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ABSTRACT

In this work we perform an extensive backtesting study targeting as a main goal to assess the
performance of global minimum variance (GMV) portfolios built on volatility forecasting models
that make use of high frequency (compared to daily) data. The study is based on a broad intradaily
financial dataset comprising 41 assets listed on the BM&FBOVESPA from 2009 to 2017. We
evaluate volatility forecasting models that are inspired by the ARCH literature, but also include
realized measures. They are the GARCH-X, the High-Frequency Based Volatility (HEAVY) and
the Realized GARCH models. Their perfomances are benchmarked against portfolios built on
the sample covariance matrix, covariance matrix shrinkage methods, DCC-GARCH as well as
the naive (equally weighted) portfolio and the Ibovespa index. Since the nature of this work is
multivariate and in order to make possible the estimation of large covariance matrices, we resort
to the Dynamic Conditional Correlation (DCC) specification. We use three different rebalancing
schemes (daily, weekly and monthly) and four different sets of constraints on portfolio weights.
The performance assessment relies on economic measures such as annualized portfolio returns,
annualized volatility, Sharpe ratio, maximum drawdown, Value at Risk, Expected Shortfall and
turnover. We also account for transaction costs. As a conclusion, for our dataset the use of
intradaily returns (sampled every 5 and 10 minutes) does not enhance the performance of GMV
portfolios.

Keywords: Volatility forecasting. Realized volatility. High frequency data. Dynamic Conditional
Correlation.



RESUMO

Neste trabalho realizamos um amplo estudo de simulação com o objetivo principal de avaliar
o desempenho de carteiras de mínima variância global construídas com base em modelos de
previsão da volatilidade que utilizam dados de alta frequência (em comparação a dados diários).
O estudo é baseado em um abrangente conjunto de dados financeiros, compreendendo 41
ações listadas na BM&FBOVESPA entre 2009 e 2017. Nós avaliamos modelos de previsão
de volatilidade que são inspirados na literatura ARCH, mas que também incluem medidas
realizadas. Eles são os modelos GARCH-X, HEAVY e Realized GARCH. Seu desempenho é
comparado com o de carteiras construídas com base na matriz de covariância amostral, métodos
de encolhimento e DCC-GARCH, bem como com a carteira igualmente ponderada e o índice
Ibovespa. Uma vez que a natureza do trabalho é multivariada, e a fim de possibilitar a estimação
de matrizes de covariância de grandes dimensões, recorremos à especificação DCC. Utilizamos
três frequências de rebalanceamento (diária, semanal e mensal) e quatro conjuntos diferentes
de restrições sobre os pesos das carteiras. A avaliação de desempenho baseia-se em medidas
econômicas tais como retornos anualizados, volatilidade anualizada, razão de Sharpe, máximo
drawdown, Valor em Risco, Valor em Risco condicional e turnover. Como conclusão, para o
nosso conjunto de dados o uso de retornos intradiários (amostrados a cada 5 e 10 minutos) não
melhora o desempenho das carteiras de mínima variância global.

Palavras-chave: Previsão de volatilidade. Volatilidade realizada. Dados de alta frequência.
Dynamic Conditional Correlation.
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1 INTRODUCTION

In this paper we estimate conditional covariance matrices using GARCH-type models
which incorporate high-frequency data. Our goal is to investigate whether this type of model
is able to generate economically superior portfolio allocations relative to models that only use
daily data.

Few studies in the literature are dedicated to exploring the potential benefits of using high
frequency data on asset allocation problems. Among them Fleming, Kirby and Ostdiek (2003),
Q. Liu (2009), Hautsch, Lada M. Kyj and Malec (2015), Garcia, Medeiros and F. E. d. L. e. A.
d. Santos (2014), Borges, J. Caldeira and Ziegelmann (2015), and J. F. Caldeira et al. (2017)
compare the economic performance of portfolios based on daily and intradaily data. In these
articles, a variety of specifications for the covariance matrix of the assets are evaluated. The
contribution of our paper is to provide an empirical test for different specifications: GARCH-X,
as estimated by R. Engle (2002b), the HEAVY model of Shephard and Sheppard (2010) and the
Realized GARCH model of Hansen, Huang and Shek (2012).

Determining optimal portfolio allocation for a set of risky assets depends heavily on
the accuracy of the covariance matrix estimation. Alexander (2008) points out that there is a
considerable degree of model risk inherent to the construction of a covariance matrix. Thus, very
different results can be obtained using two different statistical models, even if they are based on
exactly the same data.

Standard volatility models rely on squared daily returns as a proxy for ex-post volatility.
Although they constitute an unbiased estimator for the latent volatility factor, they may yield very
noisy measurements. As an alternative, the literature has been signaling the potential benefits
of using realized measures built from high frequency data in the construction of more accurate
measures of volatility (see T. G. Andersen and Bollerslev (1998)).

The most popular of the so called realized measures is the realized variance, which is
obtained as a sum of intraday squared returns. In theory, the highest the sampling frequency,
the most accurate the measure is (see, for instance, T. G. Andersen and Bollerslev (1998),
Barndorff-Nielsen and Shephard (2001), T. G. Andersen, Bollerslev, et al. (2001), and Areal
and Taylor (2002)). However, in practice microstructure effects introduce bias (see, for instance,
Bandi and Russell (2008)). Hence, the optimal sampling frequency is usually not the highest
available, but rather some intermediate rate, ideally high enough to produce a volatility estimate
with negligible sampling variation, yet low enough to avoid bias (T. ANDERSEN et al., 2000). In
this context, some studies try to give guidance on the choice of the sampling frequency. Among
them, L. Y. Liu, Patton and Sheppard (2015) find that realized variance with returns sampled
every 1 or 5 minutes perform well for individual equities and equity indexes. Actually, they
conclude that it is difficult to significantly beat 5-minute realized variance. Moreover, to reduce
the estimate variance, it is also possible to average across sparsely sampled realized volatility
measures, which is known as the subsampling estimator of Zhang, Mykland and Ait-Sahalia
(2005).
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Our empirical application uses BM&FBOVESPA’s stock returns sampled every minute.
In order to make the estimation of large covariance matrices possible, GARCH-X, HEAVY
and Realized GARCH models are combined with the Dynamic Conditional Correlation (DCC)
specification of R. Engle (2002a) and R. F. Engle and Sheppard (2001)1. This seems to be a
natural choice as it allows a direct extension for univariate models.

We optimize global minimum variance portfolios because they rely exclusively on
estimates of the covariance matrix. In comparison to the optimization of mean-variance portfolios,
this approach has the advantage of reducing the uncertainty from the asset returns mean’s
estimation, as it is more difficult to estimate means than covariance matrices (see Candelon,
Hurlin and Tokpavi (2012)). The performances of our portfolios are then compared to those of a
set of benchmark models based on daily returns. The competing methods are evaluated in terms
of a number of economic measures. Transaction costs and different sets of restrictions for the
portfolio weights are also taken into account.

In the main, we found similar out-of-sample results for portfolios using high frequency
data and for portfolios based on DCC-GARCH model (using daily data). The difference between
their levels of annualized volatility was negligible and Sharpe ratios were not statistically different.
DCC-GARCH, as well as the naive and market portfolios, generated higher annualized returns.
Notwithstanding, the models that use high frequency data seemed to present some superiority in
maximum drawdown, turnover, and cumulative returns over a partial period when compared to
DCC-GARCH under a monthly rebalancing frequency.

1 For the multivariate HEAVY model, Noureldin, Shephard and Sheppard (2012) adopt a BEKK-type parameteri-
zation.
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2 GLOBAL MINIMUM VARIANCE PORTFOLIOS

Given a universe of N infinitely divisible assets and a vector of weights ωωω ttt =(ω1,t , . . . ,ωN,t)
′,

the portfolio risk is measured by the portfolio variance σ2
ω,t = ωωω ′tttΣΣΣtωωω ttt , where ΣΣΣt denotes the

positive semi-definite variance-covariance matrix of assets’ returns at day t. The global minimum
variance (GMV) portfolio optimization objective is to find a combination of assets that, in a
given period of time, produces the least possible risk:

argmin
ωωωttt

σ
2
ω,t = ωωω

′
tttΣΣΣtωωω ttt . (2.1)

It is possible to impose different types of constraints on the optimization problem, for
instance:

a) the full investment constraint determines that the weights must sum to one and means that
the investor uses all his budget for the N assets:

N

∑
i=1

ωi,t = 1 (2.2)

b) the box constraint specify upper and lower bounds on the weights of the assets:

0≤ ωi,t ≤ ζ . (2.3)

This set of constraints would imply that no short positions are allowed, since the lower
bound is set to zero. No leveraged positions would be allowed as well, once the upper bound
is never greater than one. It was found that such restrictions yield a favorable out-of-sample
performance (see, for instance, Frost and Savarino (1988)) or are associated with a reduced
portfolio risk (see, for instance, Eichhorn, Gupta and Stubbs (1998) and Jagannathan and Ma
(2003)).

In the absence of inequality constraints, the analytical solution is given by

ωωω t =
Σ
−1
t ι

ι ′Σ−1
t ι

(2.4)

ι being a N×1 vector of ones. When the box constraints are considered, the problem must be
solved numerically.

The variance-covariance matrix of returns is not directly observable. Therefore, to find
an estimate for the optimal vector of weights, we replace ΣΣΣt with an estimate Σ̂ΣΣt . Portfolio
optimization depends crucially on the accuracy of covariance matrix estimation, which, in turn,
depends on the specification of the model. The literature suggests that estimates based on high
frequency data yield more precise results than those based on daily returns. In this paper, we aim
at assess if a specific class of models - which perform a joint modeling of daily squared returns
and realized measures built from high frequency data - is able to generate portfolios with a higher
performance relative to commonly used models for the purpose of GMV portfolio optimization.
In chapter 3 we review the covariance matrix estimation methods employed in this study. In
chapter 5 we describe the backtesting study and the performance evaluation methodology.



9

3 COVARIANCE MATRIX ESTIMATION AND PREDICTION

This chapter briefly presents the different models for estimating the assets covariance
matrix that will be used in this work. It is divided into two sections: section 3.1 presents
specifications based on low frequency daily data and section 3.2 presents specifications based on
high frequency intradaily data.

3.1 COVARIANCE MATRIX ESTIMATION AND PREDICTION WITH DAILY RETURNS

In what follows, we let pi,t denote the day t price of stock i, i = 1, . . . ,N, and we let
yi,t = log(pi,t)− log(pi,t−1) denote it’s daily return rate. We write yyyt = (y1,t , . . . ,yN,t) for the
vector of daily returns.

3.1.1 Sample Covariance Matrix

A traditional method for estimating the covariance matrix of N assets is to compute the
sample covariance matrix (SCM) based on historical return data. The sample covariance between
the return rates of assets i and j is estimated by:

q̄i j =
1
T

T

∑
t=1

(yi,t− ȳi)(y j,t− ȳ j) (3.1)

where ȳi is the sample average of stock i’s returns. The sample covariance matrix is the best
estimator in terms of actual fit to the data, as long as, under normality, this is the maximum
likelihood estimator, which is consistent and asymptotically efficient. Nevertheless, it can perform
poorly in a small sample. Although this method is easy to compute and is essentially free of
model assumptions, it has a drawback that is the high number of parameters that need to be
estimated. In a covariance matrix of N assets, there are N (̇N−1)/2 pairs of covariances, which
means that the number of parameters increases very rapidly with the number of assets.

When the number of assets is large relatively to the number of historical return ob-
servations available, the sample covariance matrix ends up carrying a lot of estimation error.
Moreover, portfolio optimization algorithms require the inverse of this matrix, which amplifies
the estimation error. Besides that, portfolio optimization maximizes the estimation error insofar
as it is based on the more extreme estimated values to give greater or less weight to the assets.
These assets are, in turn, the most likely to have large estimation error.

3.1.2 Shrinkage methods

The method of shrinkage for estimating the covariance matrix takes advantage of the
strengths of the sample covariance matrix while seeks to mitigate its deficiencies, seeking to
balance the trade off between bias and variance. The ideia behind this approach consists in
obtaining a weighted average between the sample covariance matrix, Q̄QQ, and an estimator FFF
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which imposes some structure on the covariance matrix of stock returns:

λ̂FFF +(1− λ̂ )Q̄QQ, λ̂ ∈ (0,1) (3.2)

This is a bayesian approach in which the matrix FFF works as the prior information we
have about the true covariance matrix and λ represents the shrinkage intensity. Since the true
covariance matrix is unobservable, our choice for FFF will, in general, result in a biased estimator
due to misspecification. But, provided FFF involves only a small number of free parameters, it will
be less variable than the sample covariance matrix, and the resulting shrinkage estimator will
be relatively more efficient. It will also be invertible and well conditioned, which means that
inverting it does not amplify estimation error.

In this paper, we use the following priors considered by Olivier Ledoit and Wolf (2003),
Olivier Ledoit and Wolf (2004a), and Olivier Ledoit and Wolf (2004b):

a) the one factor model of William F. Sharpe (1963), where the factor is equal to the cross-
sectional average of all the random variables. Henceforth;

b) the identity matrix;

c) a constant correlation matrix based on the assumption that all the pairwise correlations
are identical and equal to the average of all the sample correlations, and that the variances
are equal to the sample variances. Let QQQ = (qi j) denote the sample covariance matrix.
The sample correlations between the returns on stocks i and j are given by ri j = qi j ·(√qiiq j j

)−1 and its average is given by r̄ = 2((N−1)N)−1
∑

N−1
i=1 ∑

N
j=i+1 ri j. The constant

correlation matrix FFF = ( fi j) is defined by means of the sample variances and the average
sample correlation:

fii = qii and fi j = r̄
√

qiiq j j. (3.3)

Henceforth, we will refer to these models as shrinkage-1fac, shrinkage-I and shrinkage-
CC, respectively. The optimal weight λ̂ in Eq. 3.2 is estimated as in Olivier Ledoit and Wolf
(2003).

3.1.3 DCC-GARCH

The generalized autoregressive conditional heteroskedastic (GARCH) models of Boller-
slev (1986) treat volatility as a time-dependent, persistent process. These models also account
for frequently observed characteristics of financial returns series such as volatility clustering and
leptokurticity of the marginal distributions.
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In this paper, we assume an ARMA(1,1)-GARCH(1,1) specification for each of the series
of stock returns, yi,t , i = 1, . . . ,N, which we define by

yi,t−µi,t = εi,t = h
1/2
i,t zi,t (3.4)

µi,t = µi +φiyi,t−1 +θiεi,t−1 (3.5)

hi,t = ωG,i +αG,iε
2
i,t−1 +βG,ihi,t−1 (3.6)

ωG,i > 0,αG,i,βG,i ≥ 0

where µi,t and hi,t are the conditional mean and variance of yi,t , and we assume that zi,t is
independent and identically skewed Student’s t distributed, that is, zi,t ∼ skew t(γi,νi), where γi

represents the shape parameter and νi represents degrees of freedom.
Numerous different specifications have been proposed1 to generalize univariate GARCH

models to the multivariate domain (thus obtaining an estimator for the covariance matrix). In
this article, we use the Dynamic Conditional Correlation (DCC) model of R. Engle (2002a) and
R. F. Engle and Sheppard (2001). In this specification, univariate ARMA-GARCH models are
estimated for each of the return series, and then, standardized residuals resulting from the first
step are used to construct a time varying correlation matrix with a GARCH-like dynamic.

Consider the vector yyyt of financial returns and the vector µµµ t of conditional expectations
of yyyt given the information set IIIt−1. We can write:

yyyt |IIIt−1 = µµµ t + εεε t (3.7)

εεε t = HHH
1/2
t zzzt (3.8)

where εεε t is the vector of residuals of the process, zzzt is an i.i.d. random vector with E(zzzt) = 0
and Var(zzzt) = IIIN (the identity matrix of order N) and HHH

1/2
t is an N×N positive definite matrix

such that HHHt is the conditional covariance matrix of yyyt . Following Ghalanos (2015b), given the
information set IIIt−1, HHHt may be defined as:

Var(yyyt |IIIt−1) =Vart−1(yyyt) =Vart−1(εεε t) (3.9)

= HHH
1/2
t Vart−1(zzzt)

(
HHH

1/2
t

)′
(3.10)

= HHHt . (3.11)

The DCC model makes use of the decomposition of the covariance matrix, HHHt , into
standard deviations and correlations, so that the univariate and multivariate dynamics may be
separated, easing the estimating process:

HHHt ≡ DDDtRRRtDDDt (3.12)

1 Literature reviews of multivariate GARCH models can be found in Bauwens, Laurent and Rombouts (2006) and
Silvennoinen and Teräsvirta (2009).
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where DDDt = diag(
√

h11,t , . . . ,
√

hNN,t),
√

hii,t are the conditional standard deviations from the
univariate ARMA-GARCH models, and RRRt is the time varying correlation matrix. The dynamic
correlation structure is:

QQQt = (1−α−β )Q̄QQ+α(zzzt−1zzz′t−1)+βQQQt−1 (3.13)

α,β ≥ 0, α +β < 1

RRRt = (IIIN�QQQt)
−1/2QQQt(IIIN�QQQt)

−1/2 (3.14)

where Q̄QQ is the unconditional covariance of the standardized residuals, zzzt , IIIN is the identity matrix
of order N and � denotes the elementwise product of two conformable matrices. The typical
element of RRRt will be of the form

ri j,t =
qi j,t√qii,tq j j,t

. (3.15)

The DCC model allows for two stage quasi maximum likelihood (QML) estimation. We
assume that the assets returns are conditionally multivariate Student t distributed. So, in the first
stage, conditional variances are estimated through univariate ARMA-GARCH models together
with the shape parameter. Then, the conditional correlation parameters are estimated using the
standardized residuals resulting from the first step. We also use the DCC specification to estimate
covariance matrices based on high-frequency data. In this case, the conditional variances of the
first stage are estimated through the models presented in section 3.2.

3.2 COVARIANCE MATRIX ESTIMATION AND PREDICTION WITH INTRA-DAILY
RETURNS

Squared daily innovations are a widely used proxy for the unobserved variance but,
although not biased, they may yield very noisy estimates and they may offer a weak signal on
the current level of volatility. The implication is that models based solely on these proxies, as the
GARCH models, are poorly suited for situations where volatility changes rapidly to a new level.

An alternative approach is to use realized measures built from high frequency data.
Realized measures are estimators of asset price quadratic variation that have proven to be more
precise compared to squared returns (see T. G. Andersen and Bollerslev (1998)). The most
commonly used realized measure is the realized variance, computed as the sum of squared
intradaily returns.

In theory, as the sampling frequency increases from daily to an infinitesimal interval,
this measure converges to a genuine measurement of the latent volatility factor. In practice,
employing very high sample frequencies is hampered not only by data limitations, but also
because market microstructure effects induces serial autocorrelation in the observed returns,
which biases the realized variance estimate. For this reason, the price process is often sampled
sparsely in order to find a balance between increased accuracy and bias (a popular choice being
5-minute sampling).
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Several robust estimators were proposed as a way of mitigating the effects of microstruc-
ture noise from very high frequency sampling and/or to improve efficiency of relatively sparse-
sampled estimators. Among them, the subsample and average estimator suggested by Zhang,
Mykland and Ait-Sahalia (2005) is based on splitting the full grid of observations within a day
into K sub-grids, calculating a realized measure for each of the sub-grids, and finally averaging
the estimators derived from the sub-grids.

Suppose that the intradaily log returns are sampled every ∆ minutes. If we are interested
in computing the realized variance using a lower sampling frequency, say, K∆ minutes, we may
split our original sample into K non-overlapping sub-grids of size m: yyyi,t = (yi,t,(k−1+ jK)),k =

1, . . . ,K, j = 0, . . . ,m. The method of Zhang, Mykland and Ait-Sahalia (2005) consists of calcu-
lating the realized volatility for each of the sub-grids:

RV k
t =

m

∑
j=1

y2
i,t,(k−1+ jK), k = 1, . . . ,K, (3.16)

and then taking the average of those K estimators:

RV avg
t =

1
K

K

∑
k=1

RV k
t (3.17)

The increasing availability of intradaily data has given rise to research dedicated to pre-
dicting volatility through time-series models of daily realized variance. A strand of the literature
focuses on incorporating the rich information present in these kind of data into a GARCH model-
ing framework, performing a joint modeling of daily returns and realized measures. Examples of
such models in the univariate case are the GARCH-X of R. Engle (2002b), the High-Frequency-
Based Volatility (HEAVY) model of Shephard and Sheppard (2010) and the Realized GARCH
of Hansen, Huang and Shek (2012).

In the following sections, we present an overview of these models. They are brought to a
multivariate framework via the DCC model. This choice is due to its parsimony in relation to
the number of parameters that need to be estimated, which allow for relatively easy estimation
of high dimensional covariance matrices and also allow for easy interpretation of the model
parameters.

3.2.1 GARCH-X

The GARCH-X refers to a model similar to the standard GARCH, but the equation for
the conditional variance includes an exogenous variable xt , which can be a realized measure, for
instance the lagged realized variance as in R. Engle (2002b). In an ARMA(1,1)-GARCH-X(1,1)
specification we would substitute equation (3.6) for:

hi,t = ωX ,i +αX ,iε
2
t−1 +βX ,ihi,t−1 + γX ,ixi,t−1 (3.18)

ωX ,i > 0,αX ,i,βX ,i,γX ,i ≥ 0



14

Within the GARCH-X framework, no effort is paid to explain the variation in the realized
measure, so these models are referred by Hansen, Huang and Shek (2012) as partial models
that have nothing to say about returns and volatility beyond a single period into the future. The
parameters of this model are estimated by means of the maximum likelihood estimator.

3.2.2 HEAVY

The HEAVY models, proposed by Shephard and Sheppard (2010), are made up of a
system with two equations. In its most basic linear specification, the model can be represented as
(in addition to equations (3.4) and (3.5)):

Var(yi,t |F HF
t−1) = hi,t = ω1,i +β1,ihi,t−1 + γ1,ixi,t−1, (3.19)

ω1,i,γ1,i ≥ 0, β1,i ∈ [0,1)

E(xi,t |F HF
t−1) = χi, t = ω2,i +β2,iχi,t−1 + γ2,ixi,t−1, (3.20)

ω2,i,β2,i,γ2,i ≥ 0, β2,i + γ2,i ∈ [0,1)

where F HF
t−1 denote the information set generated by high frequency data up to time t−1.

equation (3.19) models the close-to-close conditional variance, while 3.20 models the
conditional expectation of the open-to-close variation. These equations could be extended to
include the variable ε2

t−1, in such a way that the equation for the conditional variance would be
the same as in the GARCH-X model. Despite of this, the authors found the coefficients on these
variables to be non statistically significant in most cases.

The inclusion of equation (3.20) allows for multistep-ahead forecasting. For one-step
ahead forecasts of volatility, we only need equation (3.19). The models also allow for both mean
reversion and momentum effects, and they adjust quickly to structural breaks in the level of the
volatility process. The estimation of each of the equations is performed separately by means of
quasi-likelihood. This is convenient, as existing GARCH type code can simply be used in this
context.

3.2.3 Realized GARCH

The Realized GARCH model of Hansen, Huang and Shek (2012) is close in structure
to the HEAVY model, but it treats the dynamics of the realized measure differently. While the
HEAVY model postulates GARCH-type dynamics for both the conditional variance and the
realized measure, the Realized GARCH model relates the realized measure to the latent volatility
and includes asymmetric reaction to shocks.

The Realized GARCH model in a simple log-linear specification of order (1,1) is given
by (in addition to equations (3.4) and (3.5)):

loghi,t = ωR,i +βR,i loghi,t−1 + γR,i logxi,t−1, (3.21)

logxi,t = ξi +φi loghi,t + τ(zi,t)+ui,t (3.22)
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where hi,t is the conditional variance of asset i returns, xi,t is a realized measure of volatility, zi,t

is independent and identically skewed Student’s t distributed and ui,t ∼ i.i.d (0, σ2
u,i), with zi,t and

ui,t being mutually independent. The leverage effect is captured by the τ(·) function. A simple
yet versatile specification for this function is

τ(zi,t) = τ1,izi,t + τ2,i(z2
i,t−1). (3.23)

Equation (3.22) provides a simple way to model the joint dependence between yi,t and xi,t

through the presence of zi,t . A logarithmic specification for this equation seems natural because
equation (3.4) implies that logy2

i,t = loghi,t + logz2
i,t and a realized measure is in many ways

similar to the squared return, y2
i,t , albeit a more accurate measure of ht . A logarithmic form for

3.4 makes it convenient to specify the GARCH equation with a logarithmic form, because this
induces a convenient ARMA structure. Besides that, an obvious advantage of using a logarithmic
specification is that it automatically ensures a positive variance. The parameters are estimated by
means of quasi maximum likelihood.
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4 EMPIRICAL LITERATURE REVIEW

This section reviews previous findings of empirical applications comparing the use of
daily and intradaily data in asset allocation problems. Fleming, Kirby and Ostdiek (2003) pioneer
the analysis of the potential benefits of incorporating intradaily data in the context of portfolio
allocation. In their study, conditional covariance matrices using rolling estimators of the form
analyzed by Foster and Nelson (1996) and Andreou and Ghysels (2002) are constructed using 5-
minute and daily returns on S&P500 index, treasury bonds and gold. These two sets of estimates
are used in a volatility-timing strategy for portfolio optimization with daily rebalancing and the
authors find that a mean-variance efficient investor would be willing to pay 50 to 200 basis points
per annum for being able to use daily covariance matrix forecasts based on intradaily instead of
daily returns.

A different focus is used by Pooter, Martens and Dijk (2008): the authors are concerned
with determining the optimal sampling frequency as judged by the performance of the corre-
sponding portfolios. The portfolios’ weights are determined based on forecasts of the daily
conditional covariance matrix constructed using the realized covariance matrix with the sampling
frequency of intradaily returns ranging from 1 to 130 minutes. They find that, for global minimum
risk portfolios, the optimal sampling frequency for the S&P100 constituents ranges between 30
and 65 minutes. They also conclude that selecting the appropriate sampling frequency appears to
be much more important than choosing between different bias and variance reduction techniques
for the realized covariance matrices.

A question that motivates the study of Q. Liu (2009) is how and when one can benefit
from using high frequency data in what it comes to portfolio optimization. Using the framework
of a professional investment manager who wishes to track the S&P 500 with the 30 Dow
Jones Industrial Average stocks, the author finds that the benefits depend upon the rebalancing
frequency and estimation window. If the portfolio is rebalanced monthly and the manager has
access to at least the previous 12 months of data, daily returns have the potential to perform as
well as high frequency data. However, if the manager rebalances daily or has less than a 6-month
estimation window, intradaily returns perform better. The analysis is based on forecasts of the
conditional covariance matrix based on 5-minute and daily returns.

An empirical application of much higher dimension was presented by Hautsch, Lada M.
Kyj and Malec (2015). The authors construct global minimum variance portfolios based on the
400 constituents of the S&P500 with the longest continuous trading history during the sample
period between January 2006 and December 2009. High frequency based covariance matrix
predictions are obtained by applying a blocked realized kernel estimator as in Hautsch, Lada M
Kyj and Oomen (2012) with different smoothing windows, various regularization methods and
two forecasting models. They use the highest frequency possible for the returns and find that
high frequency based predictions yield a significantly lower portfolio volatility than methods
employing daily returns, as multivariate GARCH, rolling-window sample covariance matrix and
RiskMetrics approaches.
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Studies dealing with high frequency data for the Brazilian stock market are scarce in the
literature - a survey can be found in Perlin and Ramos (2016). Even scarcer are applications
in volatility or in portfolio selection and, as far as we concern, none analyzed the performance
of GARCH-type models that carry out the joint modeling of returns and realized measures in
portfolio allocation. Garcia, Medeiros and F. E. d. L. e. A. d. Santos (2014) evaluate the economic
gains from mean-variance portfolio optimization based on a covariance matrix estimated by
means of a multivariate version of the HAR-RV model. Their database encompassed the twenty
most liquid stocks from BM&FBOVESPA and covered the period from February 2006 to
January 2011. They find that economic gains are attained when using a high target return (15% -
17.5%), unconditional mean is used as reference for expected returns through the whole sample
(controlling for estimation risk) and no restriction to short selling is imposed. Borges, J. Caldeira
and Ziegelmann (2015) perform an application similar to that in Q. Liu (2009) and Pooter,
Martens and Dijk (2008), but they estimate additional models for the covariance matrix (both
with daily and intradaily data) as the scalar variance targeting VECH and the Multivariate
Realized Kernel of Barndorff-Nielsen, Hansen, et al. (2011), and they focus on the Brazilian
stock market, using the 30 most liquid stocks traded on BM&FBOVESPA in the period from
February 2009 to December 2011. Their results point to a superior performance of the scalar
vt-VECH model based on high frequency data in terms of lower portfolio risk and turnover and
higher Sharpe ratio. More specifically, returns sampled each 5 minutes generated portfolios with
lower turnovers while returns sampled each 90 and 120 minutes generated portfolios with lower
risk and higher Sharpe ratios. Besides that, as in Pooter, Martens and Dijk (2008), using an
appropriate sampling frequency seemed to be more relevant than using models which are robust
to microstructure effects. Akin to this study is J. F. Caldeira et al. (2017), who find that the 5-min
sampling interval seems to be more appropriate to generate portfolios with lower portfolio risk
and turnover.
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5 BACKTESTING STUDY

This chapter details our empirical application. Section 5.1 describes the construction of
our dataset. Section 5.2 explains how the portfolio optimization process is performed using a
moving window. Section 5.3 presents the metrics used to compare portfolios performances and
finally section 5.4 presents the results of our study.

5.1 DATA AND CLEANING

In our empirical analysis we have used high frequency data on transaction prices for
assets listed on the BM&FBOVESPA - securities, commodities and futures exchange. The
sample period ran from December 18, 2009 to February 17, 2017, delivering 1761 distinct days.

We have used functions from the “GetHFData” R package by Perlin and Ramos (2016)
in different stages of the data cleaning process. In the first step, we discarded any record with
a timestamp outside the regular marketing opening hours. Throughout our sample, the official
BM&FBOVESPA trading day have changed ten times, being the opening time at 10 a.m. or at
11 a.m. and the closing time between 16:55 and 17:55. On holy Wednesday the stock exchange
operates half day. Those days were discarded in order to avoid outliers. The same was done on
dates in which there were delays due to technical failure or matches of the Brazil national team
in the 2014 FIFA World Cup, resulting in the elimination of 13 observations. Canceled trades
were also deleted.

In order to construct homogeneous time series from the raw data, prices were sampled
every 1, 5 and 10 minutes using the last tick approach, which means that we set up a time grid
and selected the last tick within each interval. This resulted in 422, 84 and 43 daily observations
for the 1, 5 and 10 minute frequency respectively, on average, since it depended on the length of
the trading day. If the time grid was empty, we used the previous point interpolation, as proposed
by Dacorogna et al. (2001).

From the available assets, we selected those 41 that had non-zero returns in more than
eighty percent of the time intervals at a sampling frequency of 5 minutes. The ticker symbols,
names and sector for each of the assets are provided in the appendix (table A.1).

We adjusted our historical price data to remove gaps caused by stock splits and reverse
stock splits in order to prevent misleading signals. Other adjustments were made to remove
smaller gaps caused by different types of corporate actions, such as dividends, bonus issues of
shares, rights issues of shares, interest on equity and spinoffs. Such adjustments ensure that all
the resulting price movements are caused solely by market forces.

Based on the cleaned and adjusted prices data, we computed daily realized variances with
subsampling as outlined in section 3.2. We used 5 minutes and 10 minutes returns subsampled
at 1 minute frequency. The daily closing price was used to compute squared close to close log
returns. They were not part of our intradaily data series, since they are defined by an auction,
after the regular trading hours.
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As mentioned earlier, when realized variance is implemented in practice, the price process
is often sampled sparsely to strike a balance between increased accuracy from using higher
frequency data and the adverse effects of microstructure noise (L. Y. LIU; PATTON; SHEPPARD,
2015). Beyond this reason, our choice of sampling frequency is related to the liquidity level of
the shares listed in BM&FBOVESPA. Table 1 shows that, at one minute frequency, no stock has
more than 80 percent of non-zero returns. At 5 minutes frequency this amount increases to 41
assets and, at the 10 minutes frequency, the number of stocks increases to 60.

Table 1 – Number of stocks listed at BM&BOVESPA with 50% to 90% of non-zero returns for different sampling
frequencies

Non-zero returns 1 minute 5 minutes 10 minutes

50 % 58 109 124
60 % 35 86 105
70 % 12 64 85
80 % 0 41 60
90 % 0 3 20

Source: Own elaboration from research data (2018).
Note: The total number of stocks traded in the sample period was 1,635.

Tables A.2 and A.3 provide summary statistics (mean, minimum, maximum, standard
deviation, skewness and excess kurtosis) for the daily - close-to-close - and intradaily - open-to-
close - returns. They indicate that the assets reproduce stylized facts in the financial time series
literature, such as average return near zero and heavy tails.

5.2 SETUP

The objective of our empirical application is to study the out-of-sample perfomance of
global minimum variance portfolios constructed from a handful of covariance matrix estimation
methods and to assess their sensitivity with respect to the use of high frequency data. For this
purpose, we split our original sample into in-sample and out-of sample period. The former
consisted of approximately 5 years of data (1,254 days), starting on December 21, 2009, and the
latter consisted of approximately 2 years of data (506 days), starting on February 2, 2015 and
ending on February 17, 2017.

Using the first five years of data, we estimated the covariance matrix and obtained one-
step-ahead forecasts according to each of the methodologies described in sections 3.1 and 3.2.
We then solved the portfolio optimization problem described in section 1 by plugging in eq. (2.1)
each of the forecasted covariance matrices, thus obtaining a set of optimal weights corresponding
to each of the discussed methods. Finally, we repeated this process rolling the estimation window
1 day ahead until the end of the data set was reached. By the end of this process, we had 506
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out-of-sample observations for each portfolio, which were used for the purpose of performance
evaluation. In addition to the optimal portfolios, we also computed the equally weighted, or
naive, or even “1/N” portfolio, which assign equal weights for all assets. In an universe of N
assets, each one would be assigned with a weight equal to ωi = 1/N ∀ i.

The backtest was carried out with daily, weekly and monthly rebalancing frequency.
Initially, we only applied the “full-investment” and the “long-only” constraints to the optimization
problem. In section 5.6 we conduct some robustness checks, adding box constraints on the optimal
vector of weights.

The analysis was performed through software R. To calculate realized measures, we
used the “highfrequency” package by Boudt, Cornelissen and Payseur (2014). To estimate and
forecast covariance matrices, we used the “RiskPortfolios” and the “rmgarch” packages by Ardia,
Boudt and Gagnon-Fleury (2017) and Ghalanos (2015a), respectively. For portfolio optimization,
we used the “PortfolioAnalytics” package by B. G. Peterson and Carl (2015). Finally, for
performance evaluation and inference, we used “PerformanceAnalytics” and “PeerPerformance”
packages by B. G. Peterson and Carl (2014) and Ardia and Boudt (2017), respectively.

5.3 PERFORMANCE EVALUATION

The economic evaluation of covariance forecasts was made by means of the out-of-sample
performance of the portfolios formed using these forecasts as input. Once we get the optimal
portfolio weights through time, we can multiply them by the stocks’ returns in order to obtain
the time series of portfolio returns: yp

t+1 = ∑
N
i=1 ωi,tyi,t+1. Letting T denote the sample size and τ

the size of the estimation window, then T − τ will be the size of out-of-sample data. For each of
the optimal portfolios, annualized average returns and standard deviation, Sharpe ratio, modified
Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) and average turnover were computed.
Below we present these measures in some detail.

5.3.1 Annualized average return

According to the equation below, we calculate the geometric average of daily portfolio
returns, yp

t , over the out-of-sample period, T − τ , and we adopt the business/252 day count
convention is to scale the average return to an anual basis.

µ̂
p
ann =

(
T

∏
t=τ+1

(
1+ yp

t
)) 252

T−τ

−1. (5.1)
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5.3.2 Annualized standard deviation

The annualized standard deviation is computed as

σ̂
p
ann =

√
∑

T
t=τ+1

(
yp

t − µ̂ p
)2

T − τ−1
·
√

252 (5.2)

where µ̂ p denotes the unconditional mean of daily portfolio returns, yp
t , along the out-of-sample

period, T − τ .

5.3.3 Sharpe ratio

The Sharpe ratio (William F SHARPE, 1966) represents the risk/reward tradeoff of a
portfolio and it is useful to compare portfolios with different returns and levels of risk. It can be
described as the return per unit of risk:

SR =
µ̂ p

σ̂ p (5.3)

We use the method of Oliver Ledoit and Wolf (2008) to test the null hypothesis of equal
Sharpe ratios between each of the GMV portfolios and the market portfolio (Ibovespa). The
method is based on constructing a two-sided bootstrap confidence interval with confidence level
1−α for the difference between two Sharpe ratios. If this interval does not contain zero, then
the null hypothesis is rejected at the significance level α . To generate bootstrap data, we use
the studentized circular block bootstrap of Politis and Romano (1992), resampling 1000 times
blocks of 5 pairs of Sharpe ratios.

5.3.4 Maximum drawdown

Any time the cumulative returns fall below its maximum, it is a drawdown. The maximum
drawdown is the worst cumulative loss ever sustained by the portfolio. It is measured as a
percentage of the maximum cumulative return:

(Peak value - Trough value)
Peak value

(5.4)

5.3.5 Value-at-Risk and Conditional Value-at-Risk

VaR and CVaR (also known as Expected Shortfall (ES) or Expected Tail Loss (ETL)) are
industry standards for measuring downside risk. VaR is the negative value of the portfolio return
such that lower returns will only occur with at most a probability level α (which we choose to be
1%):

VaRα(X) = min{z|FX(z)≥ α} for α ∈]0,1[ (5.5)

A variety of estimation methods were proposed in the literature, such as those based
on Monte Carlo Simulation, the empirical or the Gaussian distribution function. If a normal
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distribution is assumed for the returns, then the VaR can be computed as:

VaRα =−µ−σΦ
−1(α) (5.6)

where Φ−1(·) is the quantile function of the standard normal distribution. We follow Zangari
(1996), who proposed a parametric method for VaR estimation that corrects the Gaussian VaR
for skewness and excess kurtosis in the return series. It relies on adjusting the Gaussian quantile
function for higher moments using the Cornish-Fisher expansion (CORNISH; FISHER, 1938):

mVaRα =VaRα −σ

(
(q2

α −1)S
6

+
(q3

α −3qα)K
24

− (2q3
α −5qα)S2

36

)
(5.7)

where S denotes skewness, K denotes excess kurtosis and qα denotes the quantile of a standard
normal random variable with level α . In the case of a normally distributed random variable,
mVaRα =VaRα .

The CVaR attempts to measure the magnitude of the average loss exceeding the VaR. For
α ∈]0,1[ :

CVaRα(X) =
∫ +∞

−∞

zdFα
X (z) (5.8)

Fα
X (z) =

{
0 when z <VaRα(X)
FX (z)−α

1−α
when z≥VaRα(X)

(5.9)

We follow Boudt, B. Peterson and Croux (2008), who derived a definition for modified
CVaR that, like modified VaR, uses asymptotic expansions to adjust the Gaussian distribution
function for the non-normality in the observed return series.

5.3.6 Turnover

The turnover can be interpreted as the average percentage of wealth traded on each period.
The average turnover is measured as:

TO =
1

T − τ−1

T−1

∑
t=τ

N

∑
i=1

(|ωi,t+1−ωi,t+|) (5.10)

where ωi,t+1 are the weights after rebalancing and ωi,t+ are the weights just before rebalancing.
The turnover may be considered as a proxy for portfolio transaction costs. Each time the

portfolio is rebalanced, i.e., shares are traded, there are costs such as brokerage, emoluments,
taxation and bid-ask spread. In this study, we assume that the costs are proportional to the amount
traded. The portfolio return net of transaction costs on time t is calculated as:

yp,net
t = (1− c · turnovert)(1+ yp

t )−1 (5.11)

where c is the proportional fee. In order to assess the impact of transaction costs on the perfor-
mance of the optimal portfolios, we consider four alternative scenarios for the value of c: 0, 15,
30 and 45 basis points (bp). It is close to the scenarios of 0, 20 and 50 basis points as defined in
Ferreira and A. A. P. Santos (2017).
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5.4 RESULTS

Table 3 reports the out-of-sample performance of global minimum variance portfolios
constructed from the covariance matrix estimation and forecasting methods presented in sections
3.1 and 3.2 for daily, weekly and monthly rebalancing frequencies. The “full-investment” and
“long-only” constraints were applied to these portfolios, which means the weights could range
from zero to one. For the sake of comparison, table 3 reports also the performance of the Ibovespa
index, which is designed to gauge the stock market’s average performance tracking changes
in the prices of the more actively traded and better representative stocks of the Brazilian stock
market.

Table 3 – Out-of-sample performance of global minimum variance portfolios with 0 < wi,t < 1

(continues)

µ̂
p
ann σ̂

p
ann SR MD VaR CVaR TO

Ibovespa 16.09% 24.61% 0.0459 36.66% -3.57% -4.41% -

Daily rebalancing

Naive 17.70% 25.68% 0.0480 42.13% -3.78% -4.70% 1.67%
SCM 1.95% 17.52% 0.0125 25.23% -2.59% -3.08% 1.65%
Shrinkage-1fac 1.95% 17.52% 0.0125 25.01% -2.59% -3.08% 1.65%
Shrinkage-I 2.03% 17.52% 0.0127 25.31% -2.60% -3.09% 1.66%
Shrinkage-CC 1.80% 17.57% 0.0119 25.42% -2.60% -3.09% 1.64%
GARCH 13.69% 15.45% 0.0572 19.11% -2.43% -3.35% 15.14%
R-GARCH 5m 8.07% 15.13% 0.0371 21.19% -2.37% -3.16% 19.92%
R-GARCH 10m 7.10% 15.23% 0.0332 22.58% -2.40% -3.22% 21.28%
GARCH-X 5m 2.50% 15.91% 0.0148 29.20% -2.59% -3.54% 24.93%
GARCH-X 10m 5.53% 15.95% 0.0263 28.35% -2.60% -3.55% 23.89%
HEAVY 5m 3.83% 16.08% 0.0198 26.63% -2.62% -3.46% 34.26%
HEAVY 10m 4.57% 16.14% 0.0225 23.75% -2.63% -3.47% 34.49%

Weekly rebalancing

Naive 17.69% 25.69% 0.0480 42.28% -3.76% -4.65% 0.76%
SCM 1.80% 17.47% 0.0119 25.58% -2.59% -3.07% 0.78%
Shrinkage-1fac 1.82% 17.47% 0.0120 25.37% -2.59% -3.07% 0.78%
Shrinkage-I 1.85% 17.47% 0.0121 25.67% -2.59% -3.08% 0.79%
Shrinkage-CC 1.64% 17.53% 0.0114 25.78% -2.60% -3.08% 0.78%
GARCH 12.16% 15.50% 0.0515 19.40% -2.34% -3.07% 7.62%
R-GARCH 5m 4.83% 15.40% 0.0241 22.26% -2.41% -3.12% 7.74%
R-GARCH 10m 3.04% 15.62% 0.0170 23.17% -2.52% -3.33% 8.53%
GARCH-X 5m 2.75% 16.15% 0.0157 28.16% -2.62% -3.60% 10.07%
GARCH-X 10m 4.15% 16.17% 0.0209 28.33% -2.58% -3.62% 9.70%
HEAVY 5m 4.48% 15.84% 0.0224 25.40% -2.48% -3.18% 7.39%
HEAVY 10m 3.20% 15.90% 0.0175 23.48% -2.54% -3.30% 8.39%

Monthly rebalancing

Naive 18.17% 25.91% 0.0480 42.21% -3.87% -4.93% 0.38%
SCM 1.75% 17.58% 0.0118 25.87% -2.60% -3.10% 0.38%
Shrinkage-1fac 1.76% 17.58% 0.0118 25.67% -2.60% -3.09% 0.37%
Shrinkage-I 1.80% 17.58% 0.0119 25.97% -2.61% -3.10% 0.38%
Shrinkage-CC 1.57% 17.64% 0.0111 26.08% -2.61% -3.11% 0.37%
GARCH 7.22% 15.74% 0.0329 26.54% -2.43% -3.09% 2.97%
R-GARCH 5m 3.87% 15.65% 0.0202 23.95% -2.43% -3.07% 2.87%
R-GARCH 10m 2.30% 15.73% 0.0140 24.16% -2.48% -3.18% 3.04%
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Table 3 – Out-of-sample performance of global minimum variance portfolios with 0 < wi,t < 1

(conclusion)

µ̂
p
ann σ̂

p
ann SR MD VaR CVaR TO

GARCH-X 5m 3.97% 16.66% 0.0199 32.09% -2.81% -3.97% 3.53%
GARCH-X 10m 5.76% 16.51% 0.0266 30.57% -2.72% -3.89% 3.40%
HEAVY 5m 5.24% 16.01% 0.0251 25.12% -2.49% -3.19% 2.46%
HEAVY 10m 5.39% 16.37% 0.0253 22.17% -2.66% -3.39% 2.76%
Source: Own elaboration from research data (2018).
Notes: This table reports the out-of-sample performance of global minimum variance portfolios whose weights were
submitted to the constraint 0 < ωi,t < 1. It refers to the period from 02-02-2015 to 02-17-2017. The rows report the
results for different estimators of the covariance matrix. R-GARCH refers to the Realized GARCH model. The
expression 5m or 10m next to the model name indicates the sample frequency of the intradaily returns. The columns
report different performance measures: µ̂

p
ann represents annualized returns, σ̂

p
ann are the annualized volatilities,

SR are the Sharpe ratios, MD are the maximum drawdowns, VaR and CVaR were calculated with a confidence
interval of 99% and TO are the turnovers. All these measures were calculated as in section 5.3. Transaction costs
are assumed to be zero.

All of the portfolios optimized in this study had the common objective of minimization
of risk, measured by the standard deviation of returns. Therefore, it is natural to start the
performance analysis by risk measures. For all rebalancing frequencies the lowest levels of
annualized volatility were achieved by the portfolios based on the Realized GARCH model, in
special when we used 5-minute sampling frequency for the realized measure (15.13%, 15.4%
and 15.65% for daily, weekly and monthly rebalancing, respectively). The second best model for
covariance matrix forecast was the DCC-GARCH (15.45%, 15.5% and 15.74%), followed by the
remainder conditional variance models based on high frequency data (16.02% on average) and
then by the static covariance matrix specifications (17.53% on average). Nevertheless, the results
are pretty similar. The equally weighted and the market portfolios stand out with a volatility
level of around 7 to 10 percentage points higher. These results are similar to those of Borges,
J. Caldeira and Ziegelmann (2015): the lowest standard deviation was achieved by a portfolio
based on high-frequency data, however, some of the portfolios based on realized measures were
outperformed by those based on daily data. This suggests that the results depend on the estimator
of the covariance matrix and the intraday frequency used.

In terms of maximum drawdown, for daily and weekly rebalancing the smallest fall
occurred for the portfolio based on the GARCH model (19.11% and 19.4%), followed by the
Realized GARCH (from 21.19% to 23.17%) and by the HEAVY model with 10-minute sampling
frequency of returns (23.75 and 23.48%). For monthly rebalancing, the best performers were the
HEAVY (22.17% and 25.12%) and Realized GARCH models (23.95% and 24.16%). The naive
and the market portfolio had the worst performances in all rebalancing frequencies, with falls
about twice as large as those os the best performers.

Regarding the VaR measure, when the portfolios are rebalanced daily, the Realized
GARCH model with returns sampled every 5 minutes presents the lowest worst expected loss
with 1% chance (-2.37%). For weekly rebalancing frequency, it is surpassed by the DCC-GARCH
and, finally, for the monthly rebalancing frequency, both display the same VaR. Except for the
market and equally weighted portfolios - which present the highest VaR, in the order of -3.57%
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to -3.87% - the difference between the results for the rest of models never exceeds 0.4 percentage
points.

Regarding the CVaR measure, when the frequency of rebalancing is monthly, the Realized
GARCH with returns sampled every 5 minutes generates the portfolio with the lowest expected
average loss exceeding the VaR (-3.07%). Nevertheless, for daily and weekly rebalancing,
portfolios based on static covariance matrix specifications are the best performers, together with
the DCC-GARCH for weekly rebalancing.

When an investor subjects his capital to risk, it is because he or she expects to be rewarded
with higher returns. Therefore, we continue to analyze the portfolios performances by evaluating
the gross returns and the returns adjusted to the risk. We can observe that the portfolios with the
highest annualized gross returns are also those whose returns are the most volatile: the equally
weighted and the market portfolios. For the monthly frequency, the average return of the naive
portfolio is more than twice as high (18.17%) as the portfolio based on DCC-GARCH model
(7.22%). Still, the DCC-GARCH presents the third highest annualized return and, since its returns
are among those with the lowest standard deviation, it is the model with the highest Sharpe
ratio for the daily (0.0572) and weekly (0.0515) rebalancing frequencies. All portfolios based
on high frequency data achieve higher annualized returns and lower volatility when compared
to portfolios based on static covariance matrices specification, so that their Sharpe ratios are
higher. But even so, they are not able to outperform the portfolio based on DCC-GARCH and
the equally weighted and market portfolios. In fact, we tested the statistical significance of the
differences between Sharpe’s ratios through the bootstrap referred to in section 5.3, and the
p-values indicated that there is no statistically significant difference between the results.

Figure 1 shows cumulative returns over the out-of-sample period for daily and monthly
rebalancing frequencies. For the sake of clarity, we have omitted some data that we consider of
little relevance: (a) the results for weekly rebalancing were similar to those of daily rebalancing;
(b) the portfolios based on SCM and those based on shrinkage methods showed very similar
dynamics and we chose to keep only one of them, which had slightly better perfomance; (c) for
portfolios based on realized measures we present the results only for the sample frequency of
returns that performed better (5-minute or 10-minute). The graphs show that, at the end of the
period, the naive portfolio as well as the market portfolio outperformed the others, displaying
cumulative returns of approximately 16 to 34 percentage points higher than the remainder
portfolios, except for that based on the DCC-GARCH. Despite that, the naive portfolio and
the Ibovespa were among the worst performers in the 9 months between mid-June 2015 and
mid-March 2016. On the other hand, DCC-GARCH performed consistently well throughout
the period when the rebalancing frequencies were daily or weekly. This behavior is related to
the lower volatility of the latter relative to the formers. For the monthly rebalancing frequency,
the cumulative returns of the portfolio based on DCC-GARCH deteriorate, whilst the portfolio
based on the DCC-HEAVY model with returns sampled at 10-minute frequency achieved the
best performance in the one year period between May 2015 and April 2016.
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Figure 1 – Cumulative returns over the out-of-sample period
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Source: Own elaboration from research data (2018).

The choice of a dynamic approach (DCC) instead of a static approach (SCM and shrinkage
methods) for the covariance matrix estimation, regardless of the use of high frequency data,
had a significant impact on the turnover. For daily rebalancing, the static models generated
portfolios with turnover from 1.64% to 1.67%. Among the dynamic models, the lowest turnover
was 15.14% - this result is for the DCC-GARCH. The results for models based on intradaily data
ranges from 19.92%, for the Realized GARCH 5m, to 34.39%, for the HEAVY 10m. Reducing
the rebalancing frequency results in a substantial shrinkage in turnover. For some models, it
cames at the cost of deterioration of portfolio performance in terms of Sharpe ratio, but for others
this actually results in an improvement. For instance, the Sharpe ratio of the DCC-GARCH
undergoes a reduction from 0.052 to 0.0515 and 0.0329 with the successive reductions in the
frequency of rebalancing. The same behavior is verified for the Realized GARCH model. On the
other hand, the Sharpe ratio of the DCC-HEAVY 10m model increases from 0.0198 to 0.0224
and 0.0251, respectively.
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5.5 SHARPE RATIO NET OF TRANSACTION COSTS

So far we have assumed zero transaction costs, but, of course, this hypothesis is not
realistic. Therefore, in this section we analyze the impact of transaction costs on portfolios
performance measured by the Sharpe ratio considering three proportional transaction costs
scenarios: 15, 30 and 45 basis points.

Table 4 shows that for daily rebalancing, all of the portfolios based on high frequency
data are significantly outperformed by the market portfolio when the proportional transaction
costs are 30 bp or greater. For the most conservative scenario (15 bp), GARCH-X with returns
sampled every 5 minutes and the HEAVY model generate Sharpe ratios statistically inferior
than Ibovespa. For the weekly rebalancing frequency with transaction costs of 30 bp or less and
for monthly rebalancing frequency, no covariance matrix estimation model is able to generate
portfolios with Sharpe ratios statistically different from that generated by the market portfolio.

Table 4 – Sharpe ratios based on portfolio returns net of transaction costs of 15, 30 and 45 basis
points (bp)

(continues)

15 bp 30 bp 45 bp

Daily rebalancing

Naive 0.0442 0.0427 0.0411
SCM 0.0090 0.0068 0.0045
Shrinkage-1fac 0.0090 0.0068 0.0045
Shrinkage-I 0.0092 0.0070 0.0047
Shrinkage-CC 0.0084 0.0061 0.0039
GARCH 0.0334 0.0101 −0.0132
R-GARCH 5m 0.0052 −0.0261∗ −0.0575∗∗∗

R-GARCH 10m −0.0006 −0.0339∗∗ −0.0672∗∗∗

GARCH-X 5m −0.0231∗∗ −0.0604∗∗∗ −0.0977∗∗∗

GARCH-X 10m −0.0098 −0.0455∗∗ −0.0812∗∗∗

HEAVY 5m −0.0309∗∗ −0.0815∗∗∗ −0.1319∗∗∗

HEAVY 10m −0.0283∗∗ −0.0790∗∗∗ −0.1294∗∗∗

Weekly rebalancing

Naive 0.0451 0.0443 0.0436
SCM 0.0097 0.0086 0.0075
Shrinkage-1fac 0.0097 0.0087 0.0076
Shrinkage-I 0.0098 0.0087 0.0077
Shrinkage-CC 0.0090 0.0079 0.0069
GARCH 0.0392 0.0275 0.0158
R-GARCH 5m 0.0116 −0.0004 −0.0122
R-GARCH 10m 0.0034 −0.0095 −0.0223∗

GARCH-X 5m 0.0003 −0.0145 −0.0291∗

GARCH-X 10m 0.0062 −0.0080 −0.0221∗

HEAVY 5m 0.0113 0.0003 −0.0108
HEAVY 10m 0.0049 −0.0076 −0.0200∗

Monthly rebalancing

Naive 0.0462 0.0458 0.0455
SCM 0.0101 0.0096 0.009
Shrinkage-1fac 0.0101 0.0096 0.0091
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Table 4 – Sharpe ratios based on portfolio returns net of transaction costs of 15, 30 and 45 basis
points (bp)

(conclusion)

15 bp 30 bp 45 bp

Shrinkage-I 0.0102 0.0097 0.0092
Shrinkage-CC 0.0093 0.0088 0.0083
GARCH 0.0279 0.0234 0.0189
R-GARCH 5m 0.0153 0.0109 0.0065
R-GARCH 10m 0.0089 0.0043 −0.0003
GARCH-X 5m 0.0144 0.0093 0.0043
GARCH-X 10m 0.0212 0.0163 0.0114
HEAVY 5m 0.0215 0.0178 0.0142
HEAVY 10m 0.0214 0.0173 0.0133
Source: Own elaboration from research data (2018).
Notes: The Sharpe ratio for Ibovespa in the same period was 0.044. This value is slightly different from that shown
in table 3 because an observation was lost during the net return calculation. The asterisks indicate that the values are
statistically different from those obtained with the Ibovespa at the significance level of 10% (*), 5% (**) and 1% (*).
R-GARCH stands for the Realized GARCH model.

5.6 PERFORMANCE WITH BOX CONSTRAINTS

A potential problem with the GMV portfolios is that they are likely to be very concentrated
in stocks with low volatility so that the portfolios’ risk is driven by few stocks. Indeed, we found
several occurrences of individual assets with allocations as high as 99% in the optimal vectors
of weights of the various portfolios. Therefore, we repeat the optimization imposing maximum
allocation limits of 10%, 15% and 30% per share and, in this section, we analyze the results.
Tables containing all the results were inserted in the appendix (tables A.4 to A.6).

The analysis of returns reveals that models using high frequency data are more sensitive to
the constraints that restrict allocations to 10% and 15% and they shift positions from one another.
Nevertheless, they keep being outperformed by the naive, market and DCC-GARCH-based
portfolios and, in general, outperforming the portfolios based on constant covariance matrices.

The annualized volatility remains virtually unchanged for models based on static covari-
ance matrices and undergoes a small increase for dynamic ones, especially when the weights are
limited to 10% or 15%, the largest variation being 2 percentage points (from 15.23 to 17.25 for
the model Realized GARCH 10m with daily rebalancing).

The results for Sharpe’s ratios do not change considerably with the imposition of re-
strictions. It should be noted, however, that the equally weighted portfolio outperforms the
DCC-GARCH when we impose a maximum weight of 15% on stocks or when rebalancing
is monthly. However, the difference between Sharpe’s ratios of all models is not statistically
significant at the 5% level.

In terms of maximum drawdown, in general, imposing a restriction does not change the
results found previously, and the magnitude of the falls is little affected, with the exception of
the Realized GARCH 5m model with daily rebalancing. The maximum drawdown suffered by
this model decreases from 21.19% to 14.5% when weights are restricted to a maximum of 15%.
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In most of cases, the Realized GARCH model generates portfolios with the most conser-
vative VaR, revealing a discrete prevalence of this model against the DCC-GARCH for portfolios
with box constraints. The same goes for CVaR, as Realized GARCH generated the lowest
expected average loss over VaR.

The imposition of box constraints, in addition to ensuring greater portfolio diversification,
reduces the turnover of portfolios based on dynamic covariance matrices, especially when a
10% limit on the shares’ weight is imposed. A smaller reduction occurs when a limit of 15%
is imposed. The weight limitation at 30% only causes a reduction in turnover for the HEAVY
model, or when the rebalancing is monthly.
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6 CONCLUSION

The goal of our empirical application was to assess the potential benefits of using high
frequency data for global minimum variance portfolio allocation. We used GARCH-type models
that comprise realized measures for estimating the assets variances and covariances. Prior
research has documented mixed economic results for comparable applications using different
covariance matrix specifications.

Our results suggest that, in general, in the absence of transaction costs, portfolios gener-
ated with daily and intraday data present similar economic performance. Their volatility levels
are very close and there is no statistical difference between their Sharpe ratios.

Considering annualized returns, DCC-GARCH, the naive, and the market portfolios
performed better. On the other hand, the models based on high frequency data presented some
superiority in maximum drawdown, turnover, and cumulative returns over a partial period when
they were compared to DCC-GARCH and the frequency of rebalancing was monthly.

With regard to Sharpe ratio, when transaction costs of 30 basis points or greater were
considered, and the rebalancing frequency was daily, portfolios based on high frequency data
were significantly outperformed by the market portfolio. Some of them were outperformed even
with a transaction cost of 15 basis points. Decreasing the frequency of rebalancing mitigated
the effects of transaction costs, but, at most, generated Sharpe ratios of a statistically similar
magnitude to that of Ibovespa.

The literature on realized measures points out to their potential of generating more accu-
rate measures of volatility. Our results did not suggest significant economic gains for portfolios
that use high frequency data. Some possible explanations may arise from Q. Liu (2009) and
Pooter, Martens and Dijk (2008) and Borges, J. Caldeira and Ziegelmann (2015), as they find
that: (a) the benefits of using high frequency data may be associated with the length of estimation
horizon in the sense that it may be more advantageous to use them when the available data
spans a short period of, say, less than 6 months; (b) selecting the appropriate sampling frequency
appears to be much more important than choosing between different bias and variance reduction
techniques for the realized covariance matrices estimates and, depending on the data, economic
superior performance may result from sampling frequency schemes considerably lower than the
popular 5 minutes.
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APPENDIX A – SUPPLEMENTARY TABLES

Table A.1 – Assets symbol, company and sector

Symbol Company Sector

BBAS3 Banco do Brasil S.A. Financial
BBDC3 Banco Bradesco S.A. Financial
BBDC4 Banco Bradesco S.A. Financial
BOVA11 (Exchange-Traded Fund - ETF)
BRAP4 Bradespar S.A. Basic materials
BRFS3 BRF S.A. Consumer non cyclical
BRKM5 Braskem S.A. Basic materials
BRML3 BR Malls Participações S.A. Financial
BTOW3 B2W - Companhia Digital Consumer cyclical
CCRO3 CCR S.A. Capital goods and services
CESP6 CESP Utilities
CIEL3 Cielo S.A. Financial
CMIG4 CEMIG Utilities
CPFE3 CPFL Energia S.A. Utilities
CPLE6 COPEL Utilities
CSAN3 Cosan S.A. Indústria e Comércio Oil, gas and biofuels
CSMG3 COPASA MG Utilities
CSNA3 Companhia Siderúrgica Nacional Basic materials
CYRE3 Cyrela Brazil Realty S.A. Consumer cyclical
ELET6 Centrais Elétricas Brasileiras S.A. Utilities
EMBR3 Embraer S.A. Capital goods and services
FIBR3 Fibria Celulose S.A. Basic materials
GGBR4 Gerdau S.A. Basic materials
GOAU4 Metalúrgica Gerdau S.A. Basic materials
HGTX3 Cia. Hering Consumer cyclical
HYPE3 Hypermarcas S.A. Consumer non cyclical
ITUB4 Itaú Unibanco Holding S.A. Financial
LAME4 Lojas Americanas S.A. Consumer cyclical
LIGT3 Light S.A. Utilities
LREN3 Lojas Renner S.A. Consumer cyclical
MULT3 Multiplan Empreendimentos Imobiliários S.A. Financial
NATU3 Natura Cosméticos S.A. Consumer non cyclical
PETR3 Petrobras Oil, gas and biofuels
PETR4 Petrobras Oil, gas and biofuels
PSSA3 Porto Seguro S.A. Financial
RENT3 Localiza Rent a Car S.A. Consumer cyclical
SANB11 Banco Santander (Brasil) S.A. Financial
SBSP3 SABESP Utilities
TRPL4 CTEEP Utilities
VALE3 Vale S.A. Basic materials
VALE5 Vale S.A. Basic materials
Source: Own elaboration based on BM&FBOVESPA (n.d.)



36

Ta
bl

e
A

.2
–

Su
m

m
ar

y
st

at
is

tic
s

fo
rt

he
da

ily
cl

os
e-

to
-c

lo
se

re
tu

rn
s

ov
er

th
e

pe
ri

od
D

ec
em

be
r2

1,
20

09
–F

eb
ru

ar
y

17
,2

01
7.

Sy
m

bo
l

M
ea

n
M

ax
M

in
SD

Sk
ew

ne
ss

K
ur

to
si

s
Sy

m
bo

l
M

ea
n

M
ax

M
in

SD
Sk

ew
ne

ss
K

ur
to

si
s

B
B

A
S3

3.
54

E
-0

4
0.

13
43

-0
.2

37
9

0.
02

55
-0

.1
03

5
5.

97
07

FI
B

R
3

-7
.7

2E
-0

5
0.

10
54

-0
.1

12
8

0.
02

44
-0

.0
11

2
1.

03
77

B
B

D
C

3
4.

61
E

-0
4

0.
11

41
-0

.0
93

6
0.

01
92

0.
14

91
2.

18
95

G
G

B
R

4
-3

.5
4E

-0
4

0.
14

92
-0

.1
23

7
0.

02
72

0.
23

44
2.

12
72

B
B

D
C

4
3.

72
E

-0
4

0.
12

25
-0

.0
97

0
0.

01
97

0.
10

03
2.

58
92

G
O

A
U

4
-9

.1
7E

-0
4

0.
16

27
-0

.2
09

6
0.

03
04

0.
00

68
4.

18
67

B
O

VA
11

-9
.2

6E
-0

6
0.

06
78

-0
.0

90
2

0.
01

49
-0

.0
14

7
1.

56
25

H
G

T
X

3
4.

35
E

-0
4

0.
10

88
-0

.2
53

7
0.

02
34

-0
.6

87
5

8.
75

91
B

R
A

P4
-6

.1
6E

-0
5

0.
12

97
-0

.1
08

9
0.

02
64

0.
08

87
1.

63
43

H
Y

PE
3

2.
19

E
-0

4
0.

19
18

-0
.1

53
8

0.
02

21
0.

04
12

5.
97

09
B

R
FS

3
4.

64
E

-0
4

0.
09

32
-0

.1
00

4
0.

01
70

-0
.0

69
7

2.
73

04
IT

U
B

4
4.

03
E

-0
4

0.
10

37
-0

.1
02

2
0.

01
93

0.
11

87
1.

97
16

B
R

K
M

5
6.

55
E

-0
4

0.
11

75
-0

.2
20

4
0.

02
54

-0
.2

79
7

5.
29

23
L

A
M

E
4

4.
74

E
-0

4
0.

09
23

-0
.0

88
4

0.
02

09
-0

.0
05

1
0.

83
50

B
R

M
L

3
3.

97
E

-0
4

0.
08

17
-0

.0
85

5
0.

02
23

0.
07

28
0.

87
69

L
IG

T
3

2.
29

E
-0

4
0.

10
38

-0
.1

24
6

0.
02

33
0.

07
69

2.
33

83
B

TO
W

3
-8

.2
3E

-0
4

0.
24

57
-0

.1
67

5
0.

03
52

0.
42

86
2.

90
33

L
R

E
N

3
8.

25
E

-0
4

0.
10

62
-0

.0
84

9
0.

02
11

0.
18

96
1.

13
18

C
C

R
O

3
5.

36
E

-0
4

0.
09

57
-0

.0
91

6
0.

02
02

-0
.2

05
0

1.
44

94
M

U
LT

3
4.

67
E

-0
4

0.
07

05
-0

.0
69

4
0.

01
80

0.
03

32
0.

82
20

C
E

SP
6

1.
69

E
-0

4
0.

17
24

-0
.3

22
0

0.
02

30
-1

.2
81

2
23

.4
47

6
N

A
T

U
3

-1
.0

8E
-0

5
0.

10
44

-0
.1

25
1

0.
02

08
0.

12
18

2.
23

77
C

IE
L

3
8.

42
E

-0
4

0.
10

60
-0

.1
49

5
0.

01
84

-0
.2

35
3

4.
17

58
PE

T
R

3
-4

.3
2E

-0
4

0.
14

97
-0

.1
20

3
0.

02
89

0.
27

51
2.

36
07

C
M

IG
4

7.
58

E
-0

5
0.

13
74

-0
.2

36
4

0.
02

57
-1

.1
28

3
11

.6
36

7
PE

T
R

4
-3

.6
7E

-0
4

0.
15

09
-0

.1
31

6
0.

02
86

0.
12

05
2.

63
23

C
PF

E
3

3.
81

E
-0

4
0.

08
59

-0
.0

79
4

0.
01

72
0.

07
31

1.
69

53
PS

SA
3

3.
96

E
-0

4
0.

09
53

-0
.0

85
7

0.
01

85
0.

06
93

1.
97

59
C

PL
E

6
1.

16
E

-0
4

0.
09

31
-0

.1
82

3
0.

02
15

-0
.4

02
5

4.
84

72
R

E
N

T
3

5.
36

E
-0

4
0.

08
03

-0
.0

79
7

0.
02

13
0.

04
86

0.
66

47
C

SA
N

3
5.

37
E

-0
4

0.
10

17
-0

.1
01

3
0.

02
02

0.
01

68
1.

58
51

SA
N

B
11

5.
66

E
-0

4
0.

14
65

-0
.1

02
2

0.
02

11
0.

17
95

3.
40

19
C

SM
G

3
3.

63
E

-0
4

0.
14

66
-0

.1
62

0
0.

02
48

-0
.1

76
1

4.
28

76
SB

SP
3

7.
40

E
-0

4
0.

10
10

-0
.1

23
9

0.
02

10
-0

.2
21

9
2.

17
60

C
SN

A
3

-2
.3

0E
-0

4
0.

18
75

-0
.2

29
5

0.
03

39
0.

30
36

4.
37

59
T

R
PL

4
4.

37
E

-0
4

0.
09

74
-0

.2
75

2
0.

01
82

-1
.9

60
5

31
.6

88
3

C
Y

R
E

3
-2

.1
0E

-0
4

0.
10

61
-0

.0
84

3
0.

02
36

0.
01

58
0.

90
34

VA
L

E
3

-2
.0

7E
-0

5
0.

13
77

-0
.1

56
7

0.
02

67
0.

09
58

2.
79

07
E

L
E

T
6

2.
01

E
-0

4
0.

21
16

-0
.2

24
2

0.
02

58
0.

03
99

8.
66

09
VA

L
E

5
5.

33
E

-0
5

0.
10

75
-0

.1
28

4
0.

02
50

0.
05

66
2.

12
97

E
M

B
R

3
4.

52
E

-0
4

0.
09

55
-0

.1
67

8
0.

02
04

-0
.6

30
8

6.
07

49
So

ur
ce

:O
w

n
el

ab
or

at
io

n
fr

om
re

se
ar

ch
da

ta
(2

01
8)

.



37

Ta
bl

e
A

.3
–

Su
m

m
ar

y
st

at
is

tic
s

fo
rt

he
5-

m
in

ut
e

an
d

10
-m

in
ut

e
op

en
-t

o-
cl

os
e

re
tu

rn
s

ov
er

th
e

pe
ri

od
D

ec
em

be
r2

1,
20

09
–F

eb
ru

ar
y

17
,2

01
7.

(c
on

tin
ue

s)

5-
m

in
re

tu
rn

s
10

-m
in

re
tu

rn
s

Sy
m

bo
l

M
ea

n
M

ax
M

in
SD

Sk
ew

ne
ss

K
ur

to
si

s
M

ea
n

M
ax

M
in

SD
Sk

ew
ne

ss
K

ur
to

si
s

B
B

A
S3

-3
.5

5E
-0

6
0.

03
43

-0
.0

39
7

0.
00

22
-0

.1
08

6
11

.0
40

0
-2

.2
1E

-0
6

0.
04

79
-0

.0
48

9
0.

00
32

-0
.1

62
5

15
.4

57
9

B
B

D
C

3
1.

70
E

-0
6

0.
03

87
-0

.0
34

4
0.

00
21

0.
01

40
8.

24
38

7.
07

E
-0

6
0.

03
87

-0
.0

44
3

0.
00

30
-0

.0
62

1
10

.0
64

3
B

B
D

C
4

-1
.3

5E
-0

6
0.

03
34

-0
.0

32
4

0.
00

19
0.

04
58

8.
80

74
2.

18
E

-0
7

0.
03

73
-0

.0
51

1
0.

00
28

-0
.0

67
7

12
.4

01
0

B
O

VA
11

-5
.8

5E
-0

6
0.

02
75

-0
.0

22
9

0.
00

13
0.

02
40

7.
82

18
-7

.0
1E

-0
6

0.
02

89
-0

.0
38

6
0.

00
20

-0
.0

33
0

15
.6

65
6

B
R

A
P4

-2
.3

6E
-0

6
0.

05
99

-0
.0

41
2

0.
00

24
0.

09
87

11
.5

19
0

-1
.7

3E
-0

6
0.

06
23

-0
.0

65
4

0.
00

35
-0

.0
81

9
17

.1
33

8
B

R
FS

3
-2

.5
3E

-0
6

0.
03

15
-0

.0
29

3
0.

00
19

0.
05

30
8.

49
25

4.
43

E
-0

6
0.

03
96

-0
.0

42
0

0.
00

26
0.

22
87

11
.1

10
4

B
R

K
M

5
-4

.9
4E

-0
6

0.
07

61
-0

.0
33

3
0.

00
26

0.
16

54
12

.4
83

2
1.

44
E

-0
8

0.
04

51
-0

.0
63

9
0.

00
37

-0
.0

25
1

9.
48

19
B

R
M

L
3

6.
55

E
-0

8
0.

03
24

-0
.0

41
8

0.
00

25
0.

02
68

8.
48

13
8.

39
E

-0
6

0.
04

42
-0

.0
47

9
0.

00
35

0.
08

70
9.

47
68

B
TO

W
3

-1
.5

1E
-0

5
0.

05
38

-0
.0

64
5

0.
00

37
0.

05
72

9.
39

61
-1

.7
8E

-0
5

0.
07

63
-0

.0
74

1
0.

00
52

0.
19

37
12

.0
10

2
C

C
R

O
3

-4
.6

4E
-0

6
0.

03
84

-0
.0

37
6

0.
00

23
-0

.0
37

2
8.

42
66

1.
46

E
-0

7
0.

04
69

-0
.0

56
0

0.
00

32
-0

.0
35

7
10

.5
19

9
C

E
SP

6
-4

.5
2E

-0
6

0.
07

01
-0

.0
46

1
0.

00
26

0.
07

35
11

.9
27

0
-3

.1
6E

-0
6

0.
09

40
-0

.0
52

3
0.

00
37

0.
28

05
15

.4
65

4
C

IE
L

3
-6

.3
2E

-0
6

0.
03

36
-0

.0
34

0
0.

00
20

-0
.1

39
5

9.
00

49
6.

93
E

-0
6

0.
04

83
-0

.0
41

0
0.

00
28

0.
11

33
12

.3
08

6
C

M
IG

4
-1

.3
0E

-0
5

0.
03

67
-0

.0
47

2
0.

00
24

-0
.1

18
8

12
.4

61
3

-1
.3

0E
-0

5
0.

05
64

-0
.0

57
4

0.
00

34
0.

01
70

15
.0

44
4

C
PF

E
3

3.
04

E
-0

6
0.

03
62

-0
.0

39
8

0.
00

20
0.

08
88

9.
71

20
8.

25
E

-0
6

0.
03

87
-0

.0
39

8
0.

00
27

0.
15

43
9.

86
28

C
PL

E
6

4.
55

E
-0

6
0.

03
47

-0
.0

32
4

0.
00

23
0.

06
04

9.
30

50
8.

50
E

-0
6

0.
07

15
-0

.0
53

3
0.

00
32

0.
10

23
15

.1
70

4
C

SA
N

3
1.

04
E

-0
7

0.
02

91
-0

.0
37

5
0.

00
23

-0
.0

14
8

7.
64

74
3.

85
E

-0
6

0.
03

77
-0

.0
61

8
0.

00
33

0.
01

29
9.

90
39

C
SM

G
3

-1
.4

2E
-0

5
0.

04
33

-0
.0

37
3

0.
00

30
-0

.0
23

8
11

.1
40

1
-9

.3
2E

-0
6

0.
04

91
-0

.0
53

9
0.

00
40

0.
08

05
10

.1
71

9
C

SN
A

3
-2

.3
7E

-0
5

0.
04

31
-0

.0
67

9
0.

00
31

0.
08

29
10

.0
81

9
-3

.7
1E

-0
5

0.
06

44
-0

.0
67

9
0.

00
45

0.
10

68
13

.1
07

0
C

Y
R

E
3

-2
.0

4E
-0

5
0.

09
13

-0
.0

49
8

0.
00

26
0.

28
50

19
.3

29
1

-2
.3

4E
-0

5
0.

10
45

-0
.0

69
8

0.
00

37
0.

25
75

22
.0

74
1

E
L

E
T

6
-7

.7
3E

-0
6

0.
06

26
-0

.0
46

6
0.

00
26

0.
15

89
14

.4
40

7
-6

.0
5E

-0
6

0.
06

19
-0

.0
69

2
0.

00
37

0.
13

47
16

.3
26

9
E

M
B

R
3

-2
.1

6E
-0

6
0.

05
88

-0
.0

37
2

0.
00

22
0.

05
00

16
.2

72
8

6.
90

E
-0

6
0.

05
68

-0
.0

53
0

0.
00

31
0.

16
72

16
.1

69
5

FI
B

R
3

-1
.3

0E
-0

5
0.

04
37

-0
.0

30
7

0.
00

24
0.

03
94

8.
27

04
-1

.7
8E

-0
5

0.
04

37
-0

.0
59

6
0.

00
34

-0
.0

47
8

10
.5

51
7

G
G

B
R

4
-2

.4
9E

-0
5

0.
05

36
-0

.0
38

3
0.

00
27

0.
08

63
10

.3
41

9
-3

.5
9E

-0
5

0.
05

60
-0

.0
39

3
0.

00
38

0.
27

70
11

.0
79

7
G

O
A

U
4

-2
.9

2E
-0

5
0.

06
11

-0
.0

61
8

0.
00

32
0.

09
13

13
.4

07
4

-4
.5

1E
-0

5
0.

06
11

-0
.0

62
5

0.
00

44
0.

14
81

13
.5

09
3

H
G

T
X

3
3.

41
E

-0
6

0.
04

95
-0

.0
54

9
0.

00
27

-0
.0

70
2

16
.2

22
6

7.
25

E
-0

6
0.

04
95

-0
.0

63
2

0.
00

37
-0

.0
97

1
13

.8
21

3
H

Y
PE

3
-6

.9
8E

-0
6

0.
03

07
-0

.0
39

9
0.

00
25

-0
.1

59
6

9.
29

04
-6

.3
8E

-0
6

0.
04

13
-0

.0
41

5
0.

00
34

0.
01

76
8.

97
32

IT
U

B
4

-1
.7

1E
-0

6
0.

03
02

-0
.0

27
7

0.
00

18
0.

01
74

7.
82

48
1.

75
E

-0
6

0.
03

97
-0

.0
45

9
0.

00
27

0.
13

02
13

.3
42

0
L

A
M

E
4

6.
79

E
-0

6
0.

03
28

-0
.0

36
5

0.
00

24
0.

02
25

5.
71

60
1.

72
E

-0
5

0.
04

14
-0

.0
48

8
0.

00
33

-0
.0

24
4

6.
86

67
L

IG
T

3
-7

.0
7E

-0
6

0.
04

77
-0

.0
38

4
0.

00
26

0.
03

15
9.

53
08

-2
.1

6E
-0

6
0.

06
37

-0
.0

50
0

0.
00

37
0.

11
01

10
.6

92
5

L
R

E
N

3
-7

.4
3E

-0
6

0.
11

20
-0

.1
16

8
0.

00
23

-0
.0

15
6

99
.3

16
2

-1
.0

3E
-0

6
0.

11
20

-0
.1

16
8

0.
00

32
0.

02
27

55
.5

75
9

M
U

LT
3

-5
.4

4E
-0

6
0.

04
28

-0
.0

33
3

0.
00

25
0.

10
50

12
.1

77
3

-5
.0

7E
-0

6
0.

04
28

-0
.0

37
3

0.
00

33
0.

06
84

9.
24

35
N

A
T

U
3

-7
.6

7E
-0

6
0.

06
46

-0
.0

63
7

0.
00

22
-0

.0
41

5
24

.8
11

9
-7

.2
1E

-0
6

0.
06

49
-0

.0
63

8
0.

00
31

-0
.1

15
6

21
.3

57
7



38

Ta
bl

e
A

.3
–

Su
m

m
ar

y
st

at
is

tic
s

fo
rt

he
5-

m
in

ut
e

an
d

10
-m

in
ut

e
op

en
-t

o-
cl

os
e

re
tu

rn
s

ov
er

th
e

pe
ri

od
D

ec
em

be
r2

1,
20

09
–F

eb
ru

ar
y

17
,2

01
7.

(c
on

cl
us

io
n)

5-
m

in
re

tu
rn

s
10

-m
in

re
tu

rn
s

Sy
m

bo
l

M
ea

n
M

ax
M

in
SD

Sk
ew

ne
ss

K
ur

to
si

s
M

ea
n

M
ax

M
in

SD
Sk

ew
ne

ss
K

ur
to

si
s

PE
T

R
3

-1
.9

2E
-0

5
0.

05
36

-0
.0

60
3

0.
00

26
-0

.0
39

4
11

.9
10

1
-3

.0
5E

-0
5

0.
05

93
-0

.0
85

2
0.

00
38

-0
.0

61
3

18
.5

36
6

PE
T

R
4

-1
.9

3E
-0

5
0.

05
80

-0
.0

50
0

0.
00

24
-0

.0
17

9
15

.2
02

8
-3

.2
5E

-0
5

0.
06

11
-0

.0
79

1
0.

00
35

-0
.0

26
8

21
.5

84
9

PS
SA

3
-1

.5
4E

-0
5

0.
05

21
-0

.0
54

8
0.

00
25

-0
.0

27
1

15
.4

51
0

-1
.8

2E
-0

5
0.

06
48

-0
.0

54
4

0.
00

34
0.

05
88

13
.7

18
3

R
E

N
T

3
-7

.4
8E

-0
6

0.
05

21
-0

.0
37

2
0.

00
25

0.
04

55
11

.6
20

3
1.

44
E

-0
6

0.
08

31
-0

.0
38

5
0.

00
34

0.
29

45
13

.2
34

1
SA

N
B

11
2.

95
E

-0
6

0.
03

68
-0

.0
55

1
0.

00
24

0.
11

59
10

.9
11

2
2.

24
E

-0
6

0.
04

73
-0

.0
55

1
0.

00
33

-0
.1

38
4

13
.1

18
0

SB
SP

3
1.

18
E

-0
5

0.
04

25
-0

.0
32

7
0.

00
24

0.
06

24
9.

95
14

2.
47

E
-0

5
0.

05
45

-0
.0

54
3

0.
00

33
0.

04
96

11
.8

93
9

T
R

PL
4

6.
22

E
-0

6
0.

04
21

-0
.0

73
7

0.
00

21
-0

.3
92

4
26

.1
30

2
1.

73
E

-0
5

0.
05

15
-0

.0
85

5
0.

00
29

-0
.6

74
2

35
.4

84
0

VA
L

E
3

-1
.1

3E
-0

5
0.

05
14

-0
.0

40
4

0.
00

23
0.

11
77

14
.8

58
0

-1
.2

9E
-0

5
0.

06
27

-0
.0

53
9

0.
00

34
0.

12
21

17
.1

77
4

VA
L

E
5

-8
.6

6E
-0

6
0.

06
42

-0
.0

34
3

0.
00

21
0.

27
32

19
.0

54
7

-9
.5

5E
-0

6
0.

06
36

-0
.0

45
5

0.
00

30
0.

30
00

20
.1

58
2

So
ur

ce
:O

w
n

el
ab

or
at

io
n

fr
om

re
se

ar
ch

da
ta

(2
01

8)
.



39

Table A.4 – Out-of-sample performance of global minimum variance portfolios with
0 < wi,t < 0.1

µ̂
p
ann σ̂

p
ann SR MD VaR CVaR TO

Ibovespa 14.46% 24.57% 0.0423 36.66% -3.58% -4.43% -

Daily rebalancing

Naive 17.70% 25.68% 0.0480 42.13% -3.78% -4.70% 1.67%
SCM 2.42% 17.58% 0.0141 25.92% -2.63% -3.15% 1.68%
Shrinkage-1fac 2.48% 17.57% 0.0143 25.76% -2.63% -3.15% 1.67%
Shrinkage-I 2.43% 17.58% 0.0141 25.95% -2.63% -3.16% 1.68%
Shrinkage-CC 2.35% 17.60% 0.0139 25.96% -2.63% -3.15% 1.66%
GARCH 13.23% 16.94% 0.0515 19.61% -2.52% -3.08% 13.02%
R-GARCH 5m 6.85% 16.30% 0.0307 22.05% -2.45% -2.97% 15.97%
R-GARCH 10m 6.94% 17.00% 0.0302 21.98% -2.46% -2.91% 14.55%
GARCH-X 5m 7.21% 17.68% 0.0304 27.54% -2.70% -3.37% 22.87%
GARCH-X 10m 9.83% 17.64% 0.0390 27.21% -2.69% -3.35% 20.70%
HEAVY 5m 5.64% 16.75% 0.0259 26.68% -2.51% -3.06% 24.70%
HEAVY 10m 7.07% 16.85% 0.0308 27.06% -2.56% -3.17% 26.44%

Weekly rebalancing

Naive 17.69% 25.69% 0.0480 42.28% -3.76% -4.65% 0.76%
SCM 2.30% 17.53% 0.0137 26.28% -2.62% -3.14% 0.81%
Shrinkage-1fac 2.32% 17.52% 0.0138 26.11% -2.62% -3.14% 0.80%
Shrinkage-I 2.31% 17.53% 0.0137 26.30% -2.62% -3.14% 0.80%
Shrinkage-CC 2.24% 17.55% 0.0135 26.31% -2.62% -3.14% 0.79%
GARCH 11.34% 16.87% 0.0454 21.76% -2.48% -2.98% 6.41%
R-GARCH 5m 6.69% 16.26% 0.0302 23.06% -2.44% -2.96% 6.24%
R-GARCH 10m 5.77% 16.41% 0.0267 23.23% -2.47% -3.01% 6.49%
GARCH-X 5m 8.04% 17.68% 0.0331 27.57% -2.68% -3.40% 8.53%
GARCH-X 10m 7.28% 17.78% 0.0305 28.19% -2.67% -3.40% 7.89%
HEAVY 5m 3.59% 16.65% 0.0186 27.79% -2.53% -3.10% 5.73%
HEAVY 10m 4.77% 16.73% 0.0228 25.51% -2.58% -3.20% 6.30%

Monthly rebalancing

Naive 18.17% 25.91% 0.0480 42.21% -3.87% -4.93% 0.38%
SCM 2.17% 17.65% 0.0132 26.62% -2.64% -3.17% 0.41%
Shrinkage-1fac 2.22% 17.63% 0.0134 26.45% -2.63% -3.17% 0.40%
Shrinkage-I 2.19% 17.64% 0.0133 26.64% -2.64% -3.18% 0.40%
Shrinkage-CC 2.15% 17.67% 0.0131 26.65% -2.64% -3.17% 0.40%
GARCH 9.44% 16.92% 0.0389 26.58% -2.50% -2.98% 2.41%
R-GARCH 5m 3.66% 16.54% 0.0189 24.26% -2.49% -3.00% 1.97%
R-GARCH 10m 3.34% 16.56% 0.0177 24.45% -2.51% -3.07% 2.03%
GARCH-X 5m 6.17% 17.54% 0.0270 27.80% -2.72% -3.49% 2.57%
GARCH-X 10m 7.36% 17.54% 0.0310 27.82% -2.72% -3.48% 2.45%
HEAVY 5m 1.83% 16.76% 0.0121 27.66% -2.53% -3.05% 1.80%
HEAVY 10m 6.74% 16.67% 0.0299 23.53% -2.53% -3.12% 1.86%
Source: Own elaboration from research data (2018).
Notes: This table reports the out-of-sample performance of global minimum variance portfolios whose weights were
submitted to the constraint 0 < ωi,t < 0.1. It refers to the period from 02-02-2015 to 02-17-2017. The rows report
the results for different estimators of the covariance matrix. R-GARCH refers to the Realized GARCH model. The
expression 5m or 10m next to the model name indicates the sample frequency of the intradaily returns. The columns
report different performance measures: µ̂

p
ann represents annualized returns, σ̂

p
ann are the annualized volatilities,

SR are the Sharpe ratios, MD are the maximum drawdowns, VaR and CVaR were calculated with a confidence
interval of 99% and TO are the turnovers. All these measures were calculated as in section 5.3. Transaction costs
are assumed to be zero.
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Table A.5 – Out-of-sample performance of global minimum variance portfolios with
0 < wi,t < 0.15

µ̂
p
ann σ̂

p
ann SR MD VaR CVaR TO

Ibovespa 14.46% 24.57% 0.0423 36.66% -3.58% -4.43% -

Daily rebalancing

Naive 17.70% 25.68% 0.0480 42.13% -3.78% -4.70% 1.67%
SCM 1.87% 17.49% 0.0480 25.19% -2.59% -3.07% 1.66%
Shrinkage-1fac 1.88% 17.48% 0.0122 24.98% -2.59% -3.07% 1.65%
Shrinkage-I 1.96% 17.49% 0.0122 25.25% -2.59% -3.08% 1.66%
Shrinkage-CC 1.71% 17.54% 0.0125 25.39% -2.60% -3.08% 1.64%
GARCH 11.26% 16.39% 0.0116 17.68% -2.46% -3.08% 14.80%
R-GARCH 5m 2.36% 16.01% 0.0142 14.46% -2.13% -2.51% 7.12%
R-GARCH 10m 0.72% 17.25% 0.0080 21.06% -2.45% -2.84% 13.14%
GARCH-X 5m 5.76% 17.11% 0.0260 27.49% -2.65% -3.36% 25.13%
GARCH-X 10m 8.74% 17.32% 0.0359 26.94% -2.67% -3.36% 22.66%
HEAVY 5m 5.28% 16.41% 0.0249 25.22% -2.46% -3.01% 26.20%
HEAVY 10m 6.89% 16.36% 0.0308 23.40% -2.47% -3.06% 26.50%

Weekly rebalancing

Naive 17.69% 25.69% 0.0480 42.28% -3.76% -4.65% 0.76%
SCM 1.71% 17.44% 0.0116 25.55% -2.59% -3.07% 0.78%
Shrinkage-1fac 1.74% 17.44% 0.0117 25.35% -2.59% -3.06% 0.77%
Shrinkage-I 1.78% 17.45% 0.0118 25.63% -2.59% -3.08% 0.78%
Shrinkage-CC 1.55% 17.50% 0.0110 25.76% -2.59% -3.08% 0.77%
GARCH 9.67% 16.38% 0.0406 19.06% -2.40% -2.89% 7.31%
R-GARCH 5m 5.38% 15.88% 0.0258 22.08% -2.38% -2.89% 7.02%
R-GARCH 10m 4.47% 15.91% 0.0223 21.88% -2.38% -2.91% 7.54%
GARCH-X 5m 5.61% 17.27% 0.0253 26.43% -2.66% -3.40% 9.84%
GARCH-X 10m 6.61% 17.28% 0.0288 27.23% -2.63% -3.39% 9.26%
HEAVY 5m 5.45% 16.25% 0.0257 24.97% -2.45% -2.99% 5.89%
HEAVY 10m 6.36% 16.25% 0.0290 21.23% -2.47% -3.02% 6.19%

Monthly rebalancing

Naive 18.17% 25.91% 0.0480 42.21% -3.87% -4.93% 0.38%
SCM 1.68% 17.55% 0.0115 25.86% -2.60% -3.09% 0.38%
Shrinkage-1fac 1.71% 17.55% 0.0116 25.66% -2.60% -3.09% 0.38%
Shrinkage-I 1.75% 17.56% 0.0117 25.94% -2.60% -3.10% 0.38%
Shrinkage-CC 1.51% 17.61% 0.0109 26.07% -2.61% -3.10% 0.38%
GARCH 5.90% 16.33% 0.0272 25.30% -2.39% -2.83% 2.74%
R-GARCH 5m 2.06% 16.08% 0.0130 23.35% -2.41% -2.86% 2.25%
R-GARCH 10m 0.89% 16.12% 0.0085 23.19% -2.43% -2.91% 2.47%
GARCH-X 5m 4.54% 17.13% 0.0217 28.25% -2.69% -3.52% 3.03%
GARCH-X 10m 6.01% 17.15% 0.0268 27.74% -2.67% -3.49% 2.95%
HEAVY 5m 4.37% 16.30% 0.0216 23.65% -2.44% -2.93% 1.76%
HEAVY 10m 7.93% 16.15% 0.0348 19.77% -2.43% -2.93% 1.96%
Source: Own elaboration from research data (2018).
Notes: This table reports the out-of-sample performance of global minimum variance portfolios whose weights were
submitted to the constraint 0 < ωi,t < 0.15. It refers to the period from 02-02-2015 to 02-17-2017. The rows report
the results for different estimators of the covariance matrix. R-GARCH refers to the Realized GARCH model. The
expression 5m or 10m next to the model name indicates the sample frequency of the intradaily returns. The columns
report different performance measures: µ̂

p
ann represents annualized returns, σ̂

p
ann are the annualized volatilities,

SR are the Sharpe ratios, MD are the maximum drawdowns, VaR and CVaR were calculated with a confidence
interval of 99% and TO are the turnovers. All these measures were calculated as in section 5.3. Transaction costs
are assumed to be zero.
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Table A.6 – Out-of-sample performance of global minimum variance portfolios with
0 < wi,t < 0.3

µ̂
p
ann σ̂

p
ann SR MD VaR CVaR TO

Ibovespa 14.46% 24.57% 0.0423 36.66% -3.58% -4.43% -

Daily rebalancing

Naive 17.70% 25.68% 0.0480 42.13% -3.78% -4.70% 1.67%
SCM 1.95% 17.52% 0.0125 25.23% -2.59% -3.08% 1.65%
Shrinkage-1fac 1.95% 17.52% 0.0125 25.01% -2.59% -3.08% 1.65%
Shrinkage-I 2.03% 17.52% 0.0127 25.31% -2.60% -3.09% 1.66%
Shrinkage-CC 1.80% 17.57% 0.0119 25.42% -2.60% -3.09% 1.64%
GARCH 12.34% 15.89% 0.0511 19.22% -2.44% -3.19% 16.30%
R-GARCH 5m 7.84% 15.51% 0.0355 21.14% -2.37% -3.03% 20.69%
R-GARCH 10m 6.22% 15.65% 0.0292 22.59% -2.41% -3.09% 22.44%
GARCH-X 5m 2.96% 16.39% 0.0164 28.63% -2.59% -3.37% 26.83%
GARCH-X 10m 5.01% 16.62% 0.0238 28.19% -2.62% -3.41% 24.94%
HEAVY 5m 4.10% 16.35% 0.0206 26.68% -2.54% -3.20% 31.49%
HEAVY 10m 5.04% 16.48% 0.0240 23.54% -2.61% -3.36% 30.58%

Weekly rebalancing

Naive 17.69% 25.69% 0.0480 42.28% -3.76% -4.65% 0.76%
SCM 1.80% 17.47% 0.0119 25.58% -2.59% -3.07% 0.78%
Shrinkage-1fac 1.82% 17.47% 0.0120 25.37% -2.59% -3.07% 0.78%
Shrinkage-I 1.85% 17.47% 0.0121 25.67% -2.59% -3.08% 0.79%
Shrinkage-CC 1.64% 17.53% 0.0114 25.78% -2.60% -3.08% 0.78%
GARCH 10.75% 15.95% 0.0454 19.67% -2.36% -2.94% 7.97%
R-GARCH 5m 4.88% 15.73% 0.0240 22.22% -2.42% -3.02% 8.07%
R-GARCH 10m 2.94% 15.90% 0.0165 23.27% -2.48% -3.15% 8.89%
GARCH-X 5m 4.03% 16.61% 0.0202 27.89% -2.62% -3.44% 10.46%
GARCH-X 10m 3.73% 16.81% 0.0190 28.49% -2.60% -3.43% 9.82%
HEAVY 5m 4.31% 16.16% 0.0215 25.73% -2.50% -3.12% 6.97%
HEAVY 10m 3.20% 16.35% 0.0173 23.18% -2.58% -3.23% 7.44%

Monthly rebalancing

Naive 18.17% 25.91% 0.0480 42.21% -3.87% -4.93% 0.38%
SCM 1.75% 17.58% 0.0118 25.87% -2.60% -3.10% 0.38%
Shrinkage-1fac 1.76% 17.58% 0.0118 25.67% -2.60% -3.09% 0.37%
Shrinkage-I 1.80% 17.58% 0.0119 25.97% -2.61% -3.10% 0.38%
Shrinkage-CC 1.57% 17.64% 0.0111 26.08% -2.61% -3.11% 0.37%
GARCH 5.34% 16.12% 0.0254 26.54% -2.45% -3.02% 2.98%
R-GARCH 5m 3.46% 15.99% 0.0184 23.72% -2.44% -2.97% 2.70%
R-GARCH 10m 1.93% 16.08% 0.0126 24.02% -2.49% -3.08% 2.88%
GARCH-X 5m 4.06% 16.93% 0.0201 29.62% -2.73% -3.78% 3.38%
GARCH-X 10m 4.79% 16.86% 0.0228 29.23% -2.69% -3.72% 3.30%
HEAVY 5m 4.29% 16.38% 0.0213 24.92% -2.51% -3.10% 2.17%
HEAVY 10m 4.59% 16.73% 0.0222 23.26% -2.70% -3.39% 2.32%
Source: Own elaboration from research data (2018).
Notes: This table reports the out-of-sample performance of global minimum variance portfolios whose weights were
submitted to the constraint 0 < ωi,t < 0.3. It refers to the period from 02-02-2015 to 02-17-2017. The rows report
the results for different estimators of the covariance matrix. R-GARCH refers to the Realized GARCH model. The
expression 5m or 10m next to the model name indicates the sample frequency of the intradaily returns. The columns
report different performance measures: µ̂

p
ann represents annualized returns, σ̂

p
ann are the annualized volatilities,

SR are the Sharpe ratios, MD are the maximum drawdowns, VaR and CVaR were calculated with a confidence
interval of 99% and TO are the turnovers. All these measures were calculated as in section 5.3. Transaction costs
are assumed to be zero.
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