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It has been observed empirically that two-dimensional vortices tend to cluster, forming a giant vortex. To
account for this observation, Onsager introduced the concept of negative absolute temperature in
equilibrium statistical mechanics. In this Letter, we show that in the thermodynamic limit a system of
interacting vortices does not relax to the thermodynamic equilibrium but becomes trapped in a
nonequilibrium stationary state. We show that the vortex distribution in this nonequilibrium stationary
state has a characteristic core-halo structure, which can be predicted a priori. All the theoretical results are
compared with explicit molecular dynamics simulations.
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Seventy years ago, Onsager presented his celebrated
theory of large-scale vortex formation in two-dimensional
turbulence, which for the first time introduced the notion of
negative temperature in physics [1]. Onsager worked in the
framework introduced earlier by Helmholtz [2] and
Kirchhoff [3], in which the solution to the incompressible
2D Euler equation is written in terms of a pseudoscalar
vorticity Γðr; tÞ ¼ ½∇ × uðr; tÞ� · ẑ, where uðr; tÞ is the
velocity of fluid at position r and ẑ is the unit vector
normal to the fluid plane. The incompressibility condition
for the Euler equation allows one to introduce a stream
function φðr; tÞ such that uðr; tÞ ¼ ∇ × φðr; tÞẑ, which
satisfies the Poisson equation ∇2φðr; tÞ ¼ −Γðr; tÞ, the
solution to which can be written in terms of an appropriate
Green function:

φðr; tÞ ¼
Z

Gðr; r0ÞΓðr0; tÞdr0: ð1Þ

In an open space, the Green function corresponds to the 2D
Coulomb-like potential Gðr; r0Þ ¼ −ð1=2πÞ ln jr − r0j.
Furthermore, it is easy to show that the vorticity field is
simply advected by the flow, dΓðr; tÞ=dt ¼ 0. If we
suppose that the vorticity field is composed of various
point vortices ΓðrÞ ¼PΓiδ(r − riðtÞ), their velocity is
then the same as of the fluid, _ri ¼ ∇i ×

P
j≠iΓjGðri; rjÞẑ,

and the vortex dynamics has a Hamilton-like structure:

Γi _xi ¼
∂H
∂yi ; Γi _yi ¼ −

∂H
∂xi : ð2Þ

The Kirchhoff function is H ¼Pi<jΓiΓjGðr; r0Þ, where
we have removed the singular term, and the x and y
coordinates of a vortex are the conjugate variables. Besides
the total energy, the system Eqs. (2) has two other invariants
corresponding to the conservation of the total linear and
angular momentums of the fluid:

P ¼
X
i

Γiri; L ¼
X
i

Γir2i : ð3Þ

Onsager’s argument for the formation of large-scale
vortex structures is beautiful in its simplicity [1].
Suppose that N vortices are confined in a bounded region
of area A. Onsager suggested that in the thermodynamic
limit, N → ∞, Boltzmann-Gibbs statistical mechanics can
be applied to the vortex fluid. The maximum entropy state
would then correspond to a completely disordered vortex
gas occupying uniformly all of the area A. The energy of
this fully disordered state, Ec, can be easily calculated
using the appropriate Green function. This means that, if
E > Ec, any inhomogeneous vortex distribution will have
lower entropy than SðEcÞ so that entropy SðEÞ will be a
decreasing function of the energy. Since the temperature is
1=T ¼ ∂S=∂E, the vortex gas with energy E > Ec will
have a negative temperature. In equilibrium, the probability
of a given vortex configuration is proportional to the
Boltzmann weight—a negative temperature state [4], there-
fore, would imply clustering of vortices of the same sign,
which would then explain the spontaneous appearance of
large-scale vorticity in 2D turbulence.
Onsager’s theory relies on two fundamental

assumptions—the existence of a thermodynamic limit
and ergodicity of vortex motion. Because of the long-range
interaction, the usual thermodynamic limit—N → ∞,
A → ∞ with N=A constant—is not appropriate except for
systems with an equal number of cyclonic and anticyclonic
vortices, in which case it was proven rigorously that the
critical energy is infinite and the temperature is always
positive [5]. The interesting case is then a non-neutral
system, in particular, the one in which there are only vortices
of one sign and which for simplicity we will assume all to
have the same vorticity Γ. In this case, the appropriate
thermodynamic limit is N → ∞, Γ → 0, with Ω ¼ ΓN
remaining constant [6,7]. In this limit, the correlations
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between vortices vanish and the mean field Poisson-
Boltzmann equation becomes exact [8]. Unlike the one-
component plasmas—which due to repulsion between the
particles must be confined by an external potential—the
vortices are “self-confining” [7] because of the conservation
of angular momentum of the fluid [Eq. (3)], which acts as an
effective external potential. It is convenient to define the
effective vortex charge q ¼ Γ=

ffiffiffiffiffiffi
2π

p
so that the interaction

potential between the vortices becomes identical to that of
charges in a two-dimensional one-component plasma. In
equilibrium, the “electrostatic” potential ψ ¼ φ

ffiffiffiffiffiffi
2π

p
will

then satisfy the 2D Poisson-Boltzmann (PB) equation

∇2ψ ¼ −2πqe−βψ−βαr2−βμ; ð4Þ

where β ¼ 1=kBT, α, and μ are, respectively, the Lagrange
multiplier for the conservation of energy, angular momen-
tum, and the total vorticity [6,9,10]. Starting with an initial
vortex distribution, the equilibrium distribution can be
calculated by numerically solving the nonlinear PB equation
with the boundary conditions ψð0Þ ¼ 0 and ψ 0ð0Þ ¼ 0
and requiring that asymptotically the potential goes as
ψðrÞ ∼ −qN lnðrÞ.
Consider an initially uniform elliptical distribution of

vortices

fellðx; yÞ ¼ ηΘ
�
1 −

x2

a2
−
y2

b2

�
; ð5Þ

where η ¼ N=πab and Θ is the Heaviside step function.
Solving numerically the PB equation, we find that
Onsager’s theory predicts that this initial distribution will
relax to a spherically symmetric equilibrium state with a
negative temperature depicted in Fig. 1. To check the
validity of Onsager’s theory, we performed N-body
molecular dynamics simulations (MDS) using a particle-
in-cell (PIC) algorithm [11–13] with an adaptive time-step

integrator that uses embedded fifth- and sixth-order Runge-
Kutta estimates to calculate vortex trajectories and the
relative errors to adjust the step size [14]. This significantly
speeds up theMDS time. Alternatively, one could also use a
symplectic integrator [15,16]. A PIC algorithm is particu-
larly useful for vortex simulations, since it eliminates the
collisional finite size effects which are present in direct
pairwise-interaction MDS but which must vanish in the
thermodynamic limit [17]. Starting with the initial elliptical
vortex distribution [Eq. (5)], with a ¼ 1.0 and b ¼ 0.5, we
simulated the dynamics of N ¼ 106 vortices. The snap-
shots of various temporal configurations are presented in
Figs. 2(a)–2(c). The figure shows that, instead of relaxing
to equilibrium, the initial particle distribution undergoes a
rigid rotation with a constant angular velocity, maintaining
its elliptical shape and uniform density; see Fig. 2.
To understand the discrepancy between the simulations

and Onsager’s theory, we must turn to the kinetic theory. In
the thermodynamic limit—N → ∞, q → 0, and qN ¼ 1—
the evolution of the vortex distribution function is governed
exactly [18] by the Vlasov equation

∂f
∂t þ

∂ψ
∂y

∂f
∂x −

∂ψ
∂x

∂f
∂y ¼ 0: ð6Þ

The Vlasov equation is identical to the condition that
vortices are advected by the flow, dΓðr; tÞ=dt ¼ 0, so that
the vortex gas evolves as an incompressible fluid.
The electrostatic potential for an elliptical distribution

[Eq. (5)] can be calculated explicitly [19,20]:
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FIG. 1. The equilibrium vortex density distribution starting
from an initial state in which vortices are uniformly distributed
inside an ellipse with a ¼ 1.0 and b ¼ 0.5, shown by the dashed
curve, calculated by solving numerically the nonlinear PB
equation (4). The equilibrium distribution has a negative temper-
ature corresponding to β ¼ −1.19.
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FIG. 2. Snapshots of the molecular dynamics simulation for
elliptical vortex distribution with a ¼ 1.0, b ¼ 0.5, and N ¼ 106

at (a) t ¼ 0, (b) t ¼ T=8, and (c) t ¼ T=4, where T ¼ 2π=ω and
ω is given by Eq. (13). In (d), we show the time evolution of
the angle between the semimajor axis of ellipse and the x axis, θ.
The circles correspond to the results obtained from MDS, and the
line is the theoretical prediction θ ¼ ωt.
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ψ ellðx; yÞ ¼
�
ψ inðx; yÞ; for ðx=aÞ2 þ ðy=bÞ2 ≤ 1;

ψoutðx; yÞ; for ðx=aÞ2 þ ðy=bÞ2 > 1;
ð7Þ

where

ψ inðx; yÞ ¼ log

�
2

c

�
− cosh−1

�
a
c

�

−
x2

aðaþ bÞ −
y2

bðaþ bÞ þ
1

2
; ð8Þ

ψoutðx;yÞ¼ log

�
2

c

�
þ1

2

þRe

"
z2

c2

 ffiffiffiffiffiffiffiffiffiffiffiffi
1−

c2

z2

s
−1

!
− cosh−1

�
z
c

�#
; ð9Þ

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − b2

p
, z ¼ xþ iy, i ¼ ffiffiffiffiffiffi

−1
p

, and Re stands for the
real part of the expression. The potential and its derivatives
are continuous along the boundary of the ellipse and
asymptotically for large distances, ψout → − lnðrÞ.
We now observe that a given distribution corresponds to

Vlasov equilibrium if it depends on the phase space
variables only through the conserved quantities. Since
the potential (stream function) plays the role of a
Hamiltonian for one-particle dynamics, if the distribution
function would depend on x and y only through the
equilibrium potential ψðx; yÞ, then f(ψðx; yÞ) would be
Vlasov stationary. A direct inspection of the potential inside
an ellipse [Eq. (8)], however, shows that the equipotentials
are ellipses of semiradii proportional to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðaþ bÞp

andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðaþ bÞp

, which are different from those of the initial
vorticity distribution, a and b, respectively. Hence, the
boundary of the initial distribution is not an equipotential,
and the initial elliptical distribution will evolve in time.
Let us now consider a rotating ellipse with

fðx; y; tÞ ¼ fellðx̃; ỹÞ, where

x̃ ¼ x cosðωtÞ þ y sinðωtÞ;
ỹ ¼ −x sinðωtÞ þ y cosðωtÞ; ð10Þ

and ω is some angular velocity. The dynamics in the
rotating reference frame can be studied using a canonical
transformation with a generating function

F ðx; ỹÞ ¼ xỹ
cosðωtÞ þ

x2 þ ỹ2

2
tanðωtÞ ð11Þ

such that x̃ ¼ ∂F=∂ỹ and y ¼ ∂F=∂x correspond to
Eqs. (10). Since the generating function depends explicitly
on the time, the effective interaction potential in the rotating
reference frame is ψ̃ ell ¼ ψ ell þ ∂F=∂t, which reduces to

ψ̃ ellðx̃; ỹÞ ¼ ψ ellðx̃; ỹÞ þ
ωðx̃2 þ ỹ2Þ

2
: ð12Þ

The question now is can we find a frequencyω such that the
boundary of the distribution is an equipotential of ψ̃ ell?
Substituting Eq. (8) into Eq. (12) and evaluating the
potential at the boundary of the ellipse, ðx̃=aÞ2 þ
ðỹ=bÞ2 ¼ 1, we see that the potential will be constant
(independent of x̃ and ỹ along the boundary) if

ω ¼ 2

ðaþ bÞ2 : ð13Þ

Hence, a uniformly distributed ellipse can be written in
terms of the single-particle conserved quantity ψ̃ ellðx̃; ỹÞ as
fellðx̃; ỹÞ¼ ηΘ(ψ̃<

ellðx̃; ỹÞ− ϵell), where ϵell¼−ab=ðaþbÞ2
is the constant effective potential along the ellipse boun-
dary. The distribution fell is, therefore, a Vlasov equilib-
rium in the frame that rotates with angular velocity given by
Eq. (13). The effective potential in Eq. (12) is a non-
monotonic function, presenting a local maximum at the
origin, an extremum curve connecting the inflection points,
and diverging as r̃ → ∞. Therefore, we use the superscript
“<” to indicate that we are considering the inner (between
the origin and the extremum curve) branch of ψ̃ ellðx̃; ỹÞ.
The rotation velocity ω is precisely the one that was found
in our molecular dynamics simulations [Fig. 2(d)]. This
explains why the initial vortex distribution does not relax
to Onsager predicted equilibrium but instead rotates as a
rigid object.
The next question to address is if the Vlasov equilibrium

state is stable. That is, if the initial elliptical distribution is
perturbed, will it then relax to Onsager equilibrium? Based
on nonequilibrium statistical mechanics of systems with
long-range interactions [17,21,22], we do not expect this to
be the case and instead expect that the system will relax,
in a coarse-grained sense [23], to a core-halo structure
observed in magnetically confined plasmas [24], gravita-
tional systems [25–27], and spin models [28,29]. This is
precisely what is found in simulations; see Fig. 3.
To understand the core-halo distribution observed in

simulations, we begin by considering the dynamics of a
test vortex interacting with a rotating ellipse of a uniform
vortex density, fðx; y; tÞ ¼ fellðx̃; ỹÞ. The electrostatic
potential produced by such an ellipse is given by
Eq. (12). The equipotentials of ψ̃ ell correspond to the
trajectories of test vortices in the rotating reference frame.
An example of such equipotentials is shown in Fig. 4 for
a ¼ 1.0 and b ¼ 0.5. We notice a separatrix of a resonant
structure (thick solid curve) which can drive test vortices
that are just outside the elliptical distribution to large radii.
The separatrix presents two hyperbolic fixed points along
the x̃ axis. Since ∂ψ̃ ell=∂ỹ ¼ 0 is automatically satisfied
along the x̃ axis, the position of the fixed point is
determined by imposing ∂ψ̃ ell=∂x̃jðx̃;ỹÞ¼ðx̃fix;0Þ ¼ 0, which
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leads to x̃fix ¼ �½ðaþ bÞ3=ðaþ 3bÞ�1=2. Hence, the sepa-
ratrix in the phase space corresponds to all points that
satisfy ψ̃ ellðx̃; ỹÞ ¼ ψ̃ ellðx̃fix; 0Þ. The maximum radius
achieved along the separatrix—which occurs at x̃ ¼ 0—
can be computed by solving ψ̃ ellð0; ỹmaxÞ ¼ ψ̃ ellðx̃fix; 0Þ for
ỹmax. For the case shown in Fig. 4, ỹmax ≈ 1.5. Note that,
since the separatrix is outside the elliptical distribution, we
need to take into account the corresponding potential given
by Eq. (9) in the derivations.
The dynamical mechanism behind the core-halo halo

formation is now clear. The parametric resonances capture
some vortices and expel them into the low-energy phase
space region, far from the main core. To conserve the total
energy of the system, the other vortices must then com-
pensate and move into the high-energy core region, creating
a population inversion. However, because of the incom-
pressibility of the Vlasov dynamics, the core density cannot
exceed η determined by the initial distribution function

[Eq. (5)]. The resonant mechanism of vortex evaporation
will then lead to the formation of a high-energy core region
in which all the energy states up to the “Fermi energy” ϵF
are fully occupied with maximum allowed density η. The
stationary distribution will be established when the rates of
evaporation and condensation become identical. We now
propose an ansatz solution for the Vlasov stable stationary
distribution function in the rotating reference frame which
has a core-halo form:

fchðx̃; ỹÞ ¼ ηΘ(ψ̃<
ellðx̃; ỹÞ − ϵF)

þ χΘ(ϵh − ψ̃>
ellðx̃; ỹÞ)Θ(ψ̃ ellðx̃; ỹÞ − ϵsep)

× Θ(ϵF − ψ̃<
ellðx̃; ỹÞ); ð14Þ

where χ is the halo density, ϵF ¼ ψ̃<
ellðas; 0Þ ¼ ψ̃<

ellð0; bsÞ,
ϵsep ¼ ψ̃ ellðx̃fix; 0Þ, ϵh ¼ ψ̃ ellð0; ỹmaxÞ, ψ̃ ellðx̃; ỹÞ is approxi-
mated as the effective potential created by the core of the
distribution which corresponds to an ellipse of semiradii as
and bs, ymax is the halo size computed from the separatrix of
the initial ellipse, and the > (<) superscript indicates that
we consider solely the outer (inner) branch of the effective
potential. The core-halo distribution of Eq. (14) has three
unknown parameters—the semiradii of the final stationary
elliptical core, as, bs, and the halo density χ. These
parameters can be determined by imposing the conserva-
tion of the total vorticity, of the total energy, and of the
angular momentum L:Z

d2rfchðrÞ ¼ N;

q2

2

Z
d2rd2r0fchðrÞfchðr0Þ ln jr − r0j

¼ 1

8

�
1 − 4 ln

�
aþ b
2

��
;Z

d2rr2fchðrÞ ¼
N
4
ða2 þ b2Þ; ð15Þ

respectively. Note that P is automatically conserved
because of the symmetry of the distributions with respect
to the origin that guarantees that hxi ¼ 0 and hyi ¼ 0. In
Fig. 3, we compare the stationary state obtained using a
molecular dynamics simulation with the theoretical solu-
tion given by Eq. (14). An excellent agreement is found
between the two, without any adjustable parameters.
We have presented a theory which accounts for the

relaxation of an initial vortex distribution to the final
stationary—in the rotating reference frame—state.
Contrary to Onsager’s theory, the initial distribution does
not relax to thermodynamic equilibrium with symmetric
vortex distribution and a negative temperature. Instead, we
find that the system evolves to a complicated nonrotation-
ally symmetric core-halo structure which rotates at a
constant frequency in the lab frame. As suggested by

1.6 0.8 0 0.8 1.6
1.6

0.8

0

0.8

1.6

x

y

FIG. 4. Level curves—in the rotating reference frame—of the
effective potential [Eq. (12)], generated by a uniform ellipse
rotating with angular velocity ω. The dashed curve shows the
ellipse boundary with a ¼ 1.0 and b ¼ 0.5. The thick curve
corresponds to the separatrix that contains two hyperbolic fixed
points located at x̃ ¼ �x̃fix and ỹ ¼ 0.
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FIG. 3. (a) Snapshot of the phase space obtained using a
molecular dynamics simulation. (b) The theoretical prediction
obtained using Eq. (14), with no adjustable parameters. The black
region corresponds to the high-density core, whereas the gray
region corresponds to the low-density halo. The core-halo
structure rotates in the lab frame. The core has population
inversion—the high-energy states are occupied up to the maxi-
mum density η permitted by the Vlasov dynamics.
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Onsager, we find that the distribution corresponds to the
population-inverted state in which the high-energy states
are occupied up to the maximum density permitted by the
incompressibility condition of the Vlasov dynamics.
There is a profound difference between the vortex

dynamics and that of a one-component plasma confined
by a magnetic field [30]. In both cases, the system is
observed to relax to a core-halo distribution. In the case of
plasmas, however, resonances lead to particle evaporation
and the condensation of remaining charges into the lowest-
energy states through the process of Landau damping [31],
leading to a stationary core-halo distribution function in the
lab frame [24]. In the case of vortex dynamics, the situation
is reversed, and resonances result in a population inversion
such that the high-energy core region is occupied up to the
maximum allowed phase space density. Furthermore, the
stationarity is achieved only in the rotating reference frame.
The population inversion of the core region may be
associated with the negative temperature proposed by
Onsager. However, since in the thermodynamic limit the
vortex gas always remains out of equilibrium, the temper-
ature is not a well-defined concept in this context. Finally, it
should be interesting to extend our result to the quantum
regime in which vortex condensates have also been
observed [32,33].
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