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Abstract. We study in detail the main features of the unitarized Regge model (CFKS), recently proposed
to describe the small-Q2 domain. It takes into account a two-component description with two types of
unitarized contributions: one is the multiple pomeron exchange contribution, interacting with the large
dipole size configurations, and the other one consists of a unitarized dipole cross section, describing the
interaction with the small size dipoles. We analyze the ratio between soft and hard pieces as a function
of the virtuality, and also compare the resulting dipole cross section to that from the saturation model.
Diffraction dissociation is also considered, showing the scaling violations in diffractive DIS and estimating
the corresponding logarithmic slope.

1 Introduction

The study of a new regime of QCD, that of a high den-
sity of partons, has drawn much attention in the last years.
The key discovery was the observation at HERA of the fast
growth of parton densities (mainly gluons) as the energy
increases in experiments of deep inelastic scattering. Tak-
ing σtot ∼ sα(0)−1 (F2 ∼ x−α(0)+1), values of ∆ ≡ α(0)−1
in the range 0.1–0.5 have been reported, depending on the
virtuality Q2 of the photon. However, this steep growth
should be tamed, leading to the expected limit given by
the Froissart bound (σ <∼ (log s)2 as s → ∞) [1]. This
boundary has been derived from very general properties
of the S-matrix, namely unitarity. A cross section grow-
ing as any positive power of s would violate unitarity at
asymptotic energies. Thus, theoretically, some kind of sat-
uration of this growing due to unitarity effects is expected
[2]. The dynamics of such very dense partonic systems is
very interesting and has been studied by many authors
both in DIS [3] and in high energy nuclear interactions
[4].
The description of the γ∗p collision in the frame where

the proton is at rest is very appropriate to include unitar-
ity corrections. In this frame, the virtual photon γ∗ emit-
ted by the incoming lepton fluctuates into a qq̄ pair. This
system then suffers multiple interactions with the proton.
Such multiple interactions restore unitarity even in the
case where it would be violated in a single collision. In the
model developed in [5,6], all these corrections have been
taken into account, and their strength is constrained by
diffractive data. Therefore, the ratio σdiff/σtot is related
to unitarity corrections. This is a common feature to any

realization of the Gribov model [7], where the amount of
rescatterings is related to diffractive production by means
of AGK-cutting rules [8].
In parton language, the increasing number of gluons

in a proton as x → 0 makes gluon fusion very probable.
This fusion produces gluons of higher longitudinal momen-
tum, stopping the growth of those with the smallest x. In
this way unitarity is not violated. Such a procedure was
implemented on theoretical grounds from QCD through
multiladder exchange using the GLR formalism [3], giving
rise to non-linear effects in the standard linear DGLAP
approach. The outstanding quantity emerging from the
unitarization procedure is the saturation scale Q2s (A, x, b),
setting the region where saturation phenomenon starts
to be meaningful. The QCD-inspired phenomenological
model [9], for instance, introduces a quite clear identifica-
tion for this scale: Q2s (x) ∼ 1/R20(x). There the saturation
radius R0(x), related with the mean transverse distance
between partons, is properly extracted from the small-x
data from HERA.
In any of the descriptions, the unitarity corrections are

given by the non-linear terms, and the phenomenon of sat-
uration is expected when these terms become important.
Since the gluons are the partons driving the high energy
processes, the signals of the saturation effects should ap-
pear in the observables probing the gluonic content of the
proton (or the nucleus) [10]. In the nuclear case, the gluon
density is ∼ A1/3 higher than in the proton. This makes
unitarity corrections more important for nuclei, produc-
ing the well-known shadowing of F2 [11]. Saturation will
thus start at smaller energies in nuclei than in protons.
Such a fact is the main reason for the increasing interest
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in the forthcoming eA experiments, where the nucleus will
be studied at energies higher than currently available [11].
The open question is if the unitarity corrections have

already shown up at present energies and if the saturation
has been reached. In particular, at HERA, they should
appear in the small-x and small-Q2 data [12]. There are
several proposals in this direction [9,13], mainly for the
case of heavy-ion collisions [14], but a definitive answer is
still missing. The main difficulty that we are faced with
is the saturation scale Qs, staying in the transition in-
terval of 1–2GeV, which leads to hiding of the effects in
more inclusive observables. In this kinematical region the
standard QCD perturbative expansion is expected not to
be completely reliable. For instance, higher twist terms
to the linear approach should be taken into account in
such a domain. Moreover, this is the transition region be-
tween the soft and hard domains, i.e. the perturbative ap-
proaches (including saturation or properly adjusting ini-
tial conditions) and the Regge-inspired models are com-
peting, and both frameworks seem to describe the current
small-x data.
Bearing in mind that the saturation phenomenon is

required in a complete understanding of the high energy
reactions, and that a consistent treatment of both inclu-
sive and diffractive processes should be taken into ac-
count, in this work we study derivative quantities using
the Regge unitarized CFKS model [5,6]. In this hybrid
model, both soft (multiperipheral pomeron and reggeon
exchanges) and hard (dipole picture) contributions are
properly unitarized in an eikonal way with triple pomeron
interactions also included. This approach describes the
transition region and can be used as initial condition for a
QCD evolution at high virtualities [15]. The extrapolation
to the higher-Q2 domain is also performed here, checking
the behavior of the model without including QCD evolu-
tion. We discuss the similarities and/or connections with
the phenomenological saturation model [9], stressing that
a QCD evolution is required for a correct description of
higher Q2 in the inclusive case. For the diffractive case,
such a procedure is not formally required, since the non-
perturbative sector is dominant in this case. The diffrac-
tive structure function is extrapolated to the available
larger-Q2 range. In particular, the diffractive logarithmic
slope, which has been claimed to be a possible new ob-
servable to disentangle the dynamics [16,17], is calculated
and compared with the result from the saturation model.

2 The inclusive case

We start by briefly reviewing the CFKS approach. It in-
terpolates between low and high virtualities Q2, which are
related to the dipole separation size, r, at the target rest
frame, considering a two-component model [5,6]. Consid-
ering the unifying picture of the color dipoles, the sepa-
ration into a large size (in [6] it is called L) and a small
size (called S in [6]) components of the qq̄ pair is made in
terms of the transverse distance r between q and q̄. The
border value, r0, is treated as a free parameter – which
turns out to be r0 ∼ 0.2 fm. Hereafter we use the notation

soft for the large size configuration and hard for the small
size one.
The soft component considers multiple pomeron ex-

changes (and reggeon f) implemented in a quasi-eikonal
approach [18]. It also includes the resummation of triple
pomeron branchings (the so-called fan diagrams). The ini-
tial input is a phenomenological pomeron with fixed inter-
cept αP(0) = 1+ εIP = 1.2 (further changes are due to ab-
sorptive corrections), and an exponential parametrization
for the t dependence is considered. In the impact parame-
ter representation, the b-space, it looks like (in photopro-
duction Q2 = 0):

χIP(s, b) � CIP
fIP

Bel(s)

(
s

s0

)εIP

exp[−b2/Bel(s)], (1)

where Bel(s) is the elastic slope, which is parametrized as
in the hadronic reactions. The fIP is an effective pomeron–
proton coupling. In the electroproduction case, the initial
input is described in an analogous way:

χIP(s, b,Q2) � CIP
R(x,Q2)

(
Q2

s0 +Q2

)εIP

x−εIP

× exp[−b2/R(x,Q2)], (2)

corresponding to the Regge parametrization for the ampli-
tude of the soft pomeron exchange, similar to the Donnachie–
Landshoff one [19]. The function R(x,Q2) comes from
the exponential assumption about the t dependence and
further transformation to the impact parameter repre-
sentation. We shall remark here that, in the CFKS ap-
proach, the authors consider a pomeron fixed intercept of
αP(0) = 1 + εIP = 1.2, εIP = 0.2 (a semi-hard value rather
than a soft one). The unitarization effects, described by
multipomeron exchanges, lead to an effective intercept

εeff =
d�nF2(x,Q2)

d�n
(
1
x

)

that decreases as Q2 or x decrease due to the increase of
shadowing effects.
The resummation of the triple pomeron branches is

encoded in the denominator of the amplitude χnIP, i.e. the
Born term in the eikonal expansion. Moreover, the cor-
rected amplitude is eikonalized in the total cross section,

χnIP(x,Q2, b) =
χIP(x,Q2, b)

1 + aχ3(x,Q2, b)
, (3)

σnIP(x,Q2, b) � 1− exp [−χnIP(x,Q2, b)
]
, (4)

where the constant a depends on the proton–pomeron and
the triple pomeron couplings at zero momentum transfer
(t = 0). References [5,6] give a more detailed discussion.
The eikonalization procedure modifies the growth of

the total cross section from a steep power-like behavior
to a milder logarithmic increase. The above parametriza-
tion corresponds to the interaction with the large size
dipole configurations and therefore dominates in low-Q2
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values. The total soft contribution is obtained by integrat-
ing over the impact parameter the cross section at fixed
b, σnIP(x,Q2, b),

σsoft(s,Q2) = 4
∫
d2bσsoft(s,Q2, b). (5)

The hard component is considered in the color dipole
picture of DIS [20]. The dipole cross section, modeling the
interaction between the qq̄ pair and the proton, σdipole
(x, r), is taken from the eikonalization of the expression
above χnIP(s, b,Q2) already corrected by triple pomeron
branching (the fan diagrams contributions). The configu-
rations considered are those with a small transverse dis-
tance between the quark–antiquark pair in the dipole. The
corresponding cross section is extracted by considering
the contributions coming from distances between 0 and
r0 = 0.2 fm (1GeV−1) – see discussion above –, whereas
for r > r0 the contributions are described by the soft
piece already discussed. In such small distances, pertur-
bative QCD is expected to work. The total cross section
considering this dipole cross section is expressed as [6]:

σhardtot (x,Q
2) =

∫ r0

0
d2r

∫ 1

0
dα|ΨT,L

γ∗q (α, r)|2σdipoleCFKS(x, r),

(6)

σdipoleCFKS(x, r) = 4
∫
d2bσnIP(x,Q2, b, r), (7)

σnIP(x,Q2, b, r) � 1− exp[−r2χnIP(x,Q2, b)], (8)

where T and L correspond to transverse and longitudi-
nal polarizations of a virtual photon; ΨT,L

γ∗q (α, r) are the
corresponding wave functions of the qq̄ pair.
The r2 dependence is introduced in the Born term

of the eikonal expansion, presented in the last expres-
sion above, in order to ensure the correct behavior deter-
mined by the color transparency: for small r the growth
in radius should be proportional to r2, σnIP(x,Q2, b, r) �
r2f(x,Q2, b). This condition, valid for fixed s and Q2 as
r → 0, is a property of the single pomeron exchange. Thus
a factor r2 has been introduced in the eikonal of (8).
Another difference between the soft and hard compo-

nent is the fact that the contribution of the f -exchange
(reggeon exchanges) to the hard component is very small,
and has been neglected [5].
The weight of each contribution (soft and hard) in the

total cross section [and F2(x,Q2)] can be obtained, pro-
viding an analysis of the role played by each piece of the
model. Such a procedure allows us to explicit the regions
of x and Q2 where the sectors contribute. In Figs. 1 and 2
we calculate the ratio RSOFT, defining the fraction of the
total contribution arising from the soft sector:

RSOFT(x,Q2) =
σsofttot (x,Q

2)
[σsofttot (x,Q2) + σhardtot (x,Q2)]

. (9)

From Fig. 1 we note that the soft contribution slowly
increases as the momentum fraction x goes to higher val-
ues, almost independently of the virtuality Q2. This is due
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to the fact that higher reggeon trajectories f are included
in the soft part, but not in the hard one. Regarding fixed
virtualities, the soft piece dominates completely the total
cross section at Q2 = 0.045. As Q2 increases the con-
tribution goes down. For instance, at Q2 = 10GeV2 it
contributes about half of the cross section. Extrapolating
up to higher virtualities, the soft piece saturates at about
5–15% of the total result.
Figure 2 clearly shows that the soft piece is dominant

at Q2 = 0.01 and decreases as the virtuality grows. The
behavior is monotonic, almost independent of the momen-
tum fraction x. For instance, at Q2 = 100GeV2, it con-
tributes with 20% at x = 10−2 and 5% at x = 10−5.
Such a reduction on the soft content is related to the cou-
pling of the photon to the asymmetric dipoles g2soft(Q

2) ∼
1/(1 +Q2/m2

soft) and to the enhancement in Q
2 provided

by the photon wave function (at high Q2 	 Q2s (x) the
symmetric dipole configuration provides the scaling with
logarithmic violation).
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An interesting issue is the relation between the dipole
cross section coming from the CFKS model and the phe-
nomenological one of Golec-Biernat–Wüsthoff [9]. The
GBW cross section is parametrized by

σGBW(x, r) = σ0
[
1− exp(−r2/4R20(x))

]
, (10)

R20(x) =
(
x

x0

)λ

GeV−2, (11)

where σ0 = 23.03mb properly normalizes the dipole cross
section. The remaining parameters are λ = 0.288 and
x0 = 3.04×10−4, all of them determined from the small-x
HERA data. The R0(x) is the main theoretical contribu-
tion, defining the saturation scale, which is related with
the taming of the gluon distribution at small x (unitar-
ity effects) [3]. The above expression has been used to de-
scribe both inclusive and diffractive structure functions, in
good agreement with the experimental results. The com-
parison between this approach and the CFKS dipole cross
section is shown in Fig. 3. We have plotted the nondimen-
sional result, since the normalization for the CFKS dipole
cross section, σ0, is not determined from data. Indeed, for
a comparison with experiment using only the hard piece
from CFKS, the adjustable parameters would have to be
refitted. We consider here that this can be absorbed by
a suitable normalization, and carry the r interval beyond
the range set by the model (r < r0). The main feature
of the GBW parametrization is that it ensures that the
dipole cross section grows linearly with r2 at small trans-
verse separation, whereas it saturates at large size config-
urations. The picture emerging from the CFKS is slightly
different, presenting a mild (logarithmic) increase with r,
away from huge separation sizes that shift the saturation
scale up to very high virtualities. Although continuously
and smoothly increasing with the radius, in the CFKS ap-
proach the cross section underestimates the GBW one for
all r.
A comment on the normalization is in order. The GBW

formula would correspond to the hard part of CFKS with-
out triple pomeron (a = 0), and taking a step function
for the profile instead of a gaussian. This makes unitarity
corrections stronger. In any case, we can compare GBW
and the hard part of CFKS: taking a = 0 and exp[−b2/
R(x,Q2)] −→ Θ[b2 − R(x,Q2)] in CFKS, doing the inte-
gral in b and comparing with GBW, one obtains σdipoleCFKS
(x, r) = σ0

[
1− exp(−r2χIP(s,Q2)], with σ0 = πR(x,

Q2) ∼ 20mb, in agreement with GBW value. This value,
however, depends logarithmically on x and Q2, because of
the increase of the proton radius, which is taken into ac-
count in (2). The comparison between the exponents (the
eikonals, which contain most of the parameters in CFKS
case) of the above expression and of (10) is less clear, as
the x−dependences are different and the triple pomeron
cannot be neglected in this case.

3 The diffractive case

The diffractive sector in the CFKS approach is constructed
by a three-component model [5,6], using the AGK-cutting
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Fig. 3. The comparison between the saturation dipole cross
section from Golec-Biernat–Wüsthoff (GBW) and CFKS as a
function of the transverse dipole separation r at fixed x (s)

rules to relate the elastic multiple scattering amplitude
to the inelastic diffractive contribution [8]. The first term
comes directly from the soft piece, the second one from
the triple pomeron (and the reggeon f) interaction and
the last one from the hard (dipole) piece. We notice that
these contributions define only the energy, s (and momen-
tum fraction x), and the virtuality dependences. The spec-
trum on β is introduced by hand, based on earlier soft and
hard (pQCD) calculations. The first component is written
as

FD
2(soft)(x,Q

2, β) ∼ F
D(Born)
soft KL(s,Q2)

× β−εIP(1− β)np(Q2), (12)

where FD(Born)soft ∼ χni(s,Q2)χnk(s,Q2) is the low-
est order (Born) approximation for that function, with
i, k = IP, f . The suppression factor due to higher order
multipomeron exchanges is KL(s,Q2) = σ

(0)
soft/σ

(0)Born
soft ,

with σ(0)soft = 4g
2
L(Q

2)
∫
d2b[σsoft(s,Q2, b)]2. Further details

can be found in [6]. The β dependence is taken from the
typical CKMT pomeron structure function, which is con-
nected with the deuteron structure function by the iden-
tification x → β [21].
The hard contribution is expressed by

FD
2(hard)(x,Q

2, β) ∼ σ
(0)L
hardβ

3(1− 2β)2

+ σ
(0)T
hardβ

2(1− β), (13)

where the β dependence comes from a pQCD guess for
the pomeron structure function [22]. Also, σ(0)T,L

hard =
∫
d2b

[σT,L
hard(s,Q

2, b)]2. Notice that (13) contains the higher
twist terms of the parametrization [22]. The leading twist
component would be described in this approach by the L
component [6] (named soft here).
Regarding the β dependence, the region for medium

values (β ∼ 0.4) is dominated by the soft term, which
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in pQCD is associated to the transverse photon contribu-
tion [22]. The small β region is dominated by the triple
pomeron piece, in agreement with the pQCD expecta-
tions, which is obtained by considering the higher twist
qq̄+gluon configuration. Moreover, the hard contribution
is leading in the large-β region, associated in this case
with a suppression of the transverse contribution and an
enhancement of the longitudinal piece in comparison with
the expected pQCD behavior [22].
The CFKS approach describes with good agreement

the diffractive DIS data in the broad range 0 < Q2 <
18GeV2. In order to study the model in comparison with
the pQCD approaches, here we extrapolate the predic-
tion for the diffractive structure function of the CFKS ap-
proach for higher values of the virtuality. We use the pre-
liminary ZEUS analyses, considering the Q2 dependence
at fixed massMX and center-of-mass energyW [23]. These
data provide information at both small and large virtuali-
ties bins. It is interesting to compare the predictions of the
CFKS model and the saturation model [9] for the diffrac-
tive structure function. Both models are depicted in the
plots of Fig. 4.
The agreement of the CFKS approach with the data

is remarkable even at high virtualities, where the model is
expected not to be reliable. However the interpretations
at low Q2 are quite different. In the saturation model, the
reliability of the pQCD calculation is extended to smaller
virtualities through the saturation scale R0(x), where the
dependence is mostly due to the longitudinal photon con-
figuration, by the higher twist qq̄ + gluon. Instead, in the
CFKS model the main contribution in the region of inter-
est comes from the soft triple pomeron contribution.
As a final study, we perform the calculation of the

Q2 logarithmic slope of the diffractive structure function
F

D(3)
2 . The motivation is that this observable is a po-
tential quantity to distinguish soft and hard dynamics in

diffractive DIS [16,17]. The measurements of the deriva-
tive quantity of the F2-slope on Q2 have lead to renewed
interest in testing the matching of hard and soft ap-
proaches and have provided constraints for the saturation
formalisms. The reported turnover on the x dependence
has been associated with the transition region between
the soft and hard domains. When we focus on diffractive
DIS, in particular the structure function FD

2 , the situa-
tion is far from clear: initially considered as a predomi-
nantly soft process, the experimental results suggest that
the diffractive cross section at HERA contains hard and
soft components.
Still, diffraction stands as a more profitable field to

study saturation effects than the inclusive case. This
comes from the fact that, in DDIS, the large dipole size
configuration (soft content) is more relevant than in the
DIS reaction [9]. Although there are quite different ap-
proaches, based on different physical dynamics, applied
to the interpretation of the diffractive measurements, al-
most all of them fit the data set properly [24]. Therefore a
derivative quantity, the diffractive logarithmic slope, has
been proposed. It can help to distinguish the underlying
dynamics in diffractive DIS, settling the validity range of
the different approaches, if such an observable is mea-
sured. Here, we have calculated the slope as a function
of the pomeron momentum fraction xIP and we have per-
formed a comparison between the CFKS and the Golec-
Biernat–Wüsthoff (GBW) approaches.
In this calculation, the main feature of the GBW ap-

proach is the presence of positive and negative slopes, con-
trary to the pQCD non-saturated case [17]. In the pQCD
model without saturation, the parameters fixed by the pre-
viously available data lead to a predominantly positive
slope for the whole kinematical region, even at large Q2
(large β). We notice that this situation can be changed by
a further analysis, considering the updated measurements
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of H1 [24], which have enlarged the available kinemati-
cal range and have provided new measurements for the
regions previously covered.

It is important to emphasize that a transition in the
slope takes place in the preliminary ZEUS analyses of
diffractive DIS [23] at large virtualities, where the sat-
uration model [9] is considered to describe the Q2 depen-
dence of the diffractive structure function. In this model,
the analysis is performed using MX and W as kinemat-
ical variables instead of β and xIP, due to the similarity
of the behaviors of dσ/dMX and σtot(γ∗p) in the same
kinematical range. There, the growth of xIPFD

2 versus Q2
is stopped at Q2 ∼ 10GeV2 and decreases smoothly for
larger virtualities. The transition region corresponds to
β ∼ 0.2 for MX = 5GeV and β ∼ 0.07 for MX = 11GeV
[17], β = Q2/(Q2 +M2

X). These features can be verified
observing the plots of Fig. 4 at large virtualities.

Here, we compared the results from the saturation
model with those from the model analyzed in this work.
They are shown in Fig. 5, where the slope is calculated
as a function of xIP for fixed β and at two different vir-
tualities. We choose Q2 = 1 and 10GeV2 because this
is the region where the CFKS model is formally valid.
However, we emphasize that it can be extended to higher
virtualities in the diffractive case, since the soft compo-
nent is stronger than in the inclusive case. The saturation
model produces a transition between positive and nega-
tive slope values at low β = 0.04 (upper plots), while it
shows a positive slope for medium and large β. Instead,
the CFKS approach presents a positive slope for the whole
Q2 and xIP ranges, flattening at large β, similarly as the
non-saturated pQCD calculations. These features can be
probed if the slope is measured and could help the under-
standing of the underlying dynamics. Finally, the results
above, mainly the ones for the FD

2 structure function, cor-
roborate the CFKS model as a consistent hybrid approach

to describe diffractive DIS, with a close connection to the
above mentioned pQCD calculations.

4 Conclusions

A deeper understanding of the saturation phenomenon
is required to perform reliable estimations for the cur-
rent and forthcoming high energy reactions. The satura-
tion scale, which sets the onset of the unitarity correc-
tions, is found to be in the transition regime of low x and
Q2. In this domain, both Regge-inspired phenomenology
and improved pQCD calculations (perturbative shadow-
ing, higher twist), considering unitarity effects, are able
to describe the data with high precision. The most advan-
tageous ones are those describing in an unified way the
inclusive processes as well as diffractive ones. In this let-
ter we have considered the two-component multireggeon
model of [5,6] and calculated some related quantities.
The ratio of the soft content in the model has been

calculated, verifying that it dominates at low Q2, dimin-
ishing at higher virtualities. This shows that the unitarity
corrections in this model are more important in the soft
component than in the hard one. Moreover, these correc-
tions are higher twist at large Q2 in the second case.
We have also studied the robustness of the CFKS

model to describe a large range in Q2 without consid-
ering a pQCD evolution. A good hint to answer this ques-
tion comes from the analysis of the hard piece (symmet-
ric dipole configurations), in particular the corresponding
dipole cross section. We have found that the r-saturation
of this quantity lies at higher values of the radius than in
the phenomenological GBW model. A similar considera-
tion is far from clear for the diffractive case, where the
non-perturbative (soft) component plays a more impor-
tant role.
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We have extrapolated the estimations for the diffrac-
tive structure function at high virtualities, verifying that
a broad description is obtained, and that it is in reason-
able agreement with the saturation pQCD model. An ad-
ditional quantity has been proposed in order to describe
the dynamics of the diffractive dissociation [16,17], in par-
ticular the diffractive slope. It has been calculated using
the CFKS model, and its main feature is a behavior sim-
ilar to the one predicted by pQCD calculations [22].
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22. J. Bartels, M. Wüsthoff, J. Phys. G Nucl. Part. Phys. 22,
929 (1996); J. Bartels et al., Eur. Phys. J. C 7, 443 (1999)

23. ZEUS Collaboration, Eur. Phys. J. C 6, 67 (1999); ZEUS
Collaboration, Measurement of the diffractive cross section
at Q2 < 1GeV 2 at HERA, in Proceedings ICHEP2000,
Osaka, Japan (2000) [plenary session 12, paper 435]

24. H1 Collaboration, Measurement of the Diffractive Struc-
ture Function F

D(3)
2 (xIP, β, Q2) at HERA, in Proceedings

Conference EPS2001 Budapest, July 12 (2001); and in Pro-
ceedings Conference Lepton–Photon2001, July 23 (2001)


