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ABSTRACT

Using combined asteroseismic and spectroscopic observations of 418 red-giant stars close to the Galactic disc plane (6 kpc < RGal .
13 kpc, |ZGal| < 0.3 kpc), we measure the age dependence of the radial metallicity distribution in the Milky Way’s thin disc over
cosmic time. The slope of the radial iron gradient of the young red-giant population (−0.058 ± 0.008 [stat.] ±0.003 [syst.] dex/kpc) is
consistent with recent Cepheid measurements. For stellar populations with ages of 1−4 Gyr the gradient is slightly steeper, at a value
of −0.066 ± 0.007 ± 0.002 dex/kpc, and then flattens again to reach a value of ∼−0.03 dex/kpc for stars with ages between 6 and
10 Gyr. Our results are in good agreement with a state-of-the-art chemo-dynamical Milky-Way model in which the evolution of the
abundance gradient and its scatter can be entirely explained by a non-varying negative metallicity gradient in the interstellar medium,
together with stellar radial heating and migration. We also offer an explanation for why intermediate-age open clusters in the solar
neighbourhood can be more metal-rich, and why their radial metallicity gradient seems to be much steeper than that of the youngest
clusters. Already within 2 Gyr, radial mixing can bring metal-rich clusters from the innermost regions of the disc to Galactocentric
radii of 5 to 8 kpc. We suggest that these outward-migrating clusters may be less prone to tidal disruption and therefore steepen the
local intermediate-age cluster metallicity gradient. Our scenario also explains why the strong steepening of the local iron gradient
with age is not seen in field stars. In the near future, asteroseismic data from the K2 mission will allow for improved statistics and a
better coverage of the inner-disc regions, thereby providing tighter constraints on the evolution of the central parts of the Milky Way.
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1. Introduction

The time evolution of Galactic chemical-abundance distribu-
tions is the missing key constraint to the chemical evolution
of our Milky Way (MW; e.g. Matteucci 2003). Several ob-
servational questions related to the shape of the present-day

abundance distributions as functions of Galactocentric radius,
azimuth, height above the disc mid-plane, and age, have been
tackled in the past (e.g. Grenon 1972; Luck et al. 2003, 2011;
Davies et al. 2009; Boeche et al. 2013; Genovali et al. 2013,
2014; Anders et al. 2014; Hayden et al. 2015; Huang et al. 2015).
Especially the radial metallicity gradient, ∂[Fe/H]/∂RGal – the
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dependence of the mean metallicity [Fe/H] of a tracer population
on Galactocentric distance RGal – has been the subject of debate
for a long time.

Apart from the mathematical representation of the radial
metallicity distribution and its dependence on age, the interpre-
tation of gradient data also remains partly unsettled. Galactic
chemical-evolution (GCE) models that reproduce abundance
patterns in the solar neighbourhood and the present-day abun-
dance gradient can be degenerate in their evolutionary histo-
ries (e.g. Mollá et al. 1997; Maciel & Quireza 1999; Portinari
& Chiosi 2000; Tosi 2000). One possibility is to start from a
pre-enriched gas disc (with a metallicity floor; Chiappini et al.
1997, 2001), which then evolves faster in the central parts, thus
steepening the gradient with time. The other possibility is to start
with a primordial-composition disc with some metallicity in the
central parts (i.e. a steep gradient in the beginning), which then
gradually forms stars also in the outer parts, thus flattening the
gradient with time (Ferrini et al. 1994; Allen et al. 1998; Hou
et al. 2000; Portinari & Chiosi 2000). Additionally, radial mix-
ing (through heating or migration, or, most likely, both) flattens
the observed abundance gradients of older stars (e.g. Schönrich
& Binney 2009; Minchev et al. 2013, 2014a; Grand et al. 2015;
Kubryk et al. 2015a,b). Therefore, the gradient of an old pop-
ulation can be flat either because it was already flat when the
stars were formed, or because it began steep and was flattened
by dynamical processes.

The answer to the fundamental question of how the MW’s
abundance distribution evolved with cosmic time is encoded in
the kinematics and chemical composition of long-lived stars and
can be disentangled most efficiently if high-precision age in-
formation is available. To date, the only results that claim to
trace the evolution of abundance gradients are based on plan-
etary nebulae (PNe; e.g. Maciel & Chiappini 1994; Maciel &
Quireza 1999; Stanghellini et al. 2006; Maciel & Costa 2009;
Stanghellini & Haywood 2010) and star clusters (e.g. Janes
1979; Twarog et al. 1997; Carraro et al. 1998; Friel et al.
2002; Chen et al. 2003; Magrini et al. 2009; Yong et al. 2012;
Frinchaboy et al. 2013; Cunha et al. 2016), but the former are
based on uncertain age and distance estimates and remain incon-
clusive, while the latter essentially allow for only two wide age
bins, and are affected by low-number statistics and non-trivial
biases due to the rapid disruption of disc clusters.

In addition to the value of the abundance gradient itself, the
scatter of the RGal-[Fe/H] relation can in principle be used to
quantify the strength of radial heating and migration over cosmic
time. In this paper, we use combined asteroseismic and spec-
troscopic observations of field red-giant stars to examine the
evolution of the MW’s radial abundance gradient in a homoge-
neous analysis. Solar-like oscillating red giants are new valuable
tracers of GCE, because they are numerous, bright, and cover
a larger age range than classical tracers such as open clusters
(OCs) or Cepheids. The combination of asteroseismology and
spectroscopy further allows us to determine ages for these stars
with unprecedented precision.

This paper is structured as follows: in Sect. 2 we present the
data used in this study, and in Sect. 3 we derive our main result:
we present and model the observed [Fe/H] vs. RGal distributions
in six age bins, and discuss these results in detail in Sects. 4
and 5 (the latter focussing on a comparison with the literature).
In Sect. 6, we revisit the peculiar finding that old open clusters
in the solar neighbourhood tend to have higher metallicities than
their younger counterparts. In Sect. 7, we analyse the [Mg/Fe]
vs. RGal distributions, also as a function of age. Our conclusions
are summarised in Sect. 8.

2. Observations

The CoRoT-APOGEE (CoRoGEE) sample (Anders et al. 2017)
comprises 606 solar-like oscillating red-giant stars in two fields
of the Galactic disc covering a wide range of Galactocentric
distance (4.5 kpc<RGal < 15 kpc). For these stars, the CoRoT
satellite obtained asteroseismic observations, while the Apache
Point Observatory Galactic Evolution Experiment (SDSS-
III/APOGEE; Eisenstein et al. 2011; Majewski et al. 2017)
delivered high-resolution (R ∼ 22 500), high signal-to-noise
(S/N > 90, median S/N = 240) H-band spectra us-
ing the SDSS Telescope at APO (Gunn et al. 2006). The
APOGEE Stellar Parameter and Chemical Abundances Pipeline
(ASPCAP; Holtzman et al. 2015; García Pérez et al. 2016)
was used to derive stellar effective temperatures, metallicities,
and chemical abundances; the results are taken from the Sloan
Digital Sky Survey’s twelfth data release (DR12; Alam et al.
2015). In Anders et al. (2017), we computed precise masses
(∼9%), radii (∼4%), ages (∼25%), distances (∼2%), and extinc-
tions (∼0.08 mag) for these stars using the Bayesian stellar pa-
rameter code PARAM (da Silva et al. 2006; Rodrigues et al.
2014), and studied the [α/Fe]-[Fe/H] relation as a function of
Galactocentric distance, in three wide age bins. Here we slice
the data into age bins again, this time examining the dependence
of the thin-disc [Fe/H]-RGal relation on stellar age.

Our final sample comprises 418 stars with |ZGal| < 0.3 kpc:
281 are located in the outer-disc field LRa01 (l, b = 212,−2),
and 137 in the inner-disc field LRc01 (l, b = 37,−7). Because
of the location of the CoRoT field LRc01, the cut in ZGal un-
fortunately reduces our radial coverage of the inner thin disc, so
that we effectively sample Galactocentric distances between 6
and 13 kpc1. Our adopted definition of thin disc here is purely
geometric (stars close to the disc mid-plane), as opposed to a
definition as the low-[α/Fe] sequence in the [Fe/H]-[α/Fe] plane
(e.g. Fuhrmann 1998; Lee et al. 2011; Anders et al. 2014). While
these two definitions agree well at the solar radius, they do differ
in the outer disc (see Minchev et al. 2015, for a discussion on
this).

As our data exclude the direct solar neighbourhood, we com-
plement our analysis by comparing our findings to other recent
high-resolution studies focussing on the local Galactic environ-
ment: for example, Bensby et al. (2014) conducted a spectro-
scopic solar neighbourhood survey of 714 F & G dwarfs in the
Hipparcos volume (d . 100 pc), and derived chemical abun-
dances for 14 chemical elements, as well as stellar ages and or-
bital parameters. We use the 431 stars for which Bensby et al.
(2014), using a kinematical criterion, quote a thin-to-thick-disc
probability ratio greater than 1. Bergemann et al. (2014) anal-
ysed 144 subgiant stars in an extended solar neighbourhood vol-
ume (6.8 kpc<RGal < 9.5 kpc, −1.5 kpc<ZGal < 1.5 kpc) from
the Gaia-ESO survey’s first internal data release (iDR1) to derive
accurate ages, Fe, and Mg abundances, and study age-chemistry
relations in the MW disc. For this study we select the 51 stars
with |ZGal| < 0.3 kpc.

In order to compare our data to the young-population abun-
dance distributions measured with Galactic Cepheid variables,
we use the compilation of Genovali et al. (2014), which com-
prises spectroscopic iron abundances for several hundred classi-
cal Cepheids close to the Galactic mid-plane.

1 Throughout this paper, we assume (RGal,ZGal)� = (8.30 kpc,
0.011 kpc), in line with recent estimates (see, e.g. Bland-Hawthorn &
Gerhard 2016). All literature data are rescaled to these values.
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Fig. 1. [Fe/H] vs. RGal distribution close to the Galactic plane (|ZGal| < 0.3 kpc) for five bins in age (from left to right, as indicated in each panel).
Top row: data compilation. The CoRoGEE sample is shown in blue: for each star, we have calculated the fraction of the age PDF enclosed in each
age bin – this fraction corresponds to the size of each dot and its transparency value. For comparison, we also show the open cluster compilations
of Genovali et al. (2014) and Magrini & Randich (2015) as green pentagons, the subgiant sample from Bergemann et al. (2014, red symbols), and
Galactic Cepheids (Genovali et al. 2014; black symbols). The solar-neighbourhood FGK dwarf sample of Bensby et al. (2014) is plotted as orange
symbols: the large orange triangles and their error bars denote the median metallicities and the 68% quantiles, while small triangles represent stars
that fall outside this range. Second row: mock CoRoGEE sample from the chemodynamical simulation of Minchev, Chiappini, & Martig (2013,
2014a, MCM), including typical observational errors in age, distance, and metallicity (Anders et al. 2017, 2016). Third row: full MCM simulation
without errors, and the underlying chemical-evolution model of Chiappini (2009).

3. The variation of radial [Fe/H] distributions
with age

Figure 1 shows the age variation of the radial metallicity distribu-
tion for stars close to the Galactic plane (|ZGal| < 0.3 kpc), split-
ting the CoRoGEE stars into five bins in age (0−1 Gyr, 1−2 Gyr,
2−4 Gyr, 4−6 Gyr, 6−10 Gyr). The CoRoGEE sample is plot-
ted as blue circles, where the size and transparency encode the
weight, wi, of a star in the age bin considered. For example, a star
whose age PDF is fully contained in one age bin appears only
one time in the diagram, as a large dark blue circle. A star with
a broader age PDF will appear in multiple panels of the figure,
with the symbol size and hue in each panel indicating the poste-
rior probability for the star to lie in this age bin. For comparison,
we also plot the radial abundance distribution as measured from
Galactic Cepheids (black dots; compilation of Genovali et al.
2014), OCs (green dots; ibid.) and the GES iDR1 subgiant sam-
ple (red dots; Bergemann et al. 2014). In order to have a better
comparison to the solar neighbourhood, we further show how the
FGK dwarf sample of Bensby et al. (2014) is distributed in this
diagram.

The second row of Fig. 1 shows the result of selecting
a CoRoGEE-like sample from the N-body chemo-dynamical
model of Minchev et al. (2013, 2014a, hereafter MCM). A de-
tailed description of the MCM-CoRoGEE mock sample can be
found in Anders et al. (2016, Sect. 3.2). In short, we select par-
ticles from the MCM model that follow the observed RGal − ZGal
distribution and a red giant-population age bias expected from

stellar population-synthesis modelling. We also model the age
errors introduced by our observations and statistical inference.

The third row shows how all the particles from the MCM
simulation are distributed in the RGal vs. [Fe/H] plane, together
with the predictions of the pure chemical-evolution thin-disc
model of Chiappini (2009), which was used as an input for
the MCM model. The chemical-evolution model was computed
in Galactocentric annuli of 2 kpc width, under the assumption
of instantaneous mixing within each ring. The bands shown in
Fig. 1 reflect the median and the 68% and 95% abundance spread
within the particular age bin; for this paper we interpolate the
model between the RGal bins. As in Chiappini et al. (2015), we
scale the abundances of the chemical-evolution model such that
the solar abundances are compatible with the model at the age
of the Sun (4.5 Gyr) at the most probable birth position of the
Sun (2 kpc closer to the Galactic Centre than today; Minchev
et al. 2013). This calibration also agrees very well with the abun-
dance scale defined by Galactic Cepheids along the Galactic disc
(Genovali et al. 2014).

Fitting the [Fe/H] vs. RGal distributions

From Fig. 1 it is evident that the observed [Fe/H] vs. RGal distri-
butions should not be fitted with a simple linear model, because
the observed scatter is generally larger than the formal uncer-
tainties associated with the measurements. We therefore opt to
model the [Fe/H] vs. RGal distributions for each age bin with a
Bayesian “linear gradient + variable scatter” model, as follows.
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Any measured metallicity value, [Fe/H]i, is assumed to depend
linearly on the Galactocentric radius, RGal,i, convolved with a
Gaussian distribution that includes the individual Gaussian mea-
surement uncertainty, e[Fe/H],i, and an intrinsic [Fe/H] abundance
spread that is allowed to depend linearly on RGal. If we neglect
the small uncertainties in RGal (.2%), then the likelihood can be
written as:
p({[Fe/H], e[Fe/H],RGal, w}i|m, b,mσ, bσ) =

N∏
i=1

wi

exp
(
−

([Fe/H]i−[Fe/H]R,i)2

2σR,i

)
√

2πσ2
R,i

, (1)

where
[Fe/H]R,i := m · RGal,i + b,

σR,i :=
√

e2
[Fe/H],i + (mσ · RGal,i + bσ)2,

and the weight wi of each star in a particular age bin is propor-
tional to the integral of its age PDF in this bin:

wi =

∫ τmax

τmin

dτp(τ).

In each age bin, we therefore use an effective number of
Neff,agebin =

∑
i wi stars for the fit.

We further assume flat priors for each of the fit parameters m
(the slope of the radial [Fe/H] gradient), b (its intercept), mσ

(the slope of the [Fe/H] scatter as a function of radius), and bσ
(its intercept). The logarithm of the posterior PDF can then be
written as:

Lp = −
1
2

N∑
i=1

lnσ2
R,i +

([Fe/H]i − [Fe/H]R,i)2

2σ2
R,i

− 2 lnwi

 ,
modulo some arbitrary constant. We examine two possibilities:
one where all four parameters (m, b,mσ, bσ) are allowed to vary,
and one where we fix mσ = 0, that is, an intrinsic [Fe/H] scatter
that does not vary with RGal. In the majority of cases the four-
parameter model provides a better fit to the data.

To explore the four-dimensional parameter space and esti-
mate the best-fit parameters and their respective uncertainties,
we use the Markov-chain Monte-Carlo (MCMC) code emcee
(Foreman-Mackey et al. 2013). Figure 2 shows an example out-
come of our fitting algorithm. The grey lines in this figure indi-
cate individual MCMC sample fits, and the blue line and shaded
area represent our best-fit (median) results. For comparison, we
also show the least-squares and maximum-likelihood results. As
in the example case of Fig. 2, the three methods generally do
not agree within 1σ−uncertainties (especially for the older age
bins), which is why we chose the robust Bayesian method (see,
e.g. Hogg et al. 2010; Ivezić et al. 2013).

The results of our attempt to quantify the evolution of the
radial [Fe/H] distribution (i.e., fitting for the gradient + scatter)
are given in Appendix A, where we provide the tabulated results
of our four-parameter fits to the data gathered in Fig. 1.

Figure 3 shows the main result of our paper, corresponding
to the data compiled in Table A.1: the five panels show the evo-
lution of the [Fe/H] vs. RGal relation fit parameters with stellar
age for the data and the models used in Fig. 1. The first and the
third panel directly display the age-dependence of the fit param-
eters m and mσ, respectively, while in the other three panels we
show the mean [Fe/H] value at RGal = 6 kpc and RGal = 12 kpc,
respectively, and the [Fe/H] abundance spread in the solar neigh-
bourhood – these latter are linear combinations of the m, b, mσ

and bσ. We discuss the implications of this plot in the following
section.

Fig. 2. Top panel: “Corner plot” (Foreman-Mackey et al. 2016) show-
ing an example of an MCMC fit result for the linear gradient + variable
scatter model to CoRoGEE data, in the age bin 6 Gyr < τ < 10 Gyr.
Histograms show the marginal posterior PDFs for the fit parameters
(m, b,mσ, bσ); the density-scatter plots show the joint marginal poste-
riors. Bottom panel: resulting fit to the data in the RGal vs. [Fe/H] di-
agram. Faint grey lines show 50 MCMC samples; the thick blue line
and the shaded band correspond to our best parameter estimates. For
comparison, we also show the results of a least-squares linear fit (dotted
line) and a maximum-likelihood fit (dashed line).

4. Discussion

The CoRoGEE red-giant sample provides an unprecedented cov-
erage of a large range of the Galactic thin disc (6 < RGal .
13 kpc, |ZGal < 0.3 kpc, 0.5 Gyr . τ . 13 Gyr) with very precise
measurements of [Fe/H], RGal, and ages. Although our dataset is
not free from biases and selection effects, we can quantify their
impact on the derived structural parameters of the MW using
mock observations of a chemo-dynamical model that we treat in
exactly the same way as the data (Sect. 4.2; see also Cheng et al.
2012). In Sect. 5 we interpret the results of our analysis pre-
sented in Sect. 3 in the context of past observational literature.
We pay special attention to the intriguing old high-metallicity
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Fig. 3. Results of our four-parameter fits: the evolution of the slope of
the radial metallicity gradient between 6 and 13 kpc (top panel), the
mean metallicity at RGal = 6 kpc (second panel), the mean metallic-
ity at RGal = 12 kpc (third panel), the slope of the [Fe/H] scatter with
Galactocentric radius (fourth panel), and the [Fe/H] scatter in the solar
annulus (bottom panel), for the datasets considered here (error bars).
The black line and the shaded bands around it correspond to the bias-
corrected CoRoGEE measurements, their statistical uncertainties, and
the systematic uncertainties stemming from the bias correction. The fit
for the full MCM model did not converge in the last age bin.

open clusters in the solar neighbourhood in Sect. 6. First, how-
ever, we remind the reader of the several difficulties that arise
when interpreting similar datasets.

4.1. The importance of fitting earnest(ly)

A fit to data can only be as good as the model assumed. The
literature (more recently also the astronomical literature) pro-
vides good examples of how to find an appropriate model for the
dataset considered (e.g. Press et al. 1992; Feigelson & Jogesh
Babu 2012; Ivezić et al. 2013). However, in the case of the
chemical-abundance gradients, the literature is full of overly
simplistic approaches. Especially in the case of OCs and PNe,
where data are traditionally sparse, biased, and often decom-
posed further into age bins (e.g. Janes 1979; Twarog et al. 1997;
Friel et al. 2002; Frinchaboy et al. 2013; Magrini & Randich
2015; Jacobson et al. 2016), utmost care must be taken when
fitting a straight line through very few datapoints and drawing
conclusions about the evolution of the abundance gradient (see,
e.g. Carraro et al. 1998; Daflon & Cunha 2004; Salaris et al.
2004; Stanghellini & Haywood 2010). Also, the least-squares
method tends to considerably underestimate the uncertainties of
the fit parameters when the linear model is inappropriate.

This problem could be mitigated if the number of data points
were high enough. Fortunately, this is generally the case for our
CoRoGEE sample. In all age bins, the agreement between a
least-squares fit and our Bayesian fit for the parameters m and
b is at the 1σ-level. Similarly, the effect of including the recent
literature data (see Sect. 2) in the fit (i.e. increasing the sample
size) is minor (.0.005 dex/kpc for the gradient), except for the
oldest age bin (τ > 10 Gyr, Neff = 27) where the inclusion of
literature data increases the sample by a factor of five, and yields
a gradient value close to zero (corresponding to a +0.02 dex/kpc
with respect to the pure CoRoGEE fit). The fits in this last age
bin should therefore be used with caution.

Although our attempt to fit the radial abundance distribution
is more elaborate than most methods found in the literature, fu-
ture data will certainly show if the linear gradient + variable
scatter model is sufficient for the part of the Galactic disc con-
sidered here. Although there are various indications in the lit-
erature (e.g. Vilchez & Esteban 1996; Afflerbach et al. 1997;
Twarog et al. 1997; Yong et al. 2005, 2012; Lépine et al. 2011)
that the radial abundance gradient flattens beyond a break ra-
dius RGal ∼ 10−15 kpc, our combined dataset can be well-fit
without a two-fold slope or metallicity step. Another important
simplification of our model lies in the assumption of Gaussian
metallicity distributions at any given Galactocentric distance,
which has been shown to be slightly violated in the inner as well
as the outer parts of the Galactic disc (Hayden et al. 2015).

4.2. Comparison with mock observations
of a chemo-dynamical model

As in Anders et al. (2017), we opt for the direct approach to
compare our observations to CoRoGEE mock observations of a
simulated MW-like galaxy that includes all important features of
galaxy evolution (merging satellites, disc heating, radial migra-
tion, etc.) from high redshift to date. However, since we want
to compare our findings to literature data and other models, in
Sect. 4.2.4 we also provide a bias-corrected version of all the
parameters that we measure. The bias corrections were obtained
by comparing the fits to our mock observations with those to the
full MCM model.

4.2.1. From the chemical-evolution model to the MCM model

As explained above, the MCM chemo-dynamical model used
the pure chemical-evolution thin-disc model of Chiappini (2009)
as an input. The Chiappini (2009) GCE model provided the
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chemistry for each MCM N-body particle of the cosmological
MW-like disc simulation taken from Martig et al. (2012). The
GCE model can thus be seen as the initial Galactic chemistry
of the MCM model, which is then mixed by dynamical pro-
cesses. In Figs. 1 and 3, we directly compare our data with these
two models. But first, let us recall how the two models compare
among themselves in those plots.

The four panels of Fig. 3 show the evolution of the main
structural parameters of the [Fe/H] vs. RGal distribution returned
by our MCMC fits. Looking at the Galactic models (see also the
bottom panels of Fig. 1), the figure highlights the effects of the
realistic Galaxy kinematics included in the MCM model on the
[Fe/H] vs. RGal distributions. With look-back time, radial heat-
ing and migration gradually blur out the narrow distributions de-
fined by the thin-disc model, and not only increase the amount
of [Fe/H] scatter seen in the solar neighbourhood (Fig. 3, bottom
panel), but also wash out the overall gradient (top panel; see also
Minchev et al. 2013, Fig. 5), and increase the mean metallicity at
fixed Galactocentric distance, especially in the outer disc (Fig. 3,
third panel).

In the semi-analytic GCE model, the width of the [Fe/H] dis-
tribution at any fixed radius is entirely due to the finite width of
the considered age bin, that is, the intrinsic metallicity spread of
the model is negligible. In the MCM model, on the other hand,
this abundance spread is caused by radial mixing, which already
in the 0−1 Gyr bin widens the [Fe/H] distribution by 0.09 dex
in the solar neighbourhood (Fig. 4). Already after 2−4 Gyr, a
plateau of σ[Fe/H],RGal,� ' 0.15 dex is reached.

Radial mixing also flattens the chemical gradients predicted
by GCE models. In the MCM model, this effect starts to appear
for ages &1 Gyr: the Chiappini (2009) model predicts a nega-
tive radial [Fe/H] gradient of ∂[Fe/H]

∂RGal
≈ −0.06 dex/kpc that re-

mains largely constant during the evolution of the MW. While
the MCM model predicts an almost unchanged gradient for
the very young population (τ < 1 Gyr), the gradients of the
older thin-disc populations have flattened to ∼−0.05 dex/kpc for
1−4 Gyr, and to ∼−0.02 dex/kpc for 6−10 Gyr. In the last age
bin (τ > 10 Gyr), the abundance distribution is so dominated
by scatter that it is not well-fit by the linear gradient model any
more; the MCMC chains did not converge.

Radial mixing also affects the mean metallicity in the so-
lar neighbourhood and the outer disc, in the sense that it tends
to bring more metal-rich stars from the inner disc into the so-
lar neighbourhood than low-metallicity outer-disc stars, because
of asymmetric drift and radial migration. This effect starts for
ages &2 Gyr, and produces an approximately constant mean-
metallicity shift of ∼+0.1 dex in the solar neighbourhood, and
∼+0.2 dex at RGal = 12 kpc.

One effect that is evident from Fig. 1, but not entirely cap-
tured by our linear fitting model, is the emergence of extreme
migrators from the inner disc with super-solar metallicities in
the region 5 kpc < RGal < 8 kpc. We discuss this result in the
context of open-cluster observations in Sect. 6.

4.2.2. From the MCM model to the CoRoGEE mock:
the impact of selection effects

In Fig. 4, we assess the impact of selection effects and stochas-
ticity on the measured [Fe/H] gradient: we ran the CoRoGEE
mock-selection algorithm (Anders et al. 2016) eight times and
fit the linear gradient + variable scatter model to all result-
ing [Fe/H] vs. RGal distributions, as before. As can be clearly
seen in the top panel of Fig. 4, the measured gradient in the

Fig. 4. Combined effect of mock selection, age errors, and finite sample
size on the measurement of the radial [Fe/H] gradients (top panel) and
the mean metallicity in the solar neighbourhood (bottom), using eight
realisations of the MCM-CoRoGEE mock (grey error bars). Also shown
are the fit results of the CoRoGEE dataset (blue) and the full MCM
model (magenta). The numbers in the top panel indicate the number of
stars in each age bin.

CoRoGEE-like MCM mock varies by ±0.01 dex/kpc, depending
on the realisation of the mock algorithm. The magnitude of these
variations is comparable with the uncertainties derived with the
MCMC fitting, which means that our quoted uncertainties are
reliable. Since the fit parameters m and b are correlated, the
stochasticity effect on the measured mean metallicity is minor.

However, there are also systematic differences between the
fit results for the mock realisations and those for the full MCM
model, most evidently in the age bins older than 2 Gyr. This is
the regime where the combined effects of the red-giant selec-
tion bias and systematic age errors begin to matter. Specifically,
the systematic biases introduced by the selection let the [Fe/H]
gradient appear even flatter than in the model, most notably in
the age bin 2–4 Gyr, where the effect has an average magni-
tude of +0.02 dex/kpc. A systematic selection effect on the mea-
surement of the mean [Fe/H] near the Sun is also notable in the
same age bins: the mock procedure leads to an underestimation
of the “true” [Fe/H] of the MCM model for the intermediate age
bins, and to a slight overestimation in the range 6–10 Gyr. In
Sect. 4.2.4, we use these results to correct our CoRoGEE mea-
surements for selection biases, to be able to compare to literature
data and other Galactic models.

4.2.3. Comparing the mock results to the CoRoGEE
observations

The second row of Fig. 1 shows one realisation of the MCM
CoRoGEE mock. At first sight, the [Fe/H] vs. RGal distributions
of data and model look remarkably similar, indicating a good
overall performance of both the MCM model and the mock al-
gorithm. However, the differences between the relative number
of stars in each age bin and field are not within the expected
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stochastic fluctuations (see numbers in Fig. 4). This mismatch of
the age distributions in the mock and the data was already shown
in Anders et al. (2016, Fig. 6). We tentatively attribute it to an
imperfect modelling of the age bias of the CoRoGEE sample.

Quantitative differences become apparent when looking at
the fit results: Fig. 4 demonstrates that for τ < 4 Gyr, the radial
[Fe/H] gradients of all mock realisations are flatter than the ob-
served, and that for ages larger than 2 Gyr the mean [Fe/H] in
the solar neighbourhood is underestimated by the MCM mocks.

For both model and data, the negative radial metallicity gra-
dient persists in the intermediate-age and old populations, al-
though it gradually becomes shallower and the abundance scatter
increases. The increase of this scatter with look-back time is due
to a superposition of: a) growing age uncertainties towards inter-
mediate ages (see Anders et al. 2017); b) dynamical processes
of radial heating and migration (e.g. Sellwood & Binney 2002;
Schönrich & Binney 2009; Minchev et al. 2010; Brunetti et al.
2011); and c) intrinsic time variations of the metallicity distribu-
tion (which in the MCM model are negligible; see Sect. 4.2.1).
In Fig. 3 we show that the abundance scatter in the MCM model
already saturates in the 2–4 Gyr bin, and that almost half of
the abundance scatter measured in the subsequent age bins for
CoRoGEE may be explained by a combination of abundance and
age errors (compare the magenta and red lines).

In the τ < 1 Gyr panel of Fig. 1, the [Fe/H] abundance spread
appears to increase somewhat towards very large Galactocentric
distances – an effect that is not seen in the MCM model. The
(fewer) data beyond RGal ∼ 12 kpc also seem compatible with a
flat abundance distribution, as previously argued for in the OC
literature (e.g. Twarog et al. 1997; Lépine et al. 2011; Yong
et al. 2012). Part of the discrepancies between the data and
the MCM model, such as the flattening of the [Fe/H] gradient
in the local outer-disc quadrant, may be due to our averaging
over the azimuthal angle in Galactocentric cylindrical coordi-
nates (Minchev et al., in prep.).

4.2.4. Using the mock sample to correct for selection effects

Under the assumptions that the MCM model is an appropriate
model of our Galaxy, and that our mock selection is a good ap-
proximation of the true selection function, we can use the dif-
ferences found between the fits to the MCM mock and the full
model (Sect. 4.2.2) to correct for the selection biases of the
CoRoGEE sample. The first assumption has been extensively
tested on a variety of datasets in Minchev et al. (2013, 2014a,b),
and Piffl (2013). The second assumption was sufficiently vali-
dated recently in Anders et al. (2017, 2016). Of course, the bias
correction comes at the price of an additional systematic uncer-
tainty that is driven by the relatively small size of our sample.

In Figs. 3 and 5, we also plot the bias-corrected results for
the fit parameters measured with CoRoGEE. In each panel the
dark-grey bands correspond to the statistical uncertainties of the
fit, while the light-grey bands correspond to the systematic un-
certainty associated with the bias correction (which we conser-
vatively estimate as the standard deviation of the mock results
among different realisations). The additional uncertainty asso-
ciated with this correction is most important for the fit param-
eters m and mσ. For the oldest age bin, the corrections from
the age bin 6−10 Gyr were used, since we could not perform
a reliable fit for the full MCM model in this bin. The corrections
for the oldest bin should therefore be used with caution.

We can now also compare the bias-corrected CoRoGEE re-
sults directly to the results obtained from the MCM model.
Qualitatively, we reach the same conclusions as before: overall,

Fig. 5. An incomplete but representative look into the literature: the
dependence of the radial [X/H] gradient slope near the Sun on tracer
age τ, as measured by different groups. For the open-cluster (middle
panel) and field-star (bottom) studies, we plot the results for [Fe/H],
for planetary-nebula studies (top) [O/H]. In all panels, the CoRoGEE
results are overplotted as a black line and two grey-shaded bands that
correspond to the statistical and systematic uncertainties.

the MCM model provides a very good model for our data, and
in most of the age bins the fit parameters for data and model are
1σ-compatible (at most 2σ) with each other. As already shown
by Minchev et al. (2013, 2014a), the dynamics of the model
give a very good quantitative prescription of the secular pro-
cesses taking place in the MW. The most important differences
can probably be fine-tuned in the underlying chemical-evolution
model: the observed radial [Fe/H] gradient appears to be slightly
steeper than predicted by the model, and the evolution of the
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mean [Fe/H] from the solar neighbourhood inwards is slightly
flatter than in the model. Also, at odds with the GCE model,
the gradient of the youngest population (in concordance with
Cepheid measurements) seems to be slightly shallower than the
gradient of the 1–4 Gyr population. However, these discrepan-
cies are marginal compared to other shortcomings of the model,
such as the missing bimodality in the [α/Fe] diagram, and the
systematic uncertainties still involved in stellar age, distance,
and abundance estimates.

4.3. The impact of potential systematic age errors

Recently, observational as well as theoretical work has raised
doubts about the zero-points of the asteroseismic scaling rela-
tions that lead to the precise mass and radius measurements for
solar-like oscillating red-giant stars. The absolute scale of seis-
mic masses can only be tested using star clusters and double-
lined eclipsing binaries. Recent advances using these techniques
for several small datasets (Brogaard et al. 2015, 2016; Miglio
et al. 2016; Gaulme et al. 2016) indicate that asteroseismic scal-
ings tend to overestimate red-giant masses and radii by approx-
imately +10–15% and −5%, respectively. A +10% shift in the
seismic masses would result in a ∼+30% shift of our abso-
lute age scale, and consequently our measurements of the evo-
lution of Galactic structural parameters with stellar age would
be affected at this level. However, another potentially impor-
tant effect that has not previously been taken into account is a
metallicity-dependent temperature offset between spectroscopic
red-giant observations and stellar models (Tayar et al., in prep.).
For PARSEC models, this effect likely decreases the absolute
ages of sub-solar metallicity CoRoGEE stars by a small amount.
Because a systematic analysis of the above effects is still prema-
ture, we here restrict ourselves to caution the reader about these
caveats to our absolute age scale. For further discussion of sys-
tematic age uncertainties, see also Sect. 3 of Anders et al. (2017).

5. A comparison with the literature

As reviewed in the Introduction, the chemical-evolution litera-
ture of the past &20 yr has been accompanied by a controversy
about both measurement and interpretation of the evolution of
the Milky Way’s radial abundance gradient. Figure 5 illustrates
the recent history of this controversy: it shows the radial [X/H]
gradient as a function of tracer age, as reported by various groups
in the literature (compare, e.g. Daflon & Cunha 2004; Chiappini
2006).

The datasets as well as the methods used to derive the re-
sults included in Fig. 5 are of course very diverse, and deserve a
closer look, but the overall situation is clear: there is no consen-
sus about the evolution of the Galactic radial metallicity gradient
over cosmic time, not among groups using the same tracers,
and sometimes not even among the same groups, or the same
datasets. This is essentially due to five reasons:

1. different radial and vertical ranges of the disc considered;
2. different age, distance, and abundance scales among different

groups, and between different tracer populations, especially
in the case of PNe;

3. different selection biases for the various tracers;
4. insufficient statistics;
5. different fitting methods, handling of outliers, etc. (Sect. 4.1).

The literature results included in Fig. 5 were derived using
four different tracers (PNe, OCs, Cepheids, and low-mass field

stars) that are discussed separately below. For the radial [Fe/H]
gradient traced by the very young population (white star in
Fig. 5) we use the recent result of Genovali et al. (2014),
which is based on a sample of 450 Galactic Cepheids located
at Galactocentric distances between 5 and 12 kpc, using data
from Lemasle et al. (2007, 2008), Romaniello et al. (2008), Luck
et al. (2011), Luck & Lambert (2011), Genovali et al. (2013).
The authors find a gradient slope of −0.05 to −0.06 dex/kpc,
slightly depending on the adopted cuts in RGal, |ZGal|. We there-
fore adopt a value −0.055 ± 0.05 dex/kpc, which coincides with
their value for |ZGal| < 0.3 kpc. For the [O/H] gradient, other
young tracers such as OB stars or HII regions have to be used
(Deharveng et al. 2000; Daflon & Cunha 2004; Rood et al.
2007; Balser et al. 2011); those studies report slightly flatter
slopes (∼−0.04 ± 0.01 dex/kpc). In Fig. 5, we include the value
−0.045 ± 0.005 dex/kpc as a representative datum, obtained by
Balser et al. (2011) from high-quality radio observations of 133
HII regions covering a large azimuthal range of the Galactic disc.

The PNe-based results for the evolution of the radial [O/H]
gradient are shown in the top panel of Fig. 5. We have used
the same technique as before to also fit the radial [O/H] dis-
tribution (results can be found in Table A.2), and compare
the resulting gradient slope to three representative values from
the literature. The studies by Maciel & Köppen (1994) and
Stanghellini & Haywood (2010) divided their objects into the
three classical categories of disc PNe: type I, II, and III (Peimbert
1978; Faundez-Abans & Maciel 1987), corresponding to differ-
ent masses and hence ages of the PNe’s central stars. In their
paper, Maciel & Köppen (1994) find hints that the radial [O/H]
gradient flattens slightly with look-back time, starting from a
steep value of −0.075 ± 0.015 dex/kpc for massive type-I PNe
to −0.063 ± 0.015 for the low-mass type-III objects. Maciel &
Quireza (1999) reach a similar conclusion and, extrapolating the
trend to the early phases of the Galactic disc, calculate a first es-
timate of the temporal flattening of the [O/H] gradient with age:
∂
∂τ

∂[O/H]
∂RGal

∼ −0.004 dex kpc−1 Gyr−1. This estimate is in overall
agreement with the trend we derive from the CoRoT-APOGEE
data. Stanghellini & Haywood (2010) also find that the radial
[O/H] gradient flattens with look-back time, although their de-
rived slopes are generally flatter.

However, the early findings of Maciel and collaborators are
at odds with their later results (e.g. Maciel et al. 2003, 2012;
Maciel & Costa 2009) that report an opposite trend for the evo-
lution of the radial [O/H] gradient. These later studies preferred
different methods to assign PN ages over the traditional Peimbert
classification scheme. For example, Maciel et al. (2003) derived
ages using statistical relationships between [O/H] and [Fe/H], as
well as an age-metallicity-RGal relationship, which makes their
subsequent measurement of the radial metallicity gradient using
these ages a rather circular exercise.

Because the PN studies still yield inconclusive results, we
caution against arbitrary use of PN-derived abundance gradients
(see also Stasińska 2004; Stanghellini et al. 2006; Stanghellini &
Haywood 2010; García-Hernández et al. 2016, for additional re-
marks regarding the derivation of PN abundances and distances).

In Fig. 5, we also show several results derived from spectro-
scopic OC observations (Carraro et al. 1998; Friel et al. 2002;
Salaris et al. 2004; Magrini et al. 2009; Cunha et al. 2016).
This is by no means an exhaustive compilation, but the diver-
sity of the conclusions reached is representative. As pointed out
in Sect. 4.1, many of these results rely on very few datapoints, so
that their linear fits are subject to significant influence by single
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outliers (e.g. Berkeley 29 and NGC 6791; see also Sect. 6), and
sometimes the OC samples are dominated by outer-disc objects.

The 37 clusters studied by Carraro et al. (1998) span a
wide range of Galactocentric distances (7−16 kpc), but also
a considerable range of heights above the Galactic-disc plane
(0−2.1 kpc). This makes their results difficult to compare, as the
clusters located at high |ZGal| also tend to be at larger RGal, that is,
it is almost impossible to disentangle radial and vertical trends,
and their quoted radial [Fe/H] gradients are therefore very likely
to be significantly overestimated for the older age bins. Also, the
authors demonstrate that the age binning impacts their conclu-
sion about the evolution of the abundance gradient along the disc
(compare dotted and solid lime-green curves: 4 bins vs. 2 bins),
because of the lack of OCs older than >2 Gyr.

This situation has improved slightly in the past few years;
for example, in the works of Friel et al. (2002) and Chen et al.
(2003) the number of chemically-studied OCs increased to over
100, and Friel et al. (2002) specifically focussed on old OCs
to trace the evolution of the Galactic radial metallicity gradient.
Overall, the OC works of Friel et al. (2002), Chen et al. (2003),
Magrini et al. (2009), and also the later studies of Frinchaboy
et al. (2013) and Cunha et al. (2016), using APOGEE data, all
reach the same conclusions: that the radial metallicity gradient
has been steeper in the past. However, this paradigm has been
challenged by Salaris et al. (2004) who, using the old OC sam-
ple of Friel (1995), reach the opposite conclusion, namely that
the radial [Fe/H] gradient of the old OC population is shallower
than the gradient of the young population. In summary, and sim-
ilar to the case of the PN studies (but due to different reasons),
OC studies still fail to conclusively answer the question of the
evolution of the abundance gradient along the MW disc.

Some works based on field stars attempted to measure the
age-dependence of the Galactic radial metallicity gradient, all
of them derived from low-resolution spectroscopic stellar sur-
veys. The Geneva-Copenhagen survey of the solar neighbour-
hood (GCS; Nordström et al. 2004, orange triangles in Fig. 5) de-
rived kinematics, metallicities, and ages for 14 000 FGK dwarfs
for which precise astrometric distances were delivered by the
Hipparcos satellite (Perryman et al. 1997; van Leeuwen 2007).
Because their sample does not extend beyond the immediate so-
lar neighbourhood, the authors used the precise kinematic infor-
mation to correct for the eccentricity of stellar orbits, and report
metallicity distributions as a function of orbital guiding radii Rg
(instead of RGal), in three bins of age. While their result for the
young population (τ < 2 Gyr) is consistent with our findings,
their intermediate-age population (4 Gyr< τ < 6 Gyr) exhibits a
steeper negative gradient of ∼−0.1 dex/kpc (possibly related to
the fact that they use Rg as a baseline), and the old population is
consistent with no radial gradient.

The age estimates derived in Nordström et al. (2004) were
later improved (Holmberg et al. 2007, 2009; Casagrande et al.
2011), and their results for the age dependence of the metallic-
ity gradient were also revised by Casagrande et al. (2011). In
the last panel of Fig. 5, we plot the smooth result that these au-
thors obtain for the evolution of the radial metallicity gradient
with respect to the mean orbital radius, computing the gradient
in a Gaussian age window of 1.5 Gyr width, and using a kine-
matic cut to sort out halo stars. Because their sample (even in
a given age window) is very large, the formal uncertainties on
the gradient measurement are almost negligible. Again, the GCS
data seem to indicate an initial steepening, then a rapid flatten-
ing with increasing age, although Casagrande et al. (2011) cau-
tion that this picture depends severely on selection effects. They

invoke radial migration to explain the observed softening of the
gradient at intermediate ages.

The main advantage of the solar-neighbourhood studies of
Nordström et al. (2004) and Casagrande et al. (2011) lies in their
use of very precise kinematic parameters in combination with
unprecedented statistics, an asset that will soon be provided for a
much larger volume by the Gaia mission (Perryman et al. 2001).
On the other hand, the GCS metallicities and – above all – ages
are likely to be affected by significant systematic shifts, and con-
tamination by thick-disc stars.

The other stellar survey that recently led to an estimation
of the age-dependence of the radial metallicity gradient is the
LAMOST Spectroscopic Survey of the Galactic Anti-Center
(LSS-GAC; Liu et al. 2014). Xiang et al. (2015) have used
300 000 main-sequence turn-off stars selected from that survey
to measure the radial and vertical stellar metallicity gradients
as a function of stellar age, which they determine via isochrone
fitting. With their impressive statistics, these authors can mea-
sure very precise relative stellar-population trends. After correct-
ing for selection effects, they find that the radial [Fe/H] gradient
close to the Galactic plane steepens with age until τ ∼ 7−8 Gyr
before flattening again, and interpret these time spans as corre-
sponding to two distinct phases of the assembly of the MW disc.

However, the analysis of Xiang et al. (2015) is based on low-
resolution, low S/N data, leading to much larger individual un-
certainties in their ages, distances, and metallicities compared to
our data. Although this is partly mitigated by the large number
of stars, considerable systematic uncertainties and poor absolute
calibrations are expected for their age and distance estimates,
therefore we do not expect the absolute values of their reported
gradients to perfectly match ours, nor other literature values.

Recently, several authors (Anders et al. 2014; Hayden et al.
2014; Bovy et al. 2014) have used data from the APOGEE sur-
vey to measure the radial disc metallicity gradient. Our bias-
corrected values for the gradient slope are slightly shallower
than theirs, but compatible with them within our quoted uncer-
tainties. The differences in the absolute values of the metallic-
ity gradient are most probably due to different selection biases
in previous works. For example, Bovy et al. (2014) measured a
slope of −0.09 dex/kpc based on 971 RC stars very close to the
plane (ZGal < 50 pc), while our sample extends up to distances of
300 pc from the Galactic mid-plane. The APOGEE RC sample is
also much more limited in age coverage (∼0.8−4 Gyr with a peak
close to 1 Gyr, see e.g. Girardi 2016) than our sample. In con-
trast to the results of the above authors, and because our sample
is considerably smaller, we have corrected our results for selec-
tion biases and included a corresponding systematic uncertainty.

6. Intermediate-age high-metallicity open clusters
in the solar neighbourhood

Radial mixing (by migration and heating) can explain the pres-
ence of super-metal-rich stars in the solar neighbourhood (e.g.
Grenon 1972, 1999; Chiappini 2009; Minchev et al. 2013;
Kordopatis et al. 2015; Anders et al. 2017). Here we show that
radial migration can also explain the existence of intermediate-
age super-solar metallicity objects in the solar-vicinity thin disc
(RGal = 7−9 kpc). In the MCM model, those objects originate
from the inner disc (RGal = 4−6 kpc) and already start to appear
in the solar vicinity after 2–4 Gyr after their birth (see Fig. 1,
bottom row). In this section we demonstrate this for the case of
intermediate-age open clusters in the solar vicinity.

The left panel of Fig. 6 shows the [Fe/H] vs. RGal distri-
bution of the homogenised OC compilation recently published
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Fig. 6. [Fe/H] vs. RGal distribution, colour-coded by age, for the high-resolution OC compilation of Netopil et al. (2016, pentagons), the MCM
model close to the Galactic plane (|ZGal| < 0.3 kpc; small dots), and the Chiappini (2009) thin disc model at six time snapshots (thick lines).
The models have now been scaled to the abundance scale of young OCs in the Netopil et al. sample, which is .0.1 dex lower than the Cepheid
abundance scale of Genovali et al. (2014) used before. The arrows in the left panel symbolise the approximate uncertainties in the absolute
metallicity scale and the distance to the Galactic centre. The right panel magnifies the interesting part of the left panel, such that it is clear that
some older OCs have higher metallicities than both the younger ones and the local ISM. With the MCM model, these can be explained as surviving
migrators from the inner disc.

by Netopil et al. (2016), colour-coded by cluster age. The right
panel zooms closer in on the solar neighbourhood. For all of
the clusters included in the plot, [Fe/H] was derived from high-
resolution spectroscopy, in most cases by different groups (see
Netopil et al. 2016, and references therein for details). In Fig. 6
we also show the MCM model for |ZGal| < 0.3 kpc and the thin-
disc model of Chiappini (2009), for snapshots at τ = 0, 1, 2, 4, 6,
and 8 Gyr. Because we found the Fe abundance scales of OCs
and Cepheids to be slightly offset with respect to each other
(.0.1 dex), for this plot the models’ [Fe/H] values were rescaled
to match the abundance scale defined by the youngest OCs of
Netopil et al. (2016) in the solar neighbourhood.

It can be clearly seen from Fig. 6 that, while the chemical-
evolution model alone cannot explain the location of all of the
clusters in the [Fe/H] vs. RGal plane, the MCM model can:
for each cluster there is an N-body particle in the model with
very similar properties {RGal, [Fe/H], τ}. In particular, the MCM
model predicts that slightly older clusters can be found at larger
metallicities than the youngest ones, in the 5−8 kpc region of
the disc (see also Netopil et al. 2016). Contrary to the interpre-
tation of Jacobson et al. (2016), this effect is entirely due to ra-
dial mixing, and does not mean that the local ISM had a higher
metallicity in the past, nor that the radial [Fe/H] gradient was
significantly steeper in the past.

We remind the reader that the fact that for each OC we find
a model particle with similar properties does not mean that the
model fits perfectly: the selection function (as a function of age
and position) of any OC catalogue would be required for any
meaningful comparison of the distributions of model and data
points in Fig. 6. This, in turn, requires knowledge about the
disruption timescales of clusters as a function of their masses
and kinematics, survival rates, initial mass functions, and so
on that still remain uncertain. The absence of lower-metallicity
intermediate-age OCs in the inner disc (Fig. 6, left panel) espe-
cially suggests that non- or inward-migrating OCs may be more
prone to disruption. This would lead to a higher rate of high-
metallicity OCs in the RGal = 6−8 kpc regime, and consequently
a significantly steeper (up to a factor of 2) local gradient of the
intermediate-age OC population, as measured in the OC litera-
ture (e.g. Carraro et al. 1998; Friel et al. 2002; Jacobson et al.
2016). The prediction of the MCM model is that this does not

happen for the general field-star population of the same age,
which is confirmed by the CoRoGEE data.

7. The variation of radial [Mg/Fe] distributions
with age

Among many other elements, the APOGEE/ASPCAP pipeline
also delivers Mg abundances for our red-giant sample. These
can be compared to the predictions of chemical-evolution and
chemo-dynamical models. In Fig. 7, we show the [Mg/Fe] vs.
RGal distributions for the same data and in the same age bins as
in Fig. 1.

The behaviour of [Mg/Fe] with time and Galactocentric ra-
dius reflects the star-formation history of the Galactic disc. In an
inside-out forming disc (such as the MCM model and its under-
lying GCE model; bottom row of Fig. 7), the inner parts of the
disc form more stars per unit of time than the outer parts, which
results in a positive radial [Mg/Fe] gradient that slowly evolves
with look-back time. Although the observational effects affect-
ing our CoRoGEE sample smear out this clear signature in the
[Mg/Fe]−RGal diagram (middle row of Fig. 7), the data clearly
confirm the inside-out formation of the thin disc.

While the [Mg/Fe] vs. RGal distributions from the pure
chemical-evolution model seem to follow a quadratic rather than
linear trend, the data in the range 6 kpc < RGal . 13 kpc can
be well-fit with the same linear gradient + variable scatter model
presented in Sect. 3. We therefore also provide fits to this model
in Table A.3 and show the evolution of the fit parameters as a
function of stellar age in Fig. 8.

As for the case of the radial [Fe/H] gradients, the MCM
model matches the qualitative trends in the data extremely well,
and also agrees with the data in an absolute sense in all age bins
at a 2σ level. This is not a completely natural outcome, since the
main observational constraints used to construct the GCE model
were the present-day star-formation rate and [Fe/H] gradient,
and the metallicity distribution in the solar neighbourhood. The
comparison between the GCE and the MCM model (bottom pan-
els of Fig. 7) shows that the radial [Mg/Fe] distributions are not
affected as severely by radial migration as the [Fe/H] gradients
shown in Fig. 1 (see also Minchev et al. 2014a). This is likely to
be due to the shallow slope of the radial [Mg/Fe] gradient, and
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Fig. 7. [Mg/Fe] vs. RGal distributions close to the Galactic plane (|ZGal| < 0.3 kpc), in the same style as Fig. 1.

its slow evolution (flattening at greater ages). The [Mg/Fe] scat-
ter in the MCM models decreases slightly with Galactocentric
distance, an effect that is also seen in the data. The [Mg/Fe] scat-
ter at the solar radius in both model and (bias-corrected) data
saturates already for ages &2 Gyr at a level of '0.05 dex.

An obvious drawback of our approach is that we do not ex-
plicitly fit the observationally-confirmed high-[α/Fe] sequence
(Fuhrmann 2011; Anders et al. 2014; Nidever et al. 2014) sep-
arately, and therefore our thin-disc [Mg/Fe]-gradient measure-
ment is slightly biased: high-[α/Fe] stars with |ZGal| < 0.3 kpc,
old or young, contribute to the scatter seen in the first row of
Fig. 7. While their number clearly increases with age, a small
number of them is seen in the younger panels. As discussed in
Chiappini et al. (2015), this is in disagreement with GCE pre-
dictions. It is still under debate whether these stars are truly
young or either the product of close-binary evolution, or inac-
curate mass measurements (Martig et al. 2015; Brogaard et al.
2016; Jofré et al. 2016; Yong et al. 2016). Our CoRoGEE re-
sults (Chiappini et al. 2015) appear to favour a physical origin,
since the observed number of these peculiar objects is much
higher in the inner-disc field LRc01 (at RGal < 6 kpc, for which
|ZGal| > 0.3 kpc).

8. Conclusions

We have used the wide coverage of the CoRoT-APOGEE sample
in age and Galactocentric distance to study the age dependence
of the Galactic radial [Fe/H] and [Mg/Fe] gradients in the range
{6 < RGal . 13 kpc, |ZGal| < 0.3 kpc, 0.5 Gyr . τ . 13 Gyr}.
When corrected for selection biases, we find that the slope of the
[Fe/H] gradient is constant at a value of '−0.07 dex/kpc in the
age range 1 < τ < 4 Gyr, and slightly flatter for the youngest age
bin, in agreement with Cepheid results. For older ages (where
our age measurements are more uncertain), the slope flattens

to reach values compatible with a flat distribution. We further
confirm that the mean metallicity in the solar neighbourhood
has remained approximately constant at solar values during the
last ∼5 Gyr. At the same time, the [Fe/H] abundance spread
in the solar neighbourhood does not increase significantly with
age, within our uncertainties, and remains around 0.15 dex for
τ & 1 Gyr.

We have compared our results with mock observations of the
chemo-dynamical Milky-Way model by Minchev et al. (2013,
2014a), and find a surprisingly good quantitative agreement for
the [Fe/H]-RGal, as well as for the [Mg/Fe]-RGal distributions.
This enabled us to use the mock results to correct our measure-
ments for selection biases; the bias-corrected results can be di-
rectly compared to other models as well as results from the liter-
ature. They agree well with previous estimates of the evolution
of the radial metallicity gradient from the Geneva-Copenhagen
survey (Nordström et al. 2004; Casagrande et al. 2011), while
they disagree with the recent LAMOST study of Xiang et al.
(2015) as well as most PN and OC results. These differences
can be explained by systematic shifts in the distance and/or age
scales for the case of the PNe and LAMOST turn-off stars, and
by strong non-trivial selection biases and small-number statistics
in the case of the OCs.

We also investigate in more detail why, in the 5−8 kpc region
of the disc, intermediate-age OCs are found at larger metallici-
ties than the youngest ones. Within the MCM model, we can ex-
plain this effect by strong radial mixing (due to both heating and
migration) from the inner disc. Together with our proposition
that non- and inward-migrating clusters are disrupted faster, the
model can also explain the puzzling observation that the radial
[Fe/H] gradient of the intermediate-age cluster population seems
to be much steeper than both the young-population gradient and
the gradient traced by intermediate-age field stars.
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Fig. 8. Results of our four-parameter fits for the [Mg/Fe] vs. RGal distri-
butions, in the same style as Fig. 3.

Due to the high accuracy and precision of our distances and
[Fe/H] estimates, in combination with sufficient statistics and
easily-accountable selection biases, field-star studies like ours
are likely to supersede gradient studies using open clusters or
planetary nebulae as abundance tracers. Even though the abso-
lute age scale of red-giant asteroseismology is not settled yet
(e.g. Brogaard et al. 2015, 2016; Miglio et al. 2016), relative ages
seem to be robustly determined for the vast majority of stars.
In the near future, many more fields in the K2 asteroseismic

ecliptic-plane survey (Howell et al. 2014) will be co-observed by
the major spectroscopic stellar surveys (e.g. Stello et al. 2015;
Valentini et al. 2017). A joint spectroscopic and asteroseismic
analysis of these fields will allow for a much larger sample, and
consequently a more precise measurement of the Milky Way’s
chemo-dynamical history.
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