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Abstract. We calculate the nuclear cross section for vector meson exclusive photoproduction within the
QCD color dipole picture and in the Regge approach. For the former approach, we have considered the
phenomenological saturation model, whereas for the latter we use a model based on the dipole pomeron
framework. Theoretical estimates for scattering on both light and heavy nuclei are given over a large range
of energy.

1 Introduction

Exclusive vector meson production by real and virtual pho-
tons is an outstanding process providing important infor-
mation on the transition region from the soft dynamics (at
low virtualities of the photon Q2) to the hard perturba-
tive regime at high Q2 [1, 2]. In principle, a perturbative
approach is only justified if a hard scale is present in the
process, e.g. the photon virtuality and/or a largemass of the
vector meson. For photoproduction of light mesons, such a
scale is not present and one has to rely on non-perturbative
models. In general, a simple Regge pole phenomenology,
with a soft pomeron having intercept larger than one is
enough to describe the energy dependence of the meson
cross section at the present accelerators. In some pQCD
approaches, as the saturation model, even this soft pro-
cess can be described, where the transition is set by the
saturation scale. Both models give an effective pomeron in-
tercept increasing with photon virtuality and meson mass.
For φ and J/Ψ mesons, the pomeron intercept is consid-
erably large and consistent with that one obtained in the
usual pQCD approaches. Despite the good agreement for
the currently available energies, an extrapolation to higher
energies of the experimental fits implies a large growth for
the cross section which would violate the unitarity at suffi-
ciently high energies. Therefore, dynamical modifications
associated to the unitarity corrections are also expected
to be present in this process [3,4]. Moreover, these effects
should be enhanced in nuclear processes [5,6]. In particular,
in the planned eA colliders at HERA and RHIC, the exper-
imental analyses of the exclusive vector meson production
could be very useful to constrain the QCD dynamics [7,8].

Our goal in this paper is to investigate the high en-
ergy vector meson exclusive photoproduction on nuclei.
In particular, we improve the previous analyses of vector

meson production [9] which are based on an extrapola-
tion of the DESY-HERA experimental fits for the proton
case. Here, we will consider unitarized cross sections ab
initio. In order to do so, we consider two distinct and well
established theoretical scenarios which do not violate the
unitarity bound in the asymptotic regime to be probed in
future colliders. This allows us to analyze the nuclear vector
meson protoproduction as a potential process to discrimi-
nate between these different theoretical approaches. First,
we consider the color dipole description of the γA → V A
(V = ρ, ω, φ, J/Ψ) process, which is quite successful for
the proton case [3, 4] and can be extended to nuclear tar-
gets via the Glauber–Gribov formalism. It is important to
refer to the pioneering papers [10–14], where these issues
were first addressed and their further developments [15–17]
as well. Related calculations in the k⊥-factorization ap-
proach (the dipole approach is equivalent to it at leading
logarithmic approximation) can be found in [18–21]. In
the color dipole approach, the degrees of freedom are the
photon (color dipole) and meson wavefunctions as well as
the dipole–nuclei cross section. Such an approach enables
one to include nuclear effects and the parton saturation
phenomenon. The latter one is characterized by a typical
momentum scale Qsat (saturation scale) and it has been
constrained by experimental results in deep inelastic scat-
tering (DIS) and diffractive DIS [22]. Here, we will use an
extension of the phenomenological saturation model for
nuclear targets [23]. This model reasonably describes the
experimental data for the nuclear structure function and
has been used to predict the nuclear inclusive and diffrac-
tive cross sections for heavy quark photoproduction [24].
The nuclear saturation scale, Qs A, provides the transition
between the color transparency and the saturation regimes
in the nuclear scattering. Concerning vector meson produc-
tion, our starting point is the recent work in [25], where
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different meson wavefunctions and dipole cross sections
are considered for the proton case. It is worth mentioning
that although light meson photoproduction is a soft pro-
cess by definition, it is consistently described in the QCD
color dipole picture where there is a suitable model for the
soft–hard transition, as occurring in the saturation model.

In order to compare the saturation approach with a
successful non-perturbative formalism, we consider a Regge
inspired model given by the dipole pomeron framework [26].
The reason for this particular choice is that in thismodel the
soft pomeron having an intercept equal to one; thus it does
not violate unitarity for hadron–hadron and vector meson
production at higher energies. Moreover, it describes with
good agreement the hadronic cross section and even DIS
data in a wide range of photon virtualities [27]. For meson
production on proton targets, our starting point is the
recentwork of [28], where exclusive photoproduction by real
and virtual photons is described with good agreement. The
extension to nuclei is provided by the assumption of vector
meson dominance and the Glauber–Gribov formalism.

This paper is organized as follows. In the next section,
we present a brief review of the exclusive meson production
in the color dipole picture for proton target and its exten-
sion to the nuclear case. For the dipole–proton (nucleus)
cross section we have considered the phenomenological sat-
uration model, which is briefly described. In Sect. 3, the
dipole pomeron parameterization for vector meson photo-
production is presented and its extension to nuclear targets
is considered. The results coming out from both models
are presented and discussed in Sect. 4. Finally, in Sect. 5
we summarize our conclusions.

2 Vector meson production
in the color dipole approach

Let us introduce the main formulas concerning the vector
meson production in the color dipole picture. First, we
consider the scattering process γp → V p, where V stands
for both light and heavy mesons. Further, one extends this
approach to the nuclear case. The scattering process can
be seen in the target rest frame as a succession in time of
three factorizable subprocesses:
(i) the photon fluctuates in a quark–antiquark pair (the
dipole),
(ii) this color dipole interacts with the target and
(iii) the pair converts into vector meson final state. Using
as kinematic variables the γ∗N CMS energy squared s =
W 2

γN = (p+q)2, where p and q are the target and the photon
momenta, respectively, the photon virtuality squaredQ2 =
−q2 and the Bjorken variable x = Q2/(W 2

γN + Q2), the
corresponding imaginary part of the amplitude at zero
momentum transfer reads [29]

Im A (γp → V p) (1)

=
∑
h,h̄

∫
dz d2r Ψγ

h,h̄
(z, r, Q2)σtarget

dip (x̃, r)ΨV ∗
h,h̄(z, r) ,

where Ψγ

h,h̄
(z, r) and ΨV

h,h̄
(z, r) are the light-cone wave-

functions of the photon and vector meson, respectively. The
quark and antiquark helicities are labeled by h and h̄ and
reference to the meson and photon helicities is implicitly
understood. The variable r defines the relative transverse
separation of the pair (dipole) and z (1− z) is the longitu-
dinal momentum fractions of the quark (antiquark). The
basic blocks are the photon wavefunction, Ψγ , the meson
wavefunction, ΨV

T,L, and the dipole-target cross section,
σtarget

dip .
In the dipole formalism, the light-cone wavefunctions

Ψh,h̄(z, r) in the mixed representation (r, z) are obtained
through two dimensional Fourier transform of the momen-
tum space light-cone wavefunctions Ψh,h̄(z, k) (see more
details, e.g., in [1,4,25]). The normalized light-cone wave-
functions for longitudinally (L) and transversely (T) po-
larized photons are given by [30]

ΨL
h,h̄(z, r) =

√
Nc

4π
δh,−h̄ e ef 2z(1 − z)Q

K0(εr)
2π

, (2)

Ψ
T(γ=±)
h,h̄

(z, r)

= ±
√
Nc

2π
e ef

[
ie±iθr (zδh±,h̄∓ − (1 − z)δh∓,h̄±)∂r

+mf δh±,h̄±
] K0(εr)

2π
, (3)

where ε2 = z(1 − z)Q2 + m2
f . The quark mass mf plays

a role of a regulator when the photoproduction regime is
reached. Namely, it prevents non-zero argument for the
modified Bessel functions K0,1(εr) towards Q2 → 0. The
electric charge of the quark of flavor f is given by e ef .

For vector mesons, the light-cone wavefunctions are
not known in a systematic way and they are thus obtained
through models. The simplest approach assumes the same
vector current as in the photon case, but introducing an
additional vertex factor. Moreover, in general the same
functional form for the scalar part of the meson light-cone
wavefunction is chosen. Here, we follow the analytically
simple DGKP approach [30], which is found to describe in
good agreement vector meson production as pointed out
in [25]. In this particular approach, one assumes that the
dependencies on r and z of the wavefunction are factorized,
with a Gaussian dependence on r. The DGKP longitudinal
and transverse meson light-cone wavefunctions are given
by [30]

ΨV,L

h,h̄
(z, r) (4)

= z(1 − z) δh,−h̄

√
πfV

2
√
Nc êf

fL(z) exp
[−ω2

L r2

2

]
,

Ψ
V,T (γ=±)
h,h̄

(z, r)

= ±
(

iω2
T re

±iθr

mV
[zδh±,h̄∓ − (1 − z)δh∓,h̄±]

+
mf

mV
δh±,h̄±

)
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Table 1. Parameters and normalization of the DGKP vec-
tor meson light-cone wavefunctions. The results were obtained
using quark mass values from the saturation model (see text)

V (mV ) êV fV ωT NT BV

MeV [GeV] [GeV] [GeV−2]
ρ (770) 1/

√
2 0.153 0.218 8.682 9.00

ω (782) 1/3
√

2 0.0458 0.210 10.050 10.14
φ (1019) 1/3 0.079 0.262 8.000 8.92
J/Ψ (3097) 2/3 0.270 0.546 7.665 4.57

×
√

πfV√
2Nc êf

fT(z) exp
[−ω2

Lr2

2

]
. (5)

where êf is the effective charge arising from the sum over
quark flavors in the meson of mass mV . The following val-
ues stand for ρ, ω, φ and J/Ψ , respectively: êf = 1/

√
2,

1/3
√

2, 1/3, and 2/3. The coupling of the meson to the elec-
tromagnetic current is labeled by f2

V = 3mV Γe+e−/4 πα2
em

(see Table 1). The function fT,L(z) is given by the Bauer–
Stech–Wirbel model [31]:

fT,L(z) = NT,L
√
z(1 − z) exp

[
−m2

V (z − 1/2)2

2ω2
T,L

]
. (6)

The meson wavefunctions are constrained by the nor-
malization condition, which contains the hypothesis of a
meson composed only of quark–antiquark pairs, and by
the electronic decay width ΓV →e+e− . Both conditions are
respectively given by [4, 32]

∑
h,h̄

∫
d2r dz |ΨV (λ)

h,h̄
(z, r)|2 = 1 , (7)

∑
h,h̄

∫
d2r

(2π)2
dz

z(1 − z)
[z(1 − z)Q2 + k2 +m2

f ]

×ΨV
h,h̄(k, z)Ψγ∗

h,h̄
(k, z) = efV mV (ε∗

γ · εV ) . (8)

The above constraints when used on the DGKP wavefunc-
tion produce the following relations [25]:

ωL,T =
πfV√
2Ncêf

√
IL,T , (9)

∫ 1

0
dz z(1 − z) fL(z) (10)

=
∫ 1

0
dz

2 [z2 + (1 − z)2]ω2
T +m2

f

2m2
V z(1 − z)

fT(z) = 1 ,

where

IL =
∫ 1

0
dz z2(1 − z)2 f2

L(z) , (11)

IT =
∫ 1

0
dz

[z2 + (1 − z)2]ω2
T +m2

f

m2
V

f2
T(z) . (12)

The relations in (9) come from the normalization con-
dition, whereas the relations in (10) are a consequence of
the leptonic decay width constraints. The parameters ωT,L
and NT,L are determined by solving (9) and (10) simul-
taneously. In Table 1 we quote the results for the trans-
verse component, which will be used in our further analysis
in the photoproduction case (the longitudinal component
does not contribute at Q2 = 0). To be consistent with the
phenomenological saturation model, which we will discuss
further, we have used the quark masses mu,d,s = 0.14 GeV
and mc = 1.5 GeV. In the case of the φ meson, we fol-
low [30] and take ms = mu,d + 0.15 GeV. We quote [25]
for more details in the present approach and its compar-
ison with data for both photo- and electroproduction of
light mesons.

Finally, the imaginary part of the forward amplitude
can be obtained by putting the expressions for photon
and vector meson (DGKP) wavefunctions, (2) and (3)
and (4) and (5), into (1). Moreover, summation over the
quark/antiquark helicities and the average over the trans-
verse polarization states of the photon should be taken into
account. The longitudinal and transverse components are
then written as [25,30]

Im AL =
∫

d2r

∫ 1

0
dz

√
αemfV 2 z2(1 − z)2 fL(z)

× exp
[−ω2

L r2

2

]
QK0(εr)σ

target
dip (x̃, r) , (13)

Im AT =
∫

d2r

∫ 1

0
dz

√
αem fV fT(z) exp

[−ω2
T r2

2

]

×
{
ω2

Tεr

mV

[
z2 + (1 − z)2

]
K1(εr) +

m2
f

mV
K0(εr)

}

× σtarget
dip (x̃, r) , (14)

with σtarget
dip being the dipole–proton cross section in the

nucleon case and the dipole–nucleus cross section for scat-
tering on nuclei. For the proton case, there is a lot of phe-
nomenology for ρ and J/Ψ production using recent pQCD
parameterizations for the dipole–proton cross section [25]
or considering non-perturbative QCD calculations based
on stochastic QCD vacuum [33,34]. In the next subsection,
we briefly review the dipole–nucleon (nucleus) case, given
by the phenomenological saturation model, which will be
considered in our numerical estimates.

In order to obtain the total cross section, we assume
an exponential parameterization for the small |t| behavior
of the amplitude. After integration over |t|, the total cross
section for vectormeson production by real/virtual photons
in the nucleon (proton) case reads

σ (γp → V p) =
[Im A(s, t = 0)]2

16πBV
(1 + β2) , (15)

where β is the ratio of real to imaginary part of the am-
plitude and BV labels the slope parameter (we refer for
the values we have used to Table 1). The values considered
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for the slope parameter are taken from the parameteriza-
tion used in [3]. For the ρ case, we have taken a different
value in order to describe simultaneously the H1 and ZEUS
photoproduction data.

In addition, (13) and (14) represent only the leading
imaginary part of the positive-signature amplitude, and
its real part can be restored using the dispersion relations
Re A = tan(πλ/2) ImA. Thus, for the β parameter we have
used the simple ansatz

β = tan
(

πλeff

2

)
,

where

λeff =
∂ ln [Im A(s, t = 0)]

∂ ln s
, (16)

with λeff = λeff(WγN , Q
2) the effective power of the imag-

inary amplitude, which depends on both energy and pho-
ton virtuality. The correction coming from the real part
in photoproduction, where only the transverse component
contributes, is about 3% for light mesons and it reaches
13% for J/Ψ at high energies. It is worth mentioning that
a different computation of the β parameter, as in [25], pro-
duces a larger effect even in the photoproduction case. An
additional correction is still required for heavy mesons, like
J/Ψ . Namely, skewedness effects which take into account
the off-forward features of the process (different transverse
momenta of the exchanged gluons in the t-channel), are
increasingly important in this case. Here, we follow the
studies in [35], where the ratio of off-forward to forward
gluon distributions reads [35]

Rg (λeff) =
22λeff+3

√
π

Γ
(
λeff + 5

2

)
Γ (λeff + 4)

, (17)

and we will multiply the total cross section by the factor
R2

g for the heavy meson case.
In the case of nuclear targets, BV is dominated by the

nuclear size, withB ∼ R2
A (RA = 1.2A1/3 fm is the nuclear

radius) and the non-forward differential cross section is
dominated by the nuclear form factor, which is the Fourier
transform of the nuclear density profile. Here we use the
analytical approximation of the Woods–Saxon distribution
as a hard sphere, with radiusRA, convoluted with a Yukawa
potential with range a = 0.7 fm. Thus, the nuclear form
factor reads [9]

F
(
q =

√
|t|
)

(18)

=
4πρ0

Aq3
[sin(qRA) − qRa cos(qRA)]

[
1

1 + a2q2

]
,

where ρ0 = 0.16 fm−3.
The photonuclear cross section is given by

σ (γA → V A) (19)

=
[Im Anuc(s, t = 0)]2

16π
(1 + β2)

∫ ∞

tmin

dt |F (t)|2 ,

with tmin = (m2
V /2ω)2, where ω is the photon energy.

Having introduced the main expressions for comput-
ing vector meson production in the color dipole approach,
in what follows we present the saturation model and its
extension for the scattering on nuclei targets.

2.1 Dipole–nucleus cross section
in the saturation model

For electron–proton interactions, the dipole cross section
σproton

dip , describing the dipole–proton interaction, is sub-
stantially affected by the non-perturbative content. There
are several phenomenological implementations for this
quantity. The main feature of these approaches is that it
enables one to match the soft (lowQ2) and hard (largeQ2)
regimes in an unified way. In the present work, we follow the
quite successful saturation model [22], which interpolates
between the small and large dipole configurations, provid-
ing color transparency behavior, σdip ∼ r2, as r → 0, and
constant behavior, σdip ∼ σ0, at large dipole separations.
The parameters of the model have been obtained from
an adjustment to small x HERA data. Its parameter-free
application to diffractive DIS has been also quite success-
ful [22] as well as its extension to virtual Compton scatter-
ing [36], vector meson production [3, 25] and two-photon
collisions [37]. The parameterization for the dipole cross
section takes the eikonal-like form [22],

σproton
dip (x̃, r2) = σ0

[
1 − exp

(
− Q2

sat(x̃) r2

4

)]
,

Q2
sat(x̃) =

(x0

x̃

)λ

GeV2 , (20)

where the saturation scale Q2
sat defines the onset of the

saturation phenomenon, which depends on energy. The
parameters, obtained from a fit to the small-x HERA data,
are σ0 = 23.03 (29.12) mb, λ = 0.288 (0.277) and x0 =
3.04 · 10−4 (0.41 · 10−4) for a 3-flavor (4-flavor) analysis.
An additional parameter is the effective light quark mass,
mf = 0.14 GeV, which plays the role of a regulator for
the photoproduction (Q2 = 0) cross section, as discussed
before. The charm quark mass is considered to be mc =
1.5 GeV. A smooth transition to the photoproduction limit
is obtained via the scaling variable [22],

x̃ =
Q2 + 4m2

f

Q2 +W 2
γN

. (21)

The saturation model is suitable in the region below x =
0.01 and the large x limit needs still a consistent treatment.
Making use of the dimensional-cutting rules, here we sup-
plement the dipole cross section, (20), with a threshold
factor (1−x)nthres , taking nthres = 5 for a 3-flavor analysis
and nthres = 7 for a 4-flavor one. This procedure ensures
a consistent description of heavy quark production at the
fixed target data [38].

Let us discuss the extension of the saturation model for
the photon–nucleus interactions. Here, we follow the simple
procedure proposed in [23], which consists of an extension
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to nuclei of the saturation model discussed above, using the
Glauber–Gribov picture [39], without any new parameter.
In this approach, the nuclear version is obtained replacing
the dipole–nucleon cross section in (1) by the nuclear one,

σnucleus
dip (x̃, r2; A) (22)

= 2
∫

d2b

{
1 − exp

[
− 1

2
TA(b)σproton

dip (x̃, r2)
]}

,

where b is the impact parameter of the center of the dipole
relative to the center of the nucleus and the integrand gives
the total dipole–nucleus cross section for a fixed impact pa-
rameter. The nuclear profile function is labeled by TA(b),
which will be obtained from a 3-parameter Fermi distribu-
tion for the nuclear density [40]. The above equation sums
up all the multiple elastic rescattering diagrams of the qq
pair and is justified for a large coherence length, where the
transverse separation r of partons in the multiparton Fock
state of the photon becomes as good a conserved quantity
as the angular momentum, i.e. the size of the pair r becomes
an eigenvalue of the scattering matrix. It is important to
emphasize that for very small values of x other diagrams
beyond the multiple pomeron exchange considered here
should contribute (e.g. pomeron loops) and a more general
approach for the high density (saturation) regime must be
considered. However, we believe that this approach allows
us to obtain lower limits of the high density effects at eR-
HIC and HERA-A. Therefore, at first glance, the region
of applicability of this model should be at small values of
x, i.e. large coherence lengths, and for not too high values
of virtualities, where the implementation of the DGLAP
evolution should be required. Consequently, the approach
is quite suitable for the analysis of exclusive vector meson
photoproduction in the kinematical range of the planned
lepton–nucleus colliders (eRHIC and HERA-A). Further-
more, it should be noticed that the energy dependence of
the cross sections is strongly connected with the semi-hard
scale (the saturation momentum scale). Namely, the satu-
ration effects are larger whether the momentum scale is of
order or larger than the correspondent size of the vector
meson and the energy growth of the cross section is then
slowed down.

3 Vector meson photoproduction
in the dipole pomeron framework

Let us summarize the main features and expressions for
the non-perturbative approach given by the dipole pomeron
model [26]. This model describes the vector meson exclu-
sive photoproduction [28] data from HERA without need
of a pomeron contribution with intercept higher than 1,
thus not violating the Froissart–Martin bound. The pic-
ture of the interaction is given by a photon fluctuating into
a quark–antiquark pair and further the nucleon (proton)
interacts with it through pomeron or secondary reggeon
exchange. After that, the pair converts into a vector me-
son. In general lines, this picture is quite similar to the
one for interaction among hadrons in the Regge limit. In

particular for photoproduction, the representation of the
photon as a hadron is reasonably supported and the Regge
pole theory, with a pomeron universal in all hadron–hadron
interactions, can be safely used there.

For the pomeron contribution we follow [28] and one
considers the dipole pomeron, which gives a very good
description of all hadron–hadron total cross sections. As
pomerons and secondary reggeons would be universal ob-
jects in Regge theory, the corresponding j-singularities of
photon–proton amplitudes and their trajectories at the
photoproduction limit coincide with those appearing in
pure hadronic amplitudes. In particular, the restriction
on the pomeron intercept implied by the Froissart–Martin
bound suggests that it is a more complicated singularity
instead of a simple pole having a universal interceptαP ≥ 1,
which one would apply also to DIS. In the case of a dipole
pomeron, it is a double j-pole leading to σhh, γh

tot ∝ ln s and
unitarity requirements are covered.

Let us consider the usual Mandelstam variables, s =
W 2

γN = m2
N + 2mNν − Q2 (mN is the nucleon mass), t

(momentum transfer) and defining the scaling variable,
Q

2
= Q2 + m2

V . Making use of the latter quantity, the
dipole pomeron model can be generalized for virtual ex-
ternal particles. The scattering amplitude is given by the
contribution of reggeons at low energies and the dipole
pomeron (αP(t = 0) = 1) dominates at higher energies.
A simple pole parameterization is used for the f -reggeon.
The parameters αP(t) and αR(t) are universal and do not
depend of the reaction, whereas the couplings gi, energy
scales s0 i and slopes bi are functions of the scaling variable
and the same for all reactions.

Taking into account the features discussed above, the
differential elastic cross section is written as [28]

dσ
d t

(γ p → V p)

= 4π
∣∣AP (s, t ; m2

V ) + AR (s, t ; m2
V )
∣∣2 , (23)

where in the photoproduction case the amplitudes for the
secondary reggeons and pomeron contributions are param-
eterized as [28]

AP(W 2
γN , t ; m

2
V )

= i g0(t;m2
V )

(
−i

W 2
γN −m2

p

W 2
0 +m2

V

)αP(t)−1

+i g1(t;m2
V ) (24)

× ln

(
−i

W 2
γN −m2

p

W 2
0 +m2

V

)(
−i

W 2
γN −m2

p

W 2
0 +m2

V

)αP(t)−1

,

AR (W 2
γN , t; m

2
V )

= i gR (t; m2
V )

(
−i

W 2
γN −m2

p

W 2
0 +m2

V

)αR(t)−1

, (25)

where one takes a linear pomeron trajectory αP(t) =
1 + α′

P
(0) t, with the usual value for the slope α′

P
(0) =
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0.25 GeV−2. The reggeon and pomeron couplings are writ-
ten as

g 0,1 (t ; m2
V ) =

g 0,1m
2
V

(W 2
0 +m2

V )2
exp

(
b2

P
t
)
, (26)

gR (t ; m2
V ) =

gR m
2
p

(W 2
0 +m2

V )2
exp

(
b2

R
t
)
, (27)

where the couplings g 0,1, the energy scale W 2
0 (GeV2)

and t-slope b2
P

(GeV−2) for the pomeron are adjustable
parameters of the model; in addition m2

p is the proton
mass. The notation V stands for ρ, φ and J/ψ, whereas
R = f, π for ω. The remaining constants for the reggeons,
gf , gπ, b2

R
(GeV−2) are also adjustable parameters. One

uses the same slope b2
R

for f and π reggeon exchanges.
We refer to [28] for details on the fit procedure and the
tables for the fitted parameters. Let us stress that the only
variable that differentiates among the various vector meson
elastic cross sections is the mass of the vector mesons.

Following [28], some additional comments are in order.
The behavior in the threshold region is given by multiply-
ing the amplitudes by the correction factor (1− x̃)δ, where
x̃ = (mp + mV )2/W 2

γN and (mp + mV ) is the reaction
threshold. The power δ =

√
m2

V /m
2
0 drives the energy de-

pendence in that region, with m2
0 (GeV2) fitted from the

data. Concerning details in [28] when taking into account
the secondary reggeons, for the ρ, φ and J/ψ meson pho-
toproduction the scattering amplitude was written as the
sum of a pomeron and f contribution. Although according
to the Okubo–Zweig rule, the f meson contribution ought
to be suppressed in the production of φ and J/ψ mesons,
the f meson contribution was added even in the J/ψmeson
case. For J/ψ, it was found to be negligible whereas it is
sizable for φ meson production.

The γp → V p process can be used as input in the calcu-
lations of the total cross section for the reaction γA → V A.
A major simplification comes from the use of vector me-
son dominance, which allows one to relate this photopro-
duction cross section to the cross section for the forward
elastic V p → V p scattering. Following vector meson dom-
inance [41,42],

dσ(γp → V p)
dt

∣∣∣∣
t=0

=
4παem

f2
V

dσ(V p → V p)
dt

∣∣∣∣
t=0

, (28)

where t is the squared 4-momentum transfer between the
proton and vector meson, αem is the electromagnetic cou-
pling constant and fV is the vector meson–photon coupling,
fV = 4 πmV α

2
em/(3ΓV →e+e−), with mV the vector meson

mass and ΓV →e+e− the leptonic decay partial width. Val-
ues for f2

V /4π are given in Table II of [9]. Using the optical
theorem, the total cross section is given by

σtot(V p → V p) =
[
16 π

dσ(V p → V p)
dt

∣∣∣∣
t=0

] 1
2

. (29)

The scattering cross section from heavy nuclei can be found
by a (quantum mechanical) Glauber–Gribov calculation,

σtot(V A → V A) (30)

= 2
∫

d2b

[
1 − exp

(
− 1

2
TA(b)σtot(V p → V p)

)]
.

As referred to before, the nuclear profile function is labeled
by TA(b), which will be obtained from a 3-parameter Fermi
distribution for the nuclear density [40]. The optical the-
orem for nucleus A and vector meson dominance are then
used to find the following relation:

dσ(γA → V A)
dt

∣∣∣∣
t=0

=
αem

4f2
V

σ2
tot(V A → V A) . (31)

From this equation one can directly understand the A-
dependence in two limiting cases: in the transparent limit
there is a A2 behavior (typical of coherent processes) and
in the black disc limit we have an A

4
3 rise with the nuclear

number A. The total photonuclear cross section is then
given by

σtot(γA → V A)

=
dσ(γA → V A)

dt

∣∣∣∣
t=0

∫ ∞

tmin

dt|F (t)|2 , (32)

where F (t) is given in (18). As F (t) is A-dependent we
have that integration over t yields a factor of A− 2

3 , which
implies a A

4
3 (A

2
3 ) behavior in the transparent (black disc)

limit.

4 Nuclear vector meson
exclusive photoproduction

In this section we compute the nuclear cross section for
the exclusive photoproduction of vector mesons. Here, we
compare the QCD approach given by the saturation model
extended to nuclei targets within the color dipole picture as
well as a non-perturbative approach rendered by the dipole
pomeron model, which does also not violate unitarity at
high energies. We focus on the energy range and nuclei tar-
gets expected for the future lepton–nuclei colliders (eRHIC
and eHERA) and also for the available range to be covered
in ultraperipheral heavy-ion collisions (UPC’s) at LHC.

In Figs. 1 and 2 are shown the results for the ρ, ω, φ and
J/Ψ photoproduction cross section as a function of energy
for different nuclei, including the proton case. The results
in the pQCD and Regge approaches present a mild growth
on WγN at high energies stemming from the high energy
behavior of the models, whereas the low energy region is
consistently described through the threshold factor. For
the proton, the experimental data from the DESY-HERA
collider [43–48] are also included for the sake of comparison.
We can see that the ρ, ω and φ results vary only slowly with
energy, in contrastwith theJ/Ψ predictions.The saturation
model (solid lines) gives a flatter energy dependence in
comparison with the dipole pomeron model (dashed lines).
On the other hand, for J/Ψ the situation changes, where
the dipole pomeron model produces a mild increasing at
high energies in comparison with the saturation model.
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Fig. 1. The total cross section for ρ and ω photoproduction on proton as well as for light (Ca) and heavy (Pb) nuclei. The
solid lines stand for the QCD color dipole approach and the dashed ones for the soft dipole pomeron approach. Experimental
high energy data from the DESY-HERA collider on proton targets are also shown
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Fig. 2. The total cross section for φ and J/Ψ photoproduction on protons as well as light (Ca) and heavy (Pb) nuclei. The
solid lines stand for the QCD color dipole approach and the dashed ones for the soft dipole pomeron approach. Experimental
high energy data from the DESY-HERA collider on proton targets are also shown

Let us discuss the results coming from the color dipole
approach. For the proton case we have used (14) and (15)
and the dipole–proton cross section given by (20). The con-
tribution of the real part of amplitude is small for the light
mesons, whereas it is sizeable for the J/Ψ case. Moreover,
the skewedness correction to the J/Ψ photoproduction is
important, providing a larger overall normalization, as dis-
cussed in Sect. 2. These features remain in the nucleus case,
where we have used (19) and the dipole–nucleus cross sec-
tion given by (22). It is worth mentioning that the effective
power of the imaginary part of the amplitude is slowed down
in the nuclear case and this has implications in the cor-
rections of the real part and skewedness. The results for
photonuclear production on nuclei are consistent with the
studies in [9], except for J/Ψ , once the growth on energy is
mild at high energies in the present case. The agreement
with the proton data is consistent and the extension to

Ca and Pb targets is suitable since it is constrained by
the DESY-HERA data and the validity of the model in
the energy range considered. Furthermore, the present in-
vestigation is complementary to the ones on heavy quark
production [24] and nuclear structure functions [23] using
the saturation model for nuclear targets.

For light mesons production in γp processes, the dipole
pomeron model predicts a larger growth with the energy
than the saturation model due to the dominance of large
qq pair separations in the saturation approach. This im-
plies that σdip ∝ σ0, i.e. it is almost energy independent.
It can be checked that the integration over dipole sizes in
this dipole configuration gives an almost constant value,
without logarithmic corrections as in the DIS case. Dif-
ferently, the dipole pomeron model predicts a logarithmic
dependence in the energy. In the nuclear case, this behav-
ior implies a larger modification of the cross section in the
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dipole pomeron model in comparison with the saturation
model. In particular, we have that for the nuclear exclu-
sive vector meson photoproduction withA = Pb we predict
that the difference between the results of the models should
be a factor of about 1.5. In contrast, for J/Ψ photopro-
duction, we see that the saturation model predicts a larger
cross section for high energies. This is associated to the
color transparency regime, present due to the small pair
separation between charm and anti-charm. In this case we
have a power-like behavior in contrast with the logarithmic
dependence present in the dipole pomeron model.

A final comment on the small-t approximation consid-
ered here is in order. As shown in [49], the saturation effects
play an important role in the t-dependence of the scattering
amplitude, mostly at large t. Therefore, the approximation
presented here should be justified. Our master equation is
exactly the same as in [4, 49], which reads

dσL,T

dt
(33)

=
1

16π

∣∣∣∣
∫

d2r
∫

dz
4 π

∫
d2b (ΨV Ψγ)L,T e−ib·∆ dσqq

d2b

∣∣∣∣
2

,

where the squared momentum transfer is denoted by∆2 =
−t. Basically, our expressions (19) and (32) stand for the
differential cross section at t = 0, and further we have
used the standard approximations for the small t behavior
of the scattering amplitude on nucleon (proton) and nu-
clei. Namely, for the proton case one has considered the
usual exponential parameterization which includes the me-
son slope parameter BV . For the scattering on nuclei, this
is accounted for by the nuclear form factor F1(t), which
includes the correct size of the nuclear target. Considering
the saturation model, the qq̄ differential cross section is
given by

dσqq̄ (x, r, b)
d2b

= 2
[
1 − exp

(
− 1

2
σdip(x, r)T (b)

)]
.

(34)
The remaining issue is what the accuracy is of such an

approximation concerning the saturation region for DIS
with a nucleon/nucleus target. This can be addressed by
looking at the Fourier transform of the differential dipole
cross section for large dipole sizes (saturation limit). It
was shown in [49] [see Figs. (16) and (17) in that paper]
that the saturation effects predict diffractive dips at large
t. However, the pQCD picture remains quite the same at
small t. Therefore, we believe that the integration on t
of the complete expression, (33), should not be strongly
sensitive to the large t region, once it is sub-dominant in
the whole integrand. That is, we expect that the effect on
the total cross section is hidden in the integration, whereas
it is important at large t in the differential cross section.

5 Summary and conclusions

In this paper we have calculated the nuclear cross sec-
tions for exclusive vector meson photoproduction within

the QCD color dipole picture and Regge approach. These
models predict a cross section which does not violate the
Froissart–Martin bound at high energies. Since they de-
scribe reasonably the experimental data for nucleon (pro-
ton) target, we are confident in extending these models to
the nuclear photoproduction case.

For the first approach, we have considered the satura-
tion model, which is analytically simple and gives a good de-
scription of inclusive and diffractive ep experimental data.
This model should be valid until the full non-linear evolu-
tion effects become important, which implies the consider-
ation of the pomeron loops beyond the multiple scattering
on single nucleons estimated in the present framework. We
have verified that the energy behavior is mild, mostly for
J/Ψ where we would expect a hard behavior. This means
that an important contribution also comes from large dipole
configurations, related to the soft domain. We predict ab-
solute values for the cross section being rather large, about
4 mb and 0.12 mb for ρ and J/Ψ , respectively, for lead at
WγN ≈ 1 TeV. These values are similar to those result-
ing from [9], except for the mild energy behavior for the
J/Ψ case presented here. Concerning theA-dependence, we
have found a behavior proportional to A2/3 (A4/3) for the
cross sections of light (heavy) mesons, in agreement with
the theoretical expectations associated with a transition to
the black disc regime. In fact, for light mesons the nuclear
shadowing in the scattering amplitude is stronger than a
simpleA1/3 ansatz, as discussed in [23] when computing the
nuclear structure functions. Namely, the saturation scale,
which drives the A-dependence, between the proton and
central nucleus is not simply ∝ A1/3, but has a prefactor
which makes the result smaller.

The results presented here can be contrasted, at least for
the J/Ψ case, with the results of [50] (hereafter the GLLMN
model), where the vector meson production (including DIS
production) has been addressed in the color dipole pic-
ture. That analysis considers the Glauber approach and a
numerical solution of the Balitsky–Kovchegov non-linear
evolution equation for the imaginary part of the dipole–
nucleon scattering amplitude [51]. The comparison is shown
in Fig. 3, where the solid lines represent the results from the
saturation model (SAT-MOD) and the dashed lines are the
numerical result of the GLLMN model. For the proton case
(left panel), the saturation model gives a steeper growth
on energy, whereas GLLMN produces a mild behavior at
large energies. The upper/lower GLLMN curves stand for
maximum and minimum values for the total cross section,
obtained considering two different values for the correction
factor KF (we refer to [50] for more details). It should be
noticed that the behavior near threshold is also different
in the two models. For the nucleus case (right panel), the
behavior on energy remains basically the same as for the
proton. The GLLMN model gives a slightly lower cross
section at large energies, which is about 8% smaller than
the result for the saturation model atWγA ≈ 400 GeV and
presents a flatter behavior on energy. These features are
directly associated with the different dipole–nucleon cross
sections used in the two approaches. However, considering
the relative errors of order of 15–20% in the predictions
from [50], as stated by the authors, we can conclude that
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Fig. 3. The total cross section for J/Ψ photoproduction for a proton target (left panel) and for a lead nucleus (right panel).
The solid lines stand for the saturation model (SAT-MOD) and the dashed ones for the GLLMN model [50]

the agreement between the results is satisfactory, despite
the distinct approximations made in the calculations.

Concerning the non-perturbative approach, we have
considered an unitarized pomeron model and computed
consistently its extension for nuclear targets. The energy
dependence is logarithmic in any case, and the nuclear ef-
fects seem to be stronger than in the saturation model for
heavy nuclei. The nuclear dependence follows a similar be-
havior as for the saturation model. However, it should be
noticed that we have used a quantum mechanical Glauber–
Gribov calculation for nuclei targets in contrast with the
results presented in [9]. As pointed out in [52], the present
procedure gives a cross section higher than the classical
mechanical model used for the predictions in [9]. For in-
stance, in [52] has been found a difference by a factor 2.5
in ρ photoproduction at RHIC energies.

Our results demonstrate that the experimental analy-
ses of nuclear exclusive vector meson photoproduction in
the future electron–nucleus colliders eRHIC and HERA-A
could be useful to discriminate between the different the-
oretical scenarios, mainly if heavy nuclei are considered.
An alternative until these colliders become reality is the
possibility of using ultraperipheral heavy ion collisions as
a photonuclear collider and study vector meson produc-
tion in this process. Moreover, such processes can also be
studied outside the heavy ion mode. For instance, in [53]
the photoproduction of heavy vector mesons in pp̄ colli-
sions at the Fermilab Tevatron and in the pp collisions at
CERN LHC have been discussed, since energetic protons
also have large electromagnetic fields. These photoproduc-
tion reactions probe the gluon distribution in the proton
at very small x values [54], which open a new window to
study parton saturation effects in exclusive processes. In
a separated publication we will study these possibilities,
considering the approaches discussed in this work.
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