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Abstract

We study the dynamics of a one-dimensional system composed of a bosonic background and one
impurity in single- and double-well trapping geometries. In the limit of strong interactions, this
system can be modeled by a spin chain where the exchange coefficients are determined by the
geometry of the trap. We observe non-trivial dynamics when the repulsion between the impurity and
the background is dominant. In this regime, the system exhibits oscillations that resemble the
dynamics of a Josephson junction. Furthermore, the double-well geometry allows for an enhancement
in the tunneling as compared to the single-well case.

1. Introduction

The experimental investigation of ultracold atomic systems has made possible the realization of several
celebrated models in quantum mechanics and condensed matter. These experiments are characterized by the
rigorous control over the parameters of the system and by precise measurement techniques. The manipulation
of optical traps, for instance, allows for the construction of different confining geometries [1], from one-
dimensional tubes [2, 3] to lattice systems [4, 5]. Traps consisting of two wells, in particular, have been
extensively employed in recent experiments [6—10]. They are of special interest in the study the Josephson effect
[11]in cold atoms, where Bose—Einstein condensates placed in such potentials [12, 13] are considered in analogy
to superconductors [14, 15]. The high degree of precision demonstrated in these experiments also extends to the
number of particles under consideration and to the strength of the interactions between them. Two-component
fermionic systems with only a few atoms [16—18] and paradigmatic models such as the infinitely repulsive
Tonks—Girardeau gas [19, 20] can also be realized and studied in the lab. Combining these features, other
experiments have recently explored multicomponent strongly correlated gases [21], which have shown several
exotic properties [22].

The limit of strong interactions has been a particularly favored starting point in the theoretical study of one-
dimensional systems with internal degrees of freedom, due to the possibility of mapping the Hamiltonian to an
effective spin chain [23—27]. One of the key features of this mapping is that the exchange coefficients of the spin
chain are solely determined by the trapping potential, and powerful numerical methods to calculate these
coefficients are now available [28, 29]. Approaching the problem of few atoms in a trap in the strongly
interacting regime has also provided knowledge of the fundamental properties of quantum magnetism [30-35].
On the other hand, the many-body case in the limit of total population imbalance—the ‘impurity’ problem—
also presents many interesting features, such as quantum flutter [36] and Bloch oscillations in the absence of a
lattice [37—41] (the latter having been recently observed in experiments [42]).

In this work we study a strongly interacting system composed of an impurity and a bosonic background in
single- and double-well potentials. Different methods have been employed to tackle the many-body problem of
bosons in a double-well, even outside the mean-field regime [43—47]. Addressing the subject from a few-body
perspective [48—52], however, might lead to new insight on the properties of these systems. Here we show that, in
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Figure 1. Sketch of the 1D bosonic system with an impurity in the double-well potential. The parameter b sets the position of the
minimum of each well and also the size of the barrier between them at x = 0. In the limit of strong interactions, the system can be
mapped to a spin chain where the coefficients cv are determined by the shape of the trap.

the regime where the repulsion between the impurity and the background is dominant, the system can exhibit
non-trivial dynamical effects: the impurity undergoes Josephson-like oscillations when initialized at the edge of
the system, and can have its tunneling enhanced when a barrier is present. These effects provide new perspectives
in the study of spin state transfer and quantum transport in one-dimensional systems, and should be observable
using current experimental techniques.

2. System description and Hamiltonian

We consider the problem of an impurity confined in the presence of a background of strongly interacting
bosons. We assume the impurity is a boson in an internal state defined by | | ), while the remaining identical
bosons are described by | T). Consequently, all atoms have the same mass m. Two-component Bose gases can be
realized experimentally using, for instance, *’Rb atoms in different hyperfine states such as |F = 2, mp = —1)
and |F = 1, mp = 1) [53, 54]. The number of identical bosons is given by Nj, while the total system size is

N = N; + 1. The Hamiltonian for this problem is written as

N N; N;
H =73 Ho(xi) +g> 60 — xp) + kg 6(xi — x1j), ()]
i=1 i=1 i<j

where the first sum involves the single-particle Hamiltonian Hy (see below) which is the same for both
components, while the remaining terms account for the contact interactions. The coordinates are denoted by x;
for the impurity and x;; for the remaining bosons. The interaction strength is defined as g for the impurity-
background interactions, and as «g for the background-background interactions. Those parameters can be
experimentally manipulated using Feshbach [55] or confinement induced resonances [56]. The single-particle
73 2
;—m% + V (x). Here, V(x) is a double-well potential (see
figure 1) expressed as V (x) = %mwz (|x| — b)% where wis the trapping frequency. The parameter b denotes the
displacement of the two minima of the wells with respect to the origin, and also defines the size of the barrier at

this pointas V (0) = %mwzl;z. We then refer to b as the ‘barrier parameter’. By making b = 0 we naturally

Hamiltonian in equation (1) is given by Hy(x) = —

recover the harmonic single-well potential. Although this form of potential has analytical solutions in terms of
parabolic cylinder functions [57], we obtain the single-particle wave functions and energies through numerical
diagonalization (see appendix A.1). We will focus on the behavior of the spatial distributions and the impurity
dynamics in the repulsive case (g, £ > 0), for different choices of the intraspecies interaction parameter s and
the barrier parameter b. While cases of attractive interactions (g, # < 0) can in principle be explored, the
properties of the system in this regime reproduce only highly excited states related to the so-called Super Tonks—
Girardeau gas [58, 59]. Simulating the dynamics of systems with attractive interactions would likely require
taking into account the formation of bound pairs, an effect which is beyond the scope of the formalism employed
here. Throughout this work, we will consider all quantities in harmonic oscillator units; therefore, length, energy
and time are given in units of | = //2 /mw, /i and w ', respectively. While the intraspecies interaction
parameter  is dimensionless, the parameter gis considered in units of /22/ml. For simplicity, we also make the
barrier parameter dimensionless by rescalingitas b = b /1. In our calculations, we set ¢ = 20 and assume
that Z=w=m= 1.

In the limit of strong interactions (g >> 1), Hamiltonian (1) can be written, up to linear order in 1/g, as the
following XXZ spin chain (see appendix A.2 for details)
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Figure 2. (a) Spin densities for the ground state of a3 + 1 system at different values of the barrier parameter b and of the background
interaction parameter « (the values for each panel are determined by the labels on the rows/columns). The red curve corresponds to
the background density p; (x) while the blue curve corresponds to the impurity density p| (x). (b) Spin densities fora9 + 1systemat
x = 0.2 and two different choices of b. For a larger value of b, the impurity has a greater probability of being placed near the barrier, at
the center of the system. The density for each component is normalized to its corresponding number of particles.

N-1
Hy=Eol — ) ﬂ[l(n —ol o Tt aiai“)], @
i-1 §L2 K
where E, is the energy of the system in the limit of infinite repulsion and o’ denotes a Pauli matrix acting on site i.
The coefficients v, often called geometric coefficients, are calculated using the wave function for a system of N
spinless fermions, which is constructed as the Slater determinant of the lowest occupied orbitals in the trap (see
appendix A.3). The spatial part of the wave function for a bosonic system is then obtained by means of the
Fermi-Bose mapping [60]. A comparative study of the spatial distributions for a strongly interacting few-body
bosonic system in the double-well has been presented in [61].

3. Spin densities

To obtain the probability densities for each component in the system, we must combine the spatial distributions
of the atoms in the trap with the probability of magnetization of the corresponding site for an eigenstate of the
spin chain described by equation (2). The spin densities are therefore given by

N .
@) = 22 Ay (0, )
i=1

with p% = m{ W p'(x), where p’(x) describes the individual atomic densities (see appendix A.4), while mT’ W
denotes the probability of each site in a spin wave function | ) having spin up or down. The quantities p| (x) and
p; (x) thus describe the spatial distributions of the impurity and the background bosons, respectively. In

figure 2(a) we show the results for the spin densities of a3 + 1 system for b = 0 (single-well) and b = 2 (double-
well) at different values of the intraspecies parameter .

The cases where b = 0 correspond to the results expected for the harmonic trap, which have been broadly
covered for bosonic and fermionic systems in previous works [25, 32, 62—-64]. For k < 1 the repulsion between
the impurity and the background is larger than the background repulsion. This causes the impurity to be pushed
to the edges of the system, which is an effect also found in the case of a weakly interacting background [65]. In
this regime, the system exhibits Ising-type ferromagnetic correlations, and is characterized by a nearly
degenerate ground state [35]. At k = 1 all interactions are equal and the spin densities show the Heisenberg-type
ferromagnetic profiles expected for isospin bosons [31]. In this case both distributions display the same
characteristic Tonks—Girardeau spatial densities, but scaled to the number of particles in each species. When
K > 1, the repulsion between the background bosons dominates, and we observe predominantly
antiferromagnetic correlations, where the impurity is placed near the center of the trap. In the double-well
potential, all densities are depleted in the center of the system, but this is not the only relevant effect. For the case
of K < 1 the impurity has now a larger probability of being near the center of the trap (as compared to the single-
well case), since the background density is strongly reduced in this region. It is even possible to expect a
configuration (specially for alarger number of background bosons) where the impurity is completely localized
near the barrier between the wells (see figure 2(b)). This effect is directly related to the imbalance in the

3
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Figure 3. Impurity average position as a function of time for different values of x and b. The solid red curves show the exact results,
while the blue dashed curves are obtained with the two-level description (see text).

numerical values of the geometrical coefficients at the edges and near the center of the system as b is increased.
For the cases of Kk = 1, again the impurity and the background densities have the same shape, aside from
normalization. At & > 1, we observe a similar configuration, with a small bias of the impurity toward the center
of the trap.

4. Dynamics

We now turn to the dynamics of the impurity after being initialized at the left edge of the system. The
corresponding initial spin state is therefore givenby | | T 1 1). Since this is not an eigenstate of the spin chain,
we can expect the spin state to evolve in time governed by equation (2), and we denote it by | x (¢)). A thorough
study of spin state transfer in traps of different shapes has been done by Volosniev et alin [24]. It has been shown
[66—68] that transfer is optimized by considering x = 2 (which turns equation (2) into an XX Hamiltonian) with
aset of exchange coefficients where o; o< /j(N — j).Here we focus on the tunneling times for the impurity
between the wells (or between the left and right sides of the system in the case of a single-well) when the
background repulsion is smaller than the repulsion between the impurity and the background (k < 1). We
point out that, since we do not consider any other external perturbations, like trap or interaction quenches, we
can assume that the spatial distributions remain in the ground state. This also allows us to consider only the
manifold of equation (2) with lowest energy. To quantify the dynamics of the impurity, we calculate its average
position as

(x,(1)) = fpl(x, t) x dx, 4)

where p (x, t)is the time dependent spin density calculated with the spin state |y (¢)). When considering the
regime of & < 1, we observe that the projections of the initial wave function on the two lowest eigenstates are
dominant when compared to the case of higher excited states. This allows us to attempt a two-level description
for the time evolution of the spin wave function; we thus write | 1(t)) = ¢4 e W g) + ¢ e), where| ¢)and |e)
denote the two eigenstates of the spin chain with lower energy, and ¢, and c, are the projections of the initial wave
function over these states. The frequency w; = E, — Egis given by the gap between the energies of the first
excited state E, and the ground state E,,.

In figure 3, we present the results for (x; (¢)) in the single-well (b = 0) and double-well potentials (b = 2),
with two choices of k < 1, also showing a comparison with the two-level description in each of these cases. At
b = 0, we notice that the motion of the impurity between the edges of the system is very well captured by the
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Figure 4. Energy gap between the two lowest states of the spin chain for different values of the barrier parameter b and background
interaction « for the 3 + 1 case.

two-level approximation. This behavior clearly resembles the oscillations in population expected for a bosonic
Josephson junction described as a many-body system in a double-well. In the present context, however, the
barrier is composed by the repulsive background gas. We expect these results to hold even in the case of more
than one impurity, provided that the system is imbalanced (that is, the background gas must have a larger
number of particles). In this situation, an initial state described by the minority species completely localized at
either side of the trap should have its time evolution governed mainly by the two lowest energy eigenstates. In the
single-well case with weaker intraspecies interaction (x = 0.2) the tunneling of the impurity is suppressed. Here,
the behavior of the background approaches that of an ideal Bose gas, where the atoms tend to ‘bunch up’ in the
center of the trap. Now, comparing the single- and double-well cases, we see that, for x = 0.5, the presence of
the barrier slows down the tunneling of the impurity. Furthermore, we observe oscillations on a smaller scale,
due to alarger overlap between the initial state and the excited states of the spin chain Hamiltonian. Atk = 0.2,
however, we get an enhanced tunneling of the impurity when considering a double-well as opposed to the single-
well case. This effect has been also found with a different choice of double-well potential [24]. One might
interpret it as a splitting of the background gas by the barrier in such a way that the impurity is able to tunnel
through faster than it would in the absence of the barrier. However, if we consider a single-particle problem
where an atom is initialized in the left well, it is clear that increasing the barrier size would only lead to
exponential suppression in the tunneling frequencies. We therefore conclude that the accelerated tunneling
observed in the regimes we consider is only possible due to the presence of the bosonic background, and thus
constitutes a many-body effect.

To get an understanding of this behavior over a larger parameter space, we plot in figure 4 the energy gap
between the ground state and the first excited state for several values of x and b. The non-monotonic behavior of
the gap as a function of b indicates that, for small x, there is some choice of barrier size that increases that energy
gap, and therefore enables a higher tunneling frequency between the wells. As « increases, however, we see that
this behavior disappears and the presence of the barrier only reduces the gap, thus making the tunneling slower.

5.Increasing N;

As afinal example, we consider a case where we increase the number of background bosons to N; = 5 (to
observe similar effects as in the case of N} = 3, we choose to maintain an even total number of atoms). The
initial state is once again defined by the impurity placed at the left edge of the system, thatis,| | T T T 1 7). We
keep the intraspecies repulsion parameter fixed at & = 0.25. In figure 5(a) we once again show the results for the
average position of the impurity as a function of time. For the single-well, the tunneling times are so long that the
impurity is effectively frozen at the left edge of the system. In this case, an analogy can be drawn to the self-
trapping regime in a few-body system as presented in [48]. For b = 3, however, we again notice that a faster
motion of the impurity from the left to the right well is induced. The difference in the results with and without
the barrier is even clearer than in the case of N; = 3. This can also be seen in the energy gap between the two
lowest states, as presented in figure 5(b): a very pronounced curve shows the increase in this quantity for small £
and b > 1. We point out that the final time (t = 10* in units of w™') considered in the present case is five times
larger than in the case of N; = 3. Time scales for harmonically trapped systems are set by the inverse frequency,
which in present experiments with few-body cold atoms is of around 100 ps [18]. The total times obtained in
experimental setups can therefore be decreased by considering tighter traps.
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Figure 5. (a) Average position of the impurity as a function of time for the 5 + 1 case, in the single- (b = 0, red solid curve) and
double-well (b = 3, blue dashed curve). The background interaction parameter is set as s = 0.25. (b) Energy gap between the two
lowest states of the spin chain for different values of the barrier parameter b and background interaction .

6. Conclusions

We have studied the static and dynamic properties of an impurity in the presence of a background of bosons in
single-well and double-well geometries. The ground state spin densities are described by a combination of the
spatial distributions in the limit of infinite repulsion and the eigenstates of a spin chain. We have shown that the
position of an impurity initialized at the left edge of the system displays oscillations similar to the ones observed
in Josephson junctions. Additionally, for weaker background interactions, the tunneling of the impurity can in
fact be enhanced by the introduction of a barrier. This many-body effect is only possible in the presence of a
background. We interpret it as the increase of the gap between the two lowest energy states, which governs the
low-frequency dynamics of the system. Our results open new perspectives on the study of quantum transport in
one-dimensional systems, hinting at the possibility of realizing a bosonic Josephson junction in the complete
absence of an artificial barrier. Moreover, the inclusion and manipulation of double-well potentials and even
lattices may allow for the optimized transfer of spin states.
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Appendix. Exact solutions, geometrical coefficients and spatial distributions in the limit
of infinite repulsion

In this appendix we present the solutions obtained with numerical diagonalization for the single-particle in a
double-well, mapping between a strongly interacting one-dimensional system and the spin chain Hamiltonian
described by equation (2), expressions for the geometrical coefficients and densities in the impenetrable limit,
and the analytical form of the eigenstates and eigenvalues of the spin chain in the 3 + 1 case. The single-particle
energies and numerical values for the exchange coefficients are calculated using the open-source code CONAN
[29]. Some of these quantities depend on the spinless fermion wave function ®(xj, ..., xy), which is constructed
as the Slater determinant of the Nlowest-lying orbitals of the trapping potential. The energy E, from equation (2)
is then simply the sum of the energies of these individual states.

6
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Figure A1l. (a) Single-particle energies of the 4 lowest eigenstates of the double-well potential as a function of the barrier parameter b.
The dotted curves show the results calculated with CONAN (see text), while the symbols are the values obtained by numerical
diagonalization. The inset shows the energy E, of the spinless fermion wave function as a function of b for N = 4. (b) The four lowest
single-particle eigenstates for different values of the barrier parameter b. Solid blue, dashed red, dotted green and dot-dashed black
curves correspond to ground state, 1st, 2nd and 3rd excited states, respectively.

A.1. Single-particle solutions in the double-well

The eigenvalues and eigenstates of a particle in a double-well were obtained through numerical diagonalization
of the Hamiltonian Hj, using the 50 lowest states of the harmonic oscillator (b = 0) as basis. In figure A1 we
present these solutions for different values of the barrier parameter b. In panel (a), we show how each pair of
states becomes degenerate as the barrier size is increased. This is reflected in the eigenstates shown in panel (b): at
larger values of b, the ground state and the first excited state have the same probability distribution, differing only

in parity.

A.2.Mapping the strongly interacting system to a spin chain Hamiltonian

In this section we show details of the mapping between Hamiltonian (1) and the spin chain described by
equation (2). Although different approaches have been used to describe this mapping [23, 26, 32, 33], we focus
on the one presented in [24]. We start by considering a more general bosonic Hamiltonian of the form

NN M

N
H=> Ho(x) + gy > 60qi— x;) + kg 60y — xp77)

i=1 i=1 j=1 i<i’

N
+ Iigz 6(3@]' — xlj/), (A1)
j<i’

where the total number of particles is given by N = N; 4+ N|. In the limit of infinite interactions (g — ©0), the
eigenstates of Hamiltonian (1) can be described by

LN, N)

U= > aPc®o({x1i» x};})» (A.2)
k=1

N+ N . . . .
where the sum runs over the L(N;, N) = ( ! :] l) permutations of the coordinates, and Py is the permutation
h

operator. In this expression, @, is simply the wave function in the impenetrable limit, with coordinates fixed as
{x1i}and {x;}, withi = 1, ..., Nyand j = 1, ..., N. To investigate the behavior of the energy at very strong (but
finite) interactions, we use the Hellmann—Feynman theorem, which gives

oE M X M
g DD AWy — 1)) + kY (W6 (i — x100) [ D)
i=1 j=1 i<if
N
+ Ky (W6 (x5 — x;0 W), (A.3)
i<i'

where the first term on the right-hand side accounts for interactions between different bosons, while the
remaining terms arise from interactions between identical bosons. The conditions for the derivatives at the
contact point between two particles are given by

7
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‘ = Zﬁg\ll(xlj = XU/) (A4)

or _ o
Oxj Oxjr
for identical bosons and
ov o)l
_— = 280 (x1; = x7), (A.5)
8fo axlj B

for a distinguishable pair. In the expressions above we have +—x,,, — x, = 0", while ——x,, — x, = 0.
Combining equations (A.3)—(A.5), we get
OE K; K K
OE _ Ky Ki Ky

og g kgt kg¥

(A.6)

where

NN,
Ziiljilfdx“’""deNdexlb"',XmM

+ 2
o ov
(@ - @) H 6(xi — x|5)

Ky = .
4fdeb ~-~,deNdex¢1, -y doy |02
2
N[y dx dx dx v ov ) | 5(xe ‘
Zi<i/ T "% TN; B LI LN, Kﬁ - Dxrr (-le - le/)
Ky = - .
4 [y dxiy [ e, dag 98
2
ZNi docern -oe. doc doi . - dx o o[ SCa;i — x71)
i<j T s dXpNy b BN B, T axyy B 1j 1j
K= s
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where the denominator introduces a normalization factor. Integrating with respect to g we obtain the following
energy functional

K, K; K
E:EO_(JJFiJFA], (A7)
§ K§ Kg

where Ej is the energy in the limit of infinite repulsion, and we neglect terms of higher order in (1/g). By
introducing the wave function described by equation (A.2) in the expression above, we obtain

N-lo; ([LWN=LN-1 , 1| | 2 x~LOV=-2N) (11 , 2 <~LOWN-2) , ||
Z _( k=1 Aik +;Zk:1 Aik +;Zk:1 Aik

. . i=1 g
E =E, TN (A.8)
k=1 k
with
Al = Gl — afly AT = @D Al = Gl (A9

where a J{L represents the coefficients in equation (A.2) multiplying terms with neighboring T and | particles at
positioniand i 4 1, while the remaining terms have the same role, for | T, TTand | | pairs. The purpose of such
terms is to account for the energy contribution of exchanging two neighboring particles with particular spin
projections. The coefficients v; are now independent of spin, and can be written as

L dien R O

J;c1<xz~~~<xN—1 Ixn

a; = xN:"f , (A.10)
Ii dx; - dxalPoCer, -+ X - x0) |
<Xy <xy—1
where ®y(xy, -+, X;, -+, Xy) is again the wave function present in equation (A.2) (where we have omitted the spin

indices). Since this wave function is defined in the region determined by a particular order of the coordinates, it
is enough to calculate the integrals in one particular sector, suchas x < % -+ <xy — 1.

8
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oy €%

Figure A2. Geometrical coefficients for three different particle numbers in a double-well. The circles mark the numerical values of
each coefficient. The dotted lines connect the coefficients corresponding to the same values of b, which is increased from b = 0 (top—
lighter colors) to b = 3 (bottom—darker colors).

Now, let us consider a spin chain Hamiltonian defined as

- Z L(nﬁﬂ T %Hﬁ“), (A1)
where H’ it — —(l — o' - o) is the operator that exchanges neighboring spins with different projections
and H’ ’“ H’ ’“ = —(Jl + o' o1 have the same action, but for identical spins. A generic spin state can now
be wrltten as

LON,N)
IX) = > aPdli- v b Iw ) (A.12)
k=1

where once again the sum runs over the permutations of the N} and N, spins. Calculating the expected value of
Hamiltonian (A.11)as {x|H|x), we obtain

Z ]I( L(NT LN - DA“ L2 ZL(NT ZM)ATT L2 ZL(NT,Nl DA“)
(xIHlx) = Eo — LN 2 , (A.13)
k=1

where the coefficients A i”, A Jf and A i}f have the same meaning as in equation (A.9), and Zigbma,{z introduces
anormalization factor. It becomes clear that the energy functionals given by equations (A.8) and (A.13) are
identical if ; = «;/g. Furthermore, by rewriting equation (A.11) in terms of the Pauli matrices, we obtain

N-1 T

Hy=E)l — ) [ -0t ot + —(11+ o a’“)] (A.14)

i=1 g 2
which is the spin chain Hamiltonian described in equation (2) of the main text. We conclude then that the
eigenvalue problems defined with equations (A.8) and (A.13) are identical, which validates, for a strongly
interacting system, the mapping between Hamiltonians (1) and (2).

A.3. Geometrical coefficients
Different methods have been developed for calculating the coefficients in equation (A.10), in particular
exploring the determinant form of ®y(xy, ..., xx). Here, we use the open-source code CONAN [29] to calculate
them, considering the double-well potential with different barrier parameters. An equivalent approach, based
on Chebyshev polynomials, has been published in [28]. In figure (A2), we show results for the geometrical
coefficients in the cases of N = 4, 5and 6. Due to the parity invariance of the trapping potentials considered
here, we have oy = «a, ay — 1 = avp,..., which means we must calculate, at most, N/2 coefficients in each case.
In the single-well cases (b = 0), the coefficients are simply the ones expected for the given number of particles
inaharmonic trap. Particularly, for N = 4 we have a; & 1.78, a; ~ 2.34. As bis increased, the major change is
observed for even N in the central coefficient, which vanishes for b > 3. In this limit, we have the two sides of the
system described by almost completely separate harmonic traps with N/2 in each well. The values of the
coefficients for harmonic traps in this situation have analytical expressions, givenby o = 7/2 for N = 2 and
a = 33/(23V27) for N = 3. The situation is not the same for odd N. In this case, there is no central coefficient
to vanish as the barrier is increased. We would expect such a system to exhibit different spatial densities and
dynamics.

A.4. Spatial correlations in the impenetrable limit
In this section we describe the spatial densities for a given number of atoms N in the impenetrable limit. These
densities reproduce the results expected for a Tonks—Girardeau gas or a gas of spinless fermions, and are
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Figure A3. Spatial distributions in the impenetrable limit for the case of (a) N = 4and (b) N = 6.

characterized by a chain of localized atoms. The individual distributions are calculated with the following

expression [32]

P = [ dnndey 86— 1B o 2 20

(A.15)

where the integral is performed in the region ' = x; < x, < ... < xn. The quantity p'(x) then gives the spatial
distribution of the atom with index i. A formula for calculating these densities has been obtained by

Deuretzbacher et al [23], and is written as

pix) = 2

Ox

i
where 4= G- DIN —j — i)t

= oN

N-1 . 8]
[Z ct—=—det[B(x) — 1\]|r=0 |

(A.16)

NN —j— . . . . "
= CD_Woi- D' ohd the matrix B(x) is composed by the single-particle states superpositions

Dy (x) = L xoo dy ¢, (¥)¢,(y).In figure A3 we show these spatial distribution for the cases of N = 4and N = 6

as the barrier parameter b is increased.

A.5. Eigenvalues and eigenstates of the spin chain Hamiltonian
We present here the analytical expression for the matrix form of Hamiltonian H; for the case of

Ny =3 + N = L Thechoiceofbasisis givenby {| 1117 1), 11 L 1)1 T LT 1) 11111

rag 4 2(a) + ay)
gK
_a

_a
g

20 + k(o) + an)

0

%)

g

2a; + k(g + ay)

gK
o

g

0

0

a;
g

rag + 2(a; + ap)

8K

(A.17)

In the expression above we made the simplification that, due to the parity invariance of the trapping
potential, i3 = ;. Diagonalizing this matrix we obtain the following eigenvalues

—Jalkr + a3 + a(k +2) + o

>

€ =
gk

Jair? 4+ ai + a(k +2) + @y
€= ,
2 o

—\/afmz +ai(k — 1D + ok +2) + ark +
€3 =
3 o

\/Oélzliz +aik — 1D +a(k+2) + aak + o
€4 = >

gKR

(A.18)
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Figure A4. Frequency wjas a function of the intraspecies parameter & in the single-well potential (b = 0), for the case 3 + 1 (blue solid
line). The dashed curves show the behavior of the frequency for small (green) and large (red) « as given by the analytical expressions in
the text. In these results, we have used a; = a3 ~ 1.78, ; ~ 2.34and g = 20.

and the respective non-normalized eigenstates

o= alk? + a3 + o Jalkr+ o3 + @ .
! a1 R a1 R
ay — Jairr + a3 ay — Jair? + o
|X2>: 1’ > )1 )
(05127 oK
au(k —1) — \/aznz + ik — 1)? \/aznz + ik — 1)? — Kk + m
) = -1, i 2 N 2 1l
R oK
2.2 2 2 2,2 2 2
R+ a5k — 1) +a(k—1) —yJoirk”+ a5k — 1) — Kk + «
|1, JOIE Hade = 1 Haae = D) —Jaiw el — 1 —aamtan () o
R oK

The eigenvalues and eigenstates presented above can be compared to the ones in [24] by taking ov;/¢ = J;. We
have also omitted the constant energy term E, in these expressions. In the regime of & < 1, the two lowest energy
states are given by €3 (ground state) and ¢, (first excited state). We can therefore write an analytical expression for
the frequency wythat defines the tunneling of the impurity between the wells. It is given by

K — \/afﬂz +al + \/afnz + ai(k — 1)?
gk ’

where again we considered a3 = ;. In figure A4 we show the behavior of this frequency with increasing « in the
case of b = 0. The result shown here can be directly related to the line defined by b = 0 in figure 4 of the main

Wy =

(A.20)

22
text. For small &, we get wy = j;: , while for £ > 1 (approaching the fermionic limit for the background gas) it
v,
_ [ 2 2
becomes constant: w; = azaﬁgialm.
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