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Alterações neuromusculares de membro inferior e suas relações com a cinemática durante 

tarefas unipodais de descarga de peso na syndrome da dor patelofemoral  

por 

Rodrigo Rodrigues 

 

Submetido ao Programa de Pós-graduação em Ciências do Movimento Humano da Universidade 

Federal do Rio Grande do Sul em 19 de julho de 2018 como requisito parcial para a obtenção do 

título de Doutor em Ciências do Movimento Humano 

 

Resumo 

A síndrome da dor patelofemoral (SDPF) é o diagnóstico mais comum em populações fisicamente 

ativas. A SDPF está relacionada com o mau alinhamento dos membros inferiores durante tarefas de 

descarga de peso, causando maior estresse e dor na articulação patelofemoral. Esse mau alinhamento 

está relacionado com um aumento da inclinação ipsilateral do tronco, adução do quadril, abdução do 

joelho e maior grau de rotação interna da tíbia durante atividades dinâmicas, como agachamento 

unipodal, corrida, salto e subir e descer escadas. Fatores anatômicos e biomecânicos estão 

relacionados a alterações ao redor da articulação femoropatelar, como menor força de extensão do 

joelho, atraso na ativação do vasto medial em relação ao vasto lateral e atrofia do músculo quadríceps. 

Recentemente, alterações do quadril (fatores proximais), tornozelo e pé (fatores distais) têm sido 

propostas como fatores contribuintes da SDPF. No entanto, as evidências sobre ativação e alteração 

da morfologia muscular dos membros inferiores, principalmente nos fatores proximais e distais, são 

escassas. Esta tese teve como objetivo verificar as alterações neuromusculares dos membros 

inferiores e determinar se algum parâmetro neuromuscular explicava a cinemática durante tarefas 

unipodais. Após a apresentação dos motivos para realização deste estudo (Capítulo I), no Capítulo II 

objetivamos verificar as alterações neuromusculares (ativação muscular e morfologia muscular) 

relacionadas aos fatores proximais e distais na SDPF por meio de uma revisão sistemática. As buscas 

foram realizadas nas bases de dados Medline (via PubMed), Scielo, Scopus, PEDro, Cochrane 

Central, Embase e ScienceDirect databases até abril de 2018 para estudos avaliando ativação 

muscular ou parâmetros de morfologia muscular das articulações do tronco, quadril e tornozelo/pé. 

Dois revisores independentes avaliaram cada trabalho para inclusão e qualidade. Dezenove estudos 

foram identificados (SDPF, n = 319; GC, n = 329). Três estudos investigaram os músculos ao redor 

das articulações do tronco e tornozelo/pé. Quinze estudos investigaram os músculos ao redor da 

articulação do quadril. As evidências foram inconclusivas sobre a ativação do transverso do 

abdome/oblíquo interno (TrA/OI) na SDPF durante atividades de alta velocidade. Os níveis de 

ativação, duração e atraso na ativação de Glúteo Médio (GMed), glúteo máximo (GMax), biceps 

femoral (BF) and semitendinoso (ST) foram inconclusivos nos estudos incluídos. Não foram 

observadas diferenças na ativação de gastrocnêmio lateral (GL), gastrocnêmio medial (GM), sóleo 

(SOL), tibial anterior (TA) e fibular longo (FIB). Apenas um estudo incluído avaliou parâmetros da 

morfologia muscular, sem alterações na espessura muscular e na intensidade do eco GMed e GMax. 

Com base na falta de evidências sobre alterações na ativação muscular em torno das articulações do 

quadril, tornozelo e pé durante tarefas dinâmicas, e no fato de que um único estudo avaliou os 

resultados da morfologia muscular (GMed e GMax) na SDPF, propusemos um artigo original 

(Capítulo III) que teve como objetivo comparar os parâmetros neuromusculares dos membros 

inferiores e a cinemática no plano frontal durante tarefas unipodais de descarga de peso em mulheres 

com SDPF e determinar se algum resultado neuromuscular explicava o índice dinâmico de valgo 

(IVD) durante as tarefas. Quinze mulheres com SDPF e quinze mulheres saudáveis pareadas por 
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idade (grupo controle - GC) foram comparadas com os seguintes testes: (1) questionário funcional; 

(2) espessura muscular ao redor do quadril (GMed e tensor da fáscia lata - TFL), joelho (VL e VM) 

e tornozelo/pé (TA e FIB); (3) IVD e ativação muscular durante agachamento e salto vertical 

unipodais; (4) torque isométrico máximo para abdução do quadril, extensão do joelho e eversão/ 

inversão do pé; e (5) ativação muscular durante testes isométricos e funcionais. Uma regressão linear 

múltipla (modelo Stepwise) foi usada para verificar se alguma variável neuromuscular explicava o 

IVD durante as tarefas unipodais. O tamanho de efeito (ES) foi usado para determiner a magnitude 

da diferença entre os grupos. Comparado ao GC, o grupo SDPF apresentou: (1) menor espessura do 

GMed (-10.02%; ES = -0.82) e maior espessura do TFL (+18.44%; ES = +0.92) e do FIB (+14.23%; 

ES = +0.87); (2) menor ativação do TA durante o agachamento unipodal (-59,38%; ES = -1.29); (3) 

menor ativação do GMed durante o salto vertical unipodal (-28.70%; ES = -1.35) e (4) maior ativação 

do GMed durante o teste isométrico de abdução de quadril (+34.40%; ES = +0.77). IVD durante o 

agachamento unipodal foi explicado pela ativação do VL durante a tarefa somente no GC, enquanto 

a espessura do TA no GC e o torque de eversores do pé no SDPF explicou o IVD durante o salto 

vertical unipodal. Com base em nossos resultados, as mulheres com SDPF apresentaram alterações 

neuromusculares significativas nas articulações do quadril e tornozelo/pé. No entanto, apenas fatores 

distais explicaram o IVD no grupo SDPF. 

 

Palavras-chave: dor patelofemoral; tronco; quadril; tornozelo; EMG; atrofia muscular 

  

  



6 

 

Lower limb neuromuscular changes and their relationship with kinematics during single-leg 

weight-bearing tasks in the patellofemoral pain syndrome 

by 

Rodrigo Rodrigues 

 

Submitted to the Graduate Program of Human Movement Science on July 19, 2018, in partial 
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Abstract 

Patellofemoral pain syndrome (PFPS) is the most common diagnoses in physically active 

populations. PFPS is related with lower limbs poor alignment during weight-bearing tasks, causing 

higher patellofemoral joint stress and pain. This poor alignment is related with an increase of 

ipsilateral trunk lean, hip adduction, knee abduction and greater tibial internal rotation during 

dynamic activities such as single-leg squat, running, jumping, and stepping tasks. Anatomical and 

biomechanical factors are related with unwanted changes around the patellofemoral joint, such as 

lower knee extension strength, delayed onset of vastus medialis activation relative to vastus lateralis 

and quadriceps muscle atrophy (knee joint muscles intrinsic changes). Recently, hip (proximal), ankle 

and foot (distal) changes have been proposed as PFPS contributing factors. However, the evidences 

about lower limb muscle activation and morphology changes, mainly in proximal and distal factors, 

are scarce. This thesis aimed to create clinical subgroups based in lower limb neuromuscular changes 

and determine if some neuromuscular outcome explained kinematics during single-leg tasks. After 

displaying the reasons to perform this study (Chapter I), in Chapter II we aimed to verify 

neuromuscular changes (muscle activation and muscle morphology) related to proximal and distal 

factors in PFPS through a systematic review. Medline (via PubMed), Scielo, Scopus, PEDro, 

Cochrane Central, Embase and ScienceDirect databases were searched until April 2018 only for 

retrospective studies evaluating muscle activation or muscle morphology parameters of trunk, hip and 

ankle/foot joints. Two independent reviewers assessed each paper for inclusion and quality. Twenty 

retrospective studies were identified (PFPS, n=319; CG, n=329). Three studies investigated muscles 

around trunk and ankle/foot joints. Fifteen studies investigated muscles around the hip joint. 

Evidences were inconclusive about transversus abdominis/internal oblique (TrA/IO) activation in 

PFPS during high-speed activities. Gluteus medius (GMed), gluteus maximus (GMax), bíceps 

femoris (BF) and semitendinous (ST) activation level, activation duration and activation onset were 

inconclusive in the included studies. No differences were observed in gastrocnemius lateralis (GL), 

gastrocnemius medialis (GM), soleus (SOL), tibialis anterior (TA) and fibularis (FIB) muscle 

activation. Only one included study evaluated muscle morphology parameters, without changes in 

the GMed and GMax muscle thickness and echo intensity. Based in the lack of evidences about 

muscle activation changes in PFPS patients’ muscles around hip, ankle and foot joints during dynamic 

tasks, and in the fact that a single study evaluated muscle morphology outcomes (GMed), we 

proposed an original article (Chapter III) that aimed to compare lower limb neuromuscular parameters 

and frontal plane kinematics during single-leg tasks in women with PFPS, and determine if some 

neuromuscular outcome explained dynamic valgus index (DVI) during tasks. Fifteen PFPS women 

and fifteen healthy age-matched women (control group - CG) were compared with the following tests: 

(1) functional questionnaire; (2) hip (GMed and tensor fasciae latae - TFL), knee (VL and VM) and 

ankle/foot (TA and FIB) muscle thickness; (3) DVI and muscle activation during single-leg squat and 

vertical jump; (4) maximal isometric torque for hip abduction, knee extension and foot 

eversion/inversion; and (5) muscle activation during isometric and functional tests. A multiple-
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stepwise regression analysis was used to test if neuromuscular outcomes explained DVI during single-

leg tasks. Effect sizes (ES) were used to determine the magnitude of between-groups differences. 

Compared to the CG, PFPS showed: (1) smaller GMed (-10.02%; ES = -0.82) and greater TFL 

(+18.44%; ES = +0.92) and FIB muscle thickness (+14.23%; ES = +0.87); (2) lower TA muscle 

activation during single-leg squat (-59,38%; ES = -1.29); (3) lower GMed muscle activation during 

single-leg jump (-28.70%; ES = -1.35) and (4) greater GMed muscle activation during hip abduction 

isometric test (+34.40%; ES = +0.77). DVI during single-leg squat was explained by VL activation 

during this task only in CG, whereas lower TA muscle thickness in the CG and higher foot eversion 

torque in PFPS explained DVI during single-leg vertical jump. Based in our results, females with 

PFPS showed significant neuromuscular changes at the hip and ankle/foot joints. However, only distal 

factors explained DVI in the PFPS group. 

 

 

Keywords: patellofemoral pain; trunk; hip; ankle; EMG; muscular atrophy  
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CHAPTER I – BACKGROUND AND AIMS 

 

 

Patellofemoral pain syndrome (PFPS) is characterized by retro or peripatellar pain, 

exacerbated during weight-bearing activities such as running, jumping, squatting and going up and 

down stairs [1]. It is one of the most common diagnoses among young, physically active populations 

[2], predominantly in females [3]. Therefore, it has a debilitating effect on PFPS patients’ daily lives 

by reducing their ability to perform sporting and work-related activities pain free [4]. The most 

common responses observed in PFPS patient’s dynamic tasks is related with frontal/transverse plane 

kinematic changes, such as ipsilateral trunk lean, hip adduction, knee abduction [5] and greater tibial 

internal rotation [6]. Additionally, many studies have evaluated patients after PFPS diagnoses and 

tried to observe kinetic, kinematic and neuromuscular changes compared to healthy participants [5, 

7-10], thinking in rehabilitation programs to minimize pain and improve functionality. 

Historically, anatomical and biomechanical factors related with PFPS focused in the structures 

around patellofemoral joint [11]. Lower knee extension strength [12], delayed activation onset of 

vastus medialis (VM) relative to vastus lateralis (VL) [13], and quadriceps muscle atrophy [14] 

pointed to the main neuromuscular changes related with the disease. Recently, proximal (related with 

hip [5, 8, 15] and trunk [8, 16]) and distal factors (related with ankle and foot joint changes [17, 18]) 

have been proposed as PFPS contributing factors, which might lead to lower limb poor alignment 

during weight-bearing tasks and cause higher patellofemoral joint stress and pain [9, 19]. 

Although interventions involving exercise are the most effective for these patients, many of 

them are not responsive to treatment, which is commonly explained by the changes observed in PFPS 

not being adequately addressed or not being the same for all patients [4]. Thus, the identification of 

which factors are present in PFPS patients can potentiate the intervention protocols effectiveness [4, 

20, 21], such as the identification of aetiology subgroups [21]. Recent evidences demonstrated that 

the combination of hip and knee [22] and foot and knee exercises [23] in a rehabilitation exercise 

program is better than exercise focusing at the knee alone on pain severity and functionality in PFPS 
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patients. Even with the observed improvement on clinical outcomes, the mechanisms that better 

explain this condition or that need to be addressed are scarce. 

The amount of published studies is a reflection of this recent attention given by researchers to 

proximal and distal factors. When we performed a simple search in PubMed database with terms 

“patellofemoral pain syndrome and hip” or “patellofemoral pain syndrome and ankle”, we only 

observed 263 and 72 studies, respectively (until July 5th, 2018), while the search with “patellofemoral 

pain syndrome and knee” we observed 937 studies. Additionally, the consensus statement from the 

last International Patellofemoral Pain Research Retreat in September 2017 [24] pointed as one of the 

future directions a “greater understanding of potential mechanisms underpinning treatment effects”. 

Thus, we believe that the identification of clinical subgroups based in detailed lower limb 

neuromuscular changes can help to explain poor lower limb aligment during weight-bearing tasks 

and improve exercise rehabilitation protocols. 

Based on previous studies weakness to identify the mechanisms related with PFPS, this 

dissertation was subdivided in three sections. Chapter II is an original manuscript aimed to compare 

neuromuscular outcomes (muscle activation and muscle morphology) related to proximal and distal 

factors between PFPS patiens and healthy participants through a systematic review. Chapter III is an 

original article that aimed to compare lower limb neuromuscular parameters and frontal plane 

kinematics during single-leg tasks in women with and without PFPS and determine if some 

neuromuscular outcome explained dynamic valgus index (DVI) during tasks. Finally, in the last 

chapter we address our conclusion and future directions. 
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CHAPTER II - PROXIMAL AND DISTAL NEUROMUSCULAR CHANGES IN 

PATELLOFEMORAL PAIN SYNDROME: A SYSTEMATIC REVIEW 

2.1 ABSTRACT 

 

Introduction: Patellofemoral pain syndrome (PFPS) is a multifactorial disease related to 

neuromuscular changes at the trunk, hip, knee, ankle and foot joints. However, evidences about 

neuromuscular changes in trunk, hip, ankle and foot joints are scarce. Purpose: To verify 

neuromuscular changes (muscle activation and muscle morphology) related to proximal and distal 

joints in PFPS compared to healthy participants through a systematic review. Methods: Medline (via 

PubMed), Scielo, Scopus, PEDro, Cochrane Central, Embase and ScienceDirect databases were 

searched until April 2018 only for observational and clinical trials studies evaluating muscle 

activation or muscle morphology parameters of trunk, hip and ankle/foot joints. Two independent 

reviewers assessed each paper for inclusion and quality. Means and standard deviations were 

extracted from each included study to allow effect size calculations and results comparison. Results: 

Nineteen studies were identified (PFPS, n=319; CG, n=329). Three studies investigated muscles at 

the trunk and ankle/foot joints. Fifteen studies investigated muscles at the hip joint. Evidences were 

inconclusive about transversus abdominis/internal oblique (TrA/IO) activation in PFPS during high-

speed activities. Gluteus medius (GMed), gluteus maximus (GMax), biceps femoris (BF) and 

semitendinosus (ST) activation level, activation duration and activation onset were inconclusive in 

the included studies. No differences were observed in gastrocnemius lateralis (GL), gastrocnemius 

medialis (GM), soleus (SOL), tibialis anterior (TA) and fibularis (FIB) muscle activation. Only one 

included study evaluated muscle morphology parameters but did not observe changes in the GMed 

and GMax muscle thickness and echo intensity. Conclusion: Our results failed to demonstrate 

neuromuscular changes in trunk, hip, ankle and foot joints related to PFPS. Future studies need to 

evaluate muscle morphology around trunk, hip and ankle/foot joints to help in the selection of the 

best exercises for PFPS rehabilitation programs. 

 

Key-words: patellofemoral pain; trunk; hip; ankle; EMG; muscular atrophy 
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2.2 INTRODUCTION 

 

 Knee injuries are prevalent among a variety of competitive sports. Two of the most common 

sports-related knee injuries are patellofemoral pain syndrome (PFPS) and anterior cruciate ligament 

(ACL) injuries [25]. PFPS is the most common diagnoses in physically active populations [2], and is 

related with poor lower limbs alignment during weight-bearing tasks, which cause higher 

patellofemoral joint stress and pain [9, 19]. This poor alignment is related with an increase of 

ipsilateral trunk lean, hip adduction, knee abduction [8] and greater tibial internal rotation [6] during 

dynamic activities such as single-leg squat [8, 9], running [26], jumping [27, 28] and stepping tasks 

[9]. 

For a long time, clinicians believed that only local knee changes were related with PFPS. 

Evidence for this idea of an intrinsic relaton between changes at the knee joint and PFPS can be 

observed in exercise rehabilitation protocols, which focused only in the quadriceps muscle and on 

structures around the patellofemoral joint [29]. Possible reasons for that are related to neuromuscular 

changes around the patellofemoral joint observed in PFPS patients. A meta-analysis observed towards 

a delayed onset of vastus medialis oblique (VMO) relative to vastus lateralis (VL) in PFPS compared 

to healthy people during stair ascent and descent, which may adversely affect the tracking of the 

patella due to the fact that VMO act to avoid the lateralization of patella, thus contributing to the 

presence of pain [30]. Additionally, quadriceps atrophy is also observed in PFPS compared to healthy 

participants according to a meta-analysis [14], supporting the rationale for the use of quadriceps 

strengthening as part of a PFPS rehabilitation program. 

Recently, trunk and hip changes [5, 8, 15] have been proposed as PFPS contributing factors, 

due to their function on pelvic stability and eccentric control of hip adduction in weight-bearing tasks 

[31]. Moreover, ankle and foot joint changes also contribute for PFPS, mainly due to excessive 

rearfoot eversion [17] and the lack of pronation control during tasks [32], which have been observed 

in PFPS patients and related with poor limb aligment. These proximal (trunk and hip joints) and distal 
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(ankle/foot joints) changes might lead to lower limb poor aligment during weight-bearing tasks and 

cause higher patellofemoral joint stress and pain [9, 19].  

Even though proximal and distal changes seem to have a critical role in PFPS development, 

the evidence in support of these proximal and distal mechanisms, as being related with kinematic 

changes during dynamic tasks, is scarce. Nevertheless, two systematic reviews with meta-analysis 

have focused on changes at the hip joint in PFPS patients. Barton et al. [33] observed a delayed 

gluteus medius (GMed) activation and with shorter duration during stair ascent and descent, and 

during running in PFPS patients. Additionally, a lower hip strength was also observed in PFPS 

compared to a healthy control group (CG) [34]. These two results help to explain the contribution of 

proximal factors in PFPS development. We did not observe any systematic review related to the distal 

factors in PFPS patients, although kinematic changes have been observed in previous studies [17]. 

In summary, changes in quadriceps muscle activation and morpholgy were observed in PFPS. 

Systematic reviews involving proximal factors showed changes in hip muscle strength and gluteus 

activation. However, despite of the existence of proximal and distal factors being evaluated in PFPS 

patients, there is a lack of systematic reviews involving proximal and distal neuromuscular outcomes. 

Evaluation of these proximal and distal outcomes could help to explain the PFPS patients’ poor limb 

alignment in functional tasks and help to determine the best exercises choice in a PFPS rehabilitation 

program. Thus, the aim of present study was to verify the existence of proximal (trunk and hip joints) 

and distal (ankle/foot joints) neuromuscular changes (muscle activation and muscle morphology) in 

PFPS studies through a systematic review. 

 

2.3 METHODS 

This is a systematic review of controlled trials following the PRISMA Statement 

recommendations and registered in the International Prospective Register of Systematic Reviews – 

PROSPERO (waiting for record register). 
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2.3.1 Search strategy 

Studies indexed in Medline (via Pubmed), Scielo, Scopus, PEDro, Cochrane Central, Embase 

and ScienceDirect published until April 2018 were searched. References lists from the included 

studies were also searched to find other potential studies to be included in this review. 

 Mesh terms, Emtree terms, and keywords related to the subject of interest (patellofemoral pain 

syndrome) and the outcomes of interest (muscle activation, muscle morphology and muscle strength 

of trunk, hip, ankle and foot) were utilized combined with the Boolean operators “AND” and “OR”. 

The complete description of the search strategy used in Medline via Pubmed database is shown below 

(Table 1). 

 

Table 1: Complete description of the search strategy used in Medline via Pubmed database 

("Patellofemoral Pain Syndrome"[Mesh] OR “Pain Syndrome, Patellofemoral” OR “Anterior Knee Pain 

Syndrome” OR “Patellofemoral Syndrome” AND "Electromyography"[Mesh] OR “Electromyographies” 

OR “Surface Electromyography” OR “Electromyographies, Surface” OR “Electromyography, Surface” 

OR “Surface Electromyographies” OR “Electromyogram” OR “Electromyograms” OR “muscle 

architecture” OR “muscle thickness” OR “muscle activation” OR "Muscle Strength"[Mesh] OR “muscle 

volume” OR "Muscular Atrophy"[Mesh]) 

 

2.3.2 Eligibility criteria 

 

 To be included, retrospective studies should address muscle activation or muscle morphology 

parameters of trunk, hip, ankle and foot joints in PFPS patients and compare outcomes with a healthy 

group. Participants should have PFPS (men or women), without other skeletal muscle diseases. 

Clinical trials involving rehabilitation programs were included and outcomes were obtained only in 

the pre-intervention period. Any parameter of muscle activation (muscle onset, activation duration, 

and activation magnitude) and muscle morphology (muscle thickness, anatomical cross section area, 

pennation angle, fascicle length, volume and echo intensity) was included. Studies investigating at 

least one of the outcomes of interest were included. Finally, only articles written in English, Spanish 

or Portuguese were considered. 
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2.3.3 Study selection 

 

 Results from each database were exported for further analysis of titles and abstracts by two 

independent authors. Duplicated studies were excluded. Titles and abstracts were analyzed to select 

potential studies to be included in the review and to exclude manuscripts that did not fill the eligibility 

criteria. Studies selected by at least one author were downloaded and the eligibility criteria were 

applied to them. Two independent authors performed full-text analyses, and discrepancies were 

solved by consensus. 

 

2.3.4 Outcomes 

 

The considered outcomes were muscle activation amplitude, muscle activation duration and 

muscle activation onset during any functional activity (running, squatting, stair-stapping, single-leg 

triple hop, walking, rehabilitation exercises, upward squatting and step up/step down exercises). 

Moreover, pennation angle, fascicle length, muscle thickness, echo intensity, CSA and muscle 

volume measured by ultrasonografy, magnetic resonance imaging and computed tomography scan 

were included outcomes. 

 

2.3.5 Quality assessment 

 

A modified version of the Downs and Black Quality Index [35] was used to access 

methodological quality. The modified version of the Downs and Black Quality Index is scored out of 

15 items, with higher scores indicating higher-quality studies. Studies with scores of 10 or greater 

were considered of “high quality” and studies with scores below 10 were considered of “low quality”. 

We used the criteria used in a similar previous study [33] 
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2.3.6 Data extraction 

 

 Two authors used a standardized spreadsheet to extract data, and discrepancies were solved 

by consensus. Extracted data included publication info (author, year), participants’ characteristics 

(number, sex, age), clinical characteristics (usual pain and symptoms duration), and outcomes mean 

and standard deviation values from both groups (PFPS and CG). If the study had more study groups 

(other skeletal disease or other intervention), only the data about the groups of interest were extracted. 

When a study performed a rehabilitation protocol, only the data before intervention was extracted. 

When the data were presented only in figures, we used Image J software (National Institutes of Health, 

Bethesda, Maryland) to estimate mean and standard deviation values. When studies presented a series 

of measures of the same outcome, results for either sexes, or measures of different parts of the muscle, 

we calculed the mean value for each group analysis. 

2.3.7 Data analysis 

 

 Data analyses were planned to consider both qualitative and quantitative approaches. 

However, the large variety and diversity of described outcomes among studies, limited a quantitative 

assessment, as very few had similar outcomes. The main reason is related with different tasks 

performed among studies. Therefore, a qualitative analysis was performed considering the main 

characteristics, results, and limitations of each study in addition to the already mentioned quality 

assessment. Additionally, we calculed the between-groups outcome effect sizes if authors did not 

present them. 

2.4 RESULTS 

2.4.1 Description of studies 

 The initial search returned 1373 studies retrieved from the different databases. Duplicates 

were removed, and after title and abstract analysis performed by two reviewers, 117 full-texts were 

downloaded for analysis. After inclusion and exclusion criteria analysis, 19 studies fulfilled the 
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eligibility criteria for inclusion in this systematic review. The complete process of the studies searches 

and selection is depicted in Figure 1. 

 

Figure 1. Flowchart of search and selection of the studies included in the systematic review. 

2.4.2 Participants characteristics of the included studies 

 

 Two hundred and seventy-five women were evaluated in each group (PFPS and CG), while 

44 men in PFPS group and 54 men in CG. The age of the participants in PFPS group and healthy 

participants range between 21 and 33 years. The symptoms duration of PFPS patients range between 

9.5 and 58.8 months. However, it is important to note that only 8 studies included this information 

[7, 9, 10, 16, 36-39]. The mean pain measured by VAS was 44.6 mm, with 9 studies using this method 

[16, 27, 28, 36-41] Additionally, one study used a Pain Severity Scale [10] (Table 2). 
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2.4.3 Outcomes characteristics of the included studies 

 

 We observed that 19 studies measured some EMG parameter of trunk, hip or ankle/foot joints. 

Three studies performed an EMG analysis of some trunk muscles such as the transversus abdominis 

[40, 41], internal oblique [40, 41], external oblique [8], erector spinae [40, 41] and intercostalis [8]. 

Fifteen studies measured some hip joint muscles such as gluteus medius [5, 7, 9, 16, 26-28, 36-43], 

gluteus maximus [5, 26-28, 38, 39], biceps femoris [28, 44] and semitendinous [44]. Finally, three 

studies measured some ankle/foot joint muscle, such as tibialis anterior [45], fibularis longus [44], 

gastrocnemius medialis [44], gastrocnemius lateralis [45] and soleus [38]. 

 Regarding the test type used to measure muscle activation, the most used were a type of stair-

stepping task in seven studies [7, 9, 16, 36, 37, 42, 43], single-leg squat in four studies [5, 8, 39, 42], 

a type of jump test in three studies [7, 27, 28] and running in two studies [26, 38]. With respect to the 

EMG analysis, the most common outcome was the relative EMG amplitude (%MIVC) in 13 studies 

[5, 7-9, 26-28, 36, 38, 39, 44, 45]. 

 We observed only one study that performed a measure of muscle morphology. The authors 

evaluated gluteus medius and gluteus maximus muscle thickness and echo intensity through an 

ultrasonografy system [10]. All outcomes characteristics of the included studies were presented in 

Table 2.
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Table 2. Main characteristics of participants, neuromuscular outcomes and type of task performed in each included study. 

Study 

Participants Main outcomes 

Groups Age 
Number/ 

Gender 

Usual pain 

(mm) 

Duration of 

symptoms 

(months) 

Muscle 

morphology 

Muscle 

activation 
Type of test Outcome 

Biabanimoghadam 

et al., 2016 [40] 

CG 

PFPS 

25.1±3.6 

26.2±3.4 

30 F 

30 F 

NE 

55.3±11 

NI 

NI 
NE 

GMed 

ES 

TrA/IO 

Rise on to their 

toes as quickly and 

strongly as 

possible. 

Onset 

Bley et al., 2014 

[27] 

CG 

PFPS 

23.1±3.3 

23.5±2.1 

20 F 

20 F 

NE 

49±16 

NI 

NI 
NE 

GMax 

GMed 

Propulsion phase of 

SLTHT 
%MIVC 

Bolgla et al., 2011 

[36] 

CG 

PFPS 

23.9±2.8 

24.5±3.2 

18 F 

18 F 

NE 

44±15 

NE 

14.4±12.8 
NE GMed Stair-stepping test  %MIVC 

Boling et al., 2006 

[37] 

CG 

PFPS 

24±6 

23±2 

5 M 9 F 

5 M 9 F 

NE 

48±21 

NE 

22±25 
NE GMed Stair-stepping task 

Onset 

Duration 

Cowan et al., 2008 

[16] 

CG 

PFPS 

25.4±5.5 

26±10.1 

12 M 15 F 

3 M 7 F 

NE 

40±10 

NE 

6±5 
NE GMed Stair-stepping task Onset 

Dionísio et al., 

2011[45] 

CG 

PFPS 

23.2±1.1 

24.1±1.5 

4 M 4 F 

4 M 4 F 

NE 

NI 

NE 

NI 
NE 

BF 

ST 

GL 

TA 

Upward squatting %MIVC 

Esculier et al., 2015 

[38] 

CG 

PFPS 

33.2±6 

34.1±6 

15 F 5 M 

16 F 5 M 

NE 

28±11 

NE 

38.1±45.5 
NE 

GMed 

GMax 

SOL 

Stance phase of 

running 
%MIVC 

Kalytczak et al., 

2016 [28] 

CG 

PFPS 

23.1±3.3 

23.5±2 

14 F 

14 F 

NE 

50.5±16.3 

NE 

NI 
NE 

GMed 

GMax 

BF 

SLTHT %MIVC 

Liebensteiner et al., 

2008 [44] 

CG 

PFPS 

25.7±3.9 

25.2±4.1 

11 F 8 M 

11 F 8 M 

NI 

NI 

NI 

NI 
NE 

BF 

ST 

FIB 

GM 

Eccentric leg-press 

action 
%MIVC 

Nakagawa et al., 

2011 [7] 

CG 

PFPS 

22.7±2.5 

23.3±5.2 

10 F 

9 F 

NI 

NI 

NE 

52.1±46.7 
NE GMed 

Walking, 

descending stairs 

and single-leg 

vertical jump 

Onset 

%MIVC 

Nakagawa et al., 

2012a [5] 

CG 

PFPS 

22.7±2.5 

22.6±3.2 

20 F 20 M 

20 F 20 M 

NI 

NI 

NI 

NI 
NE 

GMed 

GMax 
Single-leg squat %MIVC 
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Nakagawa et al., 

2012b [9] 

CG 

PFPS 

22.6±3.3 

23±3.2 

20 F 20 M 

20 F 20 M 

NI 

NI 

NE 

34±21.8 
NE GMed Stair-stepping task %MIVC 

Nakagawa et al., 

2015 [8] 

CG 

PFPS 

22.3±3.0 

22.7±3.4 

20 F 10 M 

20 F 10 M 

NI 

NI 

NI 

NI 
NE 

EO 

IC 
Single-leg squat %MIVC 

Nunes et al., 2017 

[10] 

CG 

PFPS 

23.2±2.8 

24.3±4 

27 F 

27 F 

NE 

42.2±17.2* 

NE 

58.8±49.2 

GMed 

GMax 
NE Ultrassonography 

Muscle thickness 

Echo intensity 

O’Sullivan et al., 

2012 [42] 

CG 

PFPS 

21±1 

23±4 

12 F 

12 F 

NI 

NI 

NI 

NI 
NE GMed 

Wall-press 

Step-up and over 

Pelvic drop 

Single-leg squat 

%MIVC 

Rojhani et al., 2014 

[41] 

CG 

PFPS 

26.3±3.2 

26.5±3.5 

27 F 

27 F 

NE 

45±9.3 

NI 

NI 
NE 

TrA/IO 

ES 

GMed 

Unexpected 

perturbation 

applied to lateral 

side of the body 

Onset 

Duration 

Saad et al., 2011 

[43] 

CG 

PFPS 

23.3±2.1 

23.1±2.3 

15 F 

15 F 

NI 

NI 

NI 

NI 
NE GMed 

Step-up 

Step-down 

Integral of linear 

envelope 

Song et al., 2015 

[39] 

CG 

PFPS 

23.3±2.1 

23.1±2.3 

8 F 

16 F 

NE 

41.6±11.1 

NE 

9.5±11.1 
NE 

GMed 

GMax 
Single-leg squat %MIVC 

Wilson et al., 2011 

[26] 

CG 

PFPS 

21.6±4.5 

21.3±2.6 

20 F 

20 F 

NI 

NI 

NI 

NI 
NE 

GMed 

GMax 
Running 

%MIVC 

Onset 

Duration 
CG: control group; PFPS: patellofemoral pain syndrome group; F: female; M: male; NI: not informed; NE: not evaluated; GMed: gluteus medius; GMax: gluteus maximus; EO: external oblique; IO: 

internal oblique; GL: gastrocnemius lateralis; GM: gastrocnemius medialis; SOL: soleus; TA: tibialis anterior: FIB: fibularis longus; ST: semitendinous; BF: biceps femoris; IC: iliocostalis; TrA: 

transversus abdominis; ES: erector spinae; SLTHT: single-leg triple hop test; %MIVC: percent of maximal isometric voluntary contraction; *Pain Severity Scale. 
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2.4.4 Neuromuscular outcomes in PFPS vs healthy participants 

 

 Table 3 describes the results and outcomes from each study. Regarding trunk outcomes, two 

studies demonstrated differences in EMG outcomes between PFPS and healthy participants. PFPS 

patients had an activation delay in TrA/IO when the participants perfomed a test where they needed 

to rise on to their toes as quickly and strongly as possible [40]. However, an early activation and 

greater activation duration of TrA/IO and ES were observed in PFPS patients after an unexpected 

perturbation was applied to the lateral side of the body [41] 

GMed, GMax and BF muscle activation were greater in PFPS patients during single-leg triple 

hop [27] and stair-stepping task [36]. However, a lower activation during step down was observed in 

PFPS patients [43], while Nakagawa et al. [9] demonstrated that PFPS patients had a lower GMed 

only in 60º of knee flexion during stepping maneuver. Additionally, a delayed GMed muscle 

activation was observed in PFPS patients during stair-stepping task [16] and running [26]. A lower 

BF and ST activation was observed during the eccentric leg press action [44]. No between-groups 

differences were observed for muscle morphology [10]. 

Regarding ankle/foot EMG outcomes, no differences were observed between PFPS and 

healthy participants independently of the performed task. Only in one study was impossible to obtain 

results because the figure and values are very small and there is some overlapping [45]. Effect size 

values of each included study and outcomes are demonstrated in Table 3. 
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Table 3. Outcomes measured and results from each included study. 

Study Neuromuscular outcome Type of test Muscles Results (Mean±SD) 
Difference between-groups 

(p value) 
Effect size 

Biabanimoghadam et al., 

2016 [40] 
Muscle onset (ms) 

Rise on to their 

toes as quickly 

and strongly as 

possible. 

 CG PFPS   

GMed -42.3±118.4 -39.6±155.3 0.94 0.02 

TrA/IO -15.3±141.3 91.4±179.2 0.013 0.67 

ES 119.0±188.5 109.3±182.8 0.84 0.05 

Bley et al., 2014 [27] Amplitude (%MIVC) 
Propulsion phase 

of SLTHT 

GMed 10.5±10.1 20.9±10.0 0.002 1.00 

GMax 10.1±9.3 20.4±11.9 0.005 1.00 

BF 8.5±12.5 15.9±7.2 0.026 0.70 

Bolgla et al., 2011 [36] Amplitude (%MIVC) Stair-stepping test 

GMed load 18.6±8.8 40.2±22.9 0.001 1.28 

GMed stance 8.1±5.0 21.5±15.9 0.002 1.17 

GMed pre-swing 5.4±3.6 7.5±5.6 0.602 0.45 

Boling et al., 2006 [37] 
Muscle onset (ms) 

Activation duration (ms) 
Stair-stepping test 

GMed* -86.9±55.4 -120.2±111.3 NI 0.39 

GMed* 492.6±149.0 480.6±79.9 NI 0.10 

Cowan et al., 2008 [16] Muscle onset (ms) Stair-stepping test GMed# -21.5±13.3 20.3±19.0 0.01 2.87 

Dionísio et al., 2011[45] Amplitude (%MIVC) 
Upward squatting 

 

BF NI NI >0.05 NI 

ST NI NI >0.05 NI 

GL NI NI >0.05 NI 

TA NI NI >0.05 NI 

Esculier et al., 2015 [38] Amplitude (%MIVC) 
Stance phase of 

running 

GMed 74.3±28.3 60.1±25 0.09 0.55 

GMax 48.1±23.0 46.7±22.8 0.84 0.06 

SOL 226.4±85.7 183±70.0 0.08 0.57 

Kalytczak et al., 2016 

[28] 
Amplitude (%MIVC) SLTHT 

GMed stance 10.9±5.2 11.6±5.2 0.72 0.14 

GMed conc 4.8±2.7 5.5±3.1 0.54 0.25 

GMed ecc 7.3±3.2 8.2±4.0 0.52 0.26 

GMax stance 12.8±8.6 12.5±5.1 0.69 0.04 

GMax conc 5.1±4.8 5.5±4.2 0.50 0.09 

GMax ecc 8.5±4.4 8.8±4.3 0.92 0.07 

BF stance 6.9±2.5 10.3±5.0 0.04 0.89 

BF conc 2.9±1.3 3.6±2.8 0.37 0.33 

BF ecc 4.4±2.5 6.4±3.1 0.07 0.74 

Liebensteiner et al., 2008 

[44] 
Amplitude (%MIVC) 

Eccentric leg-

press action 

BF& 100.5±30.0 82.0±23.0 0.019 0.71 

ST& 107.0±31.5 81.0±23.0 0.009 0.97 

FIB& 124.5±48.5 108.0±37.0 0.420 0.39 

GM& 121.5±48.0 106.0±79.0 0.252 0.24 
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Nakagawa et al., 2011 

[7] 

Muscle onset (ms) Walking, 

descending stairs 

and single-leg 

vertical jump 

GMed walk 

GMed stairs 

GMed jump 

NE 

-125.7±84.1 

-169.2±112.6 

NE 

-103.5±79.3 

-172.5±89.3 

NE 

0.17 

0.81 

NE 

0.29 

0.04 

Amplitude (%MIVC) 
GMed walk 

GMed stairs 

GMed jump 

2.2±2.2 

3.0±1.3 

10.1±8.0 

3.1±2.5 

5.7±3.6 

14.4±10.7 

0.41 

0.15 

0.33 

0.34 

1.08 

0.49 

Nakagawa et al., 2012a 

[5] 
Amplitude (%MIVC) Single-leg squat 

GMed 23.2±7.6 20.8±6.8 >0.05 0.34 

GMax 21.7±7.1 22.3±6.1 >0.05 0.09 

Nakagawa et al., 2012b 

[9] 
Amplitude (%MIVC) 

Stair-stepping 

task 
GMed§ 30.4±5.1 23.5±6.1 

<0.05 (only in 60º of knee 

flexion) 
1.24 

Nakagawa et al., 2015 

[8] 
Amplitude (%MIVC) Single-leg squat 

EO 15.0±11.6 15.5±13.5 0.90 0.04 

IC 25.3±19.5 15.3±10.3 0.09 0.65 

Nunes et al., 2017 [10] 

Muscle thickness 

Ultrassonography 

GMed 

GMax 

2.3±0.2 

2.4±0.3 

2.2±0.3 

2.4±0.2 

0.61 

0.55 

0.13 

0.15 

Echo intensity 
GMed 

GMax 

100.5±23.3 

123.1±22.7 

113.3±31.5 

128.1±26.6 

0.09 

0.46 

0.46 

0.20 

O’Sullivan et al., 2012 

[42] 
Amplitude (%MIVC)# 

Wall-press 

Step-up and over 

Pelvic drop 

Single-leg squat 

GMed1 

GMed2 

GMed3 

GMed4 

87.9±22.8 

85.0±26.0 

85.1±27.1 

89.3±25.8 

90.3±18.0 

83.8±21.2 

82.8±15.6 

89.4±23.9 

>0.05 

>0.05 

>0.05 

>0.05 

0.12 

0.05 

0.11 

0.00 

Rojhani et al., 2014 [41] 

Muscle onset (ms) Unexpected 

perturbation 

applied to lateral 

side of the body 

TrA/IO 

ES 

GMed 

45.9±22.6 

83.2±54.1 

47.7±25.6 

26.1±12.7 

43.0±29.8 

69.5±41.3 

<0.001 

0.001 

0.025 

1.10 

0.94 

0.65 

Activation duration (ms) 

TrA/IO 

ES 

GMed 

188.5±61.0 

196.2±76.1 

290.2±103.7 

254.6±139.7 

253.5±113.4 

380.0±283.4 

0.031 

0.035 

0.132 

0.62 

0.60 

0.43 

Saad et al., 2011 [43] 
Integral of linear 

envelope (mV) 

Step-up 

Step-down 

GMed step up 0.79±0.15 0.7±0.1 >0.05 0.73 

GMed step down 0.68±0.1 0.56±0.1 0.01 1.24 

Song et al., 2015 [39] Amplitude (%MIVC) Single-leg squat 
GMed 61.5±15.8 64.4±15.8 >0.05 0.19 

GMax 28.0±18.1 23.5±7.4 >0.05 0.40 

Wilson et al., 2011 [26] 

Amplitude (%MIVC) 

 Muscle onset (ms) 

Activation duration (ms) 
Running 

GMed 

GMed 

GMed 

64.8±30.9 

59.7±32.6 

193.6±38.7 

81.4±29.8 

35.2±32.3 

151.2±57.5 

>0.05 

<0.05 

<0.05 

0.56 

0.77 

0.89 

Amplitude (%MIVC) 

 Muscle onset (ms) 

Activation duration (ms) 

GMax 

GMax 

GMax 

56.1±30.1 

56.3±32.3 

200.6±53.3 

51.6±27.3 

60.9±58.1 

185.6±67.6 

>0.05 

>0.05 

>0.05 

0.16 

0.10 

0.25 
* mean of ascending and descending; # mean of GMed subdivisions; & mean of unstable and stable conditions; § mean of male and female and ascending and descending phases; 1Wall-press; 2Step-up 

and over; 3Pelvic drop; 4Single-leg squat;  CG: control group; PFPS: patellofemoral pain syndrome group; GMed: gluteus medius; GMax: gluteus maximus; EO: external oblique; IO: internal oblique; 

GL: gastrocnemius lateralis; GM: gastrocnemius medialis; SOL: soleus; TA: tibialis anterior: FIB: fibularis longus; ST: semitendinous; BF: biceps femoris; IC: iliocostalis; TrA: transversus abdominis; 

ES: erector spinae; %MIVC: percent of maximal isometric voluntary contraction; conc: concentric; ecc: eccentric; ms: milliseconds; mV: millivolts; NE: not evaluated; NI: impossible to obtain results
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2.4.5 Quality assessment 

 

 Included studies methodological quality assessment through the modified version of the 

Downs and Black Quality Index [35] was performed according to a similar previous study [33]. We 

observed that only four studies [7, 36, 43, 45] were classified as having “low quality” based on the 

index criteria. All methodological quality results are presented in the Table 4. 

 

Table 4. Modified Downs and Black scale. 

Study 1 2 3 5 6 7 10 11 12 15 16 18 20 21 25 Total 

Biabanimoghadam et 

al., 2016 [40] 

1 1 1 1 1 1 1 U U U 1 1 1 0 0 11/15 

Bley et al., 2014 [27] 1 1 1 1 1 1 1 U U U 1 1 1 1 0 12/15 

Bolgla et al., 2011 [36] 1 1 1 1 1 1 1 U U U 1 1 1 0 0 9/15 

Boling et al., 2006 [37] 1 1 1 2 1 1 1 U U 0 1 1 U 1 1 12/15 

Cowan et al., 2008 [16] 1 1 1 2 1 1 1 U U 1 1 1 1 1 1 14/15 

Dionísio et al., 2011 

[45] 

0 1 1 1 1 1 1 U U U 1 1 1 U 0 9/15 

Esculier et al., 2015 

[38] 

1 1 1 2 1 1 1 U U U 1 1 1 0 0 11/15 

Kalytczak et al., 2016 

[28] 

1 1 1 2 1 1 1 U U U 1 1 1 0 0 11/15 

Liebensteiner et al., 

2008 [44] 

1 1 1 1 1 1 1 U U U 1 1 1 1 0 11/15 

Nakagawa et al., 2011 

[7] 

1 1 1 1 1 1 1 U U 0 1 1 U 0 0 9/15 

Nakagawa et al., 2012a 

[5] 

1 1 1 1 1 1 1 U U 0 1 1 1 0 0 10/15 

Nakagawa et al., 2012b 

[9] 

1 1 1 1 1 1 1 U U 0 1 1 1 0 0 10/15 

Nakagawa et al., 2015 

[8] 

1 1 1 1 1 1 1 U U 0 1 1 1 0 0 10/15 

Nunes et al., 2017 [10] 1 1 1 1 1 1 1 U U 0 1 1 1 0 0 10/15 

O’Sullivan et al., 2012 

[42] 

1 1 1 2 1 1 1 U U 0 1 1 1 0 0 11/15 

Rojhani et al., 2014 

[41] 

1 1 1 2 1 1 1 U U 0 1 1 1 1 0 12/15 

Saad et al., 2011 [43] 1 0 0 0 1 1 0 0 U 0 1 1 U 0 0 5/15 

Song et al., 2015 [39] 1 1 1 2 1 1 1 U U 0 1 1 1 0 0 11/15 

Wilson et al., 2011 [26] 1 1 1 1 1 1 1 0 U 0 1 1 1 1 U 11/15 
Caption of itens: 1: Clear aim/hypothesis; 2: Outcome measures clearly described; 3: Patient characteristics clearly described; 5: 

Confounding variables described; 6: Main findings clearly described; 7: Measures of random variability provided; 10: Actual 

probability values reported; 11: Participants asked to participate representative of entire population; 12: Participants prepared to 

participate representative of entire population; 15: Blinding of outcome measurer; 16:  Completed analysis was planned; 18: 

Appropriate statistics; 20: Valid and reliable outcome measures; 21: Appropriate case-control matching; 25: Adjustment made for 

confounding variables. For items 1–3, 6, 7, 10–12, 15, 16, 18, 20, 21 and 25: 0 (no); 1 (yes); U (unable to determine). For item 5: 0 

(no); 1 (partially); 2 (yes) 



28 

 

 

2.5 DISCUSSION 

 

In this systematic review, we analyzed retrospective studies that compared proximal (hip or 

trunk joints) and distal (ankle or foot joints) neuromuscular outcomes between PFPS patients and 

healthy participants in the CG. We considered studies that, among other characteristics, performed 

muscle activation or muscle morphology evaluations. Our main findings concern 20 studies, with 19 

focusing on muscle activation parameters. Three studies compared trunk joint muscle activation, 15 

compared hip joint muscle activation, and three compared ankle/foot joints muscle activations. Only 

four studies were classified with low quality. Another significant issue is the fact that only one study 

evaluated muscle morphology outcomes. Based in the included studies, it is still not clear whether 

proximal and distal neuromuscular outcomes are different between PFPS and healthy participants.  

The main results failed to demonstrate a consensus regarding proximal muscle activation 

differences between PFPS patients and the CG. A possible reason is related to different tasks 

evaluated in the included studies. We observed three studies that evaluated muscles around trunk 

joints. One study observed that PFPS patients presented a delay muscle activation of TrA/IO 

compared to the CG during the rise phase on to their toes as quickly and strongly as possible [40] (ES 

= 0.67) and an early muscle activation of TrA/IO when an unexpected perturbation was applied to 

the lateral side of the body [41] (ES = 1.10). Additionally, Nakagawa et al. [8] failed to demonstrate 

differences in EO and IC (whereas a moderate effect size has been observed favouring the healthy 

participants) during single-leg squat. Based in these results, deep muscles are needed in high-speed 

activities, mainly in PFPS patients. 

Muscles related to hip joints were evaluated in 15 included studies, with GMed measured in 

all of them. Previous systematic reviews and meta-analysis demonstrated evidences of an impairment 

in hip abductor muscle strength [34] and GMed activation during stair-stepping activities [33] in 

PFPS patients. Based in these results, hip joint changes appear to be present in PFPS patients. GMed 

muscle activation of our included studies were greater in PFPS patients during single-leg triple hop 
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(ES = 1.00) [27] and during the load phase (ES = 1.28) and the stance phase (ES = 1.17) of stair-

stepping task [36]. However, a lower GMed activation during step down was observed in PFPS 

patients (ES = 1.24) [43], while Nakagawa et al. [9] demonstrated that PFPS patients had a lower 

GMed activation only in 60º of knee flexion during stepping maneuvers (ES = 1.24). Nevertheless, 

no differences were observed in activation level during running (ES = 0.56) [26], while a delayed 

GMed muscle activation was observed in PFPS during stair-stepping task (ES = 2.87) [16] and 

running (ES = 0.77) [26], and an early activation was observed after unexpected perturbation (ES = 

0.65) [41]. Changes in hip abductor muscles neuromuscular function is related to poor lower limb 

alignment during dynamic tasks [5, 9] due to their function on pelvic stability and eccentric control 

of hip adduction in weight-bearing tasks [31]. Only one of our included studies demonstrated 

between-groups differences in the GMax activation. Bley et al. [27] observed a greater muscle 

activation in PFPS patients during the propulsion phase of single-leg triple hop test (SLTHT). Authors 

justified the results due to the GMax function to avoid the greater hip internal rotation observed in 

PFPS patients in weight-bearing tasks [5] and assisting the quadriceps in the task execution. 

Four included studies investigated BF and ST muscle activation [27, 28, 44, 45]. While two 

studies observed a greater BF muscle activation in PFPS patients during SLTHT propulsion phase 

[27] (ES = 0.70) and during SLTHT stance phase [28] (ES = 0.89), a lower BF (ES = 0.71) and ST 

(ES = 0.97) activation to the same group was observed during eccentric leg press action [44]. 

Additionally, no between-groups differences were observed during upward squatting [45]. The BF 

greater activation observed is hypothesized as being due to a compensatory strategy for the deficient 

dynamic alignment in the high-demand tasks placed on the knee [27, 28]. However, a smaller 

hamstrings activation, observed in PFPS during the eccentric phase of the leg-press action, might also 

be part of a neuromuscular deficit that contributes to PFPS development [44]. 

Three included studies evaluated muscle activation of distal factors (ankle/foot joints) [38, 44, 

45]. No between-groups differences were observed for GL and TA during upward squatting [45], for 

SOL during running stance phase (ES = 0.57) [38], GM (ES = 0.24) and FIB (ES = 0.39) during 



30 

 

eccentric leg-press action [44]. Previous study observed that excessive hip adduction, knee flexion 

and knee abduction [6] are related with the lack of pronation control during daily tasks [32]. 

Furthermore, excessive rear foot eversion is thought to be a risk factor for PFPS development [17], 

due to the resultant greater tibial internal rotation [6]. Based on the results of our included studies, 

although changes in foot kinematics are related with poor lower limb alignment during dynamic tasks, 

the mechanisms may not be related with distal muscle activation. 

Another factor that could be related with poor lower limb alignment is related to muscle 

morphology parameters. Previous studies demonstrated quadriceps atrophy in PFPS participants [46]. 

Our study aimed to observe evidences about proximal and distal muscle morphology outcomes in 

PFPS participants. Surprisingly, only one included study looked at muscle structure, and the authors 

did not observed differences in GMed (ES = 0.13) and GMax (ES = 0.15) muscle thickness and echo 

intensity (GMed; ES = 0.46; GMax; ES = 0.20) [10]. Muscle thickness has been shown to be a good 

predictor of intrinsic muscle force because muscle force is dependent on the number of parallel 

sarcomeres [47], while echo intensity is related to the amount of non-contractile muscle tissue [10]. 

Even though a hip strength impairment was observed through a meta-analysis [34], this result might 

not be related only to glutei muscle morphology parameters. 

Another important aspect is the methodological quality of the included studies. 80% of 

included studies (16/20) were considered as having high quality. Even though some parameters were 

well-controlled in the studies, blinding of outcome measurer, for example, was performed by only 

one included study [16], which can cause an elevated risk of bias. From the studies included in the 

present review, it is possible to observe that proximal and distal neuromuscular changes related to 

PFPS is unclear. Additionally, TrA/IO apparently presented an early activation in PFPS during high-

speed tasks. GMed, GMax, BF and ST results demonstrated a lack of consensus in muscle activation 

outcomes (muscle onset, contraction duration and level of activation), whereas GMed and GMax 

muscle morphology was not affected in PFPS patients. Finally, muscle activation around ankle/foot 

joints presented results like those observed in healthy participants. The lack of evidences might be 
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related to different tasks used to compare PFPS and healthy participants. Stair-stepping was the most 

common task (5/20 studies) observed in the included studies, followed by single-leg squat (4/20 

studies) and single-leg jump (3/20 studies).  

Our results revealed a lack of consensus among the revised studies. The evidences 

demonstrated improvement in clinical outcomes when proximal exercise rehabilitation is included in 

classical intrinsic PFPS management (exercise focusing in knee alone) [48]. Studies also showed that 

the addition of foot targeted exercises and foot orthoses for 12 weeks was more effective than knee 

targeted exercises alone in individuals with patellofemoral pain [23]. Therefore, future studies need 

to verify neuromuscular changes of other proximal and distal muscles, such as tensor fascia latae (due 

to hip abductor and internal rotator actions [49]) and intrinsic foot muscles (due to action in the foot 

arch [50]) and their relationship with excessive rearfoot eversion. Furthermore, the muscle 

morphology measures are necessary in future studies involving PFPS patients, because they might 

help to identify more clearly neuromuscular changes and determine the correct choice for the best 

exercises in a PFPS rehabilitation protocol. 

2.6 CONCLUSIONS 

 

 Based in our results, responses of muscles around trunk, hip and ankle/foot joints are limited. 

Conflicting findings may be due to methodological and sex differences, and/or the multifactorial 

nature of PFPS, despite the high methodological quality observed in most studies. Additionally, future 

studies need to evaluate muscle morphology around trunk, hip and ankle/joints to help define the best 

exercises in PFPS rehabilitation programs. 
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CHAPTER III - LOWER LIMB NEUROMUSCULAR CHANGES AND THEIR 

RELATIONSHIP WITH KINEMATICS DURING SINGLE-LEG WEIGHT-BEARING 

TASKS IN THE PATELLOFEMORAL PAIN SYNDROME 

 

 

3.1 ABSTRACT 

Introduction: Patellofemoral Pain Syndrome (PFPS) is a multifactorial disease that has been related 

with changes at the hip, knee, ankle and foot. The identification of which factors are present in PFPS 

patients can potentiate the effectiveness of the exercise protocols in rehabilitation programs. Purpose: 

To compare lower limb neuromuscular parameters and frontal plane kinematics during single-leg 

tasks between women with PFPS healthy women, and to determine if some neuromuscular outcome 

explains dynamic valgus index (DVI) during two functional tasks. Methods: Fifteen PFPS women 

and fifteen healthy age-matched women (control group - CG) were compared with the following tests: 

(1) functional questionnaire; (2) hip (gluteus medius and tensor fasciae latae), knee (vastus lateralis 

and vastus medialis) and ankle (fibularis [longus + brevis] and tibialis anterior) muscle thickness; (3) 

DVI and muscle activation during single-leg squat and vertical jump; (4) maximal isometric torque 

for hip abduction, knee extension and foot eversion/inversion; and (5) muscle activation during 

isometric and functional tests. A multiple-stepwise regression analysis was used to test if 

neuromuscular outcomes explained DVI during single-leg tasks. Results: Compared to the CG, PFPS 

showed: (1) smaller gluteus medius (-10.02%; ES = -0.82) and greater tensor fasciae latae (+18.44%; 

ES = +0.92) and fibularis muscle thickness (+14.23%; ES = +0.87); (2) lower tibialis anterior muscle 

activation during single-leg squat (-59.38%; ES = -1.29); (3) lower gluteus medius muscle activation 

during single-leg jump (-28.70%; ES = -1.35) and (4) greater gluteus medius muscle activation during 

hip abduction isometric test (+34.40%; ES = +0.77). Higher DVI during single-leg squat was 

explained by higher vastus lateralis activation during the task only in CG, whereas lower tibialis 

anterior muscle thickness in the CG and higher foot eversion torque in PFPS are related with higher 

DVI during single-leg vertical jump. Conclusion: Females with PFPS showed significant 

neuromuscular changes at the hip and ankle/foot joints. However, only distal factors explained DVI 

in the PFPS group.  

 

Key-words: patellofemoral pain; hip; extrinsic foot muscles; kinematics; vertical jump 
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3.2 INTRODUCTION 

 

 Patellofemoral pain syndrome (PFPS) is characterized by retro or peripatellar pain, 

exacerbated during weight-bearing activities such as running, jumping, squatting and going up and 

down stairs [1], being one of the most common diagnoses among young, physically active populations 

[2], predominantly in females [3]. PFPS aetiology is a complex interplay among various anatomical, 

biomechanical, psychological, social and behavioral factors [51]. Anatomical and biomechanical 

factors are related with local changes (around the patellofemoral joint [11]), such as lower knee 

extension strength [12] and delayed onset of vastus medialis activation relative to vastus lateralis [13]. 

Recently, hip [5, 8, 15], ankle and foot changes [18, 52] have been proposed as PFPS contributing 

factors, which might lead to lower limb poor alignment during weight-bearing tasks and cause higher 

patellofemoral joint stress and pain [9, 19]. 

Changes in neuromuscular function at the hip joint, mainly abductor muscles weakness [53], 

is observed in PFPS patients [34]. These changes are critical due to these muscles’ role on pelvic 

stability and eccentric control of hip adduction during weight-bearing tasks [31]. This is probably the 

reason why the focus of previous studies has been in glutei muscles [10, 33]. However, tensor fasciae 

latae (TFL) is also an important hip abductor and internal rotator [49]. Thus, changes in the TFL 

neuromuscular parameters in PFPS patients could explain the higher hip internal rotation observed 

during dynamic tasks [9]. Even though the relationship between GMed and TFL function is critical 

for hip stability in weight-bearing activities [54], there is a lack of evidences about TFL 

neuromuscular responses in PFPS. 

Additionaly, previous studies observed that excessive hip adduction, knee flexion and knee 

abduction [6] is related with the lack of foot pronation control during daily tasks [32]. Furthermore, 

excessive rearfoot eversion is thought to be a risk factor for PFPS development [17], due to the 

resultant greater tibial internal rotation [6]. Despite this significant foot effect in PFPS development, 

there is a lack of studies about the neuromuscular responses at the ankle and foot joints in this 

syndrome, and well-designed experiments aimed at understanding the neuromuscular changes at 
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these distal joints might help to explain distal kinematic changes observed in PFPS patients during 

dynamic tasks [55]. 

Investigations about kinetic and kinematic responses during jump is essential in PFPS patients 

due to the large patellofemoral joint stresses caused by this activity [56]. A prospective study 

demonstrated that greater knee valgus displacement during the drop jump landing was a predictor 

factor for PFPS development in adolescent women athletes [57]. Even though lower hip abductor 

strength, lower passive hip internal rotation range of motion (ROM) and lower shank-forefoot 

alignment are predictor factors for the knee frontal plane projection angle (FPPA) during landing 

tasks [58], neuromuscular parameters related with lower limb kinetic and kinematic changes remain 

unclear. 

These gaps in the literature led us to the following questions: (1) are there neuromuscular 

differences in TFL muscle and foot eversion and inversion muscles in PFPS patients compared to 

healthy participants? (2) Knowing that greater knee valgus displacement was a predictor factor for 

PFPS development in adolescent female athletes in a prospective study [30], can proximal, local and 

distal neuromuscular outcomes explain dynamic valgus during single-leg tasks in women with and 

without PFPS?  

3.3 METHODS 

3.3.1 Participants 

Twenty-nine women with knee pain contacted us to participate in the study after the project 

disclosure at the University campus and social networks. The inclusion criteria included women aged 

between 18 and 40 years, presence of retropatellar or peripatellar pain (minimum of three points on 

the visual analog scale), for at least two months, in at least two of the following tasks: squatting, up 

and down stairs, running, jumping, kneeling and prolonged sitting [59]. Additionally, absence of pain 

during patellar tilt test, hip and ankle injury and no lower limb surgery were also inclusion parameters. 

After these criteria were applied, seven women were excluded due to lower limb surgery history, 

three were excluded due to patellar instability (positive in patellar tilt test) and other four volunteers 
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dropped out due to incompatibility with our data collection schedule. Thus, 15 women were included 

in the PFPS group. In the cases of bilateral pain, the limb with highest self-reported pain was 

evaluated. Fifteen healthy women, age-, body size and level of physical activity-matched to the PFPS 

patients, were recruited as a control group (CG). Dominant limb was evaluated in this group. A 

written informed consent was obtained from all participants before starting the experiment. The study 

was approved by the University’s Ethical Research Committee (registration number CAAE 

61489016.9.0000.5347) and was conducted respecting the ethical standards of the Resolution of 

Federal University of Rio Grande do Sul (114/2014). 

 Initially, the participants answered the IPAQ and Anterior Knee Pain Scale (AKPS) [60] to 

determine physical activity level and functional capacity, respectively. After that, measurement of 

muscle thickness, EMG sensors placement and skin markers positioning for kinematic evaluation 

were performed and were followed by the assessment of single-leg tests and maximal isometric 

strength tests. 

3.3.2 Muscle thickness evaluation 

 

A B-mode ultrasonography system (SSD-4000; Aloka Inc., Tokyo, Japan) with a linear-array 

probe (60 mm, 7.5 MHz) was used to determine GMed, TFL, vastus lateralis (VL), vastus medialis 

(VM), fibularis longus and brevis (FIB) and tibialis anterior (TA) muscle thickness. The same 

investigator, with extensive experience in ultrasonography, performed all ultrasound measurements. 

The ultrasonography probe was covered with water-soluble transmission gel and oriented parallel to 

muscle fascicles and perpendicular to the skin. Muscle thickness was considered the distance between 

deep and superficial aponeuroses and was calculated through the mean value of five parallel lines 

drawn at right angles between the superficial and deep aponeuroses along each of three 

ultrasonography images. Ultrasonography images were digitized and analyzed with Image J software 

(National Institutes of Health, Bethesda, Maryland) [61]. 

For GMed, participants were placed side lying with the test-leg facing up. The test-leg’s hip 

was positioned in neutral flexion/extension and rotation, and the test-leg’s knee was positioned in full 



36 

 

extension. The probe was placed on the lateral aspect of the hip, on the lower half of a coronal line 

located between the top of the greater trochanter and a point at 25% of the distance between the 

anterior-superior iliac spine (ASIS) and the posterior-superior iliac spine (PSIS) [62] (Figure 2A). 

For the TFL, the probe was placed in the axial plane over the ASIS. The TFL short tendon was then 

visualized in the sagittal plane. The transducer was shifted down over the muscle belly, laterally and 

caudally to the anterior border of the fasciae latae [63] (Figure 2B). 

 For VL, scans were taken at the midpoint between the greater trochanter and the femur’s 

lateral condyle (Figure 2C), while VM scans were performed distally at 70-75% of the same line, but 

medially over the muscle belly. The transducer orientation relative to the longitudinal axis of the thigh 

was different between participants due to their individual anatomical characteristics [61] (Figure 2D). 

For FIB, the probe was placed at 50% of the distance between the fibular head and the inferior border 

of the lateral malleolus [50] (Figure 2E). For TA, after identification and marking of the proximal 

and distal muscle insertions, the probe was positioned perpendicular to the dermal surface along the 

midsagittal plane of the TA muscle, at the site corresponding to the muscle’s thickest portion [64] 

(Figure 2F). 

 

3.3.3 Maximal isometric strength evaluations 

Maximal isometric muscular strength was measured with a Biodex System 3 dynamometer 

(Biodex Medical Systems, Shirley, NY, USA). Volunteers were positioned on the dynamometer 

according to the manufacturer’s recommendations for hip abduction, knee extension, and foot 

eversion and inversion evaluations. Participants performed an additional warm-up protocol consisting 

of 10 submaximal repetitions at an angular velocity of 90°.s-1. Participants were previously instructed 

to execute all tests with the highest possible effort, developing maximal strength “as fast as possible”, 

and verbal encouragement was provided throughout the tests [61]. After a familiarization to maximal 

tests, hip abduction test was performed at 10° of hip abduction (0° = hip neutral position) [65], while 

knee extensor test at 60° of knee flexion (0° = full knee extension) [61]. For foot eversion and 
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inversion isometric tests, we performed a pilot study with dynamic contractions to determine the 

angle of peak torque. Thus, foot eversion test was performed at 30º of foot inversion and foot 

inversion at 10º of foot eversion (0º = foot neutral position). Three trials of 5-seconds maximal 

contraction were performed for each isometric test. A 2-min interval was observed between 

successive contractions in each test. The isometric tests’ peak torque was normalized to body mass 

and used in the statistical analysis. 

 

Figure 2: Ultrasound images from a representative subject used for muscle thickness analysis of GMed (A), 

TFL (B), VL (C), VM (D), FIB (E) and TA (F). 

 

3.3.4 Kinematic measures during single-leg tasks 

 

 Two-dimensional (2D) data were captured while participants completed single-leg squat and 

vertical jump. PFPS patients performed the tests with their involved limb, while CG participants 

performed the test with their preferred limb. Skin markers were attached with double-faced adhesive 
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tape at the following locations: ASISs; greater trochanter; lateral femoral epicondyle; patella center; 

lateral malleolus; and midpoint between medial and lateral malleoli. Two-dimensional data were 

captured with two GoPro Hero 4 cameras (GoPro Inc, California, US) with 90 Hz of sample rate. The 

first camera was positioned in the frontal plane to determine the participants’ hip adduction and knee 

abduction displacement during tasks, while the second camera was positioned in the sagittal plane 

and was used to determine the knee peak flexion during both tasks. Both cameras were synchronized 

with a light signal, and data were processed with Kinovea software (Kinovea Organization, France). 

All participants were instructed to flex the contralateral knee, cross arms in the trunk and squat 

the maximum as possible in the both tasks. Participants were oriented to avoid trunk flexion during 

tasks. During single-leg squat, participants performed five repetitions with cadence controlled by a 

metronome (2 seconds-per-phase). During single-leg vertical jump, all participants were instructed to 

squat (more quickly and deeply as possible) and jump the highest as possible. Participants performed 

three single-leg jumps. All 2D angles were measured from the frontal and sagittal plane views by one 

investigator. In the sagittal plane, the angle between the greater trochanter and the lateral femoral 

epicondyle was used to determine the eccentric phase depth from each test. In the frontal plane, a line 

drawn between markers placed on the anterior superior iliac spines defined the pelvic segment. A line 

drawn from the midpoint of the knee, bisecting the thigh, defined the thigh segment. A line drawn 

from the midpoint of the knee to the midpoint of the ankle defined the shank segment. For all analyses, 

we used the angular displacement between the start (participants in the standing position and 

contralateral knee flexed) and the end of the eccentric phase (peak of knee flexion). The hip FPPA 

was calculated as initial angular position minus the angle between the pelvis segment and the thigh 

segment. A positive hip FPPA indicated apparent hip adduction. The knee FPPA angle was calculated 

as initial angular position minus the angle between the thigh segment and the shank segment. A 

positive knee FPPA angle indicated apparent knee abduction. 

Dynamic valgus index (DVI) was measured using lower limb kinematic parameters during 

the single-leg tasks. This measure was performed based on a previous study with PFPS patients during 
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single-leg squat [66] and was proposed because it is a 2D variable that combines the hip and knee 

angles that might be a more comprehensive representation of the entire lower-extremity movement 

pattern than the knee FPPA alone (Figure 3). DVI was calculated as the sum of the hip and the knee 

FPPAs of each single-leg squat and vertical jump, and the mean between both tests in each task was 

used for statistical analysis. After the single-leg tasks, the discomfort level was evaluated with a 0-

100 mm visual analogue scale (VAS), where 0 and 100 mm corresponded to no discomfort and worst 

perceived discomfort, respectively. 

 

 

 

 

 

 

 

 

 

Figure 3: Representative image of dynamic knee valgus angular measures. Hip FPPA was calculated through 

the angle between the pelvis segment and the thigh segment (α1 – α2). Knee FPPA was calculated through the 

angle between the thigh segment and the shank segment (β1 – β2). The sum of Hip FPPA and Knee FPPA was 

considered the Dynamic Valgus Index (DVI) [66]. 

 

3.3.5 Muscle activation evaluation 

 

 A 16-channel Delsys EMG system (EMG Trigno Wireless Trigno Base Station, Delsys Inc., 

Natick, Massachussets, USA) was used for muscle activation data collection. For each muscle, an 

individual sensor was used. For GMed, the sensor was placed at 50% on the line from the iliac crest 

to the great trochanter. For TFL, the sensor was placed in the proximal 1/6 on the line from the ASIS 

to the lateral femoral condyle. VM sensor was placed at 80% on the line between the ASIS and the 

α2 

β2 

β1 

α1 
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joint space in front of the anterior border of the medial collateral ligament, while VL sensor was 

positioned at 2/3 on the line from the ASIS to the lateral side of the patella. For FIB longus, the sensor 

was placed at 25% on the line between the tip of the fibula head to the tip of the lateral malleolus. For 

TA, the sensor was placed at 1/3 on the line between the tip of the fibula and the tip of the medial 

malleolus. Skin preparation and electrode positioning for EMG evaluation followed standard 

procedures [67]. 

 A Butterworth band-pass filter, with cut-off frequencies of 20 and 500 Hz, was used in all 

evaluations. During all isometric tests, muscle activation was measured. For isometric tests, root mean 

square (RMS) values were calculated from 3-sec in the middle of the EMG signals obtained during 

the isometric tests. These values were considered 100% of each muscle activation and were used for 

the muscle activity normalization during single-leg tasks. For the analysis, we used the percent of 

maximal isometric activation from each muscle during eccentric phase of both tasks [68]. All EMG 

data were synchronized with an accelerometer system, which could identify eccentric and concentric 

phases. EMG analysis was performed in LabChart software (ADInstruments, Brazil).  

 

3.3.6 Statistical Analysis 

 

 Data normality was tested through the Shapiro-Wilk test. Data sphericity was tested by 

Mauchly test, and Greenhouse-Geisser correction factor was used when the sphericity was violated. 

An independent Student t-test (or Mann-Whitney U test) was used to compare all between-group 

outcomes. A 5% significance level was adopted for all analyses and all statistical procedures were 

performed in SPSS 20.0. Effect size (ES) was calculated for all analyses. We adopted the Cohen’s 

criteria for the analysis (>0.2: small; >0.50: moderate; >0.80: large) [69]. Positive ES values indicate 

that outcomes in PFPS were higher than CG. 

 A multiple-stepwise linear regression model was used to identify if lower limb neuromuscular 

parameters (predictor variables) were able to explain DVI (criterion variables) in each group. The 

goodness-of-fit model, which indicates how well the linear combination of the variables predicted the 
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functional states, was given by the squared multiple correlation (R2) [70]. The predictors’ relative 

importance was estimated with the part correlations (part r), which provides the correlation between 

a predictor and the criterion after removing the effects of all other predictors in the regression equation 

from the predictor, but not the criterion. A positive part correlation indicates that the predictor and 

the criterion are directly related, whereas a negative sign denotes an inverse relation [70]. A p-value 

≤0.05 was used for regression and partial correlation analysis. 

3.4 RESULTS 

3.4.1 Participants characteristics 

PFPS patients displayed impaired function measured by the AKPS and higher VAS after 

single-leg tasks compared to controls. No between-groups differences were observed in other clinical 

characteristics (Table 5). 

 

Table 5: Participants characteristics. 

CG = Control Group; PFPS = Patellofemoral Pain Syndrome Group; IPAQ = International Physical Activity Questionnaire; AKPS = 

Anterior Knee Pain Score; VAS = Visual Analog Scale; N.A = not applicable 

 

3.4.2 Kinetic and kinematic parameters 

 

No between-groups differences were observed for hip abduction (-5.6%), knee extension (-

14.53%), foot eversion (-7.69%), inversion isometric strength (+6.25%) and DVI during single-leg 

squat (+69.65%) and single-leg vertical jump (+30.71%). Nevertheless, proximal (hip) and distal 

 CG (n=15) PFPS (n=15) p-value 

Age (years) 29.00 ± 5.23 26.33 ± 4.18 0.135 

Body mass (Kg) 62.16 ± 7.83 65.98 ± 13.08 0.341 

Height (m) 1.64 ± 0.06 1.63 ± 0.06 0.766 

Body Mass Index (Kg/m²) 23.12 ± 3.31 24.51 ± 3.61 0.281 

IPAQ (met.min.week) 2053.23 ± 1648.42 2131.94 ± 1824.35 0.902 

AKPS (points) N.A 76.26 ± 10.18 N.A 

Duration of symptoms (years) N.A 5.24 ± 2.10 N.A 

VAS pain after squat (mm) 1.42 ± 3.51 22.31 ± 12.55 <0.001 

VAS pain after jump (mm) 2.32 ± 4.13 30.54 ± 21.10 <0.001 
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(foot) isometric strength presented a small effect size, while local (knee) isometric strength and DVI 

during both tasks showed a moderate effect size (Table 6). 

 

Table 6: Between-groups hip, knee and foot isometric torque and DVI data (mean ± SD). 

CG = Control Group; PFPS = Patellofemoral Pain Syndrome Group; ES = effect size; DVI = Dynamic Valgus Index. 

3.4.3 Muscle thickness 

 

 Compared to the CG, PFPS patients showed lower GMed muscle thickness (-10.02%) and 

greater TFL (+18.44%) and FIB (+14.23%) muscle thickness. No differences were observed in VL 

(+2.10%), VM (+6.93%) and TA (-1.35%) muscle thickness (Figure 4). 

Figure 4: Muscle thickness of GMed (A), TFL (B), VL (C), VM (D), FIB (E) and TA (F). CG = control group; 

PFPS = patellofemoral pain syndrome group. Each dot represents one subject; solid line represents the group 

mean value. 

 

 CG (n=15) PFPS (n=15) p-value ES 

Hip Abduction (Nm/Kg) 1.23 ± 0.31 1.16 ± 0.32 0.569 -0.23 

Knee Extension (Nm/Kg) 2.82 ± 0.67 2.41 ± 0.63 0.100 -0.65 

Foot Eversion (Nm/Kg) 0.39 ± 0.18 0.36 ± 0.11 0.557 -0.23 

Foot Inversion (Nm/Kg) 0.32 ± 0.06 0.34 ± 0.12 0.473 0.28 

Peak of knee flexion in the squat (º) 57.73 ± 8.63 63.80 ± 8.63 0.081 0.73 

Peak of knee flexion in the jump (º) 54.93 ± 6.39 59.20 ± 8.20 0.123 0.60 

DVI during squat (º) 18.20 ± 10.52 26.13 ± 13.73 0.084 0.67 

DVI during jump (º) 15.40 ± 6.03 20.13 ± 9.31 0.110 0.62 
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3.4.4 Muscle activation 

 

Regarding to muscle activation during maximal isometric tests, compared to CG, PFPS 

patients presented greater GMed activity (+34.40%). No differences were observed in the other 

muscles. During single-leg squat, PFPS patients presented lower TA muscle activity (-59.38%). No 

differences were observed for other muscles. Finally, a lower GMed activity (-28.70%) during the 

eccentric phase of the single-leg vertical jump was observed. No differences were observed in the 

other muscles (Table 7). 

 

Table 7: Between-groups muscle activation during maximal and single-leg tasks. 

  CG (n=15) PFPS (n=15) p value 

Gluteus Medius 

MIVC (mV) 0.43 ± 0.11 0.58 ± 0.25* 0.044 

SLS (%MIVC) 71.28 ± 14.62 56.66 ± 30.21 0.107 

SLJ (%MIVC) 83.72 ± 16.81 58.04 ± 22.09* 0.001 

Tensor Fasciae Latae 

MIVC (mV) 0.14 ± 0.05 0.15 ± 0.10 0.631 

SLS (%MIVC) 18.74 ± 9.33 21.93 ± 15.97 0.510 

SLJ (%MIVC) 26.13 ± 10.39 27.35 ± 18.84 0.827 

Vastus Lateralis 

MIVC (mV) 0.95 ± 0.29 0.94 ± 0.49 0.960 

SLS (%MIVC) 78.76 ± 25.40 72.75 ± 30.11 0.559 

SLJ (%MIVC) 26.13 ± 10.39 27.35 ± 18.84 0.827 

Vastus Medialis 

MIVC (mV) 0.79 ± 0.29 0.68 ± 0.32 0.331 

SLS (%MIVC) 63.55 ± 32.25 71.96 ± 41.53 0.540 

SLJ (%MIVC) 71.65 ± 35.49 77.78 ± 48.07 0.694 

Fibularis Longus 

MIVC (mV) 0.51 ± 0.26 0.52 ± 0.39 0.974 

SLS (%MIVC) 113.05 ± 74.13 73.05 ± 28.06 0.066 

SLJ (%MIVC) 116.41 ± 43.12 122.17 ± 53.60 0.748 

Tibialis Anterior 

MIVC (mV) 0.74 ± 0.32 0.84 ± 0.35 0.422 

SLS (%MIVC) 133.44 ± 54.82* 79.25 ± 27.81 0.002 

SLJ (%MIVC) 108.24 ± 51.92 87.90 ± 44.77 0.260 

CG = Control Group; PFPS = Patellofemoral Pain Syndrome Group; MIVC = maximal isometric voluntary contraction; SLS = single-

leg squat; SLJ = single-leg jump; mV = millivolts; %MIVC = percent of maximal isometric voluntary contraction 
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Figure 5 demonstrates the effect size of muscle thickness and muscle activation during both 

single-leg tasks. We observed a large effect size for GMed, TFL and FIB, small for VL and VM and 

trivial for TA muscle thickness (Figure 5A). For maximal activation during isometric tests, a 

moderate effect size was observed for GMed, small for VM and TA and trivial for TFL, VL and FIB 

(Figure 5B). Regarding muscle activation during single-leg squat (Figure 5C), a large effect size was 

observed for TA, moderate for GMed and FIB, small for TFL and VM and trivial for VL. Finally, 

during single-leg jump, a large effect was observed for GMed, small for TA and trivial for TFL, VL, 

VM and FIB longus muscle activity (Figure 5D). 

Figure 5: Effect size of muscle thickness (A), maximal muscle activation (B), muscle activation during single-

leg squat (C) and muscle activation during single-leg vertical jump (D) between groups. CG = control group; 

PFPS = patellofemoral pain syndrome group. Grey zone indicates a trivial effect size. 

 

3.4.5 Stepwise Multiple Regression Analysis 

 

The linear stepwise multiple regression analysis was performed to demonstrate if neuromuscular 

outcomes could explain DVI in both tasks and both groups. For single-leg squat, regression analysis 
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demonstrated that VL muscle activation during task explained 32.4% of DVI in the CG. For PFPS, DVI 

was not explained by any neuromuscular outcome. The partial correlations (part r), due to the multiple 

regression results, demonstrated a significant association between VL activation during task and DVI in 

CG (r = 0.569; p = 0.027), but not in PFPS (r = -0.094; p = 0.739) (Figure 6A). Regarding to single-leg 

vertical jump, the stepwise model showed that foot eversion torque and TA muscle thickness explained 

44% and 32.7% of DVI in the PFPS and CG, respectively. The partial correlations (part r), due to the 

multiple regression results, demonstrated a significant association between foot eversion torque and DVI 

in PFPS (r = 0.663; p = 0.007), but not in CG (r = -0.030; p = 0.917) (Figure 6B), and TA muscle thickness 

and DVI in CG (r = -0.572; p = 0.026), but not in PFPS (r = -0.034; p = 0.904) (Figure 6C). 

Figure 6: Partial correlation analysis between DVI during single-leg squat and VL muscle activation during task 

(A), DVI during single-leg vertical jump and foot eversion torque (B) and tibialis anterior muscle thickness (C) 

White dots = CG; Black dots = PFPS. Dashed line = CG; Solid line = PFPS. 

A B 

C 
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3.5 DISCUSSION 

 

 Our PFPS patients showed (1) a lower GMed muscle thickness and activation during single-

leg vertical jump; (2) a greater TFL and FIB muscle thickness; (3) a greater GMed muscle activation 

during maximal isometric contraction; (4) a lower TA muscle activation during single-leg squat. 

Additionally, we observed that DVI during single-leg squat can be predict by VL muscle activation 

only in the CG group, while DVI during single-leg vertical jump was explained by foot eversion 

torque in PFPS patients and TA muscle thickness in the CG. A very interesting result was that only 

in the CG a neuromuscular outcome was related with DVI during single-leg squat, whereas distal 

(ankle-foot) parameters were related to DVI during single-leg vertical jump in both groups. 

 Our study did not demonstrate a significant between-groups difference in DVI in both single-

leg tasks, although a moderate effect size favoring the PFPS group was observed for this index (i.e. 

apparently DVI is a little larger in PFPS). Our results differ from a previous study that demonstrated 

greater DVI values than ours in the PFPS group during single-leg squat (31.14º vs 26.13º) [66]. 

Additionally, the mean DVI values observed in the CG were similar to our results (18.30º vs 18.20º). 

Regarding the single-leg vertical jump, we did not find previous studies that evaluated DVI using this 

functional task.  

These kinematic changes in PFPS patients might be explained by changes in neuromuscular 

outcomes (muscle activity and muscle morphology) during weight-bearing tasks. However, previous 

studies did not demonstrate changes on GMed activation during activities that demanded great 

neuromuscular control, such as vertical jump [71] and single-leg triple hop [28]. Our results 

demonstrated a smaller GMed activation during the single-leg vertical jump in the PFPS group (-

28.70%) compared to the CG, different that was observed in previous studies during the propulsion 

phase of the single-leg hop test [27]. The smaller GMed activation during the single-leg vertical jump 

apparently affected the hip control in the frontal plane in our PFPS patients. The greater PFPS 

patients’ GMed activity in previous studies [27, 28] is explained as an attempt to stabilize the lower 

limb in dynamic tasks. Therefore, further investigations are needed to clarify this point. 
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No between-groups difference was observed for GMed activation during single-leg squat in 

our study, agreeing with the results by O’Sullivan et al. [42] and Kedroff et al. [72], but not with 

Nakagawa et al. [5]. One possible explanation for this lack of consensus is that single-leg squat is a 

submaximal task, and the clinical differences might not be so evident when comparing PFPS patients 

with healthy participants in this functional task. 

Our study also failed to demonstrate between-groups differences in distal muscle activation 

during the single-leg vertical jump. Furthermore, we did not find studies envolving PFPS and distal 

muscle activation patterns during jump. We were able to find only one study investigating TA muscle 

activation during dynamic task in PFPS [80], and no between-groups difference was observed during 

the concentric phase of the double-leg squat. Nevertheless, a smaller TA activation (-59.38%) was 

observed in our study during single-leg squat in PFPS patients. TA has the important function of 

resisting foot pronation [73]. Thus, the lower TA activation observed in our study might explain the 

association between excessive rear foot eversion and greater tibial internal rotation observed during 

over-ground walking in PFPS patients [6]. However, we did not evaluate knee movements in the 

transverse plane. 

The main novelty of our study is related to changes in muscle thickness observed in the PFPS 

group, since muscle thickness can be related with physiological cross-sectional area [74], which is 

directly related to muscle strength [47]. The evidences about changes in PFPS patients muscle 

morphology is limited to the quadriceps muscle [46]. Until now, we observed only one study 

involving measures of muscle thickness of proximal factors in PFPS patients. Nunes et al. [10] did 

not observe differences in GMed muscle thickness and echo intensity between PFPS and a CG. Our 

results showed a smaller GMed muscle thickness (-10.02%) and greater TFL (+18.44%) in the PFPS 

group. Hip stability in weight-bearing activities [54] is related with GMed and TFL function [49]. 

This greater TFL muscle thickness observed in PFPS patients might be a compensatory mechanism 

to the smaller GMed muscle thickness, since both TFL and GMed are hip abductors. However, TFL 

is also a hip internal rotator. Thus, the greater TFL muscle thickness observed in PFPS patients also 
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would explain the higher hip internal rotation observed during dynamic tasks [9]. The smaller GMed 

muscle thickness might explain the greater activation observed for this muscle during maximal 

isometric contraction compared to CG (+34.40%) and might be a neural mechanism to compensate 

the smaller muscle structure. These neuromuscular compensatory changes observed for the hip 

abductor muscles in the PFPS patients might explain the absence of between-groups difference for 

the hip abduction isometric torque. 

FIB muscle thickness was greater in the PFPS group (+14.23%) compared to the CG, showing 

evidence of distal changes involved in the PFPS group. Previous studies observed that foot muscles 

morphology was a predictor factor for asymptomatic over-pronated feet [75], and smaller FIB 

thickness was observed in pes planus [50]. Thus, the greater FIB muscle thickness in our PFPS group 

can lead to excessive rearfoot eversion [17] and greater tibial internal rotation previously observed in 

the PFPS group [6], and might constitute a risk factor for PFPS development [17]. However, a 

previous study observed that hip abduction fatigue caused an elevation in the FIB longus EMG 

amplitude and earlier activation onset during landing [76]. This seems to demonstrate a compensatory 

mechanism caused by impairment in the ability to control frontal and transverse plane hip motion. 

This, in turn, should cause an eccentric overload at the muscles that control foot inversion/eversion 

that need to compensate this hip abductor weakness by controlling lower limb balance, which might 

justify the greater FIB muscle thickness in the PFPS group. However, this hypothesis needs to be 

tested by further investigations. 

Previous studies did not observed an impairment on knee extensor [77] and foot inversor [52] 

isometric strength in PFPS patients, agreeing with our results. Quadriceps muscle is highly used 

during basic daily life activities. Furthermore, we hypothesized that our PFPS group was classified 

as moderately active, a level of physical activity similar to the one observed for the CG, might explain 

the between-groups similarity for the knee extensor muscles. Another aspect that that should be 

evaluated in PFPS patients is the maximal capacity of force production in different muscle actions. It 
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is possible that isometric strength is not the optimal clinical measure of hip strength, since weight-

bearing tasks need eccentric (not isometric) contractions to control movements [78].  

Prospective studies observed that greater knee valgus displacement in the landing of a drop 

jump was a predictor factor for PFPS development in adolescent female athletes [57] and for pain 

severity [79]. Thus, trying to explain DVI during weight-bearing tasks through neuromuscular 

outcomes might help in the exercises choice of rehabilitation protocols. The stepwise multiple 

regression analysis demonstrated that DVI was explained by VL muscle activation during single-leg 

squat (32.4%) and by TA muscle thickness during single-leg vertical jump (32.7%) only in CG. The 

fact that foot eversion torque (44%) explained DVI in the PFPS group further supports the idea that 

something happened with the PFPS patients foot inversors (i.e. tibialis anterior), who recruited the 

eversors (FIB) probably to control foot inversion excentrically, determining the abovementioned 

higher FIB muscle thickness in the PFPS group. The moderate, significant and positive association 

observed between DVI and VL muscle activation during single-leg squat in the CG further 

strengthens this relationship. Similarly, the moderate, significant and positive association observed 

between foot eversion torque and DVI in the PFPS group strengthens the relationship between foot 

eversors structure and functional tasks, despite the fact that our study did not show between-group 

differences in foot eversion maximal isometric torque. 

In the CG, a moderate, significant and negative association was observed between TA muscle 

thickness and DVI. TA has an important role in resisting foot pronation during weight-bearing tasks 

[80]. According to the above results, greater VL muscle activation during, greater foot eversion or 

smaller TA muscle thickness explain greater DVI during single-leg squat and vertical jump, 

respectively.  

One of the main limitations of the study was that only isometric tests were used to evaluate 

muscular strength. Eccentric tests might help to explain different aspects of functional impairment 

[81]. Furthermore, a lack of intrinsic foot muscles morphology evaluation, due to their function on 

longitudinal and mediolateral arc control [82], could have helped to explain changes in kinematic 
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parameters caused by excessive rearfoot eversion [17]. Nevertheless, the novelty of our study was to 

demonstrate hip and ankle-foot morphological adaptations in PFPS patients, which help to explain 

kinematic changes during weight-bearing tasks. Thus, exercise protocols that cause excessive TFL 

activation compared to GMed and foot evertor muscles may be counterproductive in the treatment of 

PFPS patients. 

 

3.6 CONCLUSION 

 

PFPS patients have a smaller GMed and greater TFL and FIB muscles thickness and greater 

GMed muscle activity during maximal hip abduction isometric contraction, smaller TA and GMed 

muscle activity during the single-leg squat and the vertical jump, respectively. DVI during single-leg 

squat was not explained by neuromuscular outcomes in PFPS and distal factors explained DVI during 

single-leg vertical jump. This was the first study that aimed to verify muscle morphology of proximal 

(TFL) and distal (TA, FIB) muscles in PFPS patients. Based in our results, exercise rehabilitation 

programs focused in distal factors need to be included in PFPS patients due to their relationship with 

lower limb poor alignment. 
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4. CONCLUSION AND FUTURE DIRECTIONS 

 

 This thesis aimed to identify lower limb neuromuscular changes and their relationship with 

single-leg weight-bearing tasks in PFPS patients. The systematic review (Chapter II) included only 

studies that measured muscle activation or muscle morphology outcomes in trunk, hip and foot/ankle 

joints. Based in our results, limited evidence demonstrated an early activation of TrA/IO in high-

speeds activity, while the responses of muscles around hip and ankle/foot joints are limited. 

Additionally, only one study evaluated muscle morphology of some muscle related to proximal or 

distal factors until now. These limited evidences about neuromuscular changes in proximal and distal 

factors contrast with the observed improvement when hip or foot exercises are combined with knee 

strengtening on clinical and functionality outcomes in PFPS patients.  

Thus, the needed to better understand lower limb neuromuscular changes led to an original 

study to verify lower limb neuromuscular parameters and frontal plane kinematics during single-leg 

tasks in women with PFPS and determine if some neuromuscular outcome explained dynamic valgus 

index. Our study evaluated muscle activation and morphology of GMed, TFL, VL, VM, FIB and TA. 

Our results demonstrated that women with PFPS showed significant neuromuscular changes at the 

hip and ankle/foot joints. Also, we performed an additional study which aimed to associate 

neuromuscular outcomes of lateral trunk flexors (external and internal oblique muscle thickness, 

external oblique muscle activation during single-leg tasks) and time until task failure during side 

plank with knee and hip FPPA during single-leg tasks (Appendix A, manuscript in Portuguese). This 

study was performed by Kelli Daiana Klein in a partial fulfillment of the requirements for the degree 

of Bacelor in Physical Education. The results demonstrated: (i) negative association between the 

external oblique muscle thickness and the hip FPPA during the single-leg jump test in the CG 

(p=0.027, r=-0.521; moderate); (ii) negative association between the time until task failure during the 

side plank and the degree of knee abduction (p=0.037, r=-0.543, moderate); (iii) negative association 

between the internal oblique muscle thickness and the degree of knee abduction during the single-leg 

squat in the PFPS (p=0.004; r=-0.701; strong). The lower IO thickness and the low LFT muscles 
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resistance are associated with higher degrees of knee valgus. Based in our results, PFPS exercises in 

rehabilitation programs should focus in proximal and distal factors due to their relationship with poor 

lower limb alignment in functional tasks. 

We would like to recommend some future directions regarding patellofemoral pain 

investigations. Regarding neuromuscular changes, the evaluation of intrinsic foot muscles can help 

to explain poor lower limb aligment during dynamic tasks. Finally, the investigation of neuromuscular 

changes after rehabilitation programs might help to explain the improvement in pain and functionality 

in PFPS patients. 
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APPENDIX A – ADDITIONAL MANUSCRIPT 

 

 

ASSOCIAÇÃO ENTRE A FUNÇÃO NEUROMUSCULAR DE FLEXORES LATERAIS DE 

TRONCO E A CINEMÁTICA NO PLANO FRONTAL DURANTE TAREFAS 

FUNCIONAIS EM MULHERES COM SÍNDROME DA DOR PATELOFEMORAL 

 

Autores: Kelli Daiana Klein; Rodrigo Rodrigues; Marco Aurélio Vaz 

 

 

Resumo 

 

O objetivo desse estudo foi verificar a associação entre parâmetros neuromusculares dos músculos 

flexores laterais do tronco (FLT) e o grau de adução do quadril e abdução de joelho durante os testes 

de agachamento e salto unipodal em mulheres com Síndrome da Dor Patelofemoral (SDPF). Trinta 

mulheres [SDPF, n=15 (idade: 26,33±4,18 anos; IMC: 24,51±3,61 kg/m²); grupo controle (GC), n=15 

(idade: 29,00±5,23 anos; IMC: 23,12±3,31 kg/m²)] foram submetidas às seguintes avaliações: grau 

de adução do quadril, valgo do joelho, ativação muscular do oblíquo externo (OE) durante os testes 

de agachamento e salto unipodal; espessura dos músculos OE e oblíquo interno (OI) em repouso; 

tempo até a exaustão na prancha lateral. Correlação de Pearson (α=5%) avaliou a associação entre as 

variáveis neuromusculares dos FLT e os parâmetros cinemáticos durante o agachamento e o salto 

unipodal. Foram observadas associações negativas entre a espessura do OE e o grau de adução de 

quadril durante o salto unipodal no GC (p=0,027; r=-0,521; moderada), entre o tempo até a exaustão 

durante a prancha lateral e o grau de abdução do joelho durante o agachamento unipodal no SDPF 

(p=0,037; r=-0,543; moderada), e entre a espessura do OI e o grau de abdução do joelho durante o 

agachamento unipodal no SDPF (p=0,004; r=-0,701; forte). A menor espessura do OI e a baixa 

resistência muscular dos FLT estão associadas com maiores graus do valgo do joelho, sugerindo que 

este grupo muscular deve ser levado em consideração em programas de reabilitação em pacientes 

com SDPF. 

 

Palavras-chave: síndrome da dor patelofemoral; tarefas funcionais; estabilidade do core. 
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1. INTRODUÇÃO 

 

A síndrome da dor patelofemoral (SDPF) é uma patologia de natureza multifatorial que se 

caracteriza por uma dor difusa retropatelar e/ou peripatelar na articulação do joelho, exacerbada por 

atividades de sobrecarga na articulação patelofemoral realizadas em flexão de joelho (Fulkerson, 

2002). Essa dor é muito comum na medicina esportiva entre adolescentes e adultos jovens, com maior 

predominância em mulheres (Willson & Davis, 2008). Os sintomas que resultam na SDPF diminuem 

a capacidade funcional do membro inferior e dificultam as atividades de vida diárias como subir e 

descer escadas, atividades com saltos, agachamentos e corridas (Fulkerson, 2002). 

Alterações cinemáticas (i.e. assimetria do alinhamento do membro inferior) são observadas 

nessa síndrome durante atividades de descarga de peso. Há um aumento do grau de adução do quadril 

e de abdução do joelho, causando aumento do estresse patelofemoral e, consequentemente, 

desconforto e dor (Nakagawa et al., 2012; Nakagawa et al., 2015). Esse desalinhamento do membro 

inferior tem sido associado a fatores (ou alterações) proximais (no tronco e quadril), locais (no joelho) 

e distais (no tornozelo e pé) ao local da dor em pacientes com SDPF. 

Alterações na função neuromuscular da articulação do quadril, como, por exemplo, uma 

fraqueza dos músculos abdutores do quadril, pode ser um fator desencadeador da SDPF. Como os 

abdutores têm a função de estabilizar a cintura pélvica e controlar excentricamente a adução do 

quadril em tarefas de descarga de peso (Ferber et al., 2011), uma fraqueza desse grupo muscular 

levaria a um aumento da adução do quadril, da abdução do joelho e o consequente aumento do valgo 

do joelho e estresse na articulação patelofemoral. 

Da mesma forma, alterações no controle neuromuscular ao nível do tronco também têm sido 

associadas ao desenvolvimento da SDPF (Baldon et al., 2015). A estabilidade do core (centro do 

corpo), por exemplo, pode ser definida como a base do controle dinâmico lombar e pélvico, 

permitindo a produção de força e o controle do movimento, que é transferido para toda a cadeia 

cinética do membro inferior durante o movimento funcional (Shirazi et al., 2014). Essa estabilidade 

é instantânea e requer um funcionamento eficiente, integrando a musculatura adequada para garantir 

que as variáveis de força, resistência e controle neuromuscular possam ser devidamente aplicadas em 

atividades funcionais (Akuthota & Nadler, 2004; Blaiser et al., 2018). Essa integração garante a 

estabilidade e alinhamento entre os membros, ou seja, a musculatura do core fornece uma base estável 

para um movimento funcional mais controlado, contribuindo para a estabilidade dinâmica das 

articulações (Zazulak et al., 2007). 

A importância dos músculos flexores laterais de tronco em sujeitos acometidos pela SDPF é 

relatada em alguns estudos (Cowan et al., 2008; Earl & Hoch, 2011; Nakagawa et al., 2014; Shirazi 

et al., 2014). Conforme mencionado anteriormente, um prejuízo na força, resistência e controle 
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neuromuscular desses músculos do tronco está associado a uma menor estabilidade do core, podendo 

gerar mudanças na mecânica dos membros inferiores, aumentando assim, o risco de desenvolver 

lesões no joelho (Earl & Hoch, 2011; Leetun et al., 2004). Cowan e colaboradores (2008) relataram 

a redução de força no teste de resistência de flexão lateral de tronco (prancha lateral) em sujeitos com 

SDPF ao compará-los com sujeitos saudáveis. Redução na força máxima e na força sustentada 

(resistência à fadiga) da musculatura lateral do tronco pode reduzir a capacidade funcional de pessoas 

acometidas pela SDPF na estabilização do quadril e do tronco no plano frontal (Nakagawa et al., 

2012). Embora esta redução na resistência e na força da musculatura abdominal tenha sido descrita, 

não foram encontradas evidências sobre possíveis alterações na ativação ou na morfologia dos 

músculos responsáveis pela estabilização do core em indivíduos com SDPF. Da mesma forma, não 

encontramos estudos que buscaram associar os parâmetros neuromusculares dos flexores laterais de 

tronco e a cinemática no plano frontal em atividades funcionais. Portanto, o objetivo do presente 

estudo foi verificar a associação entre as variáveis neuromusculares de flexores laterais do tronco 

[como o tempo até exaustão em prancha lateral, a espessura do oblíquo externo (OE), a espessura do 

oblíquo interno (OI) e a ativação excêntrica do OE] com o grau de adução do quadril e abdução de 

joelho durante os testes de agachamento e salto unipodal em mulheres com SDPF. 
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2. MATERIAIS E MÉTODOS 

2.1 Sujeitos 

Vinte e nove mulheres com dor no joelho participaram do estudo após a divulgação do projeto 

no campus da Universidade e nas redes sociais. Foram incluídas no estudo mulheres com idade entre 

18 e 40 anos, com avaliação positiva no teste clínico de compressão e negativa no teste de apreensão 

patelar (Tavares et al., 2011), com presença de dor retropatelar ou peripatelar (mínimo de três na 

escala analógica visual) em no mínimo duas tarefas funcionais (agachamento, subida e descida de 

escadas, corrida, salto, ajoelhar e sentar prolongado) (Jan et al., 2009) há pelo menos dois meses. 

Além disso, as participantes não deveriam ter sido submetidas a cirurgia ou acometidas por lesão na 

articulação do joelho, quadril e tornozelo. Após a aplicação dos critérios, sete mulheres foram 

excluídas devido à história de cirurgia do membro inferior, três devido à instabilidade patelar e quatro 

desistiram pois não puderam comparecer no momento da coleta. Assim, 15 mulheres foram incluídas 

no grupo SDPF. Quinze mulheres saudáveis, pareados com as pacientes com SDPF por idade, massa 

corporal, estatura e nível de atividade física, foram recrutadas como grupo controle (GC) (Tabela 1). 

Um consentimento escrito foi obtido de todas as participantes antes de iniciar o experimento. Este 

estudo foi aprovado pelo Comitê de Ética em Pesquisa da Universidade (número de registro CAAE 

61489016.9.0000.5347) e foi conduzido respeitando os padrões éticos da Reunião da Assembleia 

Geral da Declaração de Helsinque (outubro de 2008). 

Inicialmente, os sujeitos responderam ao Questionário Internacional de Atividade Física 

(IPAQ) e à Escala de Dor Anterior do Joelho (EDAJ) (Cunha et al., 2013) para determinar o nível de 

atividade física e a capacidade funcional, respectivamente. Após, foram submetidos aos seguintes 

procedimentos: (1) medidas da espessura dos músculos OE e OI; (2) colocação de sensores de 

eletromiografia (EMG) no músculo OE; (3) posicionamento dos marcadores cutâneos para avaliação 

cinemática; (4) realização do agachamento unipodal; (5) realização do salto unipodal; (6) aferição do 

tempo até a exaustão dos músculos flexores laterais de tronco no teste de prancha lateral. Os 

avaliadores não foram cegados em relação à alocação dos sujeitos nos grupos. 

 

2.2 Avaliação da espessura muscular de OE e OI 

A ultrassonografia foi utilizada por meio de um equipamento de ecografia B-mode (SSD 4000, 

51 Hz, ALOKA Inc., Tokyo, Japan) e uma sonda de arranjo linear (60mm - 7,5 MHz) para determinar 

a espessura dos músculos OE e OI. Um único pesquisador foi responsável pela coleta das imagens de 

ultrassonografia. A sonda de ultrassonografia foi coberta com gel de transmissão solúvel em água e 

colocada paralelamente aos fascículos musculares, perpendicular à pele. A espessura muscular foi 

mensurada pela distância entre as aponeuroses profunda e superficial, a partir do cálculo do valor 
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médio de cinco medidas de linhas paralelas desenhadas em ângulos retos entre as aponeuroses 

superficiais e profundas em imagens ultrassonográficas (Figuras 1-B e 1-C). As imagens foram 

analisadas com o software Image J (National Institutes of Health, Bethesda, Maryland) (Baroni et al 

2013). Para o OE e OI, a sonda foi posicionada em um ângulo de 60 graus em relação a uma linha 

vertical, entre a cicatriz umbilical e a crista ilíaca, aproximadamente na mesma linha de orientação 

das fibras musculares do OE (Figura 1-A). 

 

 

Figura 1: A – Imagem representativa de posicionamento da sonda de ultrassom (US). B e C – Imagens de 

arquitetura muscular em repouso de um sujeito da amostra, obtidas através da US, para a análise de espessura 

muscular (média de cinco linhas) do OE e OI, respectivamente. 

 

2.3 Avaliação da ativação muscular 

Um sistema de EMG Delsys de 16 canais (estação base EMG Trigno Wireless Trigno, Delsys 

Inc., Natick, Massachussets, EUA) foi usado para a coleta de dados de ativação do músculo OE. O 

sensor foi posicionado obliquamente aproximadamente 45 graus (paralelo a uma linha que conecta o 

ponto mais inferior da margem costal das costelas e o tubérculo púbico contralateral) acima da 

espinha ilíaca anterossuperior (EIAS) ao nível do umbigo (Escamilla et al., 2006). Um filtro 

Butterworth passa-banda, com frequências de corte de 20 e 500 Hz, foi utilizado em todas as 

avaliações para eliminar possíveis ruídos. Para normalizar os sinais EMG durante o agachamento e o 

salto unipodal, foram realizadas contrações voluntárias isométricas máximas para estabelecer a 

ativação muscular máxima. Para a realização do teste, os sujeitos foram posicionados em decúbito 

dorsal, com quadris e joelhos flexionados em 90 graus, e pés apoiados. Os participantes foram 

orientados para flexionar e girar o tronco para o lado oposto ao do OE onde estava posicionado o 

sensor. A resistência ao movimento foi aplicada no peito e ombros (Escamilla et al., 2006). Foram 
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realizadas três contrações voluntárias máximas, e um intervalo de 2 minutos foi observado entre as 

contrações. Os sujeitos foram previamente instruídos a executar o teste com o maior esforço possível 

para desenvolver a força máxima, e incentivo verbal foi fornecido ao longo dos testes (Baroni et al., 

2013). A ativação muscular foi medida pelo teste isométrico, e valores Root Mean Square (RMS) 

foram calculados a partir de 3 segundos no meio dos sinais de EMG obtidos nos testes. Esses valores 

foram considerados 100% de cada ativação muscular e foram utilizados para normalização da 

atividade muscular durante o agachamento e o salto unipodal. Para análise, usamos a porcentagem de 

ativação máxima do músculo OE (Winter, 2005) durante a fase excêntrica do agachamento e salto 

unipodal. Todos os dados EMG foram sincronizados com o sistema de acelerometria do sistema 

Delsys, o qual permitiu identificar as fases excêntricas e concêntricas durante os testes. A análise 

EMG foi realizada no software LabChart (ADInstruments, Brasil). 

 

2.4 Cinemática durante o teste de agachamento e salto unipodal 

Dados bidimensionais foram capturados enquanto os participantes completaram o agachamento 

e salto unipodal. Os participantes com SDPF realizaram o agachamento e o salto no membro 

envolvido, enquanto os participantes do GC realizaram o teste com o membro preferido. Marcadores 

cutâneos com fita adesiva dupla-face foram fixados nos seguintes locais: espinhas ilíacas 

anterossuperiores (EIAS); trocânter maior; epicôndilo femoral lateral; centro da patela; maléolo 

lateral e ponto médio entre o maléolo medial e lateral. Dados bidimensionais foram capturados com 

uma câmera GoPro Hero 4 (GoPro Inc, Califórnia, EUA) com uma taxa de amostragem de 120 Hz. 

A primeira câmera foi posicionada no plano frontal ao participante para determinar a adução do 

quadril e a abdução do joelho durante o teste de agachamento e do salto, enquanto a segunda câmera 

foi posicionada no plano sagital e foi usada para determinar a profundidade de movimento de cada 

repetição. Ambas as câmeras foram sincronizadas com um sinal luminoso para posterior análise das 

imagens. Os dados foram processados com o software Kinovea (Kinovea Organization, France). 

Para o agachamento unipodal, todos os sujeitos foram instruídos a flexionar o joelho 

contralateral, cruzar os braços no tronco e agachar o máximo possível. Eles realizaram cinco 

agachamentos unipodais com cadência controlada por um metrônomo (2 segundos por fase). Para o 

salto unipodal, todos os sujeitos foram instruídos a flexionar o joelho contralateral, cruzar os braços 

sobre o tronco, agachar-se (mais rápida e profundamente possível) e saltar o mais alto possível. Os 

participantes realizaram três saltos unipodais, e um intervalo de dois minutos foi observado entre as 

repetições. 

Os ângulos foram medidos a partir do plano frontal e sagital por um investigador cegado a 

alocação dos sujeitos nos grupos. No plano sagital, o ângulo entre o trocânter maior e o epicôndilo 

femoral lateral (flexão do joelho) foi utilizado para determinar a profundidade do agachamento. No 
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plano frontal, o ângulo entre os marcadores colocados nas EIAS e no centro da patela, foi usado para 

medir o grau de adução do quadril. O ângulo entre os marcadores colocados na EIAS do membro 

avaliado e o marcador colocado no ponto médio entre os maléolos medial e lateral foi usado para 

medir o grau de abdução do joelho (Holden et al., 2017; Wyndow et al., 2016; Scholtes & Salsich, 

2017) (Figura 2). Para todas as análises, utilizou-se o deslocamento angular entre início (participantes 

em posição ortostática e flexão contralateral do joelho) e final da fase excêntrica (pico de flexão do 

joelho). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 2: As figuras A e B representam a posição inicial e final, respectivamente, durante o teste de 

agachamento unipodal, enquanto as figuras C e D representam a posição inicial e final, respectivamente, 

durante o teste de salto unipodal. A adução do quadril foi calculada através do ângulo formado entre a pelve e 

a coxa (α2 - α1). O valgo do joelho foi calculado através do ângulo formado entre a coxa e a perna (β2 - β1). 

 

2.5 Nível de dor após os testes funcionais 

Após os testes de agachamento e salto unipodal, o nível de dor foi avaliado com uma escala 

visual analógica de 0-100 mm (EVA), onde 0 e 100 mm corresponderam a ausência de dor e dor 

intolerável, respectivamente. 

 

2.6 Avaliação de resistência da musculatura lateral de tronco 

A resistência da musculatura do tronco foi definida como o tempo em que o sujeito conseguiu 

permanecer na posição estática pré-definida. Para a avaliação da resistência dos flexores laterais de 

tronco (prancha lateral), os sujeitos foram orientados a elevar a cintura pélvica e sustentar o corpo em 

linha reta, apoiado somente pelo antebraço do lado de apoio e os pés. O membro superior do lado 
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contralateral permaneceu ao lado do tronco (Figura 3). Os testes foram interrompidos quando os 

sujeitos não foram capazes de sustentar a posição. Foi realizada uma repetição e a duração do tempo 

em segundos foi utilizada para as análises (Baldon et al., 2015). 

 

 

Figura 3: Prancha lateral para avaliação da resistência muscular dos flexores laterais de tronco. Fonte: Imagem 

obtida da Internet. 

 

2.7 Análise estatística 

O teste de Shapiro-Wilk foi usado para verificar a normalidade dos dados. Para a comparação das 

variáveis de caracterização da amostra foi realizado um teste t de Student para amostras 

independentes. Uma correlação produto-momento de Pearson foi realizada entre as variáveis 

neuromusculares (espessura e ativação) e o tempo até a exaustão na prancha lateral e os parâmetros 

cinemáticos durante o salto e o agachamento unipodal (grau de adução do quadril e valgo do joelho). 

Para classificar o grau de associação entre as variáveis foi utilizado o seguinte critério: correlações 

(positivas ou negativas) acima de 0,9 indicaram uma correlação muito forte; de 0,7 a 0,9 indicaram 

uma correlação forte; de 0,5 a 0,7 indicaram uma correlação moderada; de 0,3 a 0,5 indicaram uma 

correlação fraca e de 0 a 0,3 indicaram uma correlação desprezível. O nível de significância adotado 

foi de 5%. As análises foram realizadas no software SPSS 20.0. 

 

 

 

 

 

 



67 

 

3. RESULTADOS 

3.1 Características Clínicas 

Os pacientes com SDPF apresentaram função prejudicada medida pela pontuação de dor no 

joelho EDAJ e maior dor relatada após os testes em comparação aos sujeitos saudáveis (GC). Não 

foram observadas diferenças em outras características clínicas entre os grupos (Tabela 1). 

 

Tabela 1: Características dos sujeitos da amostra. 

GC = Grupo controle; SDPF = Grupo com Síndrome da Dor Patelofemoral; IMC = Índice de Massa Corporal; IPAQ = Questionário 

Internacional de Atividade Física; EDAJ = Escore de Dor Anterior no Joelho; EVA = Escala Visual Analógica; N.A. = Não Aplicável 

 

 

3.2 Associação dos Desfechos 

Quanto à associação entre os desfechos neuromusculares e os parâmetros cinemáticos, 

observamos uma associação negativa, moderada e significativa (r=-0,521; p=0,027) entre a espessura 

do OE e o grau de adução de quadril durante o salto unipodal no GC. Não foi observada associação 

entre estas duas variáveis para o grupo SDPF (r=0,112; p=0,693) (Figura 4). Ainda, houve uma 

associação negativa, moderada e significativa (r=-0,543; p=0,037) entre o tempo até a exaustão 

durante a prancha lateral e o grau de abdução do joelho durante o agachamento unipodal para o grupo 

SDPF, fato este não observado para o GC (r=-0,185; p=0,516) (Figura 5). Por fim, observamos uma 

associação negativa, forte e significativa (r=-0,701; p=0,004) entre a espessura do OI e o grau de 

abdução do joelho durante o agachamento unipodal para o grupo SDPF, diferente do observado para 

o GC (r=0,070; p=0,794) (Figura 6). Não observamos associação entre as demais variáveis para 

ambos os grupos. 

 GC (n=15) SDPF (n=15) Valor de p 

Idade  29,00 ± 5,23 26,33 ± 4,18 0,135 

Massa corporal (Kg) 62,16 ± 7,83 65,98 ± 13,08 0,341 

Estatura (m) 1,64 ± 0,06 1,63 ± 0,06 0,766 

IMC (Kg/m²) 23.12 ± 3.31 24.51 ± 3.61 0,281 

IPAQ (met.min.week) 2053,23 ± 1648,42 2131,94 ± 1824,35 0,902 

Pontuação de dor no joelho 

(pontos) 

N.A. 76,26 ± 10,18 N.A. 

Duração dos sintomas (anos) N.A. 5,24 ± 2,10 N.A. 

Profundidade do salto (º) 54,93 ± 6,39 59,20 ± 8,20 0,123 

Dor após salto (EVA) (mm) 2,3 ± 4,1 30,5 ± 21,11 <0,001 

Profundidade do agachamento 

(º) 

57,73 ± 8,63 64,80 ± 7,11 0,089 

Dor após agachamento (EVA) 

(mm) 

1,4 ± 3,5 22,23 ± 12,50 <0,001 
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Figura 4: Associação entre o grau de adução do quadril durante o salto e a espessura muscular do OE. Pontos 

pretos (GC); pontos brancos (SDPF); linha tracejada (GC); linha sólida (SDPF). 

 

 

Figura 5: Associação entre o grau de abdução do joelho (valgo do joelho) durante o agachamento o tempo até 

a exaustão durante a prancha lateral. Pontos pretos (GC); pontos brancos (SDPF); linha tracejada (GC); linha 

sólida (SDPF) 
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Figura 6: Associação entre o grau de abdução do joelho (valgo do joelho) durante o agachamento e a espessura 

do OI. Pontos pretos (GC); pontos brancos (SDPF); linha tracejada (GC); linha sólida (SDPF). 
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4. DISCUSSÃO 

Conforme demonstrado pelos resultados, e a partir da hipótese formulada para o presente 

estudo, observamos que os parâmetros estruturais e funcionais dos flexores laterais do tronco estão 

associados com as variáveis cinemáticas no plano frontal durante o salto e o agachamento unipodal. 

Curiosamente, observamos que os grupos apresentam um comportamento diferente. Assim, 

observamos uma associação forte e significativa entre a espessura do OI e o grau de abdução do 

joelho no grupo SDPF. Desta forma, quanto menor foi a espessura de OI, maior era o grau de abdução 

de joelho durante o agachamento unipodal. Este resultado também foi observado para o tempo de 

exaustão em prancha lateral. Para o GC, houve uma associação entre a espessura muscular de OE e o 

grau de adução do quadril durante o salto unipodal. Não foram encontradas diferenças entre as demais 

variáveis para ambos os grupos. 

A estabilidade do core depende da função adequada da musculatura do tronco, e é fundamental 

para uma funcionalidade eficiente entre os membros (Blaiser et al., 2018). A perda da estabilidade 

nessa musculatura pode ser um fator de risco para a perda do movimento adequado em atividades do 

dia a dia e perda da funcionalidade (Zazulak et al., 2007). Essas perdas, por sua vez, podem levar ao 

desenvolvimento de lesões nas extremidades inferiores (Blaiser et al., 2018). Nosso estudo 

demonstrou uma associação das variáveis neuromusculares com a cinemática no GC. Menores 

espessuras do OE estavam associadas com o aumento do grau de adução do quadril durante o salto 

unipodal. Esse resultado sugere que uma incapacidade do OE de controlar a pelve durante a fase 

excêntrica do salto leva a adução aumentada do quadril (Nakagawa et al., 2014). Portanto, parece 

existir uma importante relação da estrutura do OE com o controle do movimento do quadril durante 

atividades de descarga de peso. 

Como observado no estudo de Nakagawa e colaboradores (2015), maiores graus de adução 

do quadril e abdução do joelho observados no grupo SDPF estão relacionados a um aumento no 

estresse patelofemoral e dor. Apesar de que fatores proximais estão relacionados a este controle das 

articulações do membro inferior durante atividades de descarga de peso, não observamos estudos 

prévios que tivessem investigado alterações da morfologia dos músculos do tronco nestes sujeitos. A 

associação de menor espessura muscular de OI com o maior grau de abdução de joelho no 

agachamento unipodal no grupo SDPF pode ter relação com os pontos de origem e inserção do OI e 

a anatomia funcional ou cinesiologia desse músculo. A origem do músculo está localizada na fáscia 

toracolombar e parte dorsal da crista ilíaca, enquanto sua inserção se dá da oitava à décima cartilagem 

costal, chegando à linha Alba (Carpes et al., 2011). Apesar de a função dos músculos abdominais ser 

geralmente explicada a partir dos movimentos do tronco sobre a pelve, os movimentos da pelve sobre 

o tronco também são produzidos por essa musculatura. Além disso, a estabilização da pelve pelos 

músculos do core, conforme mencionado anteriormente, é fundamental para fornecer estabilidade 
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para os movimentos do membro inferior (Neumann, 2002), e o músculo OI, por conectar a espinha 

ilíaca às costelas lateralmente em relação à articulação do quadril, é um importante músculo no 

posicionamento adequado da fossa do acetábulo durante atividades dinâmicas. Apesar de a literatura 

da cinesiologia estabelecer essa relação entre a musculatura abdominal como um importante fator de 

estabilização da pelve para a execução adequada dos movimentos do quadril, poucos são os estudos 

que apresentam evidências dessa relação. Uma redução na espessura do OI reduz a capacidade de 

sustentação da cintura pélvica e pode desencadear um pico de inclinação do tronco, adução de quadril 

e abdução do joelho quando pacientes com SDPF realizam o agachamento unipodal (Nakagawa et 

al., 2015), alterando, portanto, o alinhamento do membro inferior. 

Outro componente da estabilidade do core, a resistência muscular, é representada pela 

capacidade de manter a força da musculatura axial em contração isométrica prolongada. Estudos 

anteriores relatam a incapacidade de produção de força resistida dos músculos flexores laterais de 

tronco na prancha lateral isométrica em sujeitos com SDPF comparados com sujeitos saudáveis 

(Cowan et al., 2008), o que vai ao encontro com os resultados do nosso estudo. Houve uma associação 

entre um menor tempo de resistência na prancha lateral e um maior grau de abdução do joelho durante 

o agachamento unipodal. Tanto o músculo OE quanto o OI são responsáveis pelo movimento de 

flexão lateral do tronco (Neumann, 2002; Carpes et al., 2011). Desta forma, como também 

observamos que a morfologia destes músculos apresenta associação com parâmetros cinemáticos, 

alterações deletérias neste grupo muscular podem desencadear desalinhamentos nos membros 

inferiores, compensação de musculaturas sinergistas e uma maior abdução de joelho. 

A baixa capacidade de resistência dos flexores laterais pode estar ligada a uma maior adução 

de quadril e abdução de joelho em atividades dinâmicas (Cowan et al., 2008; Nakagawa et al., 20015). 

Um programa de fortalecimento da musculatura do core em mulheres com SDPF determinou uma 

melhora na capacidade funcional e diminuição da dor. Isso sugere que o fortalecimento de abdutores 

de quadril e flexores laterais do tronco pode estar relacionado com menores ângulos de abdução de 

joelhos em atividades funcionais (Earl & Hoch, 2011). Portanto, um fortalecimento da musculatura 

flexora lateral do tronco deve ser incluída em programas de reabilitação destes pacientes visando uma 

maior estabilidade dos membros inferiores durante as tarefas funcionais. 

Uma das limitações do estudo foi o fato de que somente a prancha lateral foi mensurada no 

teste de resistência. O teste de prancha frontal para mensurar a resistência dos flexores anteriores de 

tronco seria importante, visto que eles também são importantes na estabilidade do core (Earl & Hoch, 

2011). Com isso, estudos futuros devem investigar também parâmetros neuromusculares deste grupo 

para determinar se toda a musculatura abdominal sofre um comprometimento e determinar sua 

possível relação com a ausência de controle neuromuscular em atividades dinâmicas funcionais. A 

ultrassonografia também foi utilizada somente com a musculatura em repouso. Apesar de dificuldades 
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metodológicas, a fixação da sonda de ecografia na parede lateral do tronco, imediatamente acima da 

fossa do acetábulo, e a realização dos testes funcionais com a avaliação dinâmica da espessura dos 

músculos abdominais, também forneceriam mais informações sobre a relação entre a estrutura dos 

músculos do core e a sua função durante atividades funcionais. 

 

5. CONCLUSÃO 

Nossos resultados demonstraram que a menor espessura do OI e a baixa resistência muscular 

dos flexores laterais de tronco estão associadas com maiores graus de abdução do joelho. Assim, essa 

musculatura parece ser importante para a estabilidade do tronco e do quadril em atividades de 

descarga de peso e atividades funcionais em pessoas com SDPF. Essas informações, devem ser 

levadas em consideração em programas de reabilitação com enfoque no aumento de força e da 

resistência dos músculos envolvidos no core em pacientes com SDPF. 
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