Elastic coupled vibrations in multi-walled carbon nanotubes
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Resumo

Structural multi-span beams are considered
with van der Waals interaction elastic forces in
the modeling of multi-walled carbon nanotubes
(MWNT). The eigenvalue problem is formu-
lated in matrix form in terms of a new basis
for all segments. This basis is generated by a
fundamental matrix response.

1 Introduction

This work is about transverse responses in
Euler-Bernoulli multi-span beams subject to
interaction elastic forces in the modeling of
multi-walled carbon nanotubes (MWNT).

Free vibrations of stepped beams have been
studied by several authors by example [1-13],
among others. In [13], a bi-segmented beam
with a discontinuity in the cross-section and
an intermediate device is studied. By keeping
the original formulation of the physical prob-
lem, we face a non-classical quadratic eigen-
value problem depending upon frequency. This
is accomplished by choosing a basis generated
by a fundamental response and it derivatives,
[15-17].

Carbon nanotubes (CNTSs), discovered by

Iijima [7], are cylindrical macromolecules com-
posed of carbon atoms in a periodic hexago-
nal arrangement. As they are found, to have
remarkable mechanical, physical, and chemi-
cal properties, carbon nanotubes hold excit-
ing promise as structural elements in nanoscale
devices or reinforcing element in superstrong
nanocomposites. Typically, the nanotubes are
about 2-15 nm in diameter and about 100-
200 nm in length. They exhibit a Young
modulus E of 1.2TPa and they support ten-
sions several hundreds higher from those ap-
plied to iron. Nanotubes are thermally sta-
ble up to 2800°C (in vacuum) and exhibit a
thermal conductivity about twice as high as
diamond [12], and may exhibit a capacity to
carry electric current a thousand times bet-
ter than cooper wires [4]. The importance in
studying vibrations in CN'Ts is because of their
mechanical and electronic properties in a num-
ber of nanomechanical devices such as oscilla-
tors, charge detectors, clocks, field emission de-
vices and sensors. CNTs vibrations also occur
during certain manufacturing processes (e.g.,
ultrasonication in nanocomposite processing)
and as part of some nondestructive evalua-
tion processes (e.g., Raman spectroscopy). It
is thus important to have accurate theoretical



models for the natural frequencies and mode
shapes of carbon nanotubes for several reasons.
Since controlled experiments at the nanome-
ter scale are difficult with wide scatter in the
experimental reported values, and molecular
dynamics simulations remain formidable for
large-scale systems (106 — 10% atoms for a few
nanoseconds), continuum elastic models have
been widely and successfully used to study me-
chanical behavior of CNT’s, such as static de-
flection, thermal vibration, and resonant fre-
quencies. In the analysis of one-dimensional
beamlike structures, two models are usually
employed, namely the Euler-Bernoulli and the
Timoshenko beam model. For short beams,
higher modes, and/or beam materials having
E/G ratios (G shear modulus of the beam), the
effects of through-thickness shear deformation
and rotary inertia can be become significant, in
which case the Timoshenko beam theory can
be more accurate at the terahertz level. For
double (DWNT) or multi-wall concentric nan-
otubes (MWNTs), the most widely used model
in the literature assumes that all nested tubes
of a MWNT remain coaxial during deformation
and thus can be described by a single deflec-
tion model. However, this model can not be
used to describe intertube relative vibration of
MWNTs. It has been recently proposed by [15]
that each nested concentric nanotube be con-
sidered as an individual beam, and the deflec-
tions of all nested tubes be coupled through the
van der Waals interaction force between two
adjacent tubes. The MWNT model to be con-
sidered in this work, will be then a set of N cou-
pled Euler-Bernoulli equations coupled through
the van der Walls interaction.

2 Structural and molecular

mechanics

Due to the nature of the molecular force fields
between two atoms, they can be treated as

forces acting between two junctions (or ma-
terial points) that are separated by structural
beam or spring elements. Thus, the lattice of
the carbon nanotubes can be considered as a
three dimensional hexagonal network of beam
(covalent) and spring (non-covalent) elements.
The beam elements representing the bond are
assumed to be isotropic with length L, cross-
sectional area A, and moment of inertia I. Ac-
cording to the theory of classical structural me-
chanics, the strain energy of a uniform beam of
length L subjected to pure axial force N, [9].
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Figura 1: Equivalence of molecular, numeric and

continuum models

A direct relationship between the structural
mechanics parameters FA, ETand GJ and the
molecular mechanics parameters k., kg and &,
corresponding to the bond stretching force con-
stant, bond angle bending force constante and
torsional resistance, respectively, can be de-
duced [9] to be

GJ

A _ GJ
3

ET
= kr,
L

T = ko, = ko, (1)

Eq. (1) establishes the foundation of apply-
ing the theory of structural mechanics to the
modeling of carbon nanotubes or other simi-
lar fullerene structures. As long as the force
constants k., ky and k, are known, the sec-
tional stiffness parameters KA, EI and GJ can

be readily obtained. And then by following the



solution procedure of stiffness matrix method
for frame structures, the deformation and re-
lated elastic behavior of graphene sheets and
nanotubes at the atomistic scale can be simu-
lated.

To calculate the effective properties of a nan-
otube based on a numerical method approach
such as FEM it is assumed that the nanotube
can be represented by an equivalent continuum
tube shown in Fig. 1.

For real structures, the boundary conditions
are always a challenge [6] mentions for nanos-
tructures the situation be even more difficult.
A cantilever beam assumption implies that one
end is fixed but it may be necessary to in-
clude the elasticity at the support of such end.
The vibration testing of composite beams and
plates at the macromechanical level remains to
be seen if it is appropriate at the nanomechan-
ical level.

3 Multi-wall beam model for
carbon nanotubes

A continuum approach using the well known
frequency equation for a beam has been em-
ployed by several investigators to estimate the
theoretical fundamental flexural resonance fre-
quencies of nanotubes. For example, accord-
ing to the well-known Bernoulli-Euler beam
theory, the equation describing transverse, or
flexural motion of a continuous, homogeneous,
isotropic, linear elastic beam which without ro-
tary inertia or shear effects and whose proper-
ties do not vary along its length may be ex-
pressed as
2 4

T | pr D )
where x is the axial coordinate, t is time, p(x)
is the transverse pressure per unit axial length,
w is the deflection of the beam, I and A are
the moment of inertia and the area of the cross
section of the beam, and E and p are Young’s

pA

modulus of beam material and the mass den-
sity. Thus, EI denotes the bending stiffness of
the beam, and pA represents the mass density
per unit axial length.

It is known that multi-walled carbon nan-
otubes are distinguished from traditional elas-
tic beams by their hollow multi-layer structure
and associated intertube van der Waals forces.
The equation (2) can be used to each of the
inner and outer tubes of the multi-walled car-
bon nanotubes. Assuming that the inner outer
tubes have the same thickness and effective ma-
terial constants, that deflection linear vibra-
tion are small, the van der Waals pressure at
any point between the tubes should be a lin-
ear function of the jump in deflection at that
point.Thus the interaction pressure per unit ax-
ial length is given by p = c¢(u2 —u1), [16], where
u1 € ug are the deflections in the inner and outer
nanotubes, respectively, and the interaction co-
efficient per unit length between any two adja-
cent layer ¢, can be estimated by

o a(2R;)erg/cm? 3

9T T 01642 )

where R; is the radius of the j-th tube, and the
constant a = 320 in [16], o = 400 in [1].

The multiple-elastic beam model for N-
walled carbon nanotubes (CNT), based on the
Euler-Bernoulli beam theory, is governed by
the following set of N-coupled equations [21]

(d = 0.142nm),

(4 2) +eci(ur —ug2) =0,

A 8 ualt(zt I) + EI 6 ax
A Bud]t(;:v)+EI Bud,(ix)
+ej(uy —uje1) — o1 (uj—1 —uy) =0,

j=2,3.,N—1,

,OA 9u atztx)+EI 6uN(t:c)_|_
+CN 1(UN7UN_1):O.

where x is axial coordinate of the beam,
u;(t, ) the deflexion of the j —th CNT, I; and
A; the moment of inertia and the area of the



cross-section of the j—th tube, E is the Young s
modulus and p the mass density (E=1 TPa,
p = 1.3gr/cm?).
This coupled model can be written in matrix
form as
0%u 0t
M—7+K-—+Cu=0 4
ot? * ox? +tou=", )
where M = diag[pAi,---,pAn], K =
diag[ElL,---,EIN],, u = col[u; ---un] and C
is the matrix

C1 —C1 e 0 0
—C1 (62 + Cl) v 0 0
. . . 0 .

0 0 (en—2+en—1) —cnN-1

0 0 —CN-1 CN—1

4 Free transverse vibrations

The solution of system of homogeneous matrix
partial differential equations (4) can be written
in terms of a vector exponential

u(t,z) = U (). (5)

where U = col[U1Us - - - Uy]. Substituting the
solution in (4), we have that U(z) satisfies the
fourth-order differential equation with matrix
coefficients

KU"(z)+ (MM +C)U(x) =0.  (6)

Since K is not singular, we can write the above
equation as

U™ (z) + AU(z) = 0. (7)

where A = K~Y(A\2M + C). In the study of
wave propagation, it is considered the harmonic
wave amplitude U(z) = e¥*®
quencies, that is, A = iw. This will lead to

v and natural fre-

(8)

This generalized eigenvalue problem can be
solved by numerical methods for frequencies w

'K + (~w*M + )] v =0,

or wavenumbers k. See [11] for simulations by
using the power method or by Krylov method.

With beams of finite length, generic spa-
tial boundary conditions of classical or non-
classical nature can be written as

A11U1(0) + B11UL(0) + C11U(0) + D11 U (0) = 0,
A12U1(0) + B12U{(0) + C12U{,(0) + D12U{N(0) =0,
Ao Un (L) 4+ Bar Ui (L) 4+ Cor U (L) + Day U (L) = 0,
AgoUn (L) + BaoUl (L) + Ca2UM (L) + DaxUY/ (L) = 0.
In the case of non-classical boundary condi-
tions, the coefficients might depend upon fre-
quency A. For instance, for a cantilever beam
(clamped-free) we have

U1(0) =0, Uj(0) =0,

Un(L) =0, UN(L)=0, (9)

while for a torsional spring of rotational con-
stant o restrained and free end beam, we have

ELU{(0) 4+ oU{(0) =0, U{(0)=0
Ux(L) =0, UY(L)=0. (10)

If a mass m is attached at the free end of a
clamped beam, we shall have

U1(0) =0, Ui (0) =0,
UN(L) =0, EINUY(L)—mAUy(L)=0.

The last condition corresponds to the equi-
librium between inertia force and shear force.
Since inertia force is associated with the ac-
celeration of the body, this will induce the
quadratic term in .
General conditions of continuity or compati-
bility for the displacement Uj, the slope U]’~,
the bending moment EI;U] or for the jump
in the internal shear force E7;U;" when there
is an applied force or a physical device at an
intermediate location or a simply discontinu-
ity in the transversal section at the point x;,
j=1,2,.., N — 1 can be written as

Uj(z;) = Ujta(zj), Uj(z;) = Uiy (z)),

EL;U(z5) = E1j U} (x5),

ELU(x;) = ELip UL ()) + Fj,

(11)



where F; denotes the force exerted by the in-
termediate device. These equations include the
case of an intermediate support at x;. We sim-
ple consider the first two equations for zero dis-
placement at xj and ;. Then the continuity
of the rotation or 1nert1a moment and for the
bending moment at a xj and x; . For the case
of a torsional spring or a rotational mass, the
bending moment has a jump at an intermediate
support [6].

4.1 Matrix basis

The general solution of (7) can be written [2]
as
U(z) = h(z)e; + hi(z)ea + h"(2)cs + W (z)eq
(12)
for arbitrary vectors ci, co, c3 and ¢4 de or-
der n x 1. Here h(z) is the solution of the
initial value problem h(®)(z) 4+ Ah(z) = 0 sub-
ject to the initial conditions h(0) =0, h’(0) =
0, h”(0) =0, h"(0) = I where 0 denotes the
N x N null matrix and I the N x N identity
matrix. This solution is said referred to as the
fundamental matriz response. For determining
h(z), we first consider the characteristic poly-
nomial

P(s) = det[s*I + A] = Zbks4N k.

Then we find the solution h(x) of the initial
value problem

4N
Z bkh(4N_k) (.fL')
k_

hfg) = 1(0) =
boh*N=1D(0) =1

and we let h; be the solution of the matrix
difference equation

hiiy + Ahg =0

h, = 0,h; = 0,hy = 0, hy = 1. (13)

We have

4N j—1

=SS

7j=11i=0

Yhun_; (14)

A normalized basis [2], could also be used.

4.2 The case of a double layer carbon
nanotube

For a double layer carbon nanotube, we have
the matrix coefficients
mi O

e[ e[ T
0 meo —C1 C2

| kO
K_|:O k2:|

The characteristic polynomial is given by

P(s)=as®+3's*+6 (15)
where
o= E*1I I, (16)
5 IWNpAs+IIica+ N2 pAiIls+ ¢ IIo
- EII, I,
0 — )\4p2A1A2+A2pA102+C1A2pA2+C1CQ —1.012
- E2 11, II,

The roots of this polynomial are of the type
rL=¢€ To9o= —€ T3=1€ T4 = —I€;

$1=909; S9 = —5 s3 = 1i0; s4 = —id, where ¢
and § depend upon the eigenvalue A. It turns
out that

() = 22D~ S;;igt)

sinh(dt) — sin(d t)
867 +434°

By iterating (13) and substituting values, we
obtain that h(x) is given by the symmetric ma-
trix EDF

ard(z) 4 kod) () —cyd(x)

h(z) =

—c1d(z) azd(x) + bod) (z)
where
(201 ko + k1 )\ng + ky Cg)d
a1 = )
k1
(2/€1 o+ Amiks+c ka)d
a9 =
ko
and bl = k‘g, b2 = ]{21.



4.3 Characteristic Equation

The characteristic equation for finding the
modes U(z) will amount to find a solution
of (7) that satisfies the boundary or compat-
ibility conditions. Since the general solution
(12) depend upon 4N constants and we have
4 boundary conditions and 4(N-1) compatibil-
ity conditions, the problem that will result in
terms of h and its derivative at intermediate
and end points of the beam and the coefficients
c1,Co,C3,c4, Will set up a homogeneous alge-
braic system. The existence of non-zero solu-
tions will give us the characteristic equation for
the problem. Eventually, the determination of
the constants might be simplified by using a
similar technique on the one developed in the
physical space, rather that using a state formu-
lation. Our approach is more appropriate and
general than Yoon, [15]. He assumed that the
components of an oscillating mode differ only
by constants. This artifice allowed him to de-
couple the stationary system and to refer things
in a simpler manner with a single fourth-order
differential equation. We observe that for the
data considered by Yoon, [15] the basic func-
tion d(x) turns out to be in general a complex
one. Thus pure oscillations and real vibrations
might exist when a parameter is varied. This
is the case in the terahertz level where complex
oscillations collapse into a simple real oscilla-
tion.

5 Simulations

(a) imaginary part (b) real part

Figura 2: Eigenfunction at A = 4.73X10(—)

Here we illustrate the bifurcation phenomena,
at the terahertz level for a double wall carbon
nanotube.
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Figura 3: Eigenfunction A=5.381 terahertz

Figura 4: Eigenfunction A= 6.0] terahertz

6 Concluding remarks

A continuum approach using the well known
frequency equation for a beam has been em-
ployed by several investigators to estimate the
theoretical fundamental flexural resonance fre-
quencies of nanotubes. Here the frequency
equation and the modal system of multi-span
Euler-Bernoulli coupled beams with discon-
tinuous cross-section have been formulated in
terms of the dynamical basis generated by the
fundamental solution h(z) of a coupled fourth-
order matrix differential equation. This later
accounts for the interaction forces in the nan-
otubes. The modes are then determined in a
systematic manner in terms of h(z) and its
derivatives. This methodology can be applied
to other kinds of beams that result from diverse
approximations such as Rayleigh, shear beams
or Timoshenko beams.
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