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. dakeman . "'I‘n'{ . SO .:‘\!I",_-_‘,"_.-’-\‘..".,111_-1-1“-: 17 has pPropo-
sed the classification of rough random surfaces into
Type | (tractal surfaces), lype 11 tsmooth surfoces)
and a new intermediate Type 111 ¢lass with fractal nor-
mal. This may be formulated in the context of the houn-
dary integral method for locally Lipschitz surlaces (see
Verchera, J. Fncet Anal, 59, 1984, 572-611; Costabel,
S.LLAML L Math Anal; 19, 1988, 613-6260), The standard
theory (Colton and Kress, Integral Fauation Methods in
scattering Theory, Wiley, N.Y., 1983) may be extended to
this case. Combining this existence theory with the null
tield we pay derive low order spoctral appreximation to
scattering by plane order incident waves by rough Fluted

[vpe TIT cvlinders.
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0 Introduction

Scattering from fractal objects has received growing interest in recent ye-
ars in a wide range of theoretical and experimental Investigations involyving
acoustic, eletromagnetic, neutron scattering etc. At least two excellent re-
view articles have been published [12], [38] and one recent book hy Olgilvy,
deals in some way with this topic while a variety of experimental results are
reviewed in the papers by Courtens and Vacher [7] and Teixeira [34], and
more classical techniques on rongh surfaces may be seen in {9]. In [12] there
18 reviewed a good deal of the work of Jaggard and his associates, published
in papers by Jaggard and Kim [13], [14], [15]: Jaggard and Sun [16], [17],
(18], [19] and Grebel and Jaggard [11]. Earlier and seminal contributions
were given by Berry and Blackwell [3] and Berry [2]. In his papers [20], [21]
Jakemann has proposed a classification of surfaces in three types:

(1) Fractal surfaces which are continuous but. non-differentiable with po-
wer law spectrum.

(I} Smoothly varying surfaces differentiable to all orders with Gaussian-
like spectral properties.

Type (I) generate only diffraction and interference effects. Type (II)
generate geometric optic effects associated to rays or normals to scattered
wave fronts. He proposed as well an intermediate class of random surfaces
of type (IIT). where the surface height is continuons differentiable but the
slope a fractal. The concept of ray is valid for this model but in the absence
of higher order surface derivatives no geometrical catastrophes occur in the
propagating wave fronts. A modification to (I) has been proposed with the
notion of band limited ”fractal® surfaces (see [12]. Both the type [II case and
band Iimited fractal case can be given an integral equations formulation. A
type 11 case was analised by Macaskell in {26] in an attempt to establish the
existence of enhanced backscatter. however, that analysis is not convincing.

In the present papers we try to deal with some type I cases and the
band Limited fractal situation in the same null field appromximation (see
Colton and Kress {4] Thorem 3.44 p 104), Waterman [36],[37] and Martin
[29]. The only reasonably rigorons treatment of such problems of which one
has knowledge is that given in the papers by Jaggard and Sun [19], although
some periodic cases are dealt with in [23). Our discussion is hmited to very
large incident frequency and examines mean scattering cross-section at large
distances from the scatferer,



1 The existence of scattered waves

We consider the scattering of a plane inciedent wave u; = exp k(¢ sinw —
ycosw) by an cylinder D given by the equation R(¢) = 1+ § F(¢.7r).0 <
¥ < 2x, under soft acoustical conditions, that is say under a Dirichlet con-
dition. F(¢,-) is a random variable and we work under the condition that
F{é,-) is locally Lipsachitz, which gnaratees the existence of F'(¢,-) almost
everywhere, We also work under the hypotheses that F is a band limited
random Weierstrass function £

m=—1

Flg)=0C > a"cos(kd*6 + é,). <a <1,

n=0
k3" integers, n = 0, .... M — 1 and where the ¢, are independent uniformly
distributed random variables.

gkl = o
¢ = 1—a2¥

which sets the standard deviation equal to unity Ad = 1 + & is the so-called
ronghness dimension and § is chosen to satisfy R(¢) > Ry > 0, with some
constant f;. Obviously, for the band limited fractal, F' is infinitely smooth,
but as M — oc, it will be seen that all the differentiability is lost.

We assume that the total wave takes the form

u = + 1y, {1)
so that u, satisfies
(A + k), =0, z € D, (2)

u, = —y;, on 99, together with the Sommerfeld radiation condition at infi-
nity. Then the free space fundamental solution for the Helmholiz equation
is given by

@(e,y) = TH (k|2 =y ).

Formally we define integral operators K and S by

(Se)x) =2 [ (e, n)ély)do

UFHGS
SIST=-MaS DF BIBLIOTECAS

BiBLiutrCa SFIURIAL DE MATENMATICA



and

(E¥)e) =2 [ ®(z, y)(y)do

Under the hypothesis that F is locally Lipschitz continuons one is up
against the natural limit for integral operator methods. We recall that such
methods were extended in recent years to (-houndaries by Fabes, Jodeit
and Riviere in the paper [9] and in a far-reaching and delicate extension to
Lipschitz domains by Verchota in his paper [35]. Further interesting results
have been oftained by Costabel in [6] while a general discussion of the C*-
theory is given in the book by Colton and Kress [4].

Various authors have suggested that solutions of the exterior Dirichlet
problem (2) should be sounght in the form of a combined double and single
layer potential, viz:

o dvly)

i
= /‘39 ay) (2 —y) —n®(z,y))¢ly)do, z € D, (3)

with some u > 0.

It may be seen as in the paper by Verchota and the book of Colton and
Kress that (3) provides a solution of (2) provided that the density v satisfies
the boundary integral equation

w4 Ay — Sy = —2u,, {4)

considered in the spaces L2{(8D) or HY(ID).

I the boundary regularity is relaxed to that of a Lipschitz domain it must
be noted that K is not a compact operator and a special argument has to be
given as in Verchota. [35] and Colton and Kress [4].

That [4] should hold is established using the generalised relations given
[35].

To be brief the combined double and single layer potential method func-
tions as in the classical ("*-case, avoiding the problem of eigenvalues of the
dual interior Neumann problem. We conclude that {3) and {4) establish the
existence and uniqueness of a scattered wave satisflying (2).

Perhaps. it is relevant to observe that the natural conditioning number
associated with (4) has been studied by Kress and Spassov in [24] and for
the cylinder the optimal parameter to minimise the conditioning nmumber has
been determined for & € [0, 8]. The conclusion of these numerical studies is



that with same local fluctuation the conditioning number n{£) grows with &,
k> 1/2.
Finally, let us note that an elementary representation theorem gives:

b du
s = /”"’ o a:(y)q)}du_/{ “We ~ a

z € D", (5)

A numencal solution of (4) for large wave lengths & is complicated (see
for example [1] and for more recent results on random surfaces [28]. [31], [8]).
In order to simplify, this problem we prefer to use asymptotie results and
the null field method, sometimes refered to as (Oswald - Oseen) extinction
theorem (see for example [32], section 3.3)

2 The null field method

We are interested in the averaged scattering cross-section at large distance

o(k.9):
2
olk,8) = im B(zer i) Ly

| wilz,) |2
Recalling the representation
aP 311-,' &
:/ (u.‘g;—“@;‘q))a i IED,
together with (5) we see that
ko _f_ (1) _
w,(x) = av)(y)b' (k |z = y|)do(y).

Also by the asymptotic behaviour of the Hankel function we obtain

1 ~ R =32
w;(2) = ehp i(kr 4] Wkrf'(k,ﬁ)-I-O(r )

J
Fik,9) = = [_(52) () exp(=ikpeos(s — é))doly).  (6)

where



Then it follows that
ok, 8)= (4k)E|Fk,OF. (7)

We recall the Graf addition formula, valid for r < p (see [27] section 3.9
p 107):

Bk |2 =y ) = 3 HOUp) (k)09 (3)

-

Using the representation formula for radiative solution, we see that

[ w5 - ey =0, e D (9)

From (&) and (9), we obtain the moment expression {see Waterman [36],
[37]. Martin [29], Colton and Kress [4]).

= [, vepeexpl=ing) B p)doty) =

n')
= cdu, (y) H M (kp) exp(—insd)dp.  (10)

From (6) we obtaln

F(k,8) = +/ —(exp —1kpcos(¢ — w)) exp(—ikpcos(f — ¢)do(y)

{J) exp(—ikpcos(f — ¢))do(y).

on v
Now the normal derivative % is given by
a " 5. _R(¢) @
— = { R{a}" 4 3 2
P (R(&)" + R'(s)°) (R(‘I’)6 Rie) t)¢)

[t follows that
F(k.9) = [ " (—iKR($) cosld — w) — ikRY(D) sin(d— w)) exp—ikR(d).
J0
cos{¢ — w,)e exp —tk R(&), cos(f — &)do

_[D = —(y) exp{—ihpcos(f — ¢))do(y)



= —it [ TR sing — ) — Ri()cos( )]
exp —ik R{o)(sin(¢ — w) + cos(d — ¢))d
= f T (y)exp(—ikpeos(f — ))do(y).  (11)
oD Ov
The Hankel approximation yields for n << k
expi(kR(0) — *F — 1)
V 5k R($)

Where (n,0) = 4n° — 1, since R(¢)} > Ry > 0.

Let ¢ = %‘ and set

HIYER($)) = (n,0)

{14 0(k7")}.

$9)y R(¢)* + R(¢)*
VR(#)

Q) = exp(ih R(e))

and 1 o
o= o [ Rip)expl-ingd

Then (10) vields
sepl {2 42}

1 ‘/A2f
Cn e 'U,‘
\/f:;,fc vV 2 4o 4

x\[R(¢)? + R/(6)2dé + 0(k™*

A short calculation yields that

3 e e
.}E];(e]{pfl-—zn@)f}ﬁ_ . (,{L h{@n)

e‘(p (—tk R(¢)sin(¢ — w)) %

V/—

n (1 — z%%) } (?1 + 1, 0) 5 G - E
x {“‘*—W . *\;R{Qﬂw} exp(—?-ﬂ-i_l‘) 4+ 0{k™") {12)

[t follows that a lower order spectral approximation to R is given by

e s Z ¢, expl{inexp{ing) W b (13)

fnl<n v 2T '



where the ¢, are given by (12).,
Then the approximation to the F of (11) ia gives by F» where

FY¥ = —ik /:T (R(¢)sin(¢ — w) — R'(¢)cos(¢ — w))

exp —1k R(&)(sin{é — w) + cos(8 — &))
2*’ . . = a ) . . . .
— / R.(o}/ R(¢) exp(—ikR(¢)) exp[—ik R(¢) cos(d — @)]de + O(k™7) (14)
The lowest order approximation is given by

"'3k 27 . AL A - A, )
Co = \/;_T/D exp{—ik R{¢) sin{¢p — w) )y R(¢), do

So that
2w
e 5 / [R() sin(¢ — w) — R'() coua(d — )]
exp —tk R{é)(sin{é — w) + cos(§ — 8))dod
.._dk In plw = a . .
= [ [T VRGBS expl—ikR(9))

2

exp{—ikR(é{) sin(c_% — w))exp(—thR{¢) cos(d — (;"_))dq‘)-._?g.
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