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“Essentially, all models are wrong, but some are useful.”

— GEORGE E. P. BOX
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ABSTRACT

Recent trends in software-defined networking have extended network programmability to

the data plane through programming languages such as P4. Unfortunately, the chance

of introducing bugs in the network also increases significantly in this new context. To

prevent bugs from violating network properties, the techniques of enforcement or veri-

fication can be applied. While enforcement seeks to actively monitor the data plane to

block property violations, verification aims to find bugs by assuring that the program

meets its requirements. Existing data plane verification approaches that are able to model

P4 programs present severe restrictions in the set of properties that can be verified.

In this work, we propose ASSERT-P4, a data plane program verification approach based

on assertions and symbolic execution. Network programmers annotate P4 programs with

assertions expressing general correctness properties. The annotated programs are trans-

formed into C models and all their possible paths are symbolically executed.

Since symbolic execution is known to have scalability challenges, we also propose a set

of techniques that can be applied in this domain to make verification feasible. Namely, we

investigate the effect of the following techniques on verification performance: paralleliza-

tion, compiler optimizations, packet and control flow constraints, bug reporting strategy,

and program slicing. We implemented a prototype to study the efficacy and efficiency

of the proposed approach. We show it can uncover a broad range of bugs and software

flaws, and can do it in less than a minute considering various P4 applications proposed in

the literature. We show how a selection of the optimization techniques on more complex

programs can reduce the verification time in approximately 85 percent.

Keywords: P4. Verification. Programmable Data Planes.



Revelando Bugs em Programas P4 com Verificação Baseada em Asserções

RESUMO

Tendências recentes em redes definidas por software têm estendido a programabilidade de

rede para o plano de dados através de linguagens de programação como P4. Infelizmente,

a chance de introduzir bugs na rede também aumenta significativamente nesse novo con-

texto. Para prevenir bugs de violarem propriedades de rede, as técnicas de imposição e

verificação podem ser aplicadas. Enquanto imposição procura monitorar ativamente o

plano de dados para bloquear violações de propriedades, verificação visa encontrar bugs

assegurando que o programa satisfaz seus requisitos. Abordagens de verificação de plano

de dados existentes que são capazes de modelar programas P4 apresentam restrições seve-

ras no conjunto de propriedades que podem ser verificadas. Neste trabalho, nós propomos

ASSERT-P4, uma abordagem de verificação de programas de plano de dados baseada em

asserções e execução simbólica. Programadores de rede anotam programas P4 com asser-

ções expressando propriedades gerais de corretude. Os programas anotados são transfor-

mados em modelos C e todos os seus caminhos possíveis são executados simbolicamente.

Como execução simbólica é conhecida por possuir desafios de escalabilidade, nós também

propomos um conjunto de técnicas que podem ser aplicadas neste domínio para tornar a

verificação factível. Nomeadamente, nós investigamos o efeito das seguintes técnicas so-

bre o desempenho da verificação: paralelização, otimizações de compilador, limitações de

pacotes e fluxo de controle, estratégia de reporte de bugs, e fatiamento de programas. Nós

implementamos um protótipo para estudar a eficácia e eficiência da abordagem proposta.

Nós mostramos que ela pode revelar uma ampla gama de bugs e defeitos de software, e

é capaz de fazer isso em menos de um minuto considerando diversas aplicações P4 en-

contradas na literatura. Nós mostramos como uma seleção de técnicas de otimização em

programas mais complexos pode reduzir o tempo de verificação em aproximadamente 85

por cento.

Palavras-chave: P4, Verificação, Plano de Dados Programáveis.
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1 INTRODUCTION

Data plane programmability allows operators to quickly deploy new protocols and

develop network services. Through programming languages such as P4 (BOSSHART et

al., 2014), it is possible to specify in a few instructions which and how packet headers

should be manipulated by different forwarding devices in the infrastructure. Despite the

flexibility, this paradigm also increases the chance of introducing bugs into the network

due to incorrect protocol implementations.

Enforcement and verification are complementary approaches that can be applied

as a solution to this problem. Using enforcement, the data plane can be monitored dur-

ing execution to seek and block actions that result in property violations. Verification

focuses on finding the bugs before the programs are deployed. It acts by assuring that the

program meets the properties stated by its requirements. Several approaches have been

developed in order to check if a given data plane satisfies a set of intended properties

(SON et al., 2013; DOBRESCU; ARGYRAKI, 2014; LOPES et al., 2015; PANDA et

al., 2017). However, the ones that are able to model P4 programs cannot reason about

program-specific properties. In this dissertation, we propose ASSERT-P4, a network ver-

ification approach capable of modeling and checking (at compile time) general security

and correctness properties of P4 programs. It provides an expressive assertion language

that enables programmers to specify their intended properties by simply annotating their

P4 programs. Once annotated, a program is symbolically executed, with assertions being

checked while all its paths are traversed. Given that the time taken to perform symbolic

execution grows exponentially with the program complexity, we also present a variety

of optimization techniques that can be employed to reduce the verification time and the

number of executed instructions. These techniques consist of using parallelization of

symbolic execution, compiler optimization flags, code annotations to constrain packets

and the control flow, a bug reporting strategy to optimize I/O operations and assertion

violation discovery, and program slicing to reduce the complexity of the model under

verification.

We built a prototype of ASSERT-P4 using KLEE (CADAR; DUNBAR; ENGLER,

2008) and the P4 Reference Compiler (CONSORTIUM, 2017b). To evaluate our ap-

proach, we tested it on four real P4 applications collected from the literature: Switch (CON-

SORTIUM, 2018), NetPaxos (DANG et al., 2016), Dapper (GHASEMI; BENSON; REX-

FORD, 2017), and DC.p4 (SIVARAMAN et al., 2015). We found bugs in the first three.
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Our results show that ASSERT-P4 can uncover a broad range of bugs and software flaws,

either in a data plane program itself or in its control plane configuration. A detailed perfor-

mance analysis also shows that, although the verification time grows exponentially with

the number of tables and assertions, pragmatically ASSERT-P4 needs less than a minute

to verify various P4 applications, such as NetPaxos (DANG et al., 2015), LossRadar (LI et

al., 2016), NDN.p4 (SIGNORELLO et al., 2016), Gotthard (JEPSEN et al., 2017), Dap-

per (GHASEMI; BENSON; REXFORD, 2017), and Timestamp Switching (EDWARDS;

CIARLEGLIO, 2017). Furthermore, the proposed optimization techniques were used to

reduce the verification time in up to 85% of the original, unoptimized executions.

In summary, this dissertation presents the following contributions:

1. a language for specifying general correctness and security properties of P4 pro-

grams;

2. an assertion checking and symbolic execution approach for verifying properties of

P4 programs;

3. a set of techniques to enable feasible verification of P4 programs;

4. the usage of ASSERT-P4 for uncovering software flaws in P4 applications proposed

in the literature;

5. a detailed performance evaluation of ASSERT-P4.

The remainder of this work is organized as follows. We first provide (in Chapter 2)

a background of P4, data plane verification, and symbolic execution, as well as explain

the motivation for verification of program-specific properties of P4 programs. Next, we

present an overview of the state of the art (Chapter 3). Thereafter, the proposed verifi-

cation solution is described in detail (Chapter 4), followed by an explanation of the opti-

mization techniques that can be applied with ASSERT-P4 (Chapter 5). We then describe

the experimental evaluation (Chapter 6) and outline the main conclusions and future work

(Chapter 7).
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2 BACKGROUND AND MOTIVATION

We start with a description of the main aspects of the P4 language and its compiler

(Section 2.1). Next, we motivate our work with examples of bugs ASSERT-P4 aims

to identify (Section 2.2), followed by the concepts and goals of data plane verification

(Section 2.3), and an explanation of symbolic execution (Section 2.4).

2.1 P4 language

The P4 programming language, proposed by (BOSSHART et al., 2014), allows

the programming of the data plane of network devices (that is, switches and routers) in a

simple and architecture-independent manner. This allows new communication protocols

to be quickly deployed in the network.

A P4 program basically includes the definitions of headers, metadata, parser, ac-

tions, tables, control blocks and external objects. Parser describes the mapping of input

packet bits to their corresponding headers declared in the program. Once mapped, such

headers can be manipulated by tables and actions. The exact sequence of tables and ac-

tions applied during the packet processing is defined in an imperative manner by control

blocks. Metadata allows devices to temporarily store packet state information. Finally,

external objects act as interfaces to device-specific data structures and functions. For

instance, counters made available by programmable switches are manipulated by P4 pro-

grams through external objects. It is the device manufacturers responsibility to implement

these interfaces.

The code of a P4 program is usually organized in libraries. A core library contain-

ing basic data types is provided along with its programming framework. Two examples of

basic data types are packet_in and packet_out, used to represent respectively the incoming

and outgoing packet (that is, the stream of bits). Other libraries can be freely defined by

device manufacturers and network programmers.

A P4 program to be run is first translated by a compiler to instructions specific

to the target device, such as CPU, GPU, FPGA, network processors, or programmable

ASICs. In this process, the P4 compiler converts the program source code into an in-

termediate representation (IR), modeled by a directed acyclic graph (DAG). Each node

of the graph, represented by an element of the P4 program, is then transformed in their

corresponding low-level instructions according with the target device. Many code opti-
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mizations are usually applied during this process, allowing network devices to process

packets at higher rates.

2.2 P4 program-specific bugs

Bugs in P4 programs can originate from a myriad of sources (e.g. erroneous as-

signments, poor logic or control misconfiguration) and have different consequences de-

pending on the program. Some bugs, for example, can be transformed into vulnerabilities

if exploited towards the violation of network security policies. Next, we present two

motivating examples to illustrate how bugs and their effects can be specific to each P4

implementation.

Code circumvention. Figure 2.1 shows an example of a vulnerability stemming

from a logic error in a P4 program. This code snippet specifies a packet processing

pipeline containing three match-action tables (udp_table, tcp_table and tcp_acl_table),

invoked inside an L4 control block. While it is expected that udp_acl_table should be

applied to UDP traffic, the tcp_acl_table was used in its place, resulting in UDP packets

that can bypass its filtering mechanism. As a consequence, the program in question could

be used as a starting point for many attacks (e.g., UDP flooding). Even though correcting

this problem is simple (applying the proper table that implements the UDP access control

list is enough), finding it may not be trivial in large and complex programs.

Figure 2.1: Code circumvention example.
  1 control L4() {   
  2   apply { 
  3      if (headers.ip.nextHeader == TCP) {
  4         tcp_table.apply();
  5         tcp_acl_table.apply();
  6      } else if (headers.ip.nextHeader == UDP) {
  7         udp_table.apply();
  8         tcp_acl_table.apply(); 
  9      }
10   }
11 }

Source: The Authors

Control misconfiguration. Many faults in networks arise from bugs in forward-

ing rules (i.e., control plane configurations). In this sense, Figure 2.2 shows an example of

a data plane program whose tables are erroneously configured at compile-time. The mir-

ror table clones packets based on their output port (line 2), setting a new port for cloned
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packets based on its action parameters. In this example, one of the forwarding rules is

assigning the output port of the cloned packet to the same value as the original packet

(line 8). As a consequence, both packets will be sent to the receiver.

Figure 2.2: Control misconfiguration example.

  1 table mirror {
  2    key = { metadata.egress_port : exact; }
  3    actions = { NoAction; clone_packet; }
  4    default_action = NoAction;
  5
  6    const entries = {  
  7      0x00000001 : clone_packet(0x00000002);
  8      0x00000002 : clone_packet(0x00000002);
  9    }
10 }  

Source: The Authors

To prevent these cases from causing negative consequences to the network, we

can use an active approach of enforcing correctness properties of interest, and impeding

the behavior of P4 programs that violate these properties. Alternatively, we can verify

if the P4 program does not violate the properties before their deployment, giving the

opportunity to find the bugs in an earlier stage of development.

2.3 Data plane verification

The investigation of solutions for data plane verification was motivated by the

complexity of network data planes and the difficulty in diagnosing problems (MAI et al.,

2011). These solutions provide tools that generally translate a data plane configuration

to a model, upon which different techniques are used to prove that it satisfies a set of

properties related to a given network policy. Examples of this approach include (MAI et

al., 2011), (SON et al., 2013), (LOPES et al., 2015), and (LOPES et al., 2016).

Different types of properties can be proved depending on the verification tool.

However, the majority of these properties are related to reachability, that is, checking if

hosts are able to communicate. Other common properties include proving isolation (hosts

should not be able to communicate), and ensuring that the data plane has no routing loops

and black holes.

The control plane centralization provided by software-defined networking (SDN)

allows the automatic verification of forwarding behavior (KAZEMIAN; VARGHESE;

MCKEOWN, 2012). However, extending the programmability of SDN to the data plane
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brings new challenges to the verification of networks. The most important ones are (i)

providing an automatic approach to avoid manually generating models for each new data

plane program source code (LOPES et al., 2016), and (ii) defining the set of verifiable

properties. The first challenge is necessary to be addressed because the malleability of

P4 makes manual modeling impractical. The second challenge arises from the possi-

bility of implementing arbitrary protocols in P4, which may need to be verified with

program-specific properties. In this dissertation, we address these points with the sym-

bolic execution of automatically generated models of P4 programs, which are annotated

with properties written in an expressive language.

2.4 Symbolic execution

Symbolic execution and model checking are two main techniques that can be ap-

plied to network verification. Symbolic execution approaches execute a program with

symbolic (instead of concrete) inputs to traverse all its feasible paths (DOBRESCU; AR-

GYRAKI, 2014; STOENESCU et al., 2016; FAYAZ et al., 2016; CANINI et al., 2012a).

Upon encountering a branch decision dependent on symbolic values, the symbolic exe-

cution engine invokes a satisfiability modulo theories (SMT) solver to determine which

paths are feasible. The execution then traverses each possible path, including the assump-

tion on the symbolic values necessary to choose their corresponding branch. Note that

using a solver is a costly operation. Model checking is the process of modeling the sys-

tem and its properties, and checking if the properties are valid in all states of the model.

Thus, the advantage of symbolic execution over model-checking is performance:

symbolic engines use SMT solvers to make path reachability decisions only, while model-

checking based approaches encode both network models and their properties into the

solvers (e.g., as in (SON et al., 2013; LOPES et al., 2016)). However, symbolic execution

faces the path explosion problem, arising from the exponential nature of traversing all

paths of an execution tree. This may result in prohibitive verification times on complex

programs. Despite this challenge, model-checking has no performance advantage over

symbolic execution as it has to deal with the similar state explosion problem, which con-

sists of an exponential growth of the number of states as the system grows in complexity.
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3 RELATED WORK

Network verification. Many tools were proposed for verifying correctness and

security properties in computer networks over the last few years. They are based on a

myriad of techniques and address different properties and/or network architectures. While

the types of properties vary across the literature, they are mainly related to host reacha-

bility, including isolation, absence of black holes, and loop-freedom. Some focus on the

control plane, while others, in the data plane. Approaches that target the control plane

proactively analyze their network operations, being useful to verify that the control plane

does not yield configurations that violate the desired properties (LIU et al., 2017; BECK-

ETT et al., 2017; GEMBER-JACOBSON et al., 2016; FOGEL et al., 2015; CANINI et

al., 2012b).

Efforts that focus on the data plane are more similar to our approach. They op-

erate by verifying if a particular snapshot of the data plane satisfies the network-wide

properties. This strategy can be traced back to Anteater (MAI et al., 2011), which mod-

els the data plane as boolean functions that are analyzed with a SAT solver to check for

reachability, network loops, black holes, and consistency. Similarly, Header Space Anal-

ysis (HSA) (KAZEMIAN; VARGHESE; MCKEOWN, 2012) proposes header space al-

gebra as a technique for checking reachability, isolation of network slices and packet

leakage. Based on HSA, NetPlumber (KAZEMIAN et al., 2013) incrementally updates

the network model as changes occur in the data plane. This allows efficient verification

in real time. Other tools that perform real time verification of the data plane are VeriFlow

(KHURSHID et al., 2012), DeltaNet (HORN; KHERADMAND; PRASAD, 2017), and

Flover (SON et al., 2013). VMN (PANDA et al., 2017) focuses on verifying reachability

and isolation in networks containing stateful middleboxes. NOD (LOPES et al., 2015)

uses Datalog to model both the network and its reachability properties. Recently, a so-

lution that translates P4 programs to Datalog was proposed in the literature (LOPES et

al., 2015), but unlike ASSERT-P4 it cannot reason about program-specific properties. In

(CASCAVAL et al., 2018), the authors are in the process of publishing the use of Hoare

logic to prove general and program-specific properties of P4 programs.

The symbolic execution technique has been previously used to verify data planes.

(DOBRESCU; ARGYRAKI, 2014) proves that pipelines composed of Click elements

satisfy crash-freedom, bounded execution, and packet filtering properties. The authors

try to handle the path explosion problem by symbolically executing the Click elements
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separately. Symnet (STOENESCU et al., 2016), in turn, is a verifier of data plane mod-

els built using the SEFL language, also proposed by the authors. This language contains

instructions that simplify its symbolic execution, allowing the efficient verification of

complex programs. Despite its scalability, Symnet cannot verify P4 programs in its cur-

rent state, since the SEFL language is not able to model all the required structures and

data manipulations (e.g., bitwise operations). However, the authors are in the process of

publishing Vera (STOENESCU et al., 2018), a P4 verification approach capable of using

SEFL and Symnet to prove properties using symbolic execution. Compared to the pub-

lished network verification literature, ASSERT-P4 is the first work to allow expressing

and checking program-specific properties of P4 programs.

Assertion language. Beckett et al. (BECKETT et al., 2014) present an assertion

language to verify SDN applications. It enables expressing properties that the data plane

should satisfy at different points of a control program. The assertions are verified using

the VeriFlow (KHURSHID et al., 2012) tool, which, like Flover, acts over forwarding

rules instantiated in OpenFlow devices. While the language Beckett et al. propose is used

in SDN applications, our approach is to directly annotate a data plane program to prove

properties of interest.
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4 ASSERT-P4

This chapter explains the ASSERT-P4 verification process. We describe the con-

trol flow of the verification mechanism (Section 4.1), the design of our assertion language

(Section 4.2), our model construction process (Section 4.3), and the symbolic execution

of the generated models (Section 4.4).

4.1 Overview

Figure 4.1 shows the overview of ASSERT-P4. There are two key ideas behind

it: i) using assertions for specifying properties about P4 programs; and ii) verifying mod-

els derived from annotated programs. The former allows programmers to express their

intended properties, while the latter enables programs to be automatically verified. Us-

ing models to represent real programs is a common practice in the verification literature

(STOENESCU et al., 2016; PANDA et al., 2017; FAYAZ et al., 2016; LOPES et al.,

2015), and although we recognize the importance of proving that our models are equiva-

lent to their original programs, such proofs are beyond the scope of this dissertation and

left for future work.

Figure 4.1: Overview of ASSERT-P4.

Source: The Authors
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The P4 developer first annotates his code with assertions expressing general prop-

erties of interest. These properties can reflect a network security policy or simply repre-

sent the expected program behavior. Once annotated, the P4 program is translated into a

C-based model. During this process, forwarding rules can be optionally added as input to

the translator for restricting the verification to a given network configuration. The gener-

ated model is finally checked by a symbolic execution engine, which tests all execution

paths looking for assertion failures. If no assertion is violated during this process, the

P4 program is considered correct with respect to the analyzed properties. Otherwise, any

violations are reported, allowing the developer to correct the program. In the following

sections, we describe in detail each step of the ASSERT-P4 verification process.

4.2 Specifying assertions

Programmers use assertions to express properties of P4 programs. An assertion

language is needed to capture packet processing behaviors and facilitate the task of spec-

ifying complex networking properties. This includes reasoning about packet formation,

forwarding, and control flow properties, whose behavior may depend not only on the state

of the program variables at a specific location, but also on how the program manipulates

the packets at other points of the code. To accomplish this goal, we present a novel asser-

tion language using the code annotation mechanism available in P4. We define an assert

annotation, enabling the developer and/or a third party to express/interpret properties in

an intuitive manner.

Figure 4.2 summarizes the grammar of our assertion language. Although it re-

sembles C-style assertions found in traditional programming languages, our concept of

assertion is a bit more general in the sense it can involve both location-restricted and

location-unrestricted elements. A location-restricted element is one that tests the value

of a program variable at a specific location (i.e., where the assertion is specified), as in

traditional programming languages like C or Java. Drawing inspiration from Beckett et al.

(BECKETT et al., 2014), whose assertion language allows expressing the behavior of the

network evolution, we include location-unrestricted methods in our assertion language,

which are designed to facilitate the specification of P4 related properties. A location-

unrestricted element tries to capture the evolution of the program and how it manipulates

its variables (i.e., packet headers in this case) along its execution as a whole.

Syntactically, each assertion is composed of a boolean expression b, which may
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Figure 4.2: Assertion language grammar.
b ::= v
    | f
    | m
    | !b
    | b || b
    | b && b
    | b == b
    | b != b
    | i >= i
    | i <= i
    | i < i
    | i > i
    | i == i
    | i != i

m ::= forward()
    | traverse_path()
    | constant(f)
    | if(b, b, [b])
    | extract_header(h)
    | emit_header(h)
i ::= v
    | f
    | i * i
    | i / i
    | i % i
    | i + i
    | i - i

Source: The Authors

include primitive methods m. The set of allowed methods is {forward, traverse_path,

constant, if, extract_header, emit_header}. Both expressions and methods can operate

over one or more values v, header fields f or headers h. There is no syntax difference be-

tween location-restricted and location-unrestricted elements. Semantically, each assertion

represents a boolean that should evaluate to true or false, where values and header fields

evaluate to true if they are non-zero and false otherwise. Integer expressions i have the

same semantics as their equivalents in the P4 language, as well as boolean expressions,

which include the equality and inequality relational operators to compare logical values.

Each method m has its own meaning. Specifically, forward() returns true when

the packet being processed will not be dropped at the end of the program. traverse_path()

indicates if a given structure in the program (e.g., an action) was eventually traversed

before the end of the program execution. constant(f) is true if the field f is not changed

from the assertion location to the end of the program execution. if(b1, b2, [b3]) is similar

to traditional conditional statements (i.e., if the condition represented by expression b1 is

true, then the expression b2 will be evaluated, otherwise the optional expression b3 will be

verified). extract_header(h) is true if the header h is extracted from the packet during the

parsing process. Finally, emit_header(h) returns true if the outgoing packet will contain

the header h at the end of the program execution.

The methods presented in the language enable the specification of types of proper-

ties that would be either difficult or impossible to express using only traditional assertions.

The addition of the forward method enables the expression of forwarding properties,

which are essential to data plane programs. The traverse_path method allows reason-
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ing about the control flow of the source code. constant facilitates checking the integrity

of variables across the program. Both extract_header and emit_header allows the expres-

sion of packet formation properties at the parser and deparser level, respectively. Finally,

the if method assists the process of combining methods and expressions in a conditional

expression.

Figure 4.3 shows an example containing an annotated P4 program where asser-

tions are in bold, with only the most relevant parts of the program being displayed. This

program describes a packet processing pipeline with a single table (dmac), which is in-

stantiated inside the TopPipe control block. Each entry of this table can invoke one of

two actions (Drop or Set_dmac). The annotated assertions aim to verify that: (i) pack-

ets marked to drop are never forwarded (line 7), and (ii) only packets with TTL greater

than zero are forwarded (line 21). The two assertions contain both location-unrestricted

elements (e.g., the method forward captures the state of the program at the end of its ex-

ecution) and also location-restricted ones (e.g., the expression "headers.ip.ttl > 0" tests

the value of headers.ip.ttl at the point in which the assertion is located).

Figure 4.3: Example of an annotated P4 program.

 1  ... 
 2 control TopPipe(inout Parsed_packet headers,
 3                          out OutControl outCtrl) {
 4  ...
 5  action Drop() {
 6    outCtrl.outputPort = DROP_PORT;
 7    @assert("if(traverse_path(), !forward())");
 8 }
 9  action Set_dmac(EthernetAddress dmac) {
10    headers.ethernet.dstAddr = dmac;
11  }
12  table dmac {
13    key = { nextHop : exact; }
14    actions = { Drop; Set_dmac; }
15    default_action = Drop;
16  }
17  apply {
18    ...
19    dmac.apply();
20    ...
21   @assert("if(forward(), headers.ip.ttl > 0)");
22  }
23}

Source: The Authors
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4.3 Constructing C models

Once a P4 program is annotated, the tool part of the ASSERT-P4 implementation

generates an equivalent program in the C language through a translation process. This

section describes how we designed this process, discussing the main P4 structures (i.e.,

headers, tables, actions, parsers, control blocks, and external objects).

Headers. Given their similar representations, P4 headers are properly modeled by

structs in C. Each header field is mapped to a struct member, and bit fields in C are used

to keep the matching between the size of the header field and the size of its corresponding

member in the generated struct. Each basic type in P4 is mapped to a corresponding type

in C, considering its declared size. Fields with more than 64 bits can be modeled using

bit arrays. Figure 4.4 exemplifies the header translation process. Note how the C struct

contains a header validity field, which is implicit in Figure 4.4(a).

Figure 4.4: Header translation example.

 1 header ethernet_t {
 2    bit<48> dstAddr;
 3    bit<48> srcAddr;
 4    bit<16> etherType;
 5 }

(a) P4 header.

1 typedef struct {
2    uint8_t isValid : 1;
3    uint64_t dstAddr : 48;
4    uint64_t srcAddr : 48;
5    uint32_t etherType : 16;
6 } ethernet_t;

(b) C model header

Source: The Authors

Tables. Each table in a P4 program is modeled as a function in C. Functions cre-

ated from tables are constructed in different ways depending on whether the forwarding

rules are supplied to the translator or not. If the rules are provided, the match fields in the

P4 table are tested against their corresponding rule values using the specified matching

approach (e.g., exact, ternary or longest-prefix match). Otherwise, the decision of which

action to execute is made based on a symbolic value specially declared to force the cre-

ation of multiple execution paths by the symbolic engine (one for each action listed in the

table). To avoid conflicts caused by tables from different scopes having the same name,

we append an ID to their names. This solution is also applied in any situation where name

conflicts may be an issue (e.g. action names). Figure 4.5 shows an example of a P4 table

translated to C with no forwarding rules provided. In this case, a symbolic variable is

used to make the symbolic execution traverse both actions.

Actions. Like tables, actions are also modeled as C functions. The action pa-

rameters should be translated taking into account the table modeling strategy. When the
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Figure 4.5: Table translation example.

 1  table forward_table() {
 2        actions = {
 3            forward;
 4            NoAction;
 5        }
 6        key = {
 7            hdr.ethernet.dstAddr: exact;
 8        }
 9        size = 32;
10       default_action = NoAction();
11 }

(a) P4 table.

 1 void forward_table() {
 2     int symbol;
 3     make_symbolic(symbol);
 4     switch(symbol) {
 5         case 0: forward(); break;
 6         default: NoAction(); break;
 7     }
 8 }

(b) C model table

Source: The Authors

forwarding rules are unknown, the action parameter values are also unknown. In this case,

the actions parameters are treated as symbolic variables. If the forwarding rules are sup-

plied, then the values specified by the rules are assigned to the corresponding parameters.

An example of an action translated to C is shown in Figure 4.6. Since no forwarding rules

were provided in this example, the action parameters are modeled with symbolic values.

Figure 4.6: Action translation example.

1 action forward(bit<9> port) {
2     standard_metadata.egress_spec = port;
3 }

(a) P4 action.

1 void forward() {
2    uint32_t port;
3    make_symbolic(port);
4    standard_metadata.egress_spec = port;
5 }

(b) C model action

Source: The Authors

Control Blocks. Since a control block in P4 also includes its action and table

declarations, each block is translated to multiple C functions. Local scope variables in

control blocks are declared as global variables in the model to allow them to be referenced

by any table and action in the block. Given that the global variables are uniquely named in

the model, and that they are not reused across different packets, this modeling approach

does not cause side effects on the verification result. Finally, the block body usually

contains invocations to tables and actions, which are modeled as their corresponding C

function invocations. This process is exemplified in Figure 4.7.

Parser. Parsers are translated to multiple C functions: one for the parser declara-

tion itself and another for each of its states. Since local parser parameters and variables
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Figure 4.7: Control block translation example.

1 control ingress(inout headers hdr, 
2                         inout metadata meta) {
3     apply {
4         forward_table.apply();
5     }
6 }

(a) P4 control block.

1 // global variables
2 headers hdr;
3 metadata meta;
4 
5 void ingress() {
6     forward_table();
7 }

(b) C model control block

Source: The Authors

can be accessed by any state in its scope, both structures are modeled as global variables

in C. Parser output parameters, which represent the packet headers, are modeled as sym-

bolic variables, as they correspond to inputs in the model. Figure 4.8 contains an example

of a P4 parser and the C model generated by this process.

Figure 4.8: Parser translation example.
  1 parser TopParser(packet_in b, 
  2                             out Parsed_packet hdr) { 
  3  
  4     state start { 
  5         transition parse_ethernet; 
  6     } 
  7 
  8     state parse_ethernet { 
  9        b.extract(hdr.ethernet); 
10        transition select(hdr.ethernet.etherType) { 
11            0x0800: parse_ipv4; 
12            default: accept; 
13       } 
14     }
15 }

(a) P4 parser.

  1 Parsed_packet hdr; 
  2 
  3 void TopParser() { 
  4    make_symbolic(hdr); 
  5    start(); 
  6 }
  7 
  8 void start(){
  9     parse_ethernet();
10 }
11 
12 void parse_ethernet() { 
13     hdr.ethernet.isValid = 1; 
14     switch(hdr.ethernet.etherType){ 
15         case 0x0800: parse_ipv4(); break; 
16         default: accept(); break; 
17     } 
18 }

(b) C model parser

Source: The Authors
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Assertions. Each assertion element is modeled in C using a particular approach.

Numeric and boolean expressions, as well as the if method, are directly translated to

their equivalent statements in C. To model Location-unrestricted methods, we use boolean

values that are set at different locations depending on the method, and tested at the end of

the model, after it gets its final state when executed.

To model the extract_header, emit_header, and traverse_path methods, a global

boolean value is created for each one of their occurrences in the P4 program. Such vari-

ables assume an initial false value, and are assigned to true at different model locations

depending on its corresponding method. In occurrences of an extract_header(x) method,

the assignment is made just after an extract method invocation, which receives the x

header as a parameter in the P4 program. Similarly, the assignment corresponding to

the emit_header(x) method is made immediately after an emit invocation (associated to

the packet_out basic type) containing the x header as a parameter. For traverse_path, the

assignment occurs just before the assertion that declares it. forward methods are modeled

with a single boolean value initially set to true. Its value is assigned to false inside the

drop action and reject parse state. constant(f) is translated by storing the field f in a C

variable right after (or before) an assertion, and testing if the variable value is the same at

the end of the program.

External objects. This type of structure is specific to each forwarding device,

and P4 programs only interact with their interfaces. For this reason, the behavior of

each external object should be previously known. In practice, this means integrating

its corresponding model into the translator by using libraries, for example. This limita-

tion is inherent to the design of P4, which consists of both architecture-dependent and

architecture-independent code. In this work, we support the external objects necessary to

translate the examples presented in Chapter 6 (e.g. counters and meters of the standard

architecture).

4.4 Symbolically executing program models

After being generated by the process described in the previous section, the C

model of a P4 program is verified by a symbolic engine. The symbolic execution of a

program requires that all its possible control flows (i.e., its execution paths) are evaluated

through symbolic input variables. To this end, the ASSERT-P4 implementation described

in this work uses the KLEE symbolic engine (CADAR; DUNBAR; ENGLER, 2008).
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Essentially, P4 programs describe how a data packet should be processed when

entering a forwarding device, generating an output packet at the end or simply dropping

the original packet. In this scenario, the incoming packet headers entering the device

are treated as inputs to the model and thus are always assigned to symbolic values. The

number of execution paths of a P4 program, in turn, is essentially given by its packet pro-

cessing pipeline structure. Whenever a table can only be accessed under some condition

(e.g., depending on the used protocol), a new execution path is created. The same happens

whenever multiple actions can be invoked by the same table, generating a new branch for

each possibility. This behavior gives rise to the path explosion problem as the number

of paths increases exponentially with the program complexity. In the next chapter, we

present different approaches to address this performance challenge of our proposal.
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5 VERIFYING P4 PROGRAMS IN FEASIBLE TIME

By using the symbolic execution technique, ASSERT-P4 has to face the scalabil-

ity problem originated from path explosion. While many P4 programs currently found

in the literature are fairly small (DANG et al., 2015; LI et al., 2016; SIGNORELLO et

al., 2016; JEPSEN et al., 2017; GHASEMI; BENSON; REXFORD, 2017; EDWARDS;

CIARLEGLIO, 2017), the complexity of the algorithms implemented by P4 source code

is expected to grow assuming that real world P4 programs will implement multiple proto-

cols. This effect is already possible to observe on the DC.p4 and Switch programs, which

aggregate a multitude of protocols a typical data center may need.

To address this problem, we investigate five optimization techniques with the goal

of decreasing the verification time of the proposed mechanism: parallelization, compiler

optimizations, packet and control flow constraints, bug reporting strategy, and program

slicing. Since path explosion is the performance bottleneck of ASSERT-P4, the tech-

niques described in this chapter are mainly aimed at reducing the amount of paths the

verifier must traverse in a single execution.

5.1 Parallelization

During the symbolic execution of a program, decision points are reached and exe-

cution unfolds according to symbolic values. A decision point may have multiple possible

paths to continue execution (as in if and switch statements). If so, the symbolic execu-

tion forks, creating a new branch for each feasible path. Even though these branches are

concurrent, KLEE follows the paths sequentially, not taking advantage of potential gains

enabled by parallelization. Cloud9 (BUCUR et al., 2011) allows KLEE to use multiple

processing elements while symbolically executing any C code1. We follow a different

approach, and propose a simple parallelization strategy that is specific to P4 programs.

The strategy consists of dividing the model into submodels, which are statically

generated from decision points (e.g. if and switch). One submodel is created for each

branch, and run via a concurrent KLEE process. Figure 5.1 exemplifies this process with

the corresponding code fragments, with the original model and its two submodels shown

respectively in Figures 5.1(a), 5.1(b) and 5.1(c). In each submodel a value is assumed for

the condition and only its corresponding instructions are executed. The submodels gen-

1the tool was discontinued in 2013.
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Figure 5.1: Example of submodel generation.

1 if(hdr.ethernet.etherType == IPV4){
2     parse_ipv4();
3 } else {
4     accept();
5 }

(a) Original model.

1 klee_assume(hdr.ethernet.etherType == IPV4);
2 parse_ipv4();

(b) Submodel with valid condition.

1 klee_assume(hdr.ethernet.etherType != IPV4);
2 accept();

(c) Submodel with invalid condition.

Source: The Authors

erated are completely independent and thus can be executed concurrently, in any order.

Notice that, even though we use various global variables when creating the C models (see

Section 4.3), their access will not cause race conditions since each submodel is executed

in a different KLEE process. If multiple processing elements are available in the under-

lying hardware, the procedure can be repeated on submodels to increase the degree of

concurrency.

To maximize the performance gains of parallelization, we should minimize the

maximum height of the execution trees of all submodels. This is so because the longest

path is the one that will take the most time to traverse. Since the symbolic execution tree

is unknown beforehand, it cannot be used to find the optimal solution. Therefore, we

propose a heuristic based on the anatomy of P4 programs to partition the model.

Decision points that occur earlier in the program have more chances of being part

of feasible paths, as they require less conditions to be traversed. In the case of a P4 pro-

gram, initial decision points are typically found at the parser. Our heuristic then starts by

creating the submodels from these first conditions seen by the parser. Once the first set

of submodels is generated by this strategy, further divisions may not be as efficient be-

cause they have increasing chances of generating submodels on branches of unreachable

paths. Alternatively, decision points associated with tables are appropriate candidates to

submodel creation, since packets that traverse the longest paths usually pass through P4

tables after being accepted by the parser. In this case, each action in a table is traversed

using a different submodel. The heuristic creates submodels, before any processing starts,
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by applying both approaches (parser and table branches). Once all the submodels have

been generated, they are dynamically assigned (in arbitrary order) to any idle processing

elements.

5.2 Compiler optimizations

The way ASSERT-P4 performs symbolic execution of P4 programs is through the

generation of a C model, upon which KLEE is applied. KLEE, furthermore, works on

a LLVM assembly language representation of the C code, which is generated using the

LLVM compiler (LATTNER; ADVE, 2004). One of the compiler features is support for

optimization passes, such as control flow graph simplification (which can remove dead

code and merge blocks of instructions) and global variable optimization (which marks

unchanged variables as constant and removes unused variables). These passes can al-

ter the source code in order to make it more efficient, potentially reducing the symbolic

execution time. Given the theoretical advantages of LLVM compiler optimizations, we

explore in this work how these optimizations affect the verification time of the models

generated by the ASSERT-P4 translation process.

5.3 Packet and control flow constraints

During the verification process, P4 programmers may be interested in the verifi-

cation of properties of only certain types of packets or control flows. For instance, a P4

program can implement both the TCP and UDP protocols, but the properties to be verified

may be related to TCP only. To avoid wasting time symbolically executing the UDP paths

of the code, we propose to include packet and control flow constraints to the verification

process that direct the symbolic execution to the paths of interest and ignore the others.

On the one hand, the use of constraints can potentially reduce the verification time

more than the other techniques presented in Chapter 5. On the other hand, it is a manual

procedure: the P4 programmer has to specify which packet and control flow constraints

are applicable. It is so because constraints depend on the P4 program and the properties

to be verified, which cannot be obtained from the P4 source code only.

Constraints are implemented in ASSERT-P4 by a method through which P4 pro-

grams are annotated with assumptions on the code. We define the assume annotation,
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which receives as argument a boolean value taken to be true. This annotation can be di-

rectly translated to a klee_assume method in the C model. The method belongs to the

KLEE API and is responsible for implementing the assumption within the KLEE sym-

bolic engine.

To illustrate this approach, consider a P4 program that implements multiple L3

protocols, but the properties of interest concern only the IPv4 protocol. This example is

shown in Figure 5.2. The annotated P4 code (Figure 5.2(a)) consists of the parser state

responsible for reading the Ethernet bits of the packet, which indicate which L3 protocol

the packet contains. By assuming that the type of the next protocol is IPv4, the symbolic

execution will ignore the other paths, and either traverse the parse_ipv4 parser state or

halt if the assumption is impossible to hold. Figure 5.2(b) shows how the assumption and

transition statements are translated to the C model.

Figure 5.2: Constraint example.

 1 state parse_ethernet {
 2     b.extract(hdr.ethernet);
 3     @assume(hdr.ethernet.etherType == IPV4);
 4     transition select(hdr.ethernet.etherType) {
 5         IPV4 : parse_ipv4;
 6         IPV6 : parse_ipv6;
 7         ICMP : parse_icmp;
 8        ...
 9     }
10 }

(a) P4 code annotated with a constraint.

1 klee_assume(hdr.ethernet.etherType == IPV4);
2 parse_ipv4();

(b) Constraint translated to the C model.

Source: The Authors

5.4 Bug reporting strategy

Whenever ASSERT-P4 encounters a path with an assertion violation, it immedi-

ately prints the error to the user and continues traversing the path. This way, multiple

violations can be revealed in the same run. Ideally, each should be reported just once,

despite the fact that the same violation may appear in multiple paths. Besides being inef-

ficient, a high amount of redundant reports may lead to I/O contention. Alternatively, the

same approach taken by KLEE can be used, that is, aborting the current path immediately.
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However, this is inefficient when multiple assertions are being verified, as it would require

new runs to discover additional violations.

To investigate the impact of the bug reporting strategy on the verification time, we

extend KLEE with a print_once method. It prints the assertion error message only if the

message was not previously printed during the symbolic execution. The implementation

ensures the error is reported as soon as the assertion violation is encountered, flushing the

output.

5.5 Program slicing

To verify an assertion, ASSERT-P4 symbolically executes the whole P4 program.

However, the assertion result may depend only on a subset of the program instructions.

Thus, the verification procedure spends unnecessary time processing statements that do

not affect the outcome. This creates the opportunity to use a program slicing technique

(WEISER, 1981), which is used to remove the subset of a program that does not affect a

selected criteria.

For example, consider a P4 program that process packets which may contain TCP

headers, and assume that we annotate this program with an assertion that depends only on

the TCP destination port. The slicing algorithm in this case can automatically generate

a program slice that contains only parsers, actions, tables, and control flow instructions

that can directly or indirectly modify the value of the TCP destination port. This would

simplify the program, removing the parts of the code related to other protocols, and even

the sections associated with TCP that do not modify the destination port.

We take advantage of the model based approach adopted by ASSERT-P4 to slice

the C model instead of the P4 program. This allows the usage of existing program slicing

tools to implement the optimization, and makes the development of a slicing tool for P4

programs unnecessary. To this end, we include the Frama-C (KIRCHNER et al., 2015)

slicing plug-in inside the verification workflow, applying the tool before symbolically

executing the C model.
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6 EVALUATION

Fist, we describe the implementation of the prototype and experimental environ-

ment employed in the evaluation (Section 6.1). We use them to provide evidence that

ASSERT-P4:

1. can detect a broad spectrum of bugs and policy violations in programmable data

planes (Section 6.2).

2. allows the specification (and proof) of general correctness and security properties

of P4 programs (Section 6.3).

3. is efficient even for relatively complex P4 programs and control configurations

(Section 6.4).

4. can be optimized with the techniques presented in Chapter 5 (Sections 6.5 and 6.6).

6.1 Prototype implementation.

We have prototyped ASSERT-P4 on top of the KLEE symbolic execution engine

(version 1.3.0) with LLVM version 2.9. To build C models, we first convert a P4 program

to its JSON representation using the reference compiler provided by the P4 Language

Consortium, and then translate the JSON representation (a DAG) to C code using a trans-

lator we developed specifically for this purpose. The translator implements the process

described in Section 4.3 straightforwardly, containing approximately 950 lines of Python

code. Shell scripts are used to automatically coordinate the invocation of each tool in the

verification process. We make all the source code as well as the workloads employed in

this evaluation publicly available.1 The tool may be used by other researchers, who may

want to reproduce our results. All experiments have been performed using a Linux virtual

machine (kernel version 4.8.0) with four 3 GHz cores and 16 GB of RAM.

6.2 Bug finding

First, we demonstrate the effectiveness of ASSERT-P4 in finding bugs and policy

violations in programmable data planes. To this end, we studied the specifications and

source code of different P4 programs, which were annotated with up to 18 assertions per

1<https://github.com/ufrgs-networks-group/assert-p4>

https://github.com/ufrgs-networks-group/assert-p4
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program. We uncovered some of them in four recent P4 applications, which we present

here. All identified bugs were manually confirmed in their respective source code. With

the exception of the DC.p4 example, it was not necessary to provide forwarding rules to

expose these issues.

Dapper (GHASEMI; BENSON; REXFORD, 2017): Dapper is a data plane

performance diagnosis tool that infers TCP bottlenecks by analyzing packets in real time.

It is divided into two phases: i) identification of new connections based on SYN flags;

and ii) separation of incoming and outgoing traffic (from a server point of view) based on

sequence and ack numbers. For each case, the application updates state variables used for

performance diagnosis, then it forwards the packets based on the IPv4 destination address.

Using our verifier, we found that Dapper forwards IPv4 packets with the time to live field

equal to zero. We placed the assertion if(ipv4.ttl == 0, !forward()) at the beginning of the

ingress control block. We noted that even though the TTL field is correctly decremented,

its value is never checked before forwarding. The verifier encountered violations of the

property in less than a second.

NetPaxos (DANG et al., 2016): NetPaxos is a network-based implementation of

the Paxos consensus protocol. There are two different types of P4 programs in this appli-

cation, one for Leaders/Coordinators and another for Acceptors. All the other actors (i.e.,

proposers and learners) are assumed to be entirely implemented in end hosts. According

to the protocol, Leaders determine a round number and ask acceptors for acknowledg-

ing it. Acceptors, in turn, decide whether they acknowledge or not a given request from

a Leader. This process is repeated until a quorum of acceptors acknowledges the same

round number, allowing the leader to establish a value for a given variable and consensus

is achieved. By verifying the current version of the P4 code and forwarding rules made

available by the authors, we found a bug on the acceptor implementation. The acceptor is

supposed to vote by adding the vote information on the incoming packets and forwarding

them to the learners. We verified if the packets are being forwarded after their modifi-

cation using assertions of the format if(traverse_path(), forward()) inside the actions that

perform the vote. The verifier found assertion violations in less than a second, indicating

that there are valid packets with voting information being dropped. The problem occurs

because the packets are first marked to be dropped by another action, and not unmarked

by the voting actions. This bug can be corrected by marking the packets to be forwarded

inside the actions which perform the vote. According to the authors feedback on this bug,

the code was ported to P4_16, leaving the old code base unmaintained and exposed to
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bugs.

DC.p4 (SIVARAMAN et al., 2015): DC.p4 implements the behavior of a data

center switch. It contains multiple functionalities such as L2/L3 forwarding, ECMP,

VLAN, packet mirroring, tunneling and multiple ACLs (i.e., L2, L3 or based on more

specific headers). This program contains more than 2500 lines of code distributed among

37 tables. These tables, in turn, are organized assuming an architecture with two se-

quential packet processing pipelines, one for incoming/ingress packets and another for

outgoing/egress packets, interleaved by a queue system. We verify if configuring the L3

ACL table to drop traffic with a specific destination IP address properly filters this type

of packet. We used the assertion if(ipv4.dstAddr == FILTER_ADDR, !forward()) to ex-

press that packets with IPv4 destination addresses equal to FILTER_ADDR should be

dropped. We found that just configuring the L3 ACL is not enough for dropping IPv4

packets regardless of the policy being enforced. In fact, we checked that the L3 ACL only

flags packets to be filtered by another module in the system, which must also be appro-

priately configured. Although this is not an actual bug, it can help effectively identify

misconfigurations since there is no documentation explaining how to properly configure

the program.

Switch (CONSORTIUM, 2018): Since the introduction of the DC.p4 paper, its

code base has evolved to the Switch.p4 program, which is actively maintained. We have

used ASSERT-P4 to reproduce known, reported bugs on its repository. The first one is

the modification of a field of an invalid header.2 This bug is replicated by testing with

an assertion if the header is valid before setting its fields. The second bug is related

to tunnel encapsulation,3 where encapsulated headers are overwritten whenever multiple

nested levels are present. We included an assertion to test if the inner headers are not valid

before performing the encapsulation. The assertion failed, confirming that encapsulated

headers can be overwritten and their original contents discarded.

6.3 Language expressiveness

To evaluate our assertion language, we assessed its expressiveness in terms of the

properties we can specify for different P4 programs. Table 6.1 shows a subset of the

properties we tested for each P4 application. The associated assertions are italicized. It

2https://github.com/p4lang/switch/pull/102
3https://github.com/p4lang/switch/issues/97
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is possible to see that we can specify a large set of properties, both program-dependent

(e.g., the ones testing if registers are correctly manipulated in Dapper) and generic ones

(e.g., testing whether headers have been removed from packets or not). Furthermore,

both security and correctness properties can be specified, such as header integrity and

well-formedness, respectively.

Table 6.1: Expressiveness of the proposed assertion language
Program Properties / Assertions
VSS
(CONSORTIUM, 2016)

Packets with zero TTL values are dropped
if(ipv4.ttl == 0, !forward)

Marked to drop packets are not forwarded
if(traverse_path, !forward)

MRI
(CONSORTIUM, 2017a)

Switch IDs added to packets are authentic
constant(swid)

Added IDs are not removed
if(extract_header(swid), emit_header(swid))

Timestamp switching
(EDWARDS; CIARLEGLIO,
2017)

Out of range timestamps are not forwarded to re-
ceivers

if(forward, rtp.ts < max_timestamp)

sTag
(LOPES et al., 2016)

Hosts connected to ports of different colors cannot
communicate

if(ingress_port == color_a &&
ipv4.dstAddr == color_b_host, !forward)

Dapper
(GHASEMI; BENSON;
REXFORD, 2017)

Only SYN packets register new flows
If(traverse_path*, tcp.ack == false)

*path that register new flows
Load flow registers when is Ack packet

if(tcp.ack == 1, traverse_path*)
*path that load registers

NetPaxos
(DANG et al., 2015)

Acceptor correctly votes according to paxos phase
if(traverse_path*, paxos.msgtype == 1A)

*at the handle_1a action
Leader increases round number at each instance

if(traverse_path*, paxos.msgtype == 2A)
*at the increase_instance action

DC.p4
(SIVARAMAN et al., 2015)

L3 ACL is effective
if(ipv4.dstAddr == blocked_addr, !forward)

Cloned and original packet have different output
ports
! (cloned_outport == original_port &&

constant(cloned_outport))

Source: The Authors
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As a research direction, we envision the automatic translation of high-level net-

working and security policies to our assertion language, similarly to the way (BECKETT

et al., 2014) translates high-level control flow properties to VeriFlow invariants. This will

allow network operators to easily verify complex network topologies.

6.4 Performance analysis

We assessed how our verification approach scales according to different character-

istics of P4 programs. This section shows the performance values obtained originally, and

the next section presents the performance obtained with the use of the optimization tech-

niques proposed in Chapter 5. We used the Whippersnapper (DANG et al., 2017) bench-

mark to generate data plane programs, and measured the impact of multiple parameters in

verification times: (i) tables in the packet processing pipeline; (ii) actions associated with

each table; (iii) forwarding rules used to configure a program; and (iv) assertions used to

express properties. Figure 6.1 shows the results. We adopted the following default val-

ues for parameters: no forwarding rules and assertions, 1 table in Fig. 6.1(b), 2 tables in

Figs. 6.1(c) and 6.1(d), and 3 actions in the first table and 2 actions in every subsequent

table.

Figure 6.1: ASSERT-P4 performance analysis.
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Note that instead of performing multiple executions of a small set of points of the

benchmark domain, we chose to execute the experiments with more points, with a fine

granularity in the domain, resulting in a natural redundancy to the presented results. By

examining the graphs, we can observe the presence of trends without significant oscilla-

tions.

The results show that verification time grows exponentially with all the factors.

However, it is less susceptible to the increase in the number of rules (Fig. 6.1(c)) and

actions per table (Fig. 6.1(d)) compared to the number of tables (Fig. 6.1(a)) and as-

sertions (Fig. 6.1(b)). ASSERT-P4 was able to verify within a few seconds most of the

programs in Sections 6.2 and 6.3. However, the plots show clearly that our non-optimized

version does not scale well, and that the verification of larger programs, with more tables

and assertions, is likely unaffordable. This prompted us to investigate the adoption of

optimization strategies to the context of P4 program verification.

6.5 Benchmarking optimization strategies

The benchmarks shown in Section 6.4 can be re-executed in combination with

some of the optimization techniques proposed in Chapter 5. The parallelization and com-

piler optimizations are general techniques that are suited to be analyzed with synthetic

programs generated by the Whippersnapper benchmark, whereas the results of applying

the other optimization techniques are tightly coupled to a particular program and the prop-

erties of interest. Therefore, we compare the original benchmark results with their execu-

tion alongside the parallelization and compiler optimization techniques in Figure 6.2.

We can observe that, using the four available cores of the machine, the paralleliza-

tion technique was effective in reducing the verification time when the number of tables

of the program varied (Figure 6.2(a)), while the parallelization overhead increased the

verification time on the other cases. Since the number of submodels created by the par-

allelization strategy grew in proportion to the number of rules per table (Figure 6.2(c))

and actions per table (Figure 6.2(d)), the number of concurrent executions quickly ex-

ceeded the number of processing elements of the machine, generating a proportionally

larger overhead as the value of the x-axis increases.

Parallelization was also ineffective when we varied the number of assertions (Fig-

ure 6.2(b)). This can be explained by comparing the submodel generation strategy (fo-

cused on parser and table branches) with the location of the assertions, which where all
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Figure 6.2: Optimization techniques applied to the synthetic benchmarks.
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inserted inside a single action. Thus, the submodels generated in this case were unbal-

anced, taking them a long time to be verified if they include the action containing the

assertions and requiring a negligible verification time otherwise.

The compiler optimization flags resulted in moderate performance gains in all

cases, except when the number of rules per table varied (Figure 6.2(c)), which presented

a significant reduction in verification time from an exponential to a linear growth. This can

be explained by compiler optimizations applied to the cascading if-else statements used

to decide which action should be executed based on the matched values of the forwarding

rules.

We can conclude that the efficiency of these optimization techniques depends on

the characteristics of the program under verification. Hence, in the next section we ana-

lyze the impacts of using all the proposed techniques with various P4 programs found in

the literature with the goal of obtaining insights on their application on existing programs.

6.6 Analysis of optimization strategies on existing P4 programs

We now present the results obtained from measuring the impact of each optimiza-

tion technique applied to different existing P4 programs. We study their behavior by using
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the techniques in isolation, as well as by combining them in a single execution. To this

end, we employ two metrics: (i) the verification time it takes to explore all the paths of

the model, and (ii) the total number of instructions executed by the symbolic engine. Ta-

bles 6.2 and 6.3 present the performance gains of each technique in comparison to using

no optimizations, where the Opt and Print columns respectively represent the compiler

optimization flags and the bug reporting strategy.

Table 6.2: Reduction in the verification time of each technique.
Program Opt Print Constraints Parallel Slice
Dapper 45.87% 18.26% 49.71% 63.77% 54.60%
sTag - 2.47% 6.17% -39.51% -554.43%
NetPaxos - 5.47% 32.03% -26.56% -348.43%
Timestamp Switching 5.75% 0.00% 3.45% -34.48% -514.94%
VSS 9.41% 7.06% 2.35% -30.59% -420%
MRI 6.18% 3.09% 6.18% -13.51% -

Source: The Authors

Table 6.3: Reduction in the number of instructions of each technique.
Program Opt Constraints Parallel Slice
Dapper 58.04% 50.05% 87.79% 39.35%
sTag - 38.89% 49.30% 22.14%
NetPaxos - 85.33% 18.96% 74.58%
Timestamp Switching 56.46% 61.25% 40.96% 89.48%
VSS 39.94% 0.28% 10.82% 99.52%
MRI 49.75% 30.68% 20.60% -

Source: The Authors

Parallelization. The results show that the proposed parallelization approach can

greatly reduce verification time of a moderate sized program. In the Dapper example,

the total verification time was reduced in approximately 64% using only 4 cores. For

very small programs that can be verified in milliseconds (sTag, NetPaxos, Timestamp

Switching, VSS, and MRI), the added overhead due to parallelization does not justify the

use of this technique, increasing the total verification time.

When generating submodels using the approach described in Section 5.1, each

submodel ends with a fraction of the total number of instructions of the original model.

To achieve satisfying performance gains, the parallelization technique should try to min-

imize the difference between the number of instructions of the submodels. The fourth

column of Table 6.3 presents the reduction on the number of instructions achieved by the

submodel with the greatest number of instructions (i.e., worst case) when compared to the

the original model. In this case, we can observe that this approach can reduce the number

of instructions regardless of program size. However, by comparing Tables 6.2 and 6.3,
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we can conclude that the cost of creating a new KLEE process for each submodel out-

weighs the reduction in symbolic execution time obtained from decreasing the number of

instructions on very small programs.

Compiler optimizations. Unlike (DONG et al., 2015), which demonstrates that

applying compiler optimizations on KLEE executions can decrease performance on some

applications, our results indicate that these optimizations can have a positive effect on

the time taken to symbolically execute P4 program models. This effect can be specially

observed on more complex programs, which spend proportionally more time performing

symbolic execution during verification. The performance gains can be explained by the

reduction in the total number of instructions executed by the symbolic execution engine,

which ranges from approximately 40 percent to up to almost 60 percent on the success-

fully tested programs.

The caveat of this technique, however, is that during the sTag and NetPaxos experi-

ments the optimization passes of the compiler made KLEE 1.3.0 with LLVM 2.9 exit with

an error during the assignment of symbolic values to the metadata structure. In the cases

where no error occurred, the outcome of the tested assertions maintained the same origi-

nal values as the unoptimized executions. Further investigation revealed that while these

errors do not appear in different versions of KLEE and LLVM, their results cannot be

presented alongside the versions currently used because they have different performance

characteristics. These negative interactions with the symbolic execution engine coupled

with the potential to reduce the total number of instructions even further in this domain

can motivate the research of optimization passes specific for the symbolic execution of P4

programs.

Packet and control flow constraints. Although this technique has the additional

cost of requiring the programmer to annotate the code with assumptions, the results pre-

sented in Table 6.3 reveal that it can greatly reduce the number of instructions symboli-

cally executed. This reduction of instructions also leads to an equivalent reduction of the

verification time of complex programs in which the symbolic execution is the verifica-

tion bottleneck, as can be observed in the Dapper example. Furthermore, by using packet

constraints in the bug finding examples of the Switch.p4 program (see Section 6.2), we

were able to reduce the time taken to reveal the bugs from the order of days to the order

of seconds. This was achieved by annotating the code with assumptions that led to the

tested assertions. Note that Switch.p4 was not included in Tables 6.2 and 6.3 because its

complexity makes the time necessary to exhaust all its paths unpractical for this analysis.
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Bug reporting strategy. Since changing the bug reporting strategy has no effect

on the number of instructions executed during symbolic execution, this technique was

measured only using the verification time. The advantages of printing the failed asser-

tions only once per execution are more noticeable when many different paths cause an

assertion to fail. This can be observed on the Dapper example, where the verification time

dropped by 18 percent. Conversely, this approach results in no performance gains when

no assertion failed was found, as in the Timestamp Switching program. Albeit yielding

smaller performance gains when compared to the other techniques, this approach can be

justified given that once this technique is implemented, it can be used with no additional

costs to the programmer.

Program slicing. Program slicing is capable of reducing the number of instruc-

tions considerably, from about 22 percent to more than 99 percent. However, the cost

of performing the slicing with the Frama-C framework far outweighs the reduction of

symbolic execution time obtained from trimming the program size on smaller programs,

which can be verified without the additional overhead in milliseconds. Furthermore, the

Frama-C approach to slicing has no support for programs with recursion. This resulted

in a failed attempt to slice the MRI program, which contains a recursion in its parser sec-

tion of the code. Therefore, we conclude that while program slicing can be an effective

technique in some cases, the development of efficient slicing approaches capable of deal-

ing with parser recursions is necessary to enable the full adoption of this technique by

ASSERT-P4.

Combining the techniques. Since the use of the optimization techniques are

not mutually exclusive, we analyze the potential of combining them to achieve optimal

verification time in each one of the examples. For this purpose, we executed each program

with all the techniques that reduced the total verification time in Table 6.2. The results are

presented in Table 6.4.

Table 6.4: Verification time and number of instructions reductions obtained from combin-
ing the techniques.

Program Used techniques Verification Time No. of Instructions
Dapper opt, print, constraints, parallel 85.72% 90.89%
sTag print, constraints 6.17% 50.70%
NetPaxos print, constraints 35.93% 12.51%
TS Switching opt, constraints 10.34% 14.76%
VSS opt, print, constraints 11.76% 43.92%
MRI opt, print, constraints 13.89% 32.54%

Source: The Authors

The only technique used in all six programs was the packet and control flow con-
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straints. The compiler optimizations had to be omitted from the programs that caused

errors during KLEE execution, and the print once strategy of bug reporting was not used

when no assertion was violated on the Timestamp Switching case. Parallelization was

only added on the Dapper example where its overhead is justified. Finally, the program

slicing technique was not used in any of these cases. While slicing can be effective in

isolation, the cost of executing Frama-C takes an increasingly larger part of the total

verification time as the other techniques are combined, making its overhead exceed the

gains obtained from a reduction in program complexity. Overall, by analyzing the results

presented in Table 6.4, we conclude that the techniques we explored can decrease the ver-

ification time of P4 programs, with their effects being more noticeable on more complex

programs, which spend more time performing symbolic execution.
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7 CONCLUSION

We presented in this work an assertion language that can be used by P4 program-

mers to express correctness and security properties of a specific implementation. Our

solution is more expressive than other data plane verification approaches, being the first

work to allow proving properties specific to P4 source code and optionally the forwarding

rules used by its tables. Our mechanism verifies the assertions using symbolic execution

over C models automatically generated from the program and assertions. Alongside our

tool, we presented five optimization techniques that can be used to reduce the verification

time of complex programs.

We evaluated our approach by finding a broad range of bugs in real P4 programs

found in the literature. The performance analysis of the proposed mechanism revealed

that despite its efficiency in verifying small programs, the execution time grows expo-

nentially with relation to the number of tables, actions, forwarding rules, and assertions.

However, we also demonstrated in our experiments that combining the proposed opti-

mization techniques we can reduce the verification time of non-trivial P4 programs in 85

percent.

As future work, we intend to explore the application of ASSERT-P4 in verifying

network-wide properties of networks composed of P4 programs. The assertion language

can also be investigated with the goal of providing the automatic insertion of assertions.

These assertions could be used to verify general properties such as reading fields of invalid

headers or checking the bounds of arrays. The P4 to C translation can be improved by

proving the correctness of the process, as well as increasing the number of external objects

modeled. Finally, the compiler flags and program slicing optimization techniques can be

fine-tuned to ASSERT-P4 by investigating optimization passes and slicing approaches

optimal to our use cases.
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