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Abstract Within the framework of a (1 + 1)-dimensional
model which mimics high-energy QCD, we study the be-
havior of the cross sections for inclusive and diffractive deep
inelastic γ ∗h scattering cross sections. We analyze the cases
of both fixed and running coupling within the mean-field ap-
proximation, in which the evolution of the scattering ampli-
tude is described by the Balitsky–Kovchegov equation, and
also through the pomeron loop equations, which include in
the evolution the gluon number fluctuations. In the diffrac-
tive case, similarly to the inclusive one, suppression of the
diffusive scaling, as a consequence of the inclusion of the
running of the coupling, is observed.

1 Introduction

It is well known that the high-energy regime of the Quantum
Chromodynamics (QCD) is described by non-linear evolu-
tion equations [1–20]. At the level of scattering amplitudes,
and in the framework of the dipole picture [21–23], the most
general ones are the so-called pomeron loop equations [24–
27], which correspond to a generalization of the Balitsky–
JIMWLK hierarchy [7–14, 17–20], by including the gluon
number fluctuations. If one performs a mean-field approx-
imation, this infinite set of equations reduces to a single
closed equation for the scattering amplitude of one dipole
with a hadronic target, the Balitsky–Kovchegov (BK) equa-
tion [17, 28, 29], the simplest of the non-linear equations for
the scattering amplitudes in QCD at high energy. This equa-
tion admits [30–32] traveling wave solutions, which have
become a natural explanation for geometric scaling—first
observed in the HERA data for electron–proton deep inelas-
tic scattering [33, 34]—and, being a mean-field version of
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the complete hierarchy, neglects the effects of the fluctua-
tions. At least in the fixed coupling case, from the corre-
spondence between high-energy QCD and reaction diffu-
sion processes, one of the consequences of the gluon number
fluctuations in the evolution of the dipole scattering ampli-
tudes is, at very high energies, the replacement of the geo-
metric scaling [33, 34], by the diffusive scaling [35].

Fluctuation effects have not been observed in the exper-
imental data yet. Besides, the only few phenomenological
studies have been inconclusive with respect to their presence
in the current experiments [36–39]. Their physical conse-
quences in the high-energy evolution in QCD for the phe-
nomenology were first analyzed in Ref. [35], where their
effects in the behavior of inclusive and diffractive cross sec-
tions for deep inelastic lepton–hadron scattering (DIS) were
studied. They found, for example, that, within the high-
energy regime, all the amplitudes or cross sections show
diffusive scaling, that is, they depend upon the photon vir-
tuality Q2 and the total rapidity Y through the variable
ln(Q2/〈Q2

s 〉), where 〈Q2
s 〉 is the (average) hadron saturation

momentum.
Our current knowledge on the consequences of the fluc-

tuations comes only from the correspondence between
high-energy QCD and statistical physics; because of the
complexity of the pomeron loop equations, the properties
of the solutions are known only after some approximations,
in asymptotic regimes and at fixed coupling [24]. On the
other hand, in the last few years one observed an important
progress in the inclusion of next-to-leading order (NLO) ef-
fects in the non-linear mean-field BK equation. In particular,
one can cite the explicit calculation of the running coupling
effects [40–46] and its successful use in the description of
HERA and RHIC data [47–49]. Unfortunately, because of
the complexity of the pomeron loop equations, the inclusion
of such NLO effects in these equations turn to be a very
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hard task. The difficulty of dealing with these equations,
even in the fixed coupling case, inspired other ways of in-
vestigation of high-energy evolution in QCD, in particular
through particle models with a smaller number of dimen-
sions [50–57]. Among them, the (1 + 1)-dimensional model
presented in Ref. [55] has shown to mimic fixed impact pa-
rameter high-energy QCD with fixed coupling constant. Its
generalization to the case with the running coupling was
done in Ref. [56]. In such a version, the model could pro-
vide, for the first time, the study of both running coupling
and fluctuations effects, taken into account simultaneously,
in the high-energy evolution of scattering amplitudes. The
main conclusion presented by the authors was the strong
suppression of the pomeron loop (fluctuation) effects due to
the running of the coupling, up to rapidity Y � 200, that is,
well beyond the energies of interest for the phenomenology
in QCD. The dynamics is similar to the respective predic-
tion of the mean-field approximation with running coupling,
the property of (approximate) geometric scaling being pre-
served for the average scattering amplitude. This result is in
sharp contrast with the fixed coupling results, which show
the emergence of the diffusive scaling.

In this paper we present an investigation of the effects
of both pomeron loops and running coupling, taken into ac-
count simultaneously, on the cross sections for inclusive γ ∗h
and, for the first time, on diffractive deep inelastic scatter-
ing (DIS), within the framework of the toy model [56]. In
Sects. 2 and 3 we present some important aspects of lepton–
hadron DIS, specifically an overview of kinematics and the
description of the dipole picture of the inclusive and diffrac-
tive γ ∗h scattering. Section 4 is devoted to an overview of
the one-dimensional model in the running coupling case. In
particular, we present the resulting evolution equations for
the scattering amplitudes and the main features of their evo-
lution. In Sect. 5 we present our results, with a study of the
behavior of the cross sections in both fixed and running cou-
pling cases, and the conclusions are presented in Sect. 6.

2 Inclusive virtual photon–hadron DIS

This process is described by the reaction l(k) + h(P ) →
l(k′) + X(PX), where l refers to the lepton (with momen-
tum k in the initial state and k′ in the final one), h to the
incoming hadron (with momentum P ) and X is the generic
hadronic final state (with momentum PX). Processes de-
scribed by the reaction above are called inclusive, because
only the lepton is measured in the final state. In the spe-
cific case where the lepton is an electron, its interaction with
the hadron is mediated by a virtual photon with virtuality
Q2 = −q2 = (k − k′)2. If one looks at γ ∗h → X, in in-
clusive DIS all what is known from the final hadronic state
X is that it has an invariant mass squared W 2 = (P + q)2,

which is the center-of-mass energy of the γ ∗h system. An-
other important definition is that of the Bjorken variable, or
Bjorken-x, given by xBj ≡ Q2/(Q2 +W 2); from it, one sees
that, for fixed values of Q2, when one increases the energy
W 2, xBj decreases and the high-energy limit corresponds to
the small-xBj limit. The total rapidity of the process is de-
fined as Y ≡ ln(1/xBj).

At small-xBj, the γ ∗h process can be described in a
convenient frame, the so-called dipole frame, in which the
hadron carries most of the total energy, but the virtual pho-
ton has enough energy to split into a quark–antiquark (qq̄)
pair, or a dipole. This dipole, then, interacts with the hadron.
The dissociation of the virtual photon into the color dipole
takes place long before the scattering, and the dipole evolves
through soft gluon radiation until it meets the hadron (at the
time of scattering) and scatters off the color fields therein.
Exactly as was done in [35], the present analysis will be
restricted to the leading logarithm approximation, in which
the evolution consists of the emission of soft gluons, carry-
ing a small fraction xBj 	 1 of the longitudinal momentum
of their parent parton. In the limit Nc → ∞, a gluon can be
effectively replaced by a pointlike quark–antiquark pair in
a color octet state, and a soft gluon emission from a color
dipole can be described as the splitting of the original dipole
into two new dipoles with a common leg. In this picture, the
original qq̄ pair produced by the dissociation of the virtual
photon evolves through successive dipole splittings and be-
comes an onium—i.e., a collection of dipoles—at the time
of scattering. This is Mueller’s dipole picture [21–23].

Using the formalism developed in [35], one finds that
the differential cross section for onium–hadron scattering at
fixed impact parameter is given by

dσtot

d2b
(r,b, Y ) = 2 Re A(x,y;Y), (1)

where A is the amplitude for the elastic scattering, b =
(x + y)/2 and r are the impact parameter and the trans-
verse size of the original dipole and x and y its transverse
coordinates.

In such high-energy approximation, the DIS cross section
for the inclusive virtual photon–hadron (γ ∗h) scattering can
be expressed as

dσ
γ
tot

d2b

(
Y,Q2)

=
∫ 1

0
dv

∫
d2r

∑

α=L,T

∣∣ψγ
α

(
r, v;Q2)∣∣2

2 Re A(x,y;Y),

(2)

where |ψγ

T/L|2 are the probability densities for the qq̄ dis-
sociation of a virtual photon with transversal (T ) or lon-
gitudinal (L) polarization, obtained from perturbative QED
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[3, 58, 59], given by

∣∣ΨT

(
r, v;Q2)∣∣2

= 2Ncαem

4π2

∑

q

e2
q

{[
v2 + (1 − v)2]Q̄2

qK2
1 (Q̄qr)

+ m2
qK2

0 (Q̄qr)
}

(3)
∣∣ΨL

(
r, v;Q2)∣∣2

= 2Ncαem

4π2

∑

q

e2
q

{
4Q2v2(1 − v)2K2

0 (Q̄qr)
}
, (4)

where Q̄q = v(1 − v)Q2 + m2
q , mq is the mass of the quark

with flavor q , K0,1 are the McDonald functions of rank zero
and one, respectively, and v is the fraction of the photon
longitudinal momentum carried by the quark.

Expression (2) is a priori frame-independent, but the in-
clusive cross section is most simply evaluated in the frame
where almost all the total rapidity Y is carried by the hadron
(the target) and the projectile is an elementary dipole. In this
case, A(x,y;Y) = 〈T (x,y)〉Y [35] and

dσ
γ
tot

d2b

(
Y,Q2)

=
∫ 1

0
dv

∫
d2r

×
∑

α=L,T

∣∣ψγ
α (v, r;Q)

∣∣2 2 Re
〈
T (x,y)

〉
Y
, (5)

where 〈T (x,y)〉Y is the (average) one dipole–hadron scat-
tering amplitude, the brackets meaning the average over the
target configurations. Here, we are interested in the high-
energy limit of the DIS cross sections at fixed impact pa-
rameter. We assume that the dependence on b can be factor-
ized into a profile function S(b), according to 〈T (x,y)〉Y =
S(b)〈T (r)〉Y (r = |x −y| is the dipole size), where the inte-
gral σ0 ≡∫

dbS(b) would provide an overall normalization
factor of order of the transverse area of proton. Since the de-
pendence on b in such an approximation results completely
decoupled, in the following we simply set S(b) = 1, assum-
ing the integration over b extended up to bmax providing the
correct normalization of the cross section. The differential
inclusive cross section reads

dσ
γ
tot

d2b

(
Y,Q2)

= 4π

∫ 1

0
dv

∫ ∞

0
dr

×
∑

α=L,T

∣
∣ψγ

α (v, r;Q)
∣
∣2

r Re
〈
T (r)

〉
Y
. (6)

As will be convenient for our purposes, we can write
〈T (r)〉Y ≡ 〈T (x)〉Y ≡ 〈Tx〉Y , where x ≡ ln(1/r2Q2

0) rep-
resents r in logarithmic units1 (Q0 is a scale of reference
introduced by the initial conditions at low energy). The total
cross section, then, takes the form

dσ
γ
tot

d2b

(
Y,Q2)

= 2π

Q2
0

∫ 1

0
dv

∫ +∞

−∞
dx e−x

×
∑

α=L,T

∣∣ψγ
α (v, x;Q)

∣∣2 Re〈Tx〉Y . (7)

3 Diffractive DIS

Part of the DIS events are diffractive. In such events, de-
scribed by the reaction γ ∗h → Xh, the final states con-
tain an intact scattered hadron h and a diffractive hadronic
state X separated by a rapidity gap Ygap ≡ ln(1/xP), where
xP = xBj/β and β is related to the diffractive invariant mass
MX by β ≡ Q2/(Q2 +M2

X). It is straightforward to see that
the difference between the total rapidity Y and the rapidity
gap Ygap is Y − Ygap = ln(1/β).

The cross section for the diffractive process reads (Ygap

denotes the minimal rapidity gap)

dσ
γ

diff

d2b

(
Y,Ygap,Q

2)

=
∫ 1

0
dv

∫
d2r

×
∑

α=L,T

∣
∣ψγ

α (v, r;Q)
∣
∣2

Pdiff(b, r;Y,Ygap). (8)

Since the whole process can be factorized, for our purposes
it will be enough to ignore the electromagnetic process (the
splitting the virtual photon into the qq̄ dipole) and focus
only on the onium–hadron (Oh) scattering. More specif-
ically, we will be interested in the quantity Pdiff, which
is the probability for diffractive onium–hadron scattering
(Oh → Xh), and corresponds to the differential cross sec-
tion for onium–hadron scattering at fixed impact parameter:

dσdiff

d2b
(r,b, Y,Ygap) = Pdiff(x,y;Y,Ygap). (9)

An explicit formula for this probability has been obtained
within the lightcone wavefunction formalism in [35], in a
special frame, in which Ygap coincides with the rapidity Y0

of the target hadron. This choice of the frame is important

1The variable x should not be confused with the bold-faced x, which
represents a vector in the transverse plane in the picture of DIS.
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because it avoids one to deal explicitly with final state inter-
actions. The resulting formula is given by

Pdiff(x,y;Y,Ygap)

→ Pdiff(x,y;Y,Y0)

=
∑

{N}
P

({N};Y − Y0
)
∣∣∣∣∣

〈

1 −
N∏

i=1

Sxi

〉

Y0

∣∣∣∣∣

2

, (10)

which has the following meaning: starting from an original
dipole (x,y), after an evolution Y − Y0 there is a probabil-
ity density P({N};Y − Y0) for a given configuration of N

dipoles to be produced. Sxi
= 1 − Txi

is the S-matrix for the
scattering between the ith dipole (with logarithmic size xi )
in the projectile and a given configuration of the target, Txi

being the corresponding T -matrix. The symbol
∑

{N} rep-
resents the sum over all the configurations of the projectile
with N dipoles. Again, the notation 〈·〉Y0 denotes the aver-
age over the ensemble of color fields in the target.

Our main aim is to investigate, for the first time, the be-
havior of the diffractive probability (10) with increasing ra-
pidity Y in the presence of fluctuations and running coupling
effects. This requires the description of the rapidity evolu-
tion of the dipole–hadron scattering amplitude Tx , as well
as the probability density P({N};Y −Y0) by taking into ac-
count both effects simultaneously, which is still a prohibitive
task in full QCD. However, a convenient way of doing this
is through the model presented in [56], whose main features
we will briefly describe below.

4 (1 + 1)-Dimensional model for high-energy QCD

The toy model [56] is a (1 + 1)-dimensional stochastic par-
ticle model, where one of the dimensions refers to the total
rapidity separation Y between two hadronic systems which
undergo evolution and scattering (and plays the role of time
in the evolution), while the other one (the spatial dimen-
sion) is the position of the particle along an infinite one-
dimensional axis, the x-axis, which, in analogy with the
dipole picture of QCD [21, 23], corresponds to the logarithm
of the inverse size of a dipole, as defined in Sect. 2.

4.1 The structure of model

In this toy model, a system of particles (which corresponds
to a given hadronic system) is specified by their distribu-
tions along the one-dimensional x-axis. In order to describe
a scattering problem, one considers two such systems (pro-
jectile and target) which scatter off each other along a given
collision axis (which is transverse to the x-axis) and as-
sumes that each particle of the projectile can scatter elas-
tically with any particle of the target. The total rapidity Y

of the process is divided between the right mover system
(R), the projectile, which has rapidity δY ≡ Y − Y0 and the
left mover system (L), the target, which has rapidity −Y0.
Let PR[n(xR), Y − Y0] and PL[m(xL), Y0] be the probabil-
ity densities to find given configurations in the two systems,
these being described as functions of the densities of parti-
cles at the point x. The average S-matrix is given by2

〈S〉Y =
∫

DnDmPR
[
n(xR), Y − Y0

]

× PL
[
m(xL), Y0

]
S
[
n(xR),m(xL)

]
. (11)

Here, S[n(xR),m(xL)] is the S-matrix associated with a
given pair of configurations and the 〈· · · 〉 symbol repre-
sents the average over all possible configurations {n(xR)},
{m(xL)}. This ‘event-by-event’ S-matrix is given by

S[n,m] = exp

[∫
dxR dxL n(xR)m(xL) lnσ(xR|xL)

]
, (12)

where σ(xR|xL) = 1 − τ(xR|xL) is the S-matrix for the
scattering of two elementary particles of logarithmic sizes
xR and xL, and τ(xR|xL) the corresponding T -matrix
(0 ≤ τ(xR|xL) ≤ 1).

The probability densities obey the following evolution
equation (the details of the evolution can be found in
Refs. [55, 56]):

dP [n(x),Y ]
dY

=
∫

dzfz

[
n(x) − δ(x − z)

]

× P
[
n(x) − δ(x − z),Y

]

−
∫

dzfz

[
n(x)

]
P

[
n(x),Y

]
, (13)

where fz[n(x)] is the probability per unit rapidity to find
an extra particle with logarithmic size z after an evolution
step (after a small increment in rapidity, only one extra par-
ticle can be emitted), given that the initial configuration of
the evolved system was n(x). The functional form of the
“deposit” rate density fz[n(x)] can be found by assuming
Lorentz invariance, and one gets

fz

[
n(x)

] = Tz[n(x)]
α(z)

, (14)

where Tz[n(x)] is the T -matrix for the scattering of a parti-
cle of logarithm size z off a system with a given configura-
tion n(x), and is given by

Tz

[
n(x)

] = 1 − exp

[∫
dx n(x) lnσ(z|x)

]
, (15)

2Here we follow the same notation as used in [56].
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and α(z) is the coupling parameter. In the case of running
coupling, α(z) = 1/βz—in such a way to mimic the one-
loop running coupling of QCD—, with β being the analog of
the one-loop beta function of QCD. Another important fea-
ture of the model is the specification of the explicit form of
the elementary particle-particle scattering amplitude τ(x|y),
which, in analogy with the corresponding quantity in QCD
(the amplitude for dipole–dipole scattering), is chosen as

τ(x|y) = α(x)α(y) exp
(−|x − y|)

≡ α(x)α(y)K(x, y) ≡ αxαyKxy. (16)

With the above expressions at hand, one can now present the
evolution equations for any observable. In particular, since
we want to describe the cross section (7), we will present the
resulting equations for the scattering amplitudes.

4.2 Evolution of the amplitudes

Let us consider a generic observable O which depends on
the configuration of the particles in the system. If one eval-
uates its average value at rapidity Y , one gets a measurable
quantity, given by

〈O〉Y =
∫

DnP
[
n(x),Y

]
O

[
n(x)

]
, (17)

where here we mean that the average is taken over all the
configurations of the right mover, that is, P [n(x),Y ] ≡
PR[n(x),Y ] (the left mover consists of a given configura-
tion of particles).

By using Eqs. (13) and (17), it is straightforward to obtain
the evolution equation for any physical observable:

∂〈O〉Y
∂Y

=
∫

dz
〈
fz

[
n(x)

]{
O

[
n(x) − δ(x − z)

] − O
[
n(x)

]}〉
Y
.

(18)

If the observable is the amplitude for the scattering be-
tween a projectile which consists of a single particle of a
given logarithmic size x and a generic target, one has (the
average over Y is implicit)

∂〈Tx〉
∂Y

= αx

∫
dzKxz

〈
Tz(1 − Tx)

〉
, (19)

which is not a closed equation for 〈Tx〉, but the first equa-
tion of an infinite hierarchy. This equation is analogous to
the first equation of the Balitsky–JIMWLK hierarchy, which
is identical to the first of the pomeron loop (PL) equations
(extended to running coupling): it has a linear term, propor-
tional to 〈T 〉, and a non-linear (quadratic) term, proportional

to T 2. The term corresponding to the particle number fluctu-
ations appears only in the second equation of the hierarchy,
which reads

∂〈TxTy〉
∂Y

= αx

∫
dzKxz

〈
TzTy(1 − Tx)

〉

+ αy

∫
dzKyz

〈
TzTx(1 − Ty)

〉

+ αxαy

∫
dzαzKxzKyz

〈
Tz(1 − Tx)(1 − Ty)

〉
,

(20)

the fluctuation term being the one proportional to 〈T 〉 in the
second line of the above equation.

In the mean-field approximation (MFA), the whole hier-
archy reduces to a single closed equation, which is obtained
by making 〈T T 〉 = 〈T 〉〈T 〉 in Eq. (19), resulting in the anal-
ogous to the (running coupling) Balitsky–Kovchegov (BK)
equation

∂〈Tx〉
∂Y

= αx

∫

z

Kxz

[〈Tz〉 − 〈Tz〉〈Tx〉
]
. (21)

The evolution equations with fixed coupling can be straight-
forwardly obtained by simply making α = constant. Now,
we will make a brief review of the main aspects of the evolu-
tion of the average amplitude 〈T 〉, in both fixed and running
coupling cases.

(i) Fixed coupling case [55]:
1. From the similarity with the BK equation, Eq. (21)

admits the so-called traveling wave solutions, which
means that, at very large values of rapidity, the am-
plitude depends on x and Y through the scaling
variable x − xs(Y ), that is, the amplitude T is a
front which interpolates between 1 and 0 and, as Y

increases this front gets simply translated towards
larger values of x, without being distorted. The
function xs(Y ) is the saturation scale, which natu-
rally emerges from the non-linear evolution; it sepa-
rates between the dense target region, x � xs , where
T = 1, and the dilute target region, x � xs , where T

decreases exponentially. It is also an increasing func-
tion of rapidity, analogous to the (logarithm of the)
saturation momentum which emerges from the non-
linear evolution in QCD, ln(Q2

s /Q
2
0). It can be also

defined as the position of the front, that is, the line
along which the amplitude is constant and of O(1)

(it is usual to choose T (x = xs(Y ),Y ) = 1/2). The
dependence on the combined variable x − xs is the
so-called geometric scaling [33, 34], which is valid
in a window which grows with increasing rapidity
like ∝ Y 1/2.
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2. With the inclusion of the fluctuation effects, the dif-
ferences with respect to the mean-field analysis are
very significant. From a given initial condition (at
Y = 0), the evolution up to Y generates a statistical
ensemble of fronts, which have the same form, but
differ from each other by their respective front posi-
tions xs , and this position is now a random variable.
In the fixed coupling case, to a very good approxi-
mation, the distribution of xs with Y is a Gaussian,
with both the expectation value 〈xs〉 and the disper-
sion σ 2 rising linearly with Y . The individual fronts
exhibit geometric scaling, but only over a compact
region, in contrast with the mean-field amplitude, for
which the scaling window is ever increasing with Y .
The average amplitude 〈T 〉 is obtained by averaging
over the ensemble, and one gets that the geometric
scaling property of the individual fronts is washed
out by the dispersion of the fronts, and is replaced,
at sufficiently large Y , by diffusive scaling.

(ii) Running coupling case [56]:
1. In the MFA, geometric scaling is also present at

asymptotic rapidities in the evolution of the ampli-
tude, but the front formation is delayed in compari-
son with the fixed coupling case: the window for ge-
ometric scaling grows with increasing rapidity like
∝ Y 1/6.

2. After the inclusion of the fluctuations, the growth
of the dispersion with Y is suppressed, and one has
σ 2 ∝ √

Y . Besides, the influence of the fluctuations
is strongly suppressed, remaining negligible for all
the rapidities of interest. In particular, the average
amplitude exhibits approximate geometric scaling:
the deviation from geometric scaling with increas-
ing Y is too small.

5 Results

Now we can study the consequences of the properties of the
scattering amplitudes discussed above on the behavior of the

cross section (7) and the diffractive probability (10) with in-
creasing Y . Concerning the inclusive cross section (7), our
aim here is only to reproduce the results obtained in [35]
and [56], respectively, at fixed and running coupling. The
diffractive case is our main result: in the high-energy limit,
it has been shown that, in the fixed coupling case, diffrac-
tive cross section exhibits diffusive scaling [35]. Here, for
the first time, we study the behavior of this quantity with in-
creasing energy in the presence of both fluctuation and run-
ning coupling effects.

For the purposes cited above, we must use as the in-
put for the average scattering amplitude for particle–hadron
(dipole–hadron) the solution of Eq. (19) (when fluctuations
are included) and (21) (when fluctuations are not included,
that is, in the MFA). The parameters which enter into the
expression for the cross section (7) must be fixed: we set
Q2

0 = 1 GeV2, the electromagnetic coupling constant αe =
1/137, the number of colors Nc = 3, and only light quarks
(u, d, s) enter into this analysis, with zero masses. In both
inclusive and diffractive cases, we perform the analysis first
considering the fixed coupling case, in both mean-field ap-
proximation (MFA) and with fluctuations included and then
we generalize it by doing the same in the case with running
coupling. In the specific case of diffractive onium–hadron
scattering, in the evaluation of the probabilities P({N}; δY )

for a given configuration of the projectile onium at rapidity
δY , as well as the averages over all the target configurations,
we follow the same procedure as described in [55].

5.1 Fixed coupling case

The results in the case of fixed coupling (FC) are shown in
Figs. 1 and 2. The value of the coupling constant is chosen to
be α = 0.2. Figure 1 presents the DIS inclusive cross section
as a function of the variable Q2/〈Q2

s 〉, for different values of
rapidity, up to Y = 100. One should remember that the av-
erage saturation momentum, 〈Q2

s (Y )〉, is related to the aver-
age saturation scale 〈xs(Y )〉: 〈xs(Y )〉 = ln(〈Q2

s (Y )〉/Q2
0) =

ln(1/〈rs〉2Q2
0). In the MFA (left plot), one clearly sees the

geometric scaling, as well as the growth of its window as
rapidity increases from Y = 0. For values of rapidity values

Fig. 1 Fixed coupling results
for various rapidities as a
function of Q2/〈Q2

s 〉, in the
MFA (left plot) and with the
inclusion of the fluctuations
(right plot), up to rapidity
Y = 100
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Fig. 2 Diffractive probability
for onium–hadron scattering as
a function of the scaling
variable 〈r2

s 〉/r2: fixed coupling
results for various rapidities, in
the MFA (left plot) and with
fluctuations (right plot), up to
rapidity Y = 95

Fig. 3 Running coupling
results for various rapidities as a
function of Q2/〈Q2

s 〉, in the
MFA (left plot) and with the
inclusion of the fluctuations
(right plot), up to rapidity
Y = 200

Y � 30, the curves for the cross section have the same shape
and they depend only on the scaling variable Q2/〈Q2

s 〉. Af-
ter the inclusion of the fluctuations (right plot), the curves
deviate from the mean-field behavior (and thus from geo-
metric scaling) as Y increases. These FC results for the in-
clusive cross section reflect the corresponding behavior of
the scattering amplitude and are consistent with the ones al-
ready obtained in the QCD framework [35].

In Fig. 2 the diffractive probability for onium–hadron
DIS is shown as a function of the geometric scaling variable
〈rs〉2/r2 = e−(〈xs 〉−x) for different values of the total rapid-
ity interval Y . The rapidity interval of the projectile onium,
δY = Y − Y0, is kept fixed at a small value (δY = 1), to
ensure that the projectile is a dilute system, consisting of a
small number of particles (dipoles). In the MFA, geometric
scaling is reached at very large values of Y . When fluctua-
tions are included, one observes that, similarly to the inclu-
sive cross section, geometric scaling breaks down and Pdiff

exhibits diffusive scaling. This result is consistent with what
has been found in [35].

5.2 Running coupling case

Now, we proceed with a generalization of the previous case,
by taking into account the running of the coupling, given by
αx = 1/βx, with β chosen to be 0.72. The results are shown
in Fig. 3, where the cross section (7) is represented as a func-
tion of the variable Q2/〈Q2

s 〉, for different values of rapidity,

up to Y = 200. In the MFA, one can observe geometric scal-
ing, but it is reached at larger values of rapidity in compari-
son with the FC case. This reflects the corresponding behav-
ior of the scattering amplitude, for which the formation of
the front in the RC case is delayed. With the inclusion of the
fluctuations, one can observe that the increasing dispersion
present in the FC case is strongly suppressed and one has
an approximate geometric scaling, since the different curves
have quite small deviations from each other when increas-
ing rapidity, resulting in a behavior very similar to the MFA
(with running coupling). Then, the high-energy behavior of
the inclusive cross section reflects the corresponding behav-
ior of the average particle (dipole) scattering amplitude in
the running coupling case, as expected.

Our next step is to investigate if the suppression obtained
in the inclusive case, due to both fluctuation and running
coupling effects, holds also for the diffractive probability
Pdiff(r, Y, δY ). This answer is the main result of this pa-
per. First, from the left plot in Fig. 4 we can see that, in
the MFA, geometric scaling is observed, as expected, but is
reached faster than in the FC case, at smaller values of ra-
pidity (now δY = 2). Finally, in the right plot we present,
for the first time, a study of the behavior of the diffractive
probability in the presence of both fluctuation and RC ef-
fects. Suppression of fluctuations exists and is as strong as
in the MFA case. Therefore, in diffractive DIS, within the
framework of the toy model for high-energy QCD, fluctua-
tions are strongly suppressed by the running of the coupling
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Fig. 4 Diffractive probability
for onium–hadron scattering as
a function of the scaling
variable 〈r2

s 〉/r2: running
coupling results for various
rapidities, in the MFA (left plot)
and with fluctuations (right
plot), up to rapidity Y = 190

and diffusive scaling of the cross sections, predicted in the
FC case, is washed out.

6 Conclusions

In this paper we have investigated the high-energy behavior
of the total cross section for virtual-photon–hadron DIS and
for onium–hadron diffractive DIS within the framework of
the (1 + 1)-dimensional model [56], which provides a way
to study, at fixed impact parameter, the effects of the par-
ticle number fluctuations and running coupling, taken into
account simultaneously. In the fixed coupling case, the re-
sults are consistent with those obtained in the framework of
QCD [35], that is, the geometric scaling which is present
in the mean-field approximation at large values of rapidity,
is completely washed out when fluctuations are taken into
account.

By generalizing the analysis done in [35], through the
inclusion of running coupling effects, we have reproduced
the results obtained in [56] for the inclusive virtual photon–
hadron cross section: the behavior of this cross section with
and without fluctuations is similar, this observable present-
ing approximate geometric scaling, which means that the
running of the coupling suppresses the fluctuation effects at
asymptotic rapidities. In the diffractive onium–hadron scat-
tering, the diffractive probability exhibits geometric scaling
in the MFA. When fluctuations are included, diffusive scal-
ing is seen in the fixed coupling case, while that, in the run-
ning coupling case, geometric scaling is present and reached
at smaller values of rapidity Y than in the case without fluc-
tuations.

This suggests that the mean-field treatment with running
coupling would be enough to study not only the inclusive
lepton–hadron DIS, but also the diffractive DIS, for all the
energies available at present and to be available in a near
future. The toy model also allows the investigation of the
other processes which, in the framework of QCD, admit a
dipole factorization. Thus, it would be interesting to apply it
to such processes, in particular less inclusive ones, in order
to investigate if the suppression of fluctuations by running
coupling effects remains present.
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