is concerned with subtype relationships among generic libraries where
actual type parameters are propagated from the subtype to its supertype. This rule
states that: if Ti(α) exists, all subtypes of α must provide the actual type information
for Ti during the instantiation. Note that R14 uses function ContextCgen(..) to create
such constraints. This is required because τ j may be a complex generic type, and
then, it must be treated in the same way as discussed in previous rules.

For overriding relationships, rules R15, R16 and R17 are used independently if
the supertype is generic or not. These rules generate additional type constraints for
overriding method’s return (rule R15) and parameters (rule R16).

M′ overrides M
E ′i ≡ Param(M′, i) Ei ≡ Param(M, i) 1≤ i≤ NrParams(M′)

α ′ ≡ OnType(M′) α ≡ OnType(M)

ContextCgen([M′]p,≤, [M]p,α
′,∙) RContextCgen([E ′i]p, [Ei]p,α

′,∙)
I f T (α ′) exists, then T (α ′) can not be a wildcard

(r15,r16,r17)

It is important to highlight that rule R17 states that wildcards are not allowed
in T (α ′). This is required because, in some cases, rules R15 and R16 may generate a
wildcard as a valid type for T (α ′). Since T (α ′) represents the type being propagated
to the superclass, only concrete actual types are valid constructions. For this reason,
R17 is used as a closure rule to forbid wildcards in such cases.

Another important subtle is about RContextCgen(..) function usage in rule R16.
For method overriding, the case rc5 of this function can not be executed because
getting the bound of a wildcard is only useful for retrieving data from a generic
container. Then, instead of creating a new helper function with only one little
difference, RContextCgen(..) was defined in such a way that passing ∙ (instead of ∘), in
the last argument, rc5 will never be executed.

Take the following listing as a simple example of overriding relationship among
two generic classes:

Listing 3.7: Method overiding
1 class C1<T1>{

41

2 void m(List<? extends T1> l) { . . }
3 }
4
5 class C2<T2> extends C1<T2>{
6 void m(List<? extends T2> l) { . . }
7 }

In this example, C2 explicitly overrides the method m defined in C1. It is important
to emphasize that even when the hierarchy is defined by an aspect (through a parent
declaration), the overriding rules defined in this section are able to identify such
detail (based on Definition 3.1.1), and therefore, type constraints are generated as
follow:

Constraint generation for Listing 3.7
Line 2 and 6 - method overriding: C2.m(..) overrides C1.m(..)

R16−→ RContextCgen([List<? extends T2>], List<? extends T1>, C2, ∙)
rc10−→ [List<? extends T2>] = List ∧ RContextCgen(E([List<? extends T2>]), ? extends T1, C2,∙)
rc8−→ [List<? extends T2>] = List ∧ RContextCgen(E([List<? extends T2>]), T1, C2, ⊲)
rc6−→ [List<? extends T2>] = List ∧ E([List<? extends T2>]) = ? extends T1(C2)

R17−→ if T(C2) exists, then T(C2) can not be a wildcard

The generation of constraints shown above are related to the code presented in
Listing 3.7. The two reductions (R16 and R17) are deriving type constraints for the
overriding method m. Note that overriding method’s parameters must be invariant.
In other words, the type of a given parameter declared in an overriding method must
be exactly the same of the one declared in the corresponding super definition. This
is why rule R16 uses RContextCgen(..) to generate constraints between the parameters
of C2.m and C1.m. The complexity of this rule stems from the fact that type variables
and wildcards are allowed when generic classes are considered.

Note that R16 has generated a constraint saying that E([List⟨? extends T 2⟩]) must
be equal to ? extends T 1(C2). Since E([List⟨? extends T 2⟩]) is ? extends T 2, the constraint
generated by R16 could be shown as: ? extends T 2 = ? extends T 1(C2). Based on this, it
is simple to infer that T 2 is equals to T 1(C2) (meaning that, the actual type parameter
defined for T 1 must be equals to the type variable T 2). Since C2 is always passing T 2
to its superclass C1 (see line 5 of Listing 3.7), the invariance is guaranteed and then
R16 holds. Rule R17, though, is only necessary to forbid that wildcards (possibly
generated by rule R16) be propagated from C2 to C1.

1≤ i≤ k
M′ contains call E ≡m(E1, ..,Ek) to method M

α ′ ≡ OnType(M′) α ≡ OnType(M) α ′ ≤ α α ′ ∕= α

RContextCgen([E], [M]p,α
′,∘) ContextCgen([Ei],≤, [Param(M, i)]p,α

′,∙)
I f T (α ′) exists, then T (α ′) can not be a wildcard

(r18,r19,r20)

Although rules R18, R19 and R20 are not directly related to overriding, they
were designed in a very similar way than rules R15, R16 and R17. The biggest
difference between them is that while rules R15-R17 address the constraint generation
for overriding of methods, rules R18-R20 were created to manage calls of methods
declared in supertypes.

3.2.4 Advices Rules

All constraint generation rules presented so far consciously manage inter-type and
parent declarations. However, in order to provide an aspect-aware type constraint

42

framework, it is still important to define rules for advised methods. In AspectJ, an
advice says what to do and a pointcut says when to do. These constructs, when
used together, allow the definition of crosscutting concern to be specified in separate
aspect modules.

Note that the weaving of advices takes place just after the type erasure process.
Thus, at weaving-time, only declared generic type information are available to As-
pectJ. This restriction implies that only statically resolved constructions (i.e. args(..)
pointcut primitives, a f ter() returning(..) advices and around(..) advices) can accept pa-
rameterized types. Since this dissertation focuses on the polymorphic version of
AspectJ, designators which does not accept such types (i.e. this(..), target(..), c f low(..),
etc) were not considered. Hence, a future study is required to make this type con-
straint framework to support all existing features of AspectJ.

The following rules were designed to generate type constraints for args(..) pointcut
primitives (rule R21) and a f ter() returning(..) advices (rule R22). While rule R21 states
that the parameters of an advised method5 must be “castable” to the parameters
defined in the args construct, rule R22 says that the return of an advised method
must be “castable” to the parameter defined in the a f ter() returing(..) advice.

method call/execution M is advised by AD
AD′s pointcut expression contains args(e0, ..,ek)
Ei ≡ Param(M,ei) E ′i ≡ Param(AD,ei) 1≤ i≤ n

ArgsCgen([Ei], [E ′i],∘)
(r21)

method call/execution M is advised by AD
AD is an a f ter() returning(..) advice E ≡ Param(AD,0) exists

ArgsCgen([M], [E],∘)
(r22)

It is important to highlight that both rules use ArgsCgen(..) function to generate
type constraints. Since AspectJ is not able to match against type variables, this
function was designed to consider both AspectJ’s exact matching (when types are
fully defined in joinpoints) and AspectJ’s erased matching (when type variables are
used in joinpoints) as follows:

ArgsCgen(α,τ,useWild) =⎧⎨⎩

C ≤ τ ∨ C >? τ when α ≡C ∧ useWild = ∘ (ar1)
τ = C ∨ τ ∈ Wild(C) when α ≡C ∧ useWild = ∙ (ar2)
τ ∈ {? extends C′ ∣ C ≤C′} when α ≡C ∧ useWild = ⊲ (ar3)
τ ∈ {? super C′ ∣ C ≥C′} when α ≡C ∧ useWild = ⊳ (ar4)

∣T ∣ ≤ τ ∨ ∣T ∣ >? τ when α ≡ T ∧ useWild = ∘ (ar5)
τ ∈ {? extends α ′ ∣ ∣T ∣ ≤ α ′} when α ≡ T ∧ useWild = ∙ (ar6)
τ ∈ {? extends α ′ ∣ ∣T ∣ ≤ α ′} when α ≡ T ∧ useWild = ⊲ (ar7)
τ ∈ {? super α ′ ∣ ∣T ∣ ≥ α ′} when α ≡ T ∧ useWild = ⊳ (ar8)

ArgsCgen(α ′,τ,⊲) when α ≡? extends α ′ (ar9)
ArgsCgen(α ′,τ,⊳) when α ≡? super α ′ (ar10)

(C ≤ τ ∨ C >? τ) when α ≡C⟨α1, ..,αk⟩ ∧ useWild = ∘ (ar11)
∧ ArgsCgen(α i,Ti(τ),∙) where C is decl as C⟨T1 , ..,Tk⟩ ∧ 1≤i≤k

(τ = C ∨ τ ∈ Wild(C)) when α ≡C⟨α1, ..,αk⟩ ∧ useWild = ∙ (ar12)
∧ ArgsCgen(α i,Ti(τ),∙) where C is decl as C⟨T1 , ..,Tk⟩ ∧ 1≤i≤k

τ ∈ {? extends head(C′) ∣ C ≤C′} when α ≡C⟨α1, ..,αk⟩ ∧ useWild = ⊲ (ar13)
∧ ArgsCgen(α i,Ti(τ),∙) where C is decl as C⟨T1 , ..,Tk⟩ ∧ 1≤i≤k

τ ∈ {? super head(C′) ∣ C ≥C′} when α ≡C⟨α1, ..,αk⟩ ∧ useWild = ⊳ (ar14)
∧ ArgsCgen(α i,Ti(τ),∙) where C is decl as C⟨T1 , ..,Tk⟩ ∧ 1≤i≤k

5This work assumes that the weaver is able to provide all matching information. For example,
it can answer the following two questions: (i) what are the methods being advised by AD? and (ii)
what are the advices advising M?

43

Continue . . .
ArgsCgen(α,τ,useWild) =⎧⎨⎩

(C ≤ τ ∨ C >? τ) when α ≡ rawtype C ∧ useWild = ∘ (ar15)
∧ (Ti(τ) = Ti(C) ∨ Ti(τ) ∈ Wild(Ti(C))) where C is decl as C⟨T1 , ..,Tk⟩ ∧ 1≤i≤k

(τ = C ∨ τ ∈ Wild(C)) when α ≡ rawtype C ∧ useWild = ∙ (ar16)
∧ (Ti(τ) = Ti(C) ∨ Ti(τ) ∈ Wild(Ti(C))) where C is decl as C⟨T1 , ..,Tk⟩ ∧ 1≤i≤k

τ ∈ {? extends head(C′) ∣ C ≤C′} when α ≡ rawtype C ∧ useWild = ⊲ (ar17)
∧ (Ti(τ) = Ti(C) ∨ Ti(τ) ∈ Wild(Ti(C))) where C is decl as C⟨T1 , ..,Tk⟩ ∧ 1≤i≤k

τ ∈ {? super head(C′) ∣ C ≥C′} when α ≡ rawtype C ∧ useWild = ⊳ (ar18)
∧ (Ti(τ) = Ti(C) ∨ Ti(τ) ∈ Wild(Ti(C))) where C is decl as C⟨T1 , ..,Tk⟩ ∧ 1≤i≤k

The above ArgsCgen(..) is very similar to those constraint generation helper func-
tions discussed in previous sections. The main difference between them are: (i)
the cases ar5-ar8, which simply perform the erasure of all type variables defined in
the given joinpoint before creating any type constraint; and (ii) the first recursion
(represented by useWild = ∘), which says that the type declared in the method being
advised can be a subtype or a supertype of the type defined in the advice construct,
with the price of a runtime verification for supertypes. Note that ArgsCgen(..) intro-
duces this runtime verification by generating constraints using >? relation in cases
ar1, ar5, ar11 and ar15.

Listing 3.8: Before advice using args(..)
1 class C<T extends Number>{
2 void m(List<? extends T> l) { . . }
3 }
4
5 aspect A{
6 before () : execution (void m(. .)) &
7 args (L i s t<? extends Number>){
8 . .
9 }

10 }

In order to present an example of an advice matching against a generic class,
Listing 3.8 shows the method m being advised by the advice declared at line 6. The
interesting point of this example is that this advice is matching against a wildcard
upper-bounded to a type variable. To generate type constraints for this piece of
code, rule R21 must be applied as follows:

Constraint generation for Listing 3.8
Line 7 - args: args(List<? extends Number>)

R21−→ ArgsCgen([List<? extends T>], [List<? extends Number>], ∘)
ar11−→ (List ≤ [List<? extends Number>] ∨ List >? [List<? extends Number>]) ∧

ArgsCgen(? extends T, E([List<? extends Number>]), ∙)
ar9−→ (List ≤ [List<? extends Number>] ∨ List >? [List<? extends Number>]) ∧

ArgsCgen(T, E([List<? extends Number>]), ⊲)
ar7−→ (List ≤ [List<? extends Number>] ∨ List >? [List<? extends Number>]) ∧

E([List<? extends Number>]) ∈ { ? extends α | |T| ≤ α }

−→ (List ≤ [List<? extends Number>] ∨ List >? [List<? extends Number>]) ∧
E([List<? extends Number>]) ∈ { ? extends α | Number ≤ α }

−→ (List ≤ [List<? extends Number>] ∨ List >? [List<? extends Number>]) ∧
E([List<? extends Number>]) ∈ { ? extends Number, ? extends Ob ject}

In the first part of the conjunction of the resultant constraint it is possible to
see that the type defined for the args argument must be a supertype or a subtype of
List. Note that if it were a subtype of List, a runtime verification would be required.
The second part of the conjunction is about its type parameter, which must be one

44

of the following: {? extends Number,? extends Ob ject}. Since the type of args is List and
its type parameter is ? extends Number, all constraints are satisfied, and therefore, the
code depicted in Listing 3.8 is type-correct.

One interesting and also questionable issue about AspectJ type system is re-
lated to the return of around advices. According to AspectJ Developers Notebook
(2005), the return of an around advice must be assignable to the advised method’s
return. However, the compiler can not ensure type-correctness when type variables
are used. The reason behind this statement is that, in current AspectJ implementa-
tion (version 1.6.3), advices can not use the same type variable reference used by the
method. Therefore, since Java subtyping is invariant, there is no way to guarantee
the type-correctness in such cases.

Listing 3.9: Around advice
1 class C<T extends Number> {
2 List<T> m1() { . . }
3 }
4
5 aspect A{
6 List<Number> around () : execution (∗ C.m1()) {
7 System . out . p r i n t l n (‘ ‘ before method ’ ’) ;
8 return proceed () ;
9 }

10 }

Listing 3.9 shows the method m1 being intercepted by an around advice. The
body of this advice only prints a message on the default output and then calls
the original method m1 through a proceed call (line 8). Note that, this advice is
considered well-typed by AspectJ even knowing that List⟨Number⟩ is not assignable to
List⟨T ⟩. This happens because the advice’s return is in fact assignable to an special
erased version of the method’s return – which is List⟨Number⟩.

It is important to highlight that this strategy may cause type conversions er-
rors at runtime. Suppose someone changes the line 8 to return a list contain-
ing Double instances and, in program P, there is a fragment of code as follows:
new C⟨Integer⟩.m1(myIntList). At compile-time it is type-correct but at runtime it will
cause a type conversion error because Double is not assignable to Integer. The rule
which reproduces this AspectJ typing strategy is R236. This rule was created in such
a way that constraints to enforce the advice’s return to be a special erased version
of the method’s return be generated.

method call/execution M is advised by AD AD is an around advice
[AD] = Ob ject ∨ AroundCgen([AD],≤, [M],∙)

(r23)

In summary, this rule says that the return of an around advice must be Ob ject or
it must be assignable to the statically resolved method’s return. A specific helper
function, AroundCgen(..), was created to accomplish this task because every type vari-
able must be replaced by its bound before type constraints be generated. Note that
AroundCgen(..) makes basically the same that NonContextCgen(..) function does with one
slight difference: it erasures type variables in cases ad4-ad6.

6Note that this work does not solve AspectJ typing issues, it only reproduces the existing
behavior in the type constraint framework.

45

AroundCgen(α,op,τ,useWild) =⎧⎨⎩

α op C when τ ≡C ∧ useWild = ∙ (ad1)
α op C ∨ α ∈ {? extends τ ′ ∣ τ ′ ≤C} when τ ≡C ∧ useWild = ⊲ (ad2)
α op C ∨ α ∈ {? super τ ′ ∣ τ ′ ≥C} when τ ≡C ∧ useWild = ⊳ (ad3)

α = ∣T ∣ when τ ≡ T ∧ useWild = ∙ (ad4)
α ≤ ∣T ∣ ∨ α ∈ {? extends T ′ ∣ T ′ ≤ ∣T ∣} when τ ≡ T ∧ useWild = ⊲ (ad5)
α ≥ ∣T ∣ ∨ α ∈ {? super T ′ ∣ T ′ ≥ ∣T ∣} when τ ≡ T ∧ useWild = ⊳ (ad6)

AroundCgen(α,≤,τ ′,⊲) when τ ≡? extends τ ′ (ad7)
AroundCgen(α,≥,τ ′,⊳) when τ ≡? super τ ′ (ad8)

α op C when τ ≡C⟨τ1, ..,τk⟩ ∧ useWild = ∙ (ad9)
∧ AroundCgen(Ti(α),=,τ i,∙) where C is decl as C⟨T1, ..,Tk⟩ ∧ 1≤i≤k

(α op C ∨ α ∈ {? extends head(C′) ∣ C′ ≤C}) when τ ≡C⟨τ1, ..,τk⟩ ∧ useWild = ⊲ (ad10)
∧ AroundCgen(Ti(α),=,τ i,∙) where C is decl as C⟨T1, ..,Tk⟩ ∧ 1≤i≤k

(α op C ∨ α ∈ {? super head(C′) ∣ C′ ≥C}) when τ ≡C⟨τ1, ..,τk⟩ ∧ useWild = ⊳ (ad11)
∧ AroundCgen(Ti(α),=,τ i,∙) where C is decl as C⟨T1, ..,Tk⟩ ∧ 1≤i≤k

α op C when τ ≡ rawtype C ∧ useWild = ∙ (ad12)
∧ (Ti(α) = Ti(C) ∨ Ti(C) ∈ Wild(Ti(α))) where C is decl as C⟨T1, ..,Tk⟩ ∧ 1≤i≤k

(α op C ∨ (α ∈ {? extends head(C′) ∣ C′ ≤C}) when τ ≡ rawtype C ∧ useWild = ⊲ (ad13)
∧ (Ti(α) = Ti(C) ∨ Ti(C) ∈ Wild(Ti(α))) where C is decl as C⟨T1 , ..,Tk⟩ ∧ 1≤i≤k

(α op C ∨ (α ∈ {? super head(C′) ∣ C′ ≥C}) when τ ≡ rawtype C ∧ useWild = ⊳ (ad14)
∧ (Ti(α) = Ti(C) ∨ Ti(C) ∈ Wild(Ti(α))) where C is decl as C⟨T1 , ..,Tk⟩ ∧ 1≤i≤k

The reduction presented below shows the constraint generation for the around
advice of Listing 3.9. Note the disjunction of the resultant constraint: the type of
the return of the advice must be Ob ject or, it must be a subtype of List and the type
parameter E must be equal to the erasure of the type variable T . Since the return
type of the around advice (i.e. List⟨Number⟩) is a subtype of List and, E(List⟨Number⟩)
is Number and ∣T ∣ is also Number, the constraint generated by rule R23 holds.

Constraint generation for Listing 3.9 - around advice
Lines 2 and 6 - around a method: List<Number> around()

R23−→ [List<Number>]=Object ∨ AroundCgen([List<Number>], ≤, [List<T>], ∙)
ad9−→ [List<Number>]=Object ∨

([List<Number>] ≤ List ∧ AroundCgen(E([List<Number>]), =, T, ∙))
ad4−→ [List<Number>]=Object ∨ ([List<Number>] ≤ List ∧ E([List<Number>]) = |T|))

Another important construction is the implicit proceed method call. A proceed(..)

call is allowed only into the body of around advices and, as the name suggests, the
main idea of this construct is to proceed the original method execution. Thus, the
constraint generation rule is defined as follows:

1≤i≤k
AD contains a proceed call E ≡ proceed(E1, ..,Ek)

RNonContextCgen([E], [AD]p,∙) NonContextCgen([Ei],≤, [Param(AD, i)]p,∙)
(r24,r25)

The signature of the proceed(..) method is exactly the same of the advice’s sig-
nature. Hence, rules R24 and R25 generate constraints that are concerned with the
return and with the parameters of a given proceed(..) call. Note that, instead of using
context helper functions, these rules use non-context ones (i.e. RNonContextCgen(..)

and NonContextCgen(..)). This is required because the type-correctness of a proceed call
is verified against the advice’s declaration, and therefore, no calling context exists.

Fraine et al. (2008) have found that this implicit proceed signature is the main
responsible for undetected errors. Thus, they proposed the StrongAspectJ (an ex-
tension of AspectJ language with explicit proceed signature) to detect more type

46

errors at compile-time. Although StrongAspectJ is safer than AspectJ, this disser-
tation focuses on the current production ready solution – which is the version 1.6.3
of AspectJ language.

Constraint generation for Listing 3.9 - proceed
Line 8 - proceed call: proceed()

R24−→ RNonContextCgen([proceed()], List<Number>, ∙)
rn9−→ [proceed()] = List ∧ RNonContextCgen(E([proceed()]), Number, ∙)
rn1−→ [proceed()] = List ∧ E([proceed()]) = Number

Line 8 - return: return proceed()

R6−→ NonContextCgen([proceed()], ≤, List<Number>, ∙)
n9−→ [proceed()] ≤ List ∧ NonContextCgen(E([proceed()]), =, Number, ∙)
n1−→ [proceed()] ≤ List ∧ E([proceed()]) = Number

The reductions shown above depict the constraint generation for the proceed call
of Listing 3.9. While the first rule (R24) generates type constraints for the proceed’s
return, the second rule (R6) generates type constraints for the whole return expression.
Finally, Table 3.3 summarizes the constraints generated for the piece of code of
Listing 3.9.

Table 3.3: Summary of constraints generated for Listing 3.9
Code Type constraint(s) Rule(s)

List⟨Number⟩ around() [List⟨Number⟩] = Ob ject ∨ R25

([List⟨Number⟩]≤List ∧ E([List⟨Number⟩] = ∣T ∣))

proceed() [proceed()] = List ∧ E([proceed()]) = Number R24

return proceed() [proceed()]≤List ∧ E([proceed()]) = Number R6

3.2.5 Other Rules

There are some type constraint rules that were not presented in this chapter.
These rules are related to basic constructions such as: field, arrays, instanceof ex-
pressions and etc.

α = OnType(F)
P contains f ield access E ≡ E0. f to F

RContextCgen([E],=, [F]p,E0,∘) [E0]≤ α
(r26,r27)

For field access expressions (E0. f) which access the field F – explicitly or implicitly
(through an aspect) declared in type α –, rule R26 defines that the type of the whole
expression must be the same as the one declared in F. Rule R27, though, requires
that the type of expression E0 be a subtype of field F’s on type.

It is important to point out that these two rules (R26 and R27) are applied
only for non-local field access. Likewise method calls, fields also require rules for
local access and for super access. For brevity, these rules were not detailed in this
dissertation, but they are very similar to those defined for methods (R10 and R18).

This chapter only summarizes the essential details of an aspect-aware type con-
straint framework and refer the reader to the foundations of this work (TIP et al.,
2003; FUHRER et al., 2005) to analyze basic Java rules (such as, instanceof ex-
pression, hide fields, arrays and others). The omitted rules involve no significant

47

different analysis from the original proposal. However, it is important to emphasize
that: (i) in order to consider inter-type declarations, the use of Decl(..) function must
be replaced by the aspect-aware OnType(..) defined in Section 3.1; (ii) the subtyping
relationship, presented in the same section, must also be applied because it takes
into account declare parent constructs.

3.3 Final Considerations

This chapter presented an aspect-aware type constraint framework focused on
the polymorphic version of AspectJ. The main foundation of this work (FUHRER
et al., 2005) is concentrated on OO code, more specifically on Java programs. Unfor-
tunately, unlike Java, AspectJ does not have a safe type system. As it was discussed
in Section 3.2.4, both the return of advices and the implicit proceed signature can give
rise to type errors at runtime. In addition, AspectJ’s typing rules severely restrict
advice definitions obligating the matching against type variables to happen against
their erasure.

Because of these AspectJ issues and other subtleties related to aspect constructs
and wildcards, the type constraint framework presented in this dissertation is signifi-
cantly more complex than previous studies focused on pure OO programs. Therefore,
a non-trivial modification of the original rules (FUHRER et al., 2005) was required
to improve the existing support to generate constraints for the following:

∙ subclasses of generic classes7;

∙ raw types used in signature of methods declared into generic classes;

∙ calls for methods defined in the super generic class;

∙ wildcard types;

∙ methods and attributes into aspects;

∙ inter-type declarations;

∙ declare parent declarations;

∙ advices constructs;

∙ and, args(..) primitive pointcut constructs.

It is important to highlight that during the conception of this dissertation, no
other type constraint framework for the AspectJ language was found. Therefore,
the solution discussed in this chapter is the first to propose a set of inference rules
for generating type constraints from AspectJ programs.

In an effort to show a practical example of the presented aspect-aware solution,
next chapter discusses how to extend an existing generic code migration to consider
the use of aspects to encapsulate crosscutting concerns. It is important to say
that the proposed solution is not restricted to this example. Hence, other works
may also get benefits from this proposal since type constraints are being used to

7Although Fuhrer et al. (2005) claim being able to accommodate subclasses of generic classes,
they do not show the type rules neither in the paper nor in the implementation.

48

solve many different problems in the literature. Some examples are: traditional
inference algorithms (PALSBERG; SCHWARTZBACH, 1991; PLEVYAK; CHIEN,
1994; EIFRIG et al., 1995; AGESEN, 1995), which focus on inferring types for
programs with no type annotations; refactoring algorithms that use pre- and post-
conditions to guarantee that the program’s behavior is preserved (TIP et al., 2003);
algorithms for analyzing Java bytecode (BELLAMY et al., 2008); and others.

49

4 GENERIC CODE MIGRATION

The parametric polymorphism in both Java and AspectJ improves the type safety
and the expressiveness of the source code. However, to legacy and non-generic code
take advantage of this pervasive feature, they must be migrated to explicitly supply
actual type parameters in both declarations and instantiations of generic classes.

Although the type systems of these languages were designed to support such mi-
gration, this process – when performed manually – can be tedious, time consuming
and error prone (DINCKLAGE; DIWAN, 2004; MUNSIL, 2004; DONOVAN et al.,
2004). The reason behind this assertion is that actual type parameters must be in-
ferred to remove as much unsafe downcasts as possible without affecting the original
semantics of the program. This is known in the generic migration literature as the
instantiation problem (DONOVAN et al., 2004).

There are several approaches that aim to help solving this problem (DONOVAN
et al., 2004; DINCKLAGE; DIWAN, 2004; FUHRER et al., 2005; CRACIUN et al.,
2009). In general, they analyze the source code looking for gaps of type information
and then rewrite a new semantically equivalent generic version of the program, in
which actual type parameters are automatically inserted and redundant downcasts
are removed.

These solutions have been successfully used for migrating pure object-oriented
software, but they are not able to ensure that the migration will be successful in
the presence of aspects. There are several subtleties involving both AspectJ’s type
system, inter-type declarations, parent declarations and pointcut expressions that
make this task more complex and error prone. Then, approaches focused on the
aspect-oriented context must deal with the following:

1. Poor inference: aspect-oriented constructs must be considered during the
program transformation since they may change the inference results. Without
analyzing such constructs, the inferred types may not be as good as expected
and the code inside aspects will not be improved.

2. Ill-typing: since inter-type and parent declarations are implicitly woven into
the application, actual type parameters inferred may become ill-typed when
the weaver adapts the structure or the hierarchy of a class.

3. Pointcut’s fragility: pointcuts can match elements across the entire base
code. Thus, reasoning about the correctness of a pointcut requires a deep
understanding of the internal structure of the software (YE; VOLDER, 2008;
WLOKA et al., 2008). Therefore, the task of adding actual type parameters
to raw declarations and instantiations, for example, can be troublesome.

50

4. Inference of wildcards: since aspects are specifically designed to deal with
crosscutting concerns, the use of wildcards in some declarations (such as, args(..)
pointcut primitive and a f ter() returning(..) advices) must be preferred over spe-
cific types because they allow the removal of more insecure downcasts.

5. An unsafe type system: As it was discussed in the previous chapter, both
the return of advices and the implicit proceed signature can give rise to type
errors at runtime. In addition, AspectJ’s typing rules severely restrict advice
definitions obligating the matching against type variables to happens against
their erasure.

Note that the generic code migration of AspectJ programs is a challenge be-
cause, besides difficulties related to Java, it must consider the above problems while
simultaneously rewriting existing declarations and instantiations. In face of that,
this chapter describes the use of the aspect-aware type constraint framework pre-
viously introduced in Chapter 3 along with the Fuhrer et al.’s (2005) algorithm to
address the instantiation problem in the AO context, enabling then, the conversion
of non-generic legacy code to add actual type parameters in both Java and AspectJ
languages.

The following sections are organized as follows. Section 4.1 shows some moti-
vational examples to explain each of the above problems. Section 4.2 presents an
overview of the Fuhrer et al.’s (2005) algorithm and what is necessary to adapt
in order to make it understand aspects and wildcards. Section 4.3 concludes the
chapter with a discussion about the proposed aspect-aware generic code migration.

4.1 Motivational Examples

Before describing the migration algorithm, a couple of examples are shown to
demonstrate some of the problems that must be taken into account during generic
migration of AspectJ programs.

4.1.1 Poor Inference

In the aspect-oriented programming (AOP) paradigm, it is common to use as-
pects to deal with crosscutting concerns. Usually, these aspects use inter-type and
parent declarations to introduce state or behavior to existing classes. Without an-
alyzing such constructs during the generification1, the inferred types may not be
as good as expected (i.e. may not remove as must unsafe downcast as expected)
and the code within aspects will not be improved to take advantage of a better
compile-time type checking.

Listing 4.1: Poor inference
1 class C{
2 void m1(L i s t l) { . . }
3 public stat ic void main (St r ing [] args) {
4 L i s t l = new ArrayList () ;
5 l . add (1) ;
6 new C() .m1(l) ;
7 }
8 }

1The term generification is used in this dissertation as the process related to convert a non-
generic code into a new generic version.

51

9 aspect A{
10 void C.m2() {
11 L i s t l = new ArrayList () ;
12 l . add (1 . 1) ;
13 m1(l) ;
14 }
15 }

Listing 4.1 shows a simple example that contains two method declarations: (i)
m1, which is declared into C at line 2; and (ii) m2, which is declared by aspect A on
behalf of C through an inter-type declaration at line 10. Note that the main method
is calling m1 (line 6) passing a List containing an integer. Similarly, the method m2
is also calling m1 (line 13) but passing a List containing a double.

If aspect A (lines 9-15) is not considered during the generic migration of this
code, the actual type parameter of the List declared in method m1 (line 2) should be
erroneously inferred as Integer. It may happens because the body of the inter-type
declaration (lines 11-13) is not analyzed, and therefore, only one client of the method
m1 (which is passing a list of integers) is found.

It is important to highlight that, even though type Integer be inferred, the code
will be considered type-correct. This occurs because no migration will be performed
within aspect A, and therefore, the code in the body of method m2 will be kept raw.
As it was seen in Section 3.1, unsafe relationships between raw and parameterized
types are allowed in both Java and AspectJ type systems2.

4.1.2 Ill-typing

Although there are some AspectJ code that may be converted to start using
generics by the cost of a poor inference, there are others that obligate AO con-
structs to be taken into account during the transformation. Without considering
such constructs, the program will not be type-correct when the migration is fin-
ished. These cases are directly related to overriding and invariant subtyping. As an
example of this problem, consider Listing 4.2.

Listing 4.2: Ill-typing
1 class C1 { . . }
2 class C2 extends C1 {
3 void m(L i s t l) { . . }
4 public stat ic void main (St r ing [] args) {
5 L i s t l = new ArrayList () ;
6 l . add (1) ;
7 new C2() .m(l) ;
8 }
9 }

10 aspect A{
11 void C1 .m(L i s t l) { . . }
12 }

This listing shows the class C2 extending C1 (line 2) and declaring the method m
(line 3). Moreover, the aspect A is declaring another method, also named as m, on
behalf of C1 through an inter-type declaration (line 11). After this aspect be woven
into C1, the method m declared in C2 will be overriding the method m implicitly
declared in C1.

2When the compiler finds an unsafe construct it only warns the programmer saying that the
statement is not type-safe.

52

It is important to say that all overriding relationships – including those defined
by aspects – must be considered during a generic migration, otherwise the refactored
version of the code will be ill-typed. In other words, without considering the inter-
type declaration defined at line 11 there is no method overriding in Listing 4.2,
and therefore, the migration will not take into account this important relationship.
Thus, a tool (or a developer) may infer Integer as the actual type parameter for the
List declared at line 3 because there is a call to method m passing a list of integers
(line 7). It is important to note that such inference causes a type error because it
breaks the notion of sub-signature required in overriding relationships (see Definition
3.1.1).

4.1.3 Pointcut’s Fragility

Pointcut is a complex mechanism that, in general, is hard to write and maintain
(YE; VOLDER, 2008; WLOKA et al., 2008). One reason for this assertion is that
pointcuts may match elements across the entire base code, and therefore, reasoning
about pointcut’s correctness requires a global understanding of the internal structure
of the software at a level of detail that is hard to obtain and difficult to remember.
Another reason is that the AspectJ’s pointcut language allows complex expression
constructions and its semantics has several non-intuitive subtleties (YE; VOLDER,
2008; RUBBO et al., 2008).

During code transformation, pointcut’s matching can be affected since any non-
local change may modify the set of joinpoint being matched. This issue is widely
discussed in the AO refactoring literature (MONTEIRO; FERNANDES, 2005, 2006;
KOPPEN; STÖRZER, 2004; HANNEMANN et al., 2003; WLOKA et al., 2008) and,
frequently, it is referred as the fragile pointcut problem. The generification is not
an exception, hence the task of adding actual type parameters to aspect-oriented
programs can be troublesome.

Listing 4.3: Pointcut’s fragility
1 c l a s s C{
2 void m1(L i s t l) { . . }
3 void m2(L i s t l) { . . }
4 }
5 aspect A{
6 before (L i s t l) : execution (void C . ∗ (. .))
7 && args (l) { . . }
8 }

Listing 4.3 shows an example of the pointcut’s fragility. In this example, the
advice declared at line 6 is matching both methods m1 and m2 (lines 2 and 3, re-
spectively). The task of adding a type parameter for the raw List declared in any
of these methods must consider the type declared in the args construction. Other-
wise, the semantics of the program can be modified without warnings. This can
happens because that advice may stop matching one of the methods. Note that,
after the generification all advices must be applying to exactly the same joinpoints
they applied to before the refactoring had started.

4.1.4 Inference of Wildcards

Since wildcards provide a variance for the invariant Java subtyping – accepting
a set of types instead of only a unique type –, the inference of wildcards in some
declarations (such as, args(..) pointcut primitives and a f ter() returning(..) advices) is

53

recommended to improve the type safety of aspect-oriented programs. This is based
on the assumption that a unique pointcut can match many different joinpoints.
Then, in these cases, the use of a place holder which allows a set of types is usually
a better choice than a specific type.

Listing 4.4: Inference of wildcards
1 class C{
2 void m1(L i s t l) { . . }
3 void m2(L i s t l) { . . }
4
5 public stat ic void main (St r ing args []) {
6 L i s t l 1 = new ArrayList () ;
7 l 1 . add (1) ;
8 new C() .m1(l 1) ;
9

10 L i s t l 2 = new ArrayList () ;
11 l 2 . add (1 . 1) ;
12 new C() .m2(l 2) ;
13 }
14 }
15 aspect A{
16 before () : execution (void C.m∗ (. .))
17 && args (L i s t) { . . }
18 }

In the above listing there are two method calls: the former is calling m1 passing a
list of integers (line 8) and the latter is calling m2 passing a list of doubles (line 12).
Moreover, it declares an advice (line 16) that will be triggered by the execution of
any method declared in C whose name starts with m – in this example, methods m1
and m2. As it was seen in the previous section, the types inferred for methods being
advised may affect the type chosen for the args pointcut primitive. Therefore, the
args construct must be constrained with the whole collection of matched joinpoints.
This implies that, if List⟨Integer⟩ were inferred for m1 and List⟨Double⟩ were inferred for
m2, the best choice for args, in this example, would be List⟨? extends Number⟩.

Note that the wildcard inference assures that the type declared in each site are
as tight as possible, in the sense that they are as low in the hierarchy as the type
rules allow. If a non-wildcard strategy were chosen3, the type inferred for the args
primitive should be List⟨Number⟩. Knowing that the Java subtyping is invariant, this
inference would obligate the List parameter of both methods m1 and m2 to also be
declared as List⟨Number⟩. It is important to highlight that this invariant solution is
quite poor because few insecure downcasts can be removed when more than one
joinpoint is matched by a given advice.

4.1.5 Unsafe Type System

Unfortunately the AspectJ language does not have a safe type system (see Section
3.2.4). This means that current type rules are not able to ensure the type-correctness
of a program when proceed calls or around advices matching against type variables
are used.

Listing 4.5: Unsafe type system
1 class C<T extends Number> {
2 Lis t<T> m(List<T> l) { . . . }
3 }

3It is important to say that the main foundation of this dissertation (FUHRER et al., 2005)
does not infer wildcards.

54

4 aspect A{
5 L i s t around () : execution (L i s t m(. .)) {
6 L i s t l = proceed () ;
7 l . add (1) ;
8 return l ;
9 }

10 }
11 class Main {
12 public stat ic void main (St r ing args []) {
13 L i s t l 1 = new ArrayList () ;
14 l 1 . add (1 . 1) ;
15 L i s t l 2 = new C() .m(l 1) ;
16 for (I t e r a t o r i t e r=l 2 . i t e r a t o r () ; i t e r . hasNext () ;) {
17 Double d = (Double) i t e r . next () ;
18 . . .
19 }
20 }
21 }

Listing 4.5 shows an example of the around advice issue, in which C is a generic
class declaring a type variable T . This type variable is being used by method m
in both parameter and return (line 2). When m is executed, the around advice
declared at line 5 will be triggered, and then, an integer will be added to the end of
the returning list.

Note that, in the main method, a list of doubles is being passed as an argument
to m and the same type is expected to return (line 15). However, since the advice
adds to the returning list an integer value, this code will raise a runtime exception
when line 17 is reached.

Further, in Section 4.3.2, it will be shown that even though AspectJ considers
the generic version of Listing 4.5 type-correct, it is still an unsafe construction that
will cause a type conversion error at runtime. This happens because, in the current
version of AspectJ (version 1.6.3) there is no way to check if around advices matching
against type variables are type-correct.

4.2 The Algorithm

There are several proposals (DONOVAN et al., 2004; FUHRER et al., 2005;
DINCKLAGE; DIWAN, 2004; TIP et al., 2004; CRACIUN et al., 2009) for mi-
grating clients of generic classes to inform actual type parameters. Since these
approaches focus on Java programs, they are not able to ensure that the migration
will be successful in the presence of aspects. Therefore, this section proposes some
modifications to Fuhrer et al.’s (2005) algorithm4 in order to enable the conversion
of non-generic legacy code to add actual type parameters in both Java and AspectJ
programs.

The sequence diagram shown in Figure 4.1 presents the general idea of the
Fuhrer et al.’s (2005) solution. When a developer (the User in the diagram)
decides to perform a generic migration in his code, the method re f actor of class
In f erTypeArgumentsRe f actoring is called. This method abstracts the complexity be-
hind the inference algorithm by receiving the compilation units5 (CUs) selected to
be refactored and by returning the new generic version of these resources. Other

4Fuhrer et al.’s (2005) work was chosen as the basis for this dissertation because it is the most
practical solution in the sense that it uses an efficient algorithm and is implemented as a refactoring
in Eclipse (www.eclipse.org).

5A compilation unit is the source code of a class or an aspect.

55

Figure 4.1: Algorithm overview

classes depicted in the diagram (i.e. AST Parser, ConstraintGeneration, ConstraintSolver and
CompilationUnitRewriter) will be further discussed in next sections along with more de-
tails about the algorithm. The main idea of this figure is to show that the algorithm
is divided in the following three phases:

1. Generation of Constraints: this very first phase is responsible for creating type
constraints for each program construct;

2. Constraints Solving : is responsible for resolving all type constraints in order
to determine: (i) a type for each declaration/instantiation and; (ii) what casts
are redundant;

3. Code Rewrite: is responsible for rewriting the program’s source code. It uses
the information resulting from the previous phase to add type parameters to
generic declarations and to remove redundant casts.

Each of these phases are detailed in the next sections. The main idea is to provide
an overall understanding of each part of the algorithm and a discussion about what
is necessary to modify in the original solution to make it start considering the use
of aspects and wildcards. For that, Section 4.2.1 describes how constraints are
generated. Section 4.2.2 presents how constraints generated in the first phase are
resolved and Section 4.2.3 shows how the code is rewritten.

4.2.1 Generation of Constraints

The first part of the algorithm is the one responsible for generating type con-
straints for each program construct. These constraints express relationships between
the types of expressions and declarations. In other words, these constraints make

56

a similar work that a compiler does to check if the program is type-correct. Figure
4.2 depicts, in a sequence diagram, the main steps of this phase.

Figure 4.2: Algorithm overview - Phase 1

First of all, in step 1, the compilation units selected by the user to be the target
of the refactoring are retrieved. Second, a TCModel is created to store information
about type constraints, constraint variables and CUs. In the third step, the class
ConstraintGeneration is instantiated. This class implements the Visitor design pattern
(GAMMA et al., 1995) and defines a method for each program construct (such as
assignment, method declaration, field access, etc) that is specialized to generate
constraints for that piece of code. The fourth and last step creates an AST per CU.
In this step, every node of the AST is visited and the corresponding method defined
in ConstraintGeneration object is executed. Thus, type constraints are generated and
stored into the TCModel object, which is the output of this phase.

The main difference between the original solution and the one proposed in this
work is centered on the ConstraintGeneration class. While the original solution uses
the rules presented in (FUHRER et al., 2005), the AO version must implement the
constraint generation rules discussed in Chapter 3. Beyond that, the parse used to
create an AST for each compilation unity must also be improved to support aspect
modules.

4.2.2 Constraints Solving

Type constraints created in the first phase are iterated until a set of legal types
for each constraint variable is computed. Figure 4.3 depicts a sequence diagram
containing the overall idea of this phase.

Initially, in step 1, an object of the type ConstraintSolver is created. This object
retrieves from the TCModel a collection with all constraint variables which comprise
the type constraints generated in the previous phase.

In step 2, the method solveConstraints is called. First, an initial type estimate is
associated with each constraint variable (step 2.1), which may be one of the following:
(i) a singleton set containing a specific type (for type declaration, constants, literals

57

Figure 4.3: Algorithm overview - Phase 2

and constructors) or (ii) the type universe (in all other cases). Second, in step 2.2,
the iterative phase is started with the execution of the method runSolver. In this
step, a work-list is created with the constraint variables whose initial estimation
has been recently associated. In each iteration, a constraint variable α1 is removed
from the work-list, and all type constraints that refer to α1 are examined. For each
type constraint t ≡ α1 ≤ α2, the estimates associated with α1 and α2 are updated
by removing any element that would violate t. If at least one element is removed
(meaning that estimation has changed), all constraint variables related to α1 and α2

are reentered in the work-list in order to propagate the modified estimation.
Since the type constraint generation strategy is based on small steps (see Sec-

tion 3.2) and estimations are finite sets per constraint variable, algebraic operations
such as intersection can be performed directly during the inspection of a given type
constraint. Take a look at Figure 4.4 as a simple example.

Figure 4.4: Intersection of constraint variable estimates

In this figure the type constraint [1]≤ E(List) is being examined. Since the initial

58

estimation for [1] is Integer and for E(List) is universe, the new estimation for E(List)
is: supertypes(Integer)∩ subtypes(universe) ≡ supertypes(Integer). Note that, because of
the subtype relationship (≤) of the constraint, the intersection happens between
supertypes of Integer and the subtypes of universe. If the relation were equals (=), the
new estimation for E(List) would be: Integer∩universe ≡ Integer.

According to Fuhrer et al. (2005), estimates monotonically decrease in size as
constraint solution progresses, therefore termination is guaranteed – since Chapter
3 only extends the original proposal to consider the use of aspects constructs, termi-
nation is also guaranteed for aspect-aware migration. The result of this process is a
set of legal types for each constraint variable. Since there is a need to be a singleton
type, one must be chosen. It is accomplished by the method chooseTypes in step 2.4
of Figure 4.3. Note that this method sets into the CodeU pdate object the type chosen
for each constraint variable related to a generic class (step 2.4.1).

The optimization of this step is to select a type that maximizes the number of
casts removed. As a simple approximation to this criterion, the algorithm selects an
arbitrary most specific type from the current estimation. Even though this strategy
is overly restrictive (a less specific type may suffice to remove the maximum number
of casts), and potentially sub-optimal, the approach appears to be quite effective in
practice (DONOVAN et al., 2004; FUHRER et al., 2005; DINCKLAGE; DIWAN,
2004).

Since this dissertation generates constraints for wildcards and the use of wild-
cards usually allows the removal of more insecure downcasts (when compared with
a specific type), the chooseTypes method must be modified to give preference to wild-
cards over classes and interfaces. For example: ? extends Number precedes Number,
which precedes ? extends Ob ject, which precedes Ob ject.

Similarly to step 2.4, the method f indCastsToRemove (step 2.5) is the responsible
to check – in each constraint variable that represents a cast – if the chosen type for
the expression being casted can be assigned directly to the target type. If so, the
cast is redundant, and then, it is marked to be removed (step 2.5.1).

4.2.3 Code Rewrite

Constraint solving phase yields a unique type for each constraint variable. Then,
allocation and declaration sites that refer to generic classes must be rewritten if
at least one of their inferred actual type parameters is more specific than existing
declarations. Figure 4.5 overviews the main steps of this third and last phase of the
algorithm.

For each CU, the code marked to be refactored in the CodeU pdate object is rewrit-
ten to add actual type parameters (step 2.1) and to remove insecure downcasts (step
2.2). Note that these casts can be safely removed because they become redundant
with the new type parameters recently added. To support this refactoring in AO
programs it is necessary to improve existing code rewriting framework to also work
with aspect modules.

4.3 Discussion

This section aims to discuss some subtleties and advantages related to the gener-
ification proposed in this chapter. It includes a discussion about the main design
decisions, the migration of the motivational examples and a parallel between the

59

Figure 4.5: Algorithm overview - Phase 3

current state-of-the-art.

4.3.1 Design Decisions

There are some important design decisions that deserve a little of attention and
therefore are described below.

4.3.1.1 Inference of Wildcards

First of all, it is worth to say that up to the time this dissertation was written,
only two works (KIEŻUN et al., 2007; CRACIUN et al., 2009) claim to be able to
infer wildcards.

Although Kieżun et al. (2007) allege being able to infer these types, they do
not show the type constraint rules for such inference. Moreover, they do not make
clear what kind of wildcard they are able to infer and if the inference of such types
occurs only in the new parameterization process or if they have improved the existing
instantiation solution they have built their work on.

In contrast, Craciun et al.’s (2009) study is focused on the variance of GJ type
system. In other words, their proposal aims to provide a more flexible solution than
existing works by inferring mainly wildcards for generic types. The solution uses an
interval-based inference approach to infer wildcards for method’s parameters based
on how they are used into the method’s body.

The generic migration presented in this dissertation is built on the same foun-
dation of Kieżun et al.’s proposal. However, unlike their work, which does not show
details about wildcard inference, the constraint generation rules presented in Chap-
ter 3 explicitly show, in each rule, if the program construct being analyzed can
declare or not a wildcard. This strategy makes clear where the type system allows
the use of wildcards, what kind of wildcards are inferred and how these types are
built.

60

4.3.1.2 Inference in Subclasses of Generic Classes

The Generic Java type system allows library designers to freely generify meth-
ods and classes independently of clients that define subclasses or subinterfaces of the
library (GOSLING et al., 2005). Moreover, subclasses of generic classes that spec-
ify actual type parameters in overriding methods must instantiate the superclass
accordingly (passing the appropriate type parameters) to become well-typed.

Considering these details, all type constraint generated by rules R15-R20 (see
Section 3.2.3) must be discarded if no constraint that adds actual type parameters
for the superclass is found.

Note that even though Fuhrer et al. (2005) and Kieżun et al. (2007) claim to
be able to infer types in such constructs, they do not show the type constraint rules
neither mention this important overriding restriction – which when not respected,
causes the ill-typing of the hierarchy.

4.3.1.3 Signature Matching Pattern of Pointcuts

The proposed solution does not contemplate the refactoring of pointcut’s signa-
ture matching pattern because it does not improve neither the type safety nor the
source code readability (no casts can be removed). Moreover, since AspectJ also
uses raw types to ensure backward compatibility, the option for not modifying the
pointcut’s signature also ensures that the advice matching remains unchanged after
the generic migration – even when actual type parameters are added to joinpoints.

4.3.1.4 Behavior Preservation

The translation from non-generic to generic code must preserve the dynamic
behavior of the program in all contexts. In particular, it must not throw different
exceptions or differ in other observable respects. It must interoperate with existing
modules in exactly the same way that the original code did. Therefore, the following
three strategies are used in this work to ensure that the behavior will be preserved:

1. Similarly to other works (DONOVAN; ERNST, 2003; KIEŻUN et al., 2005),
the strict notion of preserving behavior based on preserving program’s erasure
is applied. In other words, the compiled bytecode remains unchanged after
the refactoring is finalized.

Figure 4.6 shows, on the left hand side, both generic and non-generic versions
of a given fragment of code and, on the right side, the bytecode6 that represents
the compiled version of these fragments. What is important to highlight in
this figure is that both versions of the code when compiled generate the same
bytecode. It happens because the actual type parameters (on the generic ver-
sion) are the only differences between the fragments. Hence, since the type
erasure process erase all actual type parameters, the resulting compiled ver-
sion remains unchanged. Therefore, for pure Java code, preserving program’s
erasure in a generic migration is enough for preserving program’s behavior;

2. When aspects are considered, the program’s behavior can be affected if
matched joinpoints receive new actual type parameters – the fragile point-
cut problem. Since this work does not modify signature matching pattern

6Note that a more human readable syntax was used for the bytecode to simplify the reader
comprehension.

61

Figure 4.6: Bytecode remains unchanged.

(see Section 4.3.1.3), the backward compatibility is guaranteed by the raw
types usage. This means that the behavior is preserved because the advice
will be matching exactly the same joinpoints that it was matching before the
refactoring started;

3. Note that args(..) pointcut’s primitive and a f ter() returning(..) advices can also
change the behavior of the program if the types inferred for these constructs do
not consider the type of the whole collection of joinpoints being matched. Since
the constraint generation phase takes into account this situation, only valid
types are inferred for these constructs. If it is not possible to find a type which
is valid for all joinpoints being matched (i.e. the type of the whole collection
of joinpoints is completely unconstrained), the algorithm leaves these generic
declarations raw.

4.3.1.5 Generic Aspects

AspectJ allows the definition of type parameters in abstract aspects. On the
other hand, it does not allow the weaving of such constructs; only concrete aspects
with all of their type parameters fully defined are weaved. In other words, once
an aspect is parameterized all instantiations must be provided. Since this is a
parameterization problem and since parameterization is out of the scope of this
work, this dissertation does not contemplate type parameters declared in abstract
aspects.

4.3.2 Migrating Motivational Examples

Due to some AspectJ’s compiler tooling limitations7, the product of this disser-
tation does not include an implementation of the aspect-aware generic migration.
Therefore, it was not possible to apply this approach to some real case study. To fill
this gap, this section presents the migration of each motivational example discussed
previously. Note that only a short discussion and the final result of the refactoring

7See the issue about AspectJ’s AST support https://bugs.eclipse.org/bugs/show bug.cgi
?id=146528.

62

is presented. Then, the reader is encouraged to take a look at Appendix A for the
detailed application of the algorithm steps to each example.

For the remainder of this section, the emphasized code represents actual type
parameters added and casts (if it is the case) removed by the generic migration.
Note that there is a number following each type and variable. This number was
used to disambiguate each declaration, so that it is possible to differentiate each type
constraint created during the constraint generation phase depicted in Appendix A.

Poor Inference

Since a poor inference is not desired in the generic migration of AspectJ pro-
grams, the framework of type constraint presented in Chapter 3 was designed in
such a way that parent declarations and inter-type declarations are considered
during the constraint generation phase. Therefore, applying the algorithm
previously discussed in this chapter to example of Listing 4.1, the resulting
code is the following:

1 class C{

2 void m1(List1<? extends Number> l2){ .. }

3 public static void main(String[] args) {

4 List3<Integer> l4 = new ArrayList5<Integer>();
5 l4.add(1);
6 new C().m1(l4);
7 }

8 }

9 aspect A{

10 void C.m2(){

11 List6<Double> l7 = new ArrayList8<Double>();
12 l7.add(1.1);
13 m1(l7);
14 }

15 }

In this case, the algorithm has considered two calls to method m1: (i) the
virtual call new C().m1(l4) at line 6 and; (ii) the local call m1(l7) at line 13. Since
one call is passing a list of integers and another is passing a list of doubles, the
algorithm rewrote the declaration of method m1 to accept a list of any type
that extends Number.

Note that the problem of poor inference is resolved because it improves (with
generic type annotations) the code inside of aspect A and accommodates the
local method call from the inter-type declaration (line 13). For more details
about the constraint generation and the application of the algorithm over this
example, take a look on Appendix A.1.

Ill-typing

As it was discussed previously, all overriding relationships – including those
defined by aspects – must be considered during a generic migration, otherwise
the refactored version of the code will be ill-typed.

1 class C1 { .. }

2 class C2 extends C1 {

3 void m(List1<Integer> l2){..}
4 public static void main(String[] args) {

5 List3<Integer> l4 = new ArrayList5<Integer>();
6 l4.add(1);
7 new C2().m1(l4);
8 }

63

9 }

10 aspect A{

11 void C1.m(List6<Integer> l7){..}
12 }

The generic migration proposed in this dissertation is capable to identify over-
riding relationships no matter if it is based on an aspect construction or not.
That is the reason why the above code (i.e. the refactored version of Listing
4.2) contains List⟨Integer⟩ as the parameter declaration of the implicitly overrid-
den method m (lines 3 and 11).

Note that the hierarchy where C2 extends C1 is only well-typed when the method
declared at line 3 and the method declared at line 11 have exactly the same
formal parameter. Refer to Appendix A.2 for more details about the transfor-
mation from Listing 4.2 to the above code.

Pointcut’s Fragility and Inference of Wildcards

An advice may execute before, after or around many different joinpoints. In
these cases, the type of the advice is not directly connected with the type of
a single joinpoint, but with the whole collection of joinpoints. To generate
type constraints in such situations, the type for the entire collection must be
defined, and then, linked to the type of the advice. Normally, the type of
the collection (the pointcut) will be highly polymorphic, and the type of each
element (joinpoint) will be less polymorphic.

Note that, during the code transformation, if the type of the entire collection
of joinpoints is not linked to the type of the advice, the matching may change
without warnings. Therefore, the task of adding actual type parameters to
aspect-oriented programs must check all advices to verify if they are matching
the piece of code being refactored.

1 class C{

2 void m1(List1<Integer> l2){..}
3 void m2(List3<Double> l4){..}
4

5 public static void main(String args[]){

6 List5<Integer> l6 = new ArrayList7<Integer>();
7 l6.add(1);
8 new C().m1(l6);
9

10 List8<Double> l29 = new ArrayList10<Double>();

11 l29.add(1.1);

12 new C().m2(l29);

13 }

14 }

15 aspect A{

16 before(List11<? extends Number> l12) : execution(void C.m*(..))

17 && args(l12){..}

18 }

Knowing that GA subtyping is invariant and that the variance of type parame-
ters is provided only by wildcards, the best choice for the args(..) construct (line
16) in the above refactored version of Listing 4.1.4 is List11<? extends Number >
. Note that, in this example, the wildcard construction represents the type of
the entire collection of joinpoints. In other words, this type keeps the advice
matching both methods m1 and m2 even after class C be generificated. For
more details about such inference, take a look on Appendix A.4.

64

Unsafe Type System

Unfortunately the AspectJ language does not have a safe type system (see
Section 3.2.4). This means that current type rules are not able to ensure the
type-correctness of a program when it uses around advices and/or proceed
calls.

The solution proposed in this dissertation takes into account those cases, and
therefore, provides type parameter annotations according to AspectJ Devel-
opers Notebook (2005). Take the example of the generic version of Listing 4.5
presented below.

1 class C<T extends Number> {

2 List1<T> m(List2<T> l3) { return l3; }

3 }

4 aspect A{

5 List4<Number> around(): execution(List m(..)) {

6 List5<Number> l6 = proceed();

7 l6.add(1);
8 return l6;
9 }

10 }

11 class Main {

12 public static void main(String args[]){

13 List7<Double> l8 = new ArrayList9<Double>();
14 l8.add(1.1);
15 List10<Double> l211 = new C<Double>().m(l8);
16 for (Iterator<Double> iter=l211.iterator(); iter.hasNext();){

17 Double d = (Double)iter.next();

18 ...

19 }

20 }

21 }

Even though AspectJ considers this code type-correct, the return of the advice
declared at line 5 (i.e. List4⟨Number⟩) is not assignable to the return of method m
(i.e. List1⟨T ⟩) because T may be Integer, Double or any other subtype of Number at
runtime. It is important to say that, in the current version of AspectJ (version
1.6.3), there is no way to make the above piece of code type-safe because the
matching of advices always occurs against type variables erasure. Therefore,
it is up to the programmer to avoid this kind of construction.

Take a look on Appendix A.5 for more details about how constraints are gen-
erated for unsafe constructions.

Others

Besides wildcards, there are other OO constructs that were not resolved in the
main foundation of this work (FUHRER et al., 2005). These cases are mainly
related to: raw types used in signature of methods declared into generic classes;
calls for methods defined in the super generic class; and subclasses of generic
classes with the superclass being instantiated accordingly (GOSLING et al.,
2005).

The piece of code presented below shows the generic class C2 extending the
generic class C1. Note that, even though method m2 (line 5) is declared into a
generic class, its signature defines a raw List3. Moreover, C2 is not passing the
actual type parameter to its super generic class C1.

65

1 class C1<T extends Number>{

2 void m1(List1<T> l2){..}
3 }

4 class C2<T> extends C1{

5 void m2(List3 l4){
6 m1(l4);
7 }

8 void m3(List5<T> l6) {..}

9 }

10 class Main {

11 public static void main(String args[]){

12 List7 l8 = new ArrayList9();
13 l8.add(1);
14 new C2().m2(l8);
15 }

16 }

Although these problems seem to be caused by an incomplete parameterization
– which is out of the scope of this work –, it is quite common in practice. Usu-
ally, method declarations without actual type parameter into generic classes
are helper constructions and, super types not being instantiated accordingly
normally occurs because the superclass was generificated without considering
existing subclasses.

Therefore, the generic migration of class C2 must take into account at least
the following three details: (i) even though m2 was declared into a generic
class, actual type parameters must be inferred for this method; (ii) the super
method call at line 6 must also be considered; and (iii) the superclass C1 must
be instantiated passing the appropriate type parameter.

1 class C1<T extends Number>{

2 void m1(List1<T> l2){..}
3 }

4 class C2<T> extends C1<Integer>{

5 void m2(List3<Integer> l4){
6 m1(l4);
7 }

8 void m3(List5<T> l6) {..}

9 }

10 class Main {

11 public static void main(String args[]){

12 List7<Integer> l8 = new ArrayList9<Integer>();
13 l8.add(1);
14 new C2().m2(l8);
15 }

16 }

The solution proposed in this dissertation understand these details and gen-
erate type constraints accordingly. That is why the above refactored version
of the code contains actual type annotations in all declarations which refer
to generic classes. Since a list of integers is being passed to m2 (line 14), the
algorithm infers List3<Integer> to m2’s parameter (line 5). Since m2 is calling
m1 declared in C1, the algorithm infers C1< Integer > to the superclass of C2 (line
4).

4.3.3 Parallel between Generic Migration Solutions

There exists in the literature of object-oriented refactoring many approaches to
transform Java classes to its generic version (where the class definition specifies
formal type parameters). This transformation is known as parametrization problem.

66

Also, some researches aim to solve the instantiation problem, which intent to rewrite
all clients of generic classes to inform actual type parameters.

Duggan (1999) proposed a technique to translate monomorphic classes to para-
metric ones by inferring type arguments information (the parametrization problem).
Although this is the first work in this area, Duggan’s analysis leaves classes with
excess of type parameters and its solution is not applicable to Java because the type
system used differs from the current GJ (GOSLING et al., 2005) in several ways.

Donovan et al. (2004) proposed an algorithm based on type constraint rules to
rewrite clients of generic classes to inform actual type parameters (the instantiation
problem). They tried to ensure that the inferred types are as specific as possible, in
order to minimize the number of insecure downcasts needed.

In parallel, Dincklage and Diwan (2004) proposed a new algorithm which in-
cluded the parametrization and the instantiation process. Unfortunately, their solu-
tion was rejected by (FUHRER et al., 2005), since it does not preserve the program’s
behavior in some cases.

Looking at the problem from an efficient and accurate perspective, Tip et al.
(2003) presented a study for migrating clients of the Java collection framework.
Their solution mainly differs from (DONOVAN et al., 2004) in the sense that the
algorithm is more scalable. As a natural evolution, Fuhrer et al. (2005) extended
Tip et al.’s work to infer types for any generic construction and Kieżun et al. (2007)
extended Fuhrer et al.’s work to include the parametrization of non-generic classes.

In the most recent study of this area, Craciun et al. (2009) use an interval-based
inference approach focusing mainly on the inference of wildcards. According to the
authors, the use of wildcards instead of specific types gives a more flexible solution
than previous works which conservatively assume invariant subtyping.

Even though the idea of extending existing approaches to perform this kind of
migration in the AO context has been previously suggested (HANNEMANN, 2006),
it seems that a concrete proposal has not been done. Therefore, this dissertation have
used the type constraint generation rules presented in Chapter 3 for extending Furher
et al.’s (2005) proposal to consider the use of aspects to encapsulate crosscutting
concerns and to infer wildcards when applicable.

Table 4.1: Parallel between Generic Migration Solutions
Work AspectJ Parametrization Instantiation Infer Tool

problem problem wildcards? support

(DUGGAN, 1999) X

(DONOVAN et al., 2004) X X

(DINCKLAGE; DIWAN, 2004) X X X

(TIP et al., 2004) X X

(FUHRER et al., 2005) X X

(KIEŻUN et al., 2007) X X X X

(CRACIUN et al., 2009) X X X

Proposed approach X X X

Finally, Table 4.1 presents a comparison of the current state-of-the-art related
to generic code migration and the solution proposed in this chapter. Note that all
these works aim to refactor the code to use generics in order to improve readability
and the capability to check types at compile-time.

67

5 CONCLUSION

The parametric polymorphism in both Java and AspectJ improves the type safety
and the expressiveness of the source code. However, to legacy non-generic code take
advantage of this pervasive feature, it must be migrated to explicitly supply actual
type parameters in both declarations and instantiations of generic classes. Such
problem is known in the generic migration literature as the instantiation problem.

Since AOP uses separate modules to deal with crosscutting concerns and since the
aspect weaving takes place just after the type erasure process, the task related to add
actual type parameter to AspectJ programs is somewhat complex and error prone.
Subtleties involving both the absence of type information, inter-type declarations,
parent declarations, advices and pointcut expressions must be taken into account
since they may affect the result of the refactoring. Therefore, tools to help this
migration are essential to minimize the transformation effort and to prevent the
introduction of new errors.

Even though the product of this dissertation does not include an implementation
of an aspect-aware generic code migration, it provides the main steps to automatize
this process. This study includes, in Chapter 3, a framework of type constraints for
the polymorphic version of AspectJ and discusses, in Chapter 4, how this framework
can be used with an existing algorithm to address the instantiation problem in both
Java and AspectJ languages.

Section 4.1 presents several examples which claim for migration to take advantage
of generic types. These examples, beyond illustrating the usefulness of the aspect-
aware generic migration algorithm, also enabled us to verify that this proposal is
viable and perfectly feasible in terms of implementation. In Section 4.3.2, these ex-
amples were refactored to include type parameter annotations and the details of this
refactoring are shown in Appendix A. In order to ensure behavior preservation, the
program’s erasure was conserved. Moreover, the whole collection of matched join-
points was faced as a unique type per advice and the pointcut’s signature matching
pattern was not modified.

This proposal distinguishes itself from its basis (FUHRER et al., 2005) in several
important ways: it subsumes existing object-oriented support by providing actual
type parameters for some constructs that were not considered in the original pro-
posal; it infers wildcard type parameters when applicable; and considers the use of
aspects to encapsulate crosscutting concerns.

Another relevant contribution is the aspect-aware type constraint framework
itself. In an effort to show a practical example, this work presented the main steps
to integrate this framework with an automated generic migration. However, other
works may also get benefits from this proposal since type constraints are being

68

used to solve many different problems in the literature. Some examples are: type
inference; type checking; refactorings that use pre- and post-conditions to guarantee
program’s behavior preservation; analysis of the Java bytecode; etc.

It is important to point out that during the conception of this dissertation, no
other type constraint framework for the AspectJ language was found. Therefore,
the presented solution seems to be the first to propose a set of inference rules for
generating type constraints for AspectJ programs. It is also outstanding to note
that, since the Generic AspectJ design is still open – there are some unresolved
issues related to the matching against generic types –, this work contemplates only
the current production ready implementation of AspectJ (version 1.6.3).

With aspect-oriented programming emerging as a powerful tool in the software
development (JAGADEESAN et al., 2006), tools to help refactoring in this context
are indispensable. Therefore, without an automated aspect-aware generic migration,
most of the non-generic Java code which has at least one combined aspect is destined
to “subsist” with unsafe types, unless, of course, a great effort is put into a manual
migration.

5.1 Future Work

There are several opportunities for research in the areas covered by this disser-
tation. The following are possible continuations of this work:

Support for all AspectJ Constructs
The type constraint framework introduced in this dissertation handles the full

Java language and the most important constructions of AspectJ. However, it would
be interesting to complete this framework to fully support AspectJ by including
designators not covered in this work (i.e. this(..), target(..), c f low(..) and etc).

Tool Support
Future work can focus on improving existing Eclipse’s “Infer Generic Type Argu-

ments” refactoring (KIEŻUN et al., 2005) to consider the use of aspect abstractions
and wildcards. In that way, the aspect-aware generic migration can be applied in
real world projects. This would help assess the advantages and disadvantages of the
proposed approach and how it scales in large projects.

Improve other Refactorings to Support AspectJ Code
Future work may also focus on using the proposed aspect-aware generic type

constraint framework to extend other refactorings to start considering aspects. Some
options are: generalization (e.g., “Extract Interface” for re-routing the access to a
class via a newly created interface and “Pull Up Members” for moving members
into a superclass); parameterization of non-generic classes; and the customization of
container classes.

Formal Proofs of Soundness and Completeness
It would be interesting if a future work provided proofs of soundness and com-

pleteness of the inference solution.

69

APPENDIX A

This appendix contains the details of the application of the aspect-aware generic
code migration in the examples presented in Section 4.1. Each of the following
sections includes: (i) the program to be refactored; (ii) the generation of all type
constraints relative to the original program; (iii) the resolution of the most important
constraints; and (iv) the resultant code – the generalized version.

For the remainder of this section, the emphasized code represents actual type
parameters added and casts (if it is the case) removed by the migration. Note
that there is a number following each type and variable. This number was used to
differentiate each type constraint created during the constraint generation phase.

A.1 Poor Inference

Program to be Refactored

1 class C{

2 void m1(List1 l2){ .. }

3 public static void main(String[] args) {

4 List3 l4 = new ArrayList5();
5 l4.add(1);
6 new C().m1(l4);
7 }

8 }

9 aspect A{

10 void C.m2(){

11 List6 l7 = new ArrayList8();
12 l7.add(1.1);
13 m1(l7);
14 }

15 }

Phase 1 - Generation of Constraints

Line 2 - declaration: List1 l2
R1−→ RNonContextCgen([l2], List1, ∙)

rn12−→ [l2] = List1 ∧ E([l2]) = E(List1)

Line 4 - declaration: List3 l4
R1−→ RNonContextCgen([l4], List3, ∙)

rn12−→ [l4] = List3 ∧ E([l4]) = E(List3)

Line 4 - type of constructor call: new ArrayList5()
R12−→ RNonContextCgen([new ArrayList5()], ArrayList5, ∙)

rn1−→ [new ArrayList5()] = ArrayList5

Line 4 - assignment: l4 = new ArrayList5()
R4−→ NonContextCgen([new ArrayList5()], ≤, [l4], ∙)

70

−→NonContextCgen([new ArrayList5()], ≤, List3, ∙)
n12−→ [new ArrayList5()] ≤ List3 ∧

(E([new ArrayList5()]) = E(List3) ∨ E(List3) ∈ Wild(E([new ArrayList5()])))

Line 5 - virtual method call: l4.add(1)
R7−→ [l4] ≤ List ∨ [l4] ≤ Collection
R8−→ RContextCgen([l4.add(1)], boolean, l4, ∘)

rc1−→ [l4.add(1)] = boolean
R9−→ ContextCgen([1], ≤, E, l4, ∙)

c4−→ [1] ≤ E([l4])

Line 6 - type of constructor call: new C()
R12−→ RNonContextCgen([new C()], C, ∙)

rn1−→ [new C()] = C

Line 6 - virtual method call: new C().m1(l4)
R7−→ [new C()] ≤ C
R9−→ ContextCgen([l4], ≤, List1, new C(), ∙)

c12−→ [l4] ≤ List1 ∧ (E([l4]) = E(List1) ∨ E(List1) ∈ Wild(E([l4])))

Line 11 - declaration: List6 l7
R1−→ RNonContextCgen([l7], List6, ∙)

rn12−→ [l7] = List6 ∧ E([l7]) = E(List6)

Line 11 - type of constructor call: new ArrayList8()
R12−→ RNonContextCgen([new ArrayList8()], ArrayList8, ∙)

rn1−→ [new ArrayList8()] = ArrayList8

Line 11 - assignment: l7 = new ArrayList8()
R4−→ NonContextCgen([new ArrayList8()], ≤, [l7], ∙)
−→NonContextCgen([new ArrayList8()], ≤, List6, ∙)
n12−→ [new ArrayList8()] ≤ List6 ∧

(E([new ArrayList8()]) = E(List6) ∨ E(List6) ∈ Wild(E([new ArrayList8()])))

Line 12 - virtual method call: l7.add(1.1)
R7−→ [l7] ≤ List ∨ [l7] ≤ Collection
R8−→ RContextCgen([l7.add(1.1)], boolean, l7, ∘)

rc1−→ [l7.add(1.1)] = boolean
R9−→ ContextCgen([1.1], ≤, E, l7, ∙)

c4−→ [1.1] ≤ E([l7])

Line 13 - local method call: m1(l7)
R11−→ NonContextCgen([l7], ≤, List1, ∙)

n12−→ [l7] ≤ List1 ∧ (E([l7]) = E(List1) ∨ E(List1) ∈ Wild(E([l7])))

The summary of the constraints generated in this first phase of the algorithm is
presented in Table A.1.

Phase 2 - Constraints Solving

Important constraints

[1]≤E([l4])

[1.1]≤E([l7])

E([l4]) = E(List1) ∨ E(List1) ∈ Wild(E([l4]))

E([l7]) = E(List1) ∨ E(List1) ∈ Wild(E([l7]))

. . .

2.1 - Initializing type estimates

[1]≡ Integer

[1.1]≡ Double

71

Table A.1: Poor Inference - Final result of Phase 1
Code Type constraint(s) Rule(s)

List1 l2 [l2] = List1 ∧ E([l2]) = E(List1) R1

List3 l4 [l4] = List3 ∧ E([l4]) = E(List3) R1

new ArrayList5() [new ArrayList5()] = ArrayList5 R12

l4 = new ArrayList5() [new ArrayList5()]≤List3 ∧ R4

(E([new ArrayList5()]) = E(List3) ∨ E(List3) ∈ Wild(E([new ArrayList5()])))

l4.add(1) [l4]≤List ∨ [l4]≤Collection R7

[l4.add(1)] = boolean R8

[1]≤E([l4]) R9

new C() [new C()] = C R12

new C().m1(l4) [new C()]≤C R7

[l4]≤List1 ∧ (E([l4]) = E(List1) ∨ E(List1) ∈ Wild(E([l4]))) R9

List6 l7 [l7] = List6 ∧ E([l7]) = E(List6) R1

new ArrayList8() [new ArrayList8()] = ArrayList8 R12

l7 = new ArrayList8() [new ArrayList8()]≤List6 ∧ R4

(E([new ArrayList8()]) = E(List6) ∨ E(List6) ∈ Wild(E([new ArrayList8()])))

l7.add(1.1) [l7]≤List ∨ [l7]≤Collection R7

[l7.add(1.1)] = boolean R8

[1.1]≤E([l7]) R9

m1(l7) [l7]≤List1 ∧ (E([l7]) = E(List1) ∨ E(List1) ∈ Wild(E([l7]))) R11

E([l4])≡< universe >

E([l7])≡< universe >

List1 ≡ java.util.List

E(List1)≡< universe >

. . .

2.2 - Solving constraints

In the beginning of this phase all constraint variables are copied to a new
work-list. Then, in each iteration, a constraint variable is removed from the
work-list up until it be empty.

The below constraint resolution shows an example of one iteration where E([l4])

was removed from the work-list.

Evaluating constraint variable: E([l4])
Type constraint related to E([l4]): [1] ≤ E([l4])
Current estimation: [1] ≡ Integer

E([l4]) ≡ < universe >
Intersection between:

superTypes(Integer) AND subTypes(< universe >)
results in the following new estimation for E([l4]):

superTypes(Integer)
Type equivalence related to E([l4]): {E(List3), E(List1), . . .}

work− list + = {E(List3), E(List1), . . .}

Since the estimation of E([l4]) has changed, the whole set of type equivalence
must reenter in the work-list to be re-evaluated, so that, the new estimation
can be propagated.

The below constraint resolution represents another iteration and it is evaluat-
ing constraint variable E([l7]).

72

Evaluating constraint variable: E([l7])
Type constraint related to E([l7]): [1.1] ≤ E([l7])
Current estimation: [1.1] ≡ Double

E([l7]) ≡ < universe >
Intersection between:

superTypes(Double) AND subTypes(< universe >)
results in the following new estimation for E([l7]):

superTypes(Double)
Type Equivalence related to E([l7]): {E(List6), E(List1), . . .}

work− list + = {E(List6), E(List1), . . .}

Similarly to the first iteration, the estimation of E([l7]) has changed. There-
fore, the whole set of type equivalence must reenter in the work-list to be
re-evaluated.

. . .

2.3 - Choosing types

Since the final estimation for E([l4]) is superTypes(Integer), the single type chosen
is:

E([l4]) = Integer

Since the final estimation for E([l7]) is superTypes(Double), the single type chosen
is:

E([l7]) = Double

Since there exists the following constraints:

E([l4]) = E(List1) ∨ E(List1) ∈ Wild(E([l4])) and

E([l7]) = E(List1) ∨ E(List1) ∈ Wild(E([l7]))

the intersection between

Integer = E(List1) ∨ E(List1) ∈ Wild(Integer) and

Double = E(List1) ∨ E(List1) ∈ Wild(Double)

results in

E(List1) ∈ Wild(Number)

Therefore the single type chosen is:

E(List1) = ? extends Number

. . .

2.4 - Find casts to remove

There is no cast to be removed in this example.

Phase 3 - Code Rewrite

1 class C{

2 void m1(List1<? extends Number> l2){ .. }

3 public static void main(String[] args) {

4 List3<Integer> l4 = new ArrayList5<Integer>();
5 l4.add(1);
6 new C().m1(l4);
7 }

8 }

73

9 aspect A{

10 void C.m2(){

11 List6<Double> l7 = new ArrayList8<Double>();
12 l7.add(1.1);
13 m1(l7);
14 }

15 }

A.2 Ill-typing

Program to be Refactored

1 class C1 { .. }

2 class C2 extends C1 {

3 void m(List1 l2){..}
4 public static void main(String[] args) {

5 List3 l4 = new ArrayList5();
6 l4.add(1);
7 new C2().m1(l4);
8 }

9 }

10 aspect A{

11 void C1.m(List6 l7){..}
12 }

Phase 1 - Generation of Constraints

Line 3 - declaration: List1 l2
R1−→ RNonContextCgen([l2], List1, ∙)

rn12−→ [l2] = List1 ∧ E([l2]) = E(List1)

Line 5 - declaration: List3 l4
R1−→ RNonContextCgen([l4], List3, ∙)

rn12−→ [l4] = List3 ∧ E([l4]) = E(List3)

Line 5 - type of constructor call: new ArrayList5()
R12−→ RNonContextCgen([new ArrayList5()], ArrayList5, ∙)

rn1−→ [new ArrayList5()] = ArrayList5

Line 5 - assignment: l4 = new ArrayList5()
R4−→ NonContextCgen([new ArrayList5()], ≤, [l4], ∙)
−→NonContextCgen([new ArrayList5()], ≤, List3, ∙)
n12−→ [new ArrayList5()] ≤ List3 ∧

(E([new ArrayList5()]) = E(List3) ∨ E(List3) ∈ Wild(E([new ArrayList5()])))

Line 6 - virtual method call: l4.add(1)
R7−→ [l4] ≤ List ∨ [l4] ≤ Collection
R8−→ RContextCgen([l4.add(1)], boolean, l4, ∘)

rc1−→ [l4.add(1)] = boolean
R9−→ ContextCgen([1], ≤, E, l4, ∙)

c4−→ [1] ≤ E([l4])

Line 7 - type of constructor call: new C2()
R12−→ RNonContextCgen([new C2()], C2, ∙)

rn1−→ [new C2()] = C2

Line 7 - virtual method call: new C2().m1(l4)
R7−→ [new C2()] ≤ C2
R9−→ ContextCgen([l4], ≤, List1, new C2(), ∙)

c12−→ [l4] ≤ List1 ∧ (E([l4]) = E(List1) ∨ E(List1) ∈ Wild(E([l4])))

74

Line 11 - declaration: List6 l7
R1−→ RNonContextCgen([l7], List6, ∙)

rn12−→ [l7] = List6 ∧ E([l7]) = E(List6)

Line 3 and 11 - method overriding: C2.m(List1 l2) overrides C1.m(List6 l7)
R16−→ RContextCgen([List1], List6, C2, ∙)

rc13−→ [List1] = List6 ∧ E(List1) = E(List6)

The summary of the constraint generated in this first phase of the algorithm is
provided in Table A.2.

Table A.2: Ill-typing - Final result of Phase 1
Code Type constraint(s) Rule(s)

List1 l2 [l2] = List1 ∧ E([l2]) = E(List1) R1

List3 l4 [l4] = List3 ∧ E([l4]) = E(List3) R1

new ArrayList5() [new ArrayList5()] = ArrayList5 R12

l4 = new ArrayList5() [new ArrayList5()]≤List3 ∧ R4

(E([new ArrayList5()]) = E(List3) ∨ E(List3) ∈ Wild(E([new ArrayList5()])))

l4.add(1) [l4]≤List ∨ [l4]≤Collection R7

[l4.add(1)] = boolean R8

[1]≤E([l4]) R9

new C2() [new C2()] = C2 R12

new C2().m1(l4) [new C2()]≤C2 R7

[l4]≤List1 ∧ (E([l4]) = E(List1) ∨ E(List1) ∈ Wild(E([l4]))) R9

List6 l7 [l7] = List6 ∧ E([l7]) = E(List6) R1

C2.m(List1 l2) [List1] = List6 ∧ E(List1) = E(List6) R16

overrides

C1.m(List6 l7)

Phase 2 - Constraints Solving

Important constraints

[1]≤E([l4])

E([l4]) = E(List1) ∨ E(List1) ∈ Wild(E([l4]))

E(List1) = E(List6)

. . .

2.1 - Initializing type estimates

[1]≡ Integer

E([l4])≡< universe >

List1 ≡ java.util.List

E(List1)≡< universe >

List6 ≡ java.util.List

E(List6)≡< universe >

. . .

2.2 - Solving constraints

75

In the beginning of this phase all constraint variables are copied to a new
work-list. Then, in each iteration, a constraint variable is removed from the
work-list up until it be empty.

The below constraint resolution shows an example of one iteration where E([l4])

was removed from the work-list.

Evaluating constraint variable: E([l4])
Type constraint related to E([l4]): [1] ≤ E([l4])
Current estimation: [1] ≡ Integer

E([l4]) ≡ < universe >
Intersection between:

superTypes(Integer) AND subTypes(< universe >)
results in the following new estimation for E([l4]):

superTypes(Integer)
Type equivalence related to E([l4]): {E(List1), E(List6), . . .}

work− list + = {E(List1), E(List6), . . .}

Since the estimation of E([l4]) has changed, the whole set of type equivalence
must reenter in the work-list to be re-evaluated, so that, the new estimation
can be propagated.

. . .

2.3 - Choosing types

Since the final estimation for E([l4]) is superTypes(Integer), the single type chosen
is:

E([l4]) = Integer

Since there exists the following constraints:

E([l4]) = E(List1) ∨ E(List1) ∈ Wild(E([l4]))

then

Integer = E(List1) ∨ E(List1) ∈ Wild(Integer)

therefore the single type chosen is:

E(List1) = Integer

Since

E(List1) = E(List6)

the single type chosen is:

E(List6) = Integer

. . .

2.4 - Find casts to remove

There is no cast to be removed in this example.

Phase 3 - Code Rewrite

76

1 class C1 { .. }

2 class C2 extends C1 {

3 void m(List1<Integer> l2){..}
4 public static void main(String[] args) {

5 List3<Integer> l4 = new ArrayList5<Integer>();
6 l4.add(1);
7 new C2().m1(l4);
8 }

9 }

10 aspect A{

11 void C1.m(List6<Integer> l7){..}
12 }

A.3 Pointcut’s Fragility

Program to be Refactored

1 class C{

2 void m1(List1 l2){..}
3 void m2(List3 l4){..}
4 }

5 aspect A{

6 before(List5 l6) : execution(void C.*(..))

7 && args(l6){ .. }

8 }

Phase 1 - Generation of Constraints

Line 2 - declaration: List1 l2
R1−→ RNonContextCgen([l2], List1, ∙)

rn12−→ [l2] = List1 ∧ E([l2]) = E(List1)

Line 3 - declaration: List3 l4
R1−→ RNonContextCgen([l4], List3, ∙)

rn12−→ [l4] = List3 ∧ E([l4]) = E(List3)

Line 6 - declaration: List5 l6
R1−→ RNonContextCgen([l6], List5, ∙)

rn12−→ [l6] = List5 ∧ E([l6]) = E(List5)

Line 7 - args: args(l6) matches C.m1(List1 l2)
R21−→ ArgsCgen([List1], [l6], ∘)

ar15−→ ([List1] ≤ [l6] ∨ [List1] >? [l6]) ∧
(E([l6]) = E([List1]) ∨ E([l6]) ∈ Wild(E([List1])))

Line 7 - args: args(l6) matches C.m2(List3 l4)
R21−→ ArgsCgen([List3], [l6], ∘)

ar15−→ ([List3] ≤ [l6] ∨ [List3] >? [l6]) ∧
(E([l6]) = E([List3]) ∨ E([l6]) ∈ Wild(E([List3])))

The summary of the constraint generated in this first phase of the algorithm is
provided in Table A.3.

Phase 2 - Constraints Solving

Important constraints

E([l6]) = E([List1]) ∨ E([l6]) ∈Wild(E([List1]))

E([l6]) = E([List3]) ∨ E([l6]) ∈Wild(E([List3]))

. . .

77

Table A.3: Pointcut’s Fragility - Final result of Phase 1
Code Type constraint(s) Rule(s)

List1 l2 [l2] = List1 ∧ E([l2]) = E(List1) R1

List3 l4 [l4] = List3 ∧ E([l4]) = E(List3) R1

List5 l6 [l6] = List5 ∧ E([l6]) = E(List5) R1

args(l6) matches ([List1]≤[l6] ∨ [List1]>?[l6]) ∧ R21

C.m1(List1 l2) (E([l6]) = E([List1]) ∨ E([l6]) ∈Wild(E([List1])))

args(l6) matches ([List3]≤[l6] ∨ [List3]>?[l6]) ∧ R21

C.m2(List3 l4) (E([l6]) = E([List3]) ∨ E([l6]) ∈Wild(E([List3])))

2.1 - Initializing type estimates

E([l6])≡< universe >

List1 ≡ java.util.List

E([List1])≡< universe >

List3 ≡ java.util.List

E([List3])≡< universe >

. . .

2.2 - Solving constraints

Nothing can be resolved because the example does not give enough information
about the body of the methods m1 and m2, neither about the clients calling
these methods.

2.3 - Choosing types

There is no type to be chosen because the estimation, at this point, for con-
straint variables that refer to type variable are all < universe >.

2.4 - Find casts to remove

There is no cast to be removed because no type information could be inferred.

Phase 3 - Code Rewrite
The code remains the same. In other words, no refactoring could be performed

without knowing the the method’s clients and method’s body.

1 class C{

2 void m1(List1 l2){..}
3 void m2(List3 l4){..}
4 }

5 aspect A{

6 before(List5 l6) : execution(void C.*(..))

7 && args(l6){ .. }

8 }

A.4 Inference of Wildcards

Program to be Refactored

78

1 class C{

2 void m1(List1 l2){..}
3 void m2(List3 l4){..}
4

5 public static void main(String args[]){

6 List5 l6 = new ArrayList7();
7 l6.add(1);
8 new C().m1(l6);
9

10 List8 l29 = new ArrayList10();

11 l29.add(1.1);

12 new C().m2(l29);

13 }

14 }

15 aspect A{

16 before(List11 l12) : execution(void C.m*(..))

17 && args(l12){ .. }

18 }

Phase 1 - Generation of Constraints

Line 2 - declaration: List1 l2
R1−→ RNonContextCgen([l2], List1, ∙)

rn12−→ [l2] = List1 ∧ E([l2]) = E(List1)

Line 3 - declaration: List3 l4
R1−→ RNonContextCgen([l4], List3, ∙)

rn12−→ [l4] = List3 ∧ E([l4]) = E(List3)

Line 6 - declaration: List5 l6
R1−→ RNonContextCgen([l6], List5, ∙)

rn12−→ [l6] = List5 ∧ E([l6]) = E(List5)

Line 6 - type of constructor call: new ArrayList7()
R12−→ RNonContextCgen([new ArrayList7()], ArrayList7, ∙)

rn1−→ [new ArrayList7()] = ArrayList7

Line 6 - assignment: l6 = new ArrayList7()
R4−→ NonContextCgen([new ArrayList7()], ≤, [l6], ∙)
−→NonContextCgen([new ArrayList7()], ≤, List5, ∙)
n12−→ [new ArrayList7()] ≤ List5 ∧

(E([new ArrayList7()]) = E(List5) ∨ E(List5) ∈ Wild(E([new ArrayList7()])))

Line 7 - virtual method call: l6.add(1)
R7−→ [l6] ≤ List ∨ [l6] ≤ Collection
R8−→ RContextCgen([l6.add(1)], boolean, l6, ∘)

rc1−→ [l6.add(1)] = boolean
R9−→ ContextCgen([1], ≤, E, l6, ∙)

c4−→ [1] ≤ E([l6])

Line 8 - type of constructor call: new C()
R12−→ RNonContextCgen([new C()], C, ∙)

rn1−→ [new C()] = C

Line 8 - virtual method call: new C().m1(l6)
R7−→ [new C()] ≤ C
R9−→ ContextCgen([l6], ≤, List1, new C(), ∙)

c12−→ [l6] ≤ List1 ∧ (E([l6]) = E(List1) ∨ E(List1) ∈ Wild(E([l6])))

Line 10 - declaration: List8 l29
R1−→ RNonContextCgen([l29], List8, ∙)

rn12−→ [l29] = List8 ∧ E([l29]) = E(List8)

Line 10 - type of constructor call: new ArrayList10()
R12−→ RNonContextCgen([new ArrayList10()], ArrayList10, ∙)

rn1−→ [new ArrayList10()] = ArrayList10

79

Line 10 - assignment: l29 = new ArrayList10()
R4−→ NonContextCgen([new ArrayList10()], ≤, [l29], ∙)
−→NonContextCgen([new ArrayList10()], ≤, List8, ∙)
n12−→ [new ArrayList10()] ≤ List8 ∧

(E([new ArrayList10()]) = E(List8) ∨ E(List8) ∈ Wild(E([new ArrayList10()])))

Line 11 - virtual method call: l29.add(1.1)
R7−→ [l29] ≤ List ∨ [l29] ≤ Collection
R8−→ RContextCgen([l29.add(1.1)], boolean, l29, ∘)

rc1−→ [l29.add(1,1)] = boolean
R9−→ ContextCgen([1.1], ≤, E, l29, ∙)

c4−→ [1] ≤ E([l29])

Line 12 - type of constructor call: new C()
R12−→ RNonContextCgen([new C()], C, ∙)

rn1−→ [new C()] = C

Line 12 - virtual method call: new C().m1(l29)
R7−→ [new C()] ≤ C
R9−→ ContextCgen([l29], ≤, List3, new C(), ∙)

c12−→ [l29] ≤ List3 ∧ (E([l29]) = E(List3) ∨ E(List3) ∈ Wild(E([l29])))

Line 16 - declaration: List11 l12
R1−→ RNonContextCgen([l12], List11, ∙)

rn12−→ [l12] = List11 ∧ E([l12]) = E(List11)

Line 17 - args: args(l12) matches C.m1(List1 l2)
R21−→ ArgsCgen([List1], [l12], ∘)

ar15−→ ([List1] ≤ [l12] ∨ [List1] >? [l12]) ∧
(E([l12]) = E([List1]) ∨ E([l12]) ∈ Wild(E([List1])))

Line 17 - args: args(l12) matches C.m2(List3 l4)
R21−→ ArgsCgen([List3], [l12], ∘)

ar15−→ ([List3] ≤ [l12] ∨ [List3] >? [l12]) ∧
(E([l12]) = E([List3]) ∨ E([l12]) ∈ Wild(E([List3])))

The summary of the constraint generated in this first phase of the algorithm is
provided in Table A.4.

Phase 2 - Constraints Solving

Important constraints

[1]≤E([l6])

[1.1]≤E([l29])

E([l6]) = E(List1) ∨ E(List1) ∈ Wild(E([l6]))

E([l29]) = E(List3) ∨ E(List3) ∈ Wild(E([l29]))

E([l12]) = E([List1]) ∨ E([l12]) ∈Wild(E([List1]))

E([l12]) = E([List3]) ∨ E([l12]) ∈Wild(E([List3]))

. . .

2.1 - Initializing type estimates

[1]≡ Integer

[1.1]≡ Double

E([l6])≡< universe >

E([l29])≡< universe >

E([l12])≡< universe >

80

Table A.4: Inference of Wildcards - Final result of Phase 1
Code Type constraint(s) Rule(s)

List1 l2 [l2] = List1 ∧ E([l2]) = E(List1) R1

List3 l4 [l4] = List3 ∧ E([l4]) = E(List3) R1

List5 l6 [l6] = List5 ∧ E([l6]) = E(List5) R1

new ArrayList7() [new ArrayList7()] = ArrayList7 R12

l6 = new ArrayList7() [new ArrayList7()]≤List5 ∧ R4

(E([new ArrayList7()]) = E(List5) ∨ E(List5) ∈Wild(E([new ArrayList7()])))

l6.add(1) [l6]≤List ∨ [l6]≤Collection R7

[l6.add(1)] = boolean R8

[1]≤E([l6]) R9

new C() [new C()] = C R12

new C().m1(l6) [new C()]≤C R7

[l6]≤List1 ∧ (E([l6]) = E(List1) ∨ E(List1) ∈ Wild(E([l6]))) R9

List8 l29 [l29] = List8 ∧ E([l29]) = E(List8) R1

new ArrayList10() [new ArrayList10()] = ArrayList10 R12

l29 = new ArrayList10() [new ArrayList10()]≤List8 ∧ R4

(E([new ArrayList10()]) = E(List8) ∨ E(List8) ∈Wild(E([new ArrayList10()])))

l29.add(1.1) [l29]≤List ∨ [l29]≤Collection R7

[l29.add(1.1)] = boolean R8

[1.1]≤E([l29]) R9

new C() [new C()] = C R12

new C().m1(l29) [new C()]≤C R7

[l29]≤List3 ∧ (E([l29]) = E(List3) ∨ E(List3) ∈ Wild(E([l29]))) R9

List11 l12 [l12] = List11 ∧ E([l12]) = E(List11) R1

args(l12) matches ([List1]≤[l12] ∨ [List1]>?[l12]) ∧ R21

C.m1(List1 l2) (E([l12]) = E([List1]) ∨ E([l12]) ∈Wild(E([List1])))

args(l12) matches ([List3]≤[l12] ∨ [List3]>?[l12]) ∧ R21

C.m2(List3 l4) (E([l12]) = E([List3]) ∨ E([l12]) ∈Wild(E([List3])))

List1 ≡ java.util.List

E([List1])≡< universe >

List3 ≡ java.util.List

E([List3])≡< universe >

. . .

2.2 - Solving constraints

In the beginning of this phase all constraint variables are copied to a new
work-list. Then, in each iteration, a constraint variable is removed from the
work-list up until it be empty.

The below constraint resolution shows an example of one iteration where E([l6])

was removed from the work-list.

Evaluating constraint variable: E([l6])
Type constraint related to E([l6]): [1] ≤ E([l6])
Current estimation: [1] ≡ Integer

E([l6]) ≡ < universe >
Intersection between:

superTypes(Integer) AND subTypes(< universe >)

81

results in the following new estimation for E([l6]):
superTypes(Integer)

Type equivalence related to E([l6]): {E(List1), E(List5), E([l12]), . . .}
work− list + = {E(List1), E(List5), E([l12]), . . .}

Since the estimation of E([l6]) has changed, the whole set of type equivalence
must reenter in the work-list to be re-evaluated, so that, the new estimation
can be propagated.

The below constraint resolution represents another iteration and it is evaluat-
ing constraint variable E([l29]).

Evaluating constraint variable: E([l29])
Type constraint related to E([l29]): [1.1] ≤ E([l29])
Current estimation: [1.1] ≡ Double

E([l29]) ≡ < universe >
Intersection between:

superTypes(Double) AND subTypes(< universe >)
results in the following new estimation for E([l29]):

superTypes(Double)
Type equivalence related to E([l29]): {E(List3), E(List8), E([l12]), . . .}

work− list + = {E(List3), E(List8), E([l12]), . . .}

Similarly to the first iteration, the estimation of E([l29]) has changed. There-
fore, the whole set of type equivalence must reenter in the work-list to be
re-evaluated.

. . .

2.3 - Choosing types

Since the final estimation for E([l6]) is superTypes(Integer) and E([l6]) = E(List1), the
types chosen are:

E([l6]) = Integer
E(List1) = Integer

Since the final estimation for E([l29]) is superTypes(Double) and E([l29]) = E(List3),
the types chosen are:

E([l29]) = Double
E(List3) = Double

Since there exists the following constraints:

E([l12]) = E([List1]) ∨ E([l12]) ∈ Wild(E([List1])) and

E([l12]) = E([List3]) ∨ E([l12]) ∈ Wild(E([List3]))

the intersection between

E([l12]) = Integer ∨ E([l12]) ∈ Wild(Integer) and

E([l12]) = Double ∨ E([l12]) ∈ Wild(Double)

results in

E([l12]) ∈ Wild(Number)

Therefore the single type chosen is:

E([l12]) = ? extends Number

82

2.4 - Find casts to remove

There is no cast to be removed in this example.

Phase 3 - Code Rewrite

1 class C{

2 void m1(List1<Integer> l2){..}
3 void m2(List3<Double> l4){..}
4

5 public static void main(String args[]){

6 List5<Integer> l6 = new ArrayList7<Integer>();
7 l6.add(1);
8 new C().m1(l6);
9

10 List8<Double> l29 = new ArrayList10<Double>();

11 l29.add(1.1);

12 new C().m2(l29);

13 }

14 }

15 aspect A{

16 before(List11<? extends Number> l12) : execution(void C.m*(..))

17 && args(l12){ .. }

18 }

A.5 Unsafe Type System

Program to be Refactored

1 class C<T extends Number> {

2 List1<T> m(List2<T> l3) { return l3; }

3 }

4 aspect A{

5 List4 around(): execution(List m(..)) {

6 List5 l6 = proceed();

7 l6.add(1);
8 return l6;
9 }

10 }

11 class Main {

12 public static void main(String args[]){

13 List7 l8 = new ArrayList9();
14 l8.add(1.1);
15 List10 l211 = new C().m(l8);
16 for (Iterator iter=l211.iterator(); iter.hasNext();) {

17 Double d = (Double)iter.next();

18 ...

19 }

20 }

21 }

Phase 1 - Generation of Constraints

Line 2 - declaration: List2<T> l3
R1−→ RNonContextCgen([l3], List2<T>, ∙)

rn9−→ [l3] = List2 ∧ RNonContextCgen(E([l3]), T, ∙)
rn4−→ [l3] = List2 ∧ E([l3]) = T

Line 2 - return: return l3
R6−→ NonContextCgen([l3], ≤, List1<T>, ∙)

n9−→ [l3] ≤ List1 ∧ NonContextCgen(E([l3]), =, T, ∙)
n4−→ [l3] ≤ List1 ∧ E([l3]) = T

Line 5 - around advice: List4 around()
R23−→ [List4] = Object ∨ AroundCgen([List4], ≤, List1<T>, ∙)

83

ad9−→ [List4] = Object ∨ ([List4] ≤ List1 ∧ AroundCgen(E([List4]), =, T, ∙))
ad4−→ [List4] = Object ∨ ([List4] ≤ List1 ∧ E([List4]) = |T|)

−→[List4] = Object ∨ ([List4] ≤ List1 ∧ E([List4]) = Number)

Line 6 - declaration: List5 l6
R1−→ RNonContextCgen([l6], List5, ∙)

rn12−→ [l6] = List5 ∧ E([l6]) = E(List5)

Line 6 - proceed call: proceed()
R24−→ RNonContextCgen([proceed()], List4, ∙)

rn12−→ [proceed()] = List4 ∧ E([proceed()]) = E(List4)

Line 6 - assignment: l6 = proceed()
R4−→ NonContextCgen([proceed()], ≤, [l6], ∙)
−→NonContextCgen([proceed()], ≤, List5, ∙)
n12−→ [proceed()] ≤ List5 ∧

(E([proceed()]) = E(List5) ∨ E(List5) ∈ Wild(E([proceed()])))

Line 7 - virtual method call: l6.add(1)
R7−→ [l6] ≤ List ∨ [l6] ≤ Collection
R8−→ RContextCgen([l6.add(1)], boolean, l6, ∘)

rc1−→ [l6.add(1)] = boolean
R9−→ ContextCgen([1], ≤, E, l6, ∙)

c4−→ [1] ≤ E([l6])

Line 8 - return: return l6
R6−→ NonContextCgen([l6], ≤, List4, ∙)

n12−→ [l6] ≤ List4 ∧ (E([l6]) = E(List4) ∨ E(List4) ∈ Wild(E([l6])))

Line 13 - declaration: List7 l8
R1−→ RNonContextCgen([l8], List7, ∙)

rn12−→ [l8] = List7 ∧ E([l8]) = E(List7)

Line 13 - type of constructor call: new ArrayList9()
R12−→ RNonContextCgen([new ArrayList9()], ArrayList9, ∙)

rn1−→ [new ArrayList9()] = ArrayList9

Line 13 - assignment: l8 = new ArrayList9()
R4−→ NonContextCgen([new ArrayList9()], ≤, [l8], ∙)
−→NonContextCgen([new ArrayList9()], ≤, List7, ∙)
n12−→ [new ArrayList9()] ≤ List7 ∧

(E([new ArrayList9()]) = E(List7) ∨ E(List7) ∈ Wild(E([new ArrayList9()])))

Line 14 - virtual method call: l8.add(1.1)
R7−→ [l8] ≤ List ∨ [l8] ≤ Collection
R8−→ RContextCgen([l8.add(1.1)], boolean, l8, ∘)

rc1−→ [l8.add(1,1)] = boolean
R9−→ ContextCgen([1.1], ≤, E, l8, ∙)

c4−→ [1] ≤ E([l8])

Line 15 - declaration: List10 l211
R1−→ RNonContextCgen([l211], List10, ∙)

rn12−→ [l211] = List10 ∧ E([l211]) = E(List10)

Line 15 - type of constructor call: new C()
R12−→ RNonContextCgen([new C()], C, ∙)

rn1−→ [new C()] = C

Line 15 - virtual method call: new C().m(l8)
R7−→ [new C()] ≤ C
R8−→ RContextCgen([new C().m(l8)], List1<T>, new C(), ∘)

rc10−→ [new C().m(l8)] = List1 ∧ RContextCgen(E([new C().m(l8)]), T, new C(), ∙)
rc4−→ [new C().m(l8)] = List1 ∧ E([new C().m(l8)]) = T(new C())

R9−→ ContextCgen([l8], ≤, List2<T>, new C(), ∙)

84

c9−→ [l8] ≤ List2 ∧ ContextCgen(E([l8]), =, T, new C(), ∙)
c4−→ [l8] ≤ List2 ∧ E([l8]) = T(new C())

Line 15 - assignment: l211 = new C().m(l8)
R4−→ NonContextCgen([new C().m(l8)], ≤, [l211], ∙)
−→NonContextCgen([new C().m(l8)], ≤, List10, ∙)
n12−→ [new C().m(l8)] ≤ List10 ∧

(E([new C().m(l8)]) = E(List10) ∨ E(List10) ∈ Wild(E([new C().m(l8)])))

Line 16 - declaration Iterator iter
R1−→ RNonContextCgen([iter], Iterator, ∙)

rn12−→ [iter] = Iterator ∧ E([iter]) = E(Iterator)

Line 16 - virtual method call l211.iterator()
R7−→ [l211] ≤ List ∧ [l211] ≤ Collection
R8−→ RContextCgen([l211.iterator()], Iterator<E1>, l211, ∘)

rc10−→ [l211.iterator()] = Iterator ∧ RContextCgen(E([l211.iterator()]), E1, l211, ∙)
rc4−→ [l211.iterator()] = Iterator ∧ E([l211.iterator()]) = E1(l211)

Note: in this rule (R8), E1 was used in place of E to disambiguate

Line 16 - assignment iter = l211.iterator()
R4−→ NonContextCgen([l211.iterator()], ≤, [iter], ∙)
−→NonContextCgen([l211.iterator()], ≤, Iterator, ∙)
n12−→ [l211.iterator()] ≤ Iterator ∧

(E([l211.iterator()]) = E(Iterator) ∨ E(Iterator) ∈ Wild(E([l211.iterator()])))

Line 16 - virtual method call iter.hasNext()
R7−→ [iter] ≤ Iterator
R8−→ RContextCgen([iter.hasNext()], boolean, iter, ∘)

rc1−→ [iter.hasNext()] = boolean

Line 17 - declaration Double d
R1−→ RNonContextCgen([d], Double, ∙)

rn12−→ [d] = Double

Line 17 - virtual method call iter.next()
R7−→ [iter] ≤ Iterator
R8−→ RContextCgen([iter.next()], E, iter, ∘)

rc4−→ [iter.hasNext()] = wildbound(E(iter))

Line 17 - casting (Double)iter.next()
R2−→ RNonContextCgen([(Double)iter.next()], Double, ∙)

rn1−→ [(Double)iter.next()] = Double
R3−→ NonContextCgen([iter.next()], ≥, Double, ∙)

n1−→ [iter.next()] ≥ Double

−→Double ≤ [iter.next()]

Line 17 - assignment d = (Double)iter.next()
R4−→ NonContextCgen([(Double)iter.next()], ≤, [d], ∙)
−→NonContextCgen([(Double)iter.next()], ≤, Double, ∙)

n1−→ [(Double)iter.next()] ≤ Double

The summary of the constraint generated in this first phase of the algorithm is
provided in Table A.5.

Phase 2 - Constraints Solving

Important constraints

Around advice

E([List4]) = Number

E([l6]) = E(List5)

85

Table A.5: Unsafe Type System - Final result of Phase 1
Code Type constraint(s) Rule(s)

List2 < T > l3 [l3] = List2 ∧ E([l3]) = T R1

return l3 [l3]≤List1 ∧ E([l3]) = T R6

List4 around() [List4] = Ob ject ∨ ([List4]≤List1 ∧ E([List4]) = Number) R23

List5 l6 [l6] = List5 ∧ E([l6]) = E(List5) R1

proceed() [proceed()] = List4 ∧ E([proceed()]) = E(List4) R24

l6 = proceed() [proceed()]≤List5 ∧ R4

(E([proceed()]) = E(List5) ∨ E(List5) ∈Wild(E([proceed()])))

l6.add(1) [l6]≤List ∨ [l6]≤Collection R7

[l6.add(1)] = boolean R8

[1]≤E([l6]) R9

return l6 [l6]≤List4 ∧ (E([l6]) = E(List4) ∨ E(List4) ∈Wild(E([l6]))) R6

List7 l8 [l8] = List7 ∧ E([l8]) = E(List7) R1

new ArrayList9() [new ArrayList9()] = ArrayList9 R12

l8 = new ArrayList9() [new ArrayList9()]≤List7 ∧ R4

(E([new ArrayList9()]) = E(List7) ∨ E(List7) ∈Wild(E([new ArrayList9()])))

l8.add(1.1) [l8]≤List ∨ [l8]≤Collection R7

[l8.add(1.1)] = boolean R8

[1.1]≤E([l8]) R9

List10 l211 [l211] = List10 ∧ E([l211]) = E(List10) R1

new C() [new C()] = C R12

new C().m(l8) [new C()]≤C R7

[new C().m(l8)] = List1 ∧ E([new C().m(l8)]) = T (new C()) R8

[l8]≤List2 ∧ E([l8]) = T (new C()) R9

l211 = new C().m(l8) [new C().m(l8)]≤List10 ∧ R4

(E([new C().m(l8)]) = E(List10) ∨ E(List10) ∈Wild(E([new C().m(l8)])))

Iterator iter [iter] = Iterator ∧ E([iter]) = E(Iterator) R1

l211.iterator() [l211]≤List ∧ [l211]≤Collection R7

[l211.iterator()] = Iterator ∧ E([l211.iterator()]) = E1(l211) R8

iter = l211.iterator() [l211.iterator()]≤Iterator ∧ R4

(E([l211.iterator()]) = E(Iterator) ∨ E(Iterator) ∈Wild(E([l211.iterator()])))

iter.hasNext() [iter]≤Iterator R7

[iter.hasNext()] = boolean R8

Double d [d] = Double R1

iter.next() [iter]≤Iterator R7

[iter.hasNext()] = wildbound(E(iter)) R8

(Double)iter.next() [(Double)iter.next()] = Double R2

Double≤[iter.next()] R3

d = (Double)iter.next() [(Double)iter.next()]≤Double R4

86

E([proceed()]) = E(List4)

E([proceed()]) = E(List5) ∨ E(List5) ∈ Wild(E([proceed()]))

[1]≤E([l6])

E([l6]) = E(List4) ∨ E(List4) ∈ Wild(E([l6]))

. . .

Main method

E([l8]) = E(List7)

[1.1]≤E([l8])

E([l211]) = E(List10)

E([new C().m(l8)]) = T (new C())

E([l8]) = T (new C())

E([new C().m(l8)]) = E(List10) ∨ E(List10) ∈ Wild(E([new C().m(l8)]))

E([iter]) = E(Iterator)

E([l211.iterator()]) = E1(l211)

E([l211.iterator()]) = E(Iterator) ∨ E(Iterator) ∈ Wild(E([l211.iterator()]))

[iter.hasNext()] = wildbound(E(iter))

[(Double)iter.next()] = Double

[(Double)iter.next()]≤Double

. . .

2.1 - Initializing type estimates

Around advice

List4 ≡ java.util.List

E([List4])≡< universe >

Number ≡ Number

E([l6])≡< universe >

[1]≡ Integer

. . .

Main method

E([l8])≡< universe >

[1.1]≡ Double

T (new C())≡< universe >

E([l211])≡< universe >

E([iter])≡< universe >

. . .

2.2 - Solving constraints

In the beginning of this phase all constraint variables are copied to a new
work-list. Then, in each iteration, a constraint variable is removed from the
work-list up until it be empty.

Around advice

The below constraint resolution shows an example of one iteration where
E([List4]) was removed from the work-list.

Evaluating constraint variable: E([List4])
Type constraint related to E([List4]): E([List4]) = Number
Current estimation: Number ≡ Number

87

E([List4]) ≡ < universe >
Intersection between:

Number AND < universe >
results in the following new estimation for E([List4]):

Number
Type equivalence related to E([List4]): {E([proceed()]), E(l6), . . .}

work− list + = {E([proceed()]), E(l6), . . .}

Since the estimation of E([List4]) has changed, the whole set of type equivalence
must reenter in the work-list to be re-evaluated, so that, the new estimation
can be propagated.

The below constraint resolution represents another iteration and it is evaluat-
ing constraint variable E([l6]).

Evaluating constraint variable: E([l6])
Type constraint related to E([l6]): [1] ≤ E([l6])
Current estimation: [1] ≡ Integer

E([l6]) ≡ < universe >
Intersection between:

superTypes(Integer) AND subTypes(< universe >)
results in the following new estimation for E([l6]):

superTypes(Integer)
Type equivalence related to E([l6]): {E(List5), E(List4), . . .}

work− list + = {E(List5), E(List4), . . .}

Type constraint related to E([l6]): E([l6]) = E(List4) ∨ E(List4) ∈ Wild(E([l6]))
Current estimation: E([l6]) ≡ superTypes(Integer)

E(List4) ≡ Number
Intersection between:

superTypes(Integer) AND Number
results in the following new estimation for E([l6]):

Number
Type equivalence related to E([l6]): {E(List5), E(List4), . . .}

work− list + = {E(List5), E(List4), . . .}

The main difference from the other examples is that this constraint variable
are being used in two type constraints. Therefore, for two constraint resolution
were necessary.

. . .

Main method

The below constraint resolution represents another iteration and it is evaluat-
ing constraint variable E([l8]).

Evaluating constraint variable: E([l8])
Type constraint related to E([l8]): [1] ≤ E([l8])
Current estimation: [1] ≡ Integer

E([l8]) ≡ < universe >
Intersection between:

superTypes(Integer) AND subTypes(< universe >)
results in the following new estimation for E([l8]):

superTypes(Integer)
Type equivalence related to E([l8]): {E(List7), T (new C()), . . .}

work− list + = {E(List7), T (new C()), . . .}

. . .

2.3 - Choosing types

Around advice

Since the final estimation for both E([l6]), E([List4]) and E([List5]) ends with
Number, the types chosen are:

88

E([l6]) = Number
E([List4]) = Number
E(List5) = Number

. . .

Main method

Since the final estimation for both E(List7), E(List10), T (new C()) and E(Iterator)

ends with Double, the types chosen are:

E(List7) = Double
E(List10) = Double
T (new C()) = Double
E(Iterator) = Double

. . .

2.4 - Find casts to remove

Since the type chosen for E(Iterator) is Double, the return of iter.next() is also
Double. Therefore, the cast in expression (Double)iter.next() is redundant, and
then, it is marked to be removed.

Phase 3 - Code Rewrite

1 class C<T extends Number> {

2 List1<T> m(List2<T> l3) { return l3; }

3 }

4 aspect A{

5 List4<Number> around(): execution(List m(..)) {

6 List5<Number> l6 = proceed();

7 l6.add(1);
8 return l6;
9 }

10 }

11 class Main {

12 public static void main(String args[]){

13 List7<Double> l8 = new ArrayList9<Double>();
14 l8.add(1.1);
15 List10<Double> l211 = new C<Double>().m(l8);
16 for (Iterator<Double> iter=l211.iterator(); iter.hasNext();) {

17 Double d = (Double)iter.next();

18 ...

19 }

20 }

21 }

89

REFERENCES

AGESEN, O. The Cartesian Product Algorithm: simple and precise type inference
of parametric polymorphism. In: ECOOP ’95: PROCEEDINGS OF THE 9TH
EUROPEAN CONFERENCE ON OBJECT-ORIENTED PROGRAMMING, 1995,
London, UK. . . . Springer-Verlag, 1995. p.2–26.

ASPECTJ. The AspectJ 5 Development Kit Developer’s Notebook.
[S.l.: s.n.], 2005. URL: http://www.eclipse.org/aspectj/doc/released/adk15note
book/index.html. Last access: 14/12/2008.

AVGUSTINOV, P. et al. Semantics of static pointcuts in aspectJ. In: POPL ’07:
PROCEEDINGS OF THE 34TH ANNUAL ACM SIGPLAN-SIGACT SYMPO-
SIUM ON PRINCIPLES OF PROGRAMMING LANGUAGES, 2007, New York,
NY, USA. . . . ACM, 2007. p.11–23.

BELLAMY, B. et al. Efficient local type inference. SIGPLAN Not., New York,
NY, USA, v.43, n.10, p.475–492, 2008.

BRACHA, G. et al. Making the future safe for the past: adding genericity to the
java programming language. In: OOPSLA ’98: PROCEEDINGS OF THE 13TH
ACM SIGPLAN CONFERENCE ON OBJECT-ORIENTED PROGRAMMING,
SYSTEMS, LANGUAGES, AND APPLICATIONS, 1998, New York, NY, USA.
. . . ACM Press, 1998. p.183–200.

CARDELLI, L.; WEGNER, P. On understanding types, data abstraction, and poly-
morphism. ACM Comput. Surv., New York, NY, USA, v.17, n.4, p.471–523,
1985.

CRACIUN, F. et al. An Interval-Based Inference of Variant Parametric Types. In:
PROGRAMMING LANGUAGES AND SYSTEMS, 18TH EUROPEAN SYMPO-
SIUM ON PROGRAMMING, ESOP 2009, HELD AS PART OF THE JOINT EU-
ROPEAN CONFERENCES ON THEORY AND PRACTICE OF SOFTWARE,
ETAPS 2009, YORK, UK, MARCH 22-29, 2009. PROCEEDINGS, 2009. . . .
Springer, 2009. p.112–127. (Lecture Notes in Computer Science, v.5502).

DINCKLAGE, D. von; DIWAN, A. Converting Java classes to use generics.
In: OOPSLA ’04: PROCEEDINGS OF THE 19TH ANNUAL ACM SIGPLAN
CONFERENCE ON OBJECT-ORIENTED PROGRAMMING, SYSTEMS, LAN-
GUAGES, AND APPLICATIONS, 2004, New York, NY, USA. . . . ACM Press,
2004. p.1–14.

90

DONOVAN, A.; ERNST, M. D. Inference of generic types in Java. 2003.

DONOVAN, A. et al. Converting java programs to use generic libraries. In: OOPSLA
’04: PROCEEDINGS OF THE 19TH ANNUAL ACM SIGPLAN CONFERENCE
ON OBJECT-ORIENTED PROGRAMMING, SYSTEMS, LANGUAGES, AND
APPLICATIONS, 2004, New York, NY, USA. . . . ACM Press, 2004. p.15–34.

DUGGAN, D. Modular type-based reverse engineering of parameterized types in
Java code. In: OOPSLA ’99: PROCEEDINGS OF THE 14TH ACM SIGPLAN
CONFERENCE ON OBJECT-ORIENTED PROGRAMMING, SYSTEMS, LAN-
GUAGES, AND APPLICATIONS, 1999, New York, NY, USA. . . . ACM Press,
1999. p.97–113.

EIFRIG, J. et al. Sound polymorphic type inference for objects. SIGPLAN Not.,
New York, NY, USA, v.30, n.10, p.169–184, 1995.

FRAINE, B. D. et al. StrongAspectJ: flexible and safe pointcut/advice bindings. In:
AOSD, 2008. . . . ACM, 2008. p.60–71.

FUHRER, R. et al. Efficiently refactoring Java applications to use generic libraries.
In: ECOOP 2005 — OBJECT-ORIENTED PROGRAMMING, 19TH EUROPEAN
CONFERENCE, 2005, Glasgow, Scotland. . . . [S.l.: s.n.], 2005. p.71–96.

GAMMA, E. et al. Design Patterns. [S.l.]: Addison-Wesley Professional, 1995.

GOSLING, J. et al. The Java Language Specification Third Edition. [S.l.]:
Addison-Wesley, 2005.

HANNEMANN, J. Aspect-Oriented Refactoring: classification and challenges. In:
LATE’06, 5TH INTERNATIONAL CONFERENCE ON ASPECT-ORIENTED
SOFTWARE DEVELOPMENT, 2006. . . . [S.l.: s.n.], 2006.

HANNEMANN, J. et al. Refactoring to aspects: an interactive approach. In: PRO-
CEEDINGS OF THE 2003 OOPSLA WORKSHOP ON ECLIPSE TECHNOLOGY
EXCHANGE, 03., 2003, New York, NY, USA. . . . ACM, 2003. p.74–78.

IGARASHI, A. et al. Featherweight Java: a minimal core calculus for java and gj.
ACM Trans. Program. Lang. Syst., New York, NY, USA, v.23, n.3, p.396–450,
2001.

IGARASHI, A. et al. A Recipe for Raw Types. In: WORKSHOP ON FOUNDA-
TIONS OF OBJECT-ORIENTED LANGUAGES (FOOL), 2001. . . . [S.l.: s.n.],
2001.

JAGADEESAN, R. et al. Typed parametric polymorphism for aspects. Sci. Com-
put. Program., Amsterdam, The Netherlands, The Netherlands, v.63, n.3, p.267–
296, 2006.

KICZALES, G. et al. An Overview of AspectJ. In: PROCEEDINGS OF
THE EUROPEAN CONFERENCE ON OBJECT-ORIENTED PROGRAMMING
(ECOOP’01), 2001. . . . Springer, 2001. p.327–353. (Lecture Notes in Computer
Science, v.2072).

91

KIEŻUN, A. et al. Generics-related refactorings in eclipse. In: OOPSLA ’05:
COMPANION TO THE 20TH ANNUAL ACM SIGPLAN CONFERENCE ON
OBJECT-ORIENTED PROGRAMMING, SYSTEMS, LANGUAGES, AND AP-
PLICATIONS, 2005, New York, NY, USA. . . . ACM Press, 2005. p.170–170.

KIEŻUN, A. et al. Refactoring for Parameterizing Java Classes. In: ICSE ’07: PRO-
CEEDINGS OF THE 29TH INTERNATIONAL CONFERENCE ON SOFTWARE
ENGINEERING, 2007, Washington, DC, USA. . . . IEEE Computer Society, 2007.
p.437–446.

KOPPEN, C.; STÖRZER, M. PCDiff: Attacking the fragile pointcut problem. In:
EUROPEAN INTERACTIVE WORKSHOP ON ASPECTS IN SOFTWARE (EI-
WAS), 2004. . . . [S.l.: s.n.], 2004.

MONTEIRO, M. P.; FERNANDES, J. M. Towards a catalog of aspect-oriented
refactorings. In: AOSD ’05: PROCEEDINGS OF THE 4TH INTERNATIONAL
CONFERENCE ON ASPECT-ORIENTED SOFTWARE DEVELOPMENT, 2005,
New York, NY, USA. . . . ACM Press, 2005. p.111–122.

MONTEIRO, M. P.; FERNANDES, J. M. L. Towards a catalogue of refactorings
and code smells for aspectj. Transactions on Aspect Oriented Software Devel-
opment (TAOSD), [S.l.], v.Lecture Notes in Computer Science, n.3880, p.214–258,
2006.

MUNSIL, W. Case Study: converting to java 1.5 type-safe collections. Journal of
Object Technology, [S.l.], v.3, n.8, p.7–14, 2004.

ODERSKY, M.; WADLER, P. Pizza into Java: translating theory into practice. In:
POPL ’97: PROCEEDINGS OF THE 24TH ACM SIGPLAN-SIGACT SYMPO-
SIUM ON PRINCIPLES OF PROGRAMMING LANGUAGES, 1997, New York,
NY, USA. . . . ACM Press, 1997. p.146–159.

PALSBERG, J.; SCHWARTZBACH, M. I. Object-Oriented Type Inference. In:
CONFERENCE ON OBJECT-ORIENTED PROGRAMMING SYSTEMS, LAN-
GUAGES, AND APPLICATIONS (OOPSLA), 1991, New York, NY. Proceed-
ings. . . ACM Press, 1991. v.26, n.11.

PALSBERG, J.; SCHWARTZBACH, M. I. Object-Oriented Type Systems.
[S.l.]: John Wiley & Sons, 1993.

PLEVYAK, J.; CHIEN, A. A. Precise concrete type inference for object-oriented
languages. SIGPLAN Not., New York, NY, USA, v.29, n.10, p.324–340, 1994.

RUBBO, F. B. et al. On the Interaction of Advices and Raw Types in AspectJ.
Journal of Universal Computer Science, [S.l.], v.14, n.21, p.3534–3555, 2008.

SUTTER, B. D.; DOLBY, J. Customization of Java library classes using type con-
straints and profile information. In: IN ECOOP, 2004. . . . [S.l.: s.n.], 2004. p.585–
610.

TIP, F. et al. Refactoring for generalization using type constraints. In: OOPSLA
’03: PROCEEDINGS OF THE 18TH ANNUAL ACM SIGPLAN CONFERENCE

92

ON OBJECT-ORIENTED PROGRAMING, SYSTEMS, LANGUAGES, AND AP-
PLICATIONS, 2003, New York, NY, USA. . . . ACM, 2003. p.13–26.

TIP, F. et al. Refactoring techniques for migrating applications to generic
Java container classes. Yorktown Heights, NY, USA: IBM T.J. Watson Research
Center, 2004. IBM Research Report. (RC 23238).

TORGERSEN, M. et al. Adding wildcards to the Java programming language.
In: SAC ’04: PROCEEDINGS OF THE 2004 ACM SYMPOSIUM ON APPLIED
COMPUTING, 2004, New York, NY, USA. . . . ACM Press, 2004. p.1289–1296.

WLOKA, J. et al. Tool-supported refactoring of aspect-oriented programs. In:
AOSD ’08: PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE
ON ASPECT-ORIENTED SOFTWARE DEVELOPMENT, 2008, New York, NY,
USA. . . . ACM, 2008. p.132–143.

YE, L.; VOLDER, K. D. Tool support for understanding and diagnosing pointcut
expressions. In: AOSD ’08: PROCEEDINGS OF THE 7TH INTERNATIONAL
CONFERENCE ON ASPECT-ORIENTED SOFTWARE DEVELOPMENT, 2008,
New York, NY, USA. . . . ACM, 2008. p.144–155.

	List of Acronyms
	List of Listings
	List of Figures
	List of Tables
	Abstract
	Introduction
	Background
	Generic Java
	Generic Classes
	Invariant Subtyping
	Raw Type and Type Erasure
	Generic Methods
	Wildcards

	Generic AspectJ
	The Polymorphic Support
	Matching Generic Types
	Inter-type and Parent Declarations
	Generic Aspect

	Final Considerations

	Type Constraint Rules
	Basic Concepts and Functions
	Aspect-Aware Type Constraints
	Assignment, Cast and Expression Rules
	Method Call Rules
	Overriding Rules
	Advices Rules
	Other Rules

	Final Considerations

	Generic Code Migration
	Motivational Examples
	Poor Inference
	Ill-typing
	Pointcut's Fragility
	Inference of Wildcards
	Unsafe Type System

	The Algorithm
	Generation of Constraints
	Constraints Solving
	Code Rewrite

	Discussion
	Design Decisions
	Migrating Motivational Examples
	Parallel between Generic Migration Solutions

	Conclusion
	Future Work

	
	References

