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Single electron dynamics in a Hall thruster electromagnetic field profile
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In this work, the single electron dynamics in a simplified three dimensional Hall thruster model is

studied. Using Hamiltonian formalism and the concept of limiting curves, one is able to determine

confinement conditions for the electron in the acceleration channel. It is shown that as a given

parameter of the electromagnetic field is changed, the particle trajectory may transit from regular

to chaotic without affecting the confinement, which allows one to make a detailed analysis of the

role played by the chaos. The ionization volume is also computed, which measures the probability

of an electron to ionize background gas atoms. It is found that there is a great correlation between

chaos and increased effective ionization volume. This indicates that a complex dynamical behavior

may improve the device efficiency by augmenting the ionization capability of each electron,

requiring an overall lower electron current. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4982685]

I. INTRODUCTION

Electric propulsion has been identified as a promising

technology for primary propulsion in deep-space scientific

missions.1–3 Among many types of electric propulsion

engines, Hall effect thrusters stand out by its current state of

the art, being developed and tested for over 50 years.1,4

Recently, improvements and variations in those devices, like

in the magnetic source,5–8 in the wall shaping,2,3 in the pro-

pellant gas distribution,9 and in the number of acceleration

channels,10 have made long space travels using Hall thrusters

closer to become a reality.

Simplistically, in a Hall thruster, electrons are acceler-

ated and confined by crossed electric and magnetic fields11,12

in an acceleration channel. There, they collide with atoms of

a propellant gas, generating ions.1 The rate of generation of

ions is related to the energy of the electrons and the electron-

propellant gas cross section.13,14 The ions generated in this

process are electrostatically accelerated out of the accelera-

tion channel, producing the thrust. Therefore, a key issue in

order to increase the thrust power and the overall thruster

efficiency is to maximize the gas ionization by the electrons

in the acceleration channel.1–3,5–7

Most of the basic analyses of particle dynamics on Hall

thrusters are based on models that consider a one dimen-

sional electron flow.14–17 In such a case, the electron

dynamics is integrable, being characterized by the presence

of periodic orbits.18 In practice, however, the dynamics is

fully three dimensional, leading to a possible break of the

single particle trajectories’ integrability and the onset of

more complex behavior. The aim of the present paper is to

investigate how such change in the electron dynamical pat-

tern may impact the ability to ionize the background gas. In

particular, we consider a simplified Hall thruster model

with inhomogeneous electromagnetic fields. Using the

concept of limiting curves.19,20 we are able to determine

conditions that guarantee the confinement of the electron in

an acceleration channel region. It is also shown that as a

given parameter of the electromagnetic field is changed, the

particle trajectory may transit from regular to chaotic with-

out affecting the confinement. This allows us to make a

detailed analysis of the role played by the chaos. We also

compute an effective ionization volume,13,14 which mea-

sures the probability of an electron in a given trajectory to

ionize background gas atoms. It is found that there is a great

correlation between chaos and increased effective ioniza-

tion volume. This indicates that a complex dynamical

behavior tends to improve the device efficiency.

The present work is organized as follows. In Sec. II, we

present the model used to describe a Hall thruster and obtain

a Hamiltonian that describes the electron motion. In Sec. III,

we derive a confinement criterion for the electron trajectory

and determine its maximum extent along axial and radial

directions as a function of the parameters of the system. In

Sec. IV, we investigate the electron nonlinear dynamics and

show with the aid of Poincar�e maps that it may become cha-

otic depending on the parameters. In Sec. V, we compute the

effective ionization volume for a given electron trajectory

and find that it tends to increase for chaotic orbits. Our con-

clusions are presented in Sec. VI.

II. MODEL

A schematic of a Hall thruster is shown in Fig. 1. A

cathode emits electrons that are forced into the acceleration

channel by the electric field E0, forming a current density Je

in the negative axial direction. The radial magnetic field B0

deflects the current density Je to the azimuthal positive direc-

tion, forming the Hall current density JH. Since the Hall cur-

rent density is orthogonal to the radial magnetic field, there

is also a JH � B0 force that pushes the electrons along the

positive axial direction. This force tends to balance the one

produced by the electric field E0, creating an axial
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confinement for the electron motion. Note that for simplicity,

in the discussion above the current densities were defined as

positive in the electron movement direction. It is also worth

mentioning that this type of configuration is usually referred

as cylindrical Hall thruster.21

In a real device, once the electron Hall current is estab-

lished, a propellant gas, like argon,5,6,22 is inserted in the

acceleration channel. The electron collisions with the ini-

tially neutral propellant gas generate positive ions, which

are strongly accelerated by the electric field E0 to the axial

positive direction, generating an impulse in the opposite

direction.1,23 Here, however, we will focus on the electron

dynamics disregarding the effects of the background gas and

ions, in order to investigate features like confinement and

onset of complex behavior. Physically, this corresponds to

the limit of low electron current and low background gas

pressure. We assume that the fields are given by

E0 ¼ Ezẑ; (1)

B0 ¼
Kr

r
r̂ þ Bhĥ þ Bzẑ; (2)

where Ez, Kr, Bh, and Bz are constant parameters which mea-

sure the axial electric field and the radial, azimuthal, and

axial magnetic fields, respectively.24 It is worth noting that

despite being inhomogeneous along the radial direction, B0

is divergence free, in agreement with Maxwell’s equations.

In a basic Hall configuration, like the one shown in Fig. 1,

the magnetic field only presents a radial component which is

responsible for the generation of the Hall current and axial

confinement, as discussed above. However, for the sake of

generality, we also consider in the model axial and azimuthal

components.6 It will be shown that these components play a

major role in the overall confinement and in the transition to

chaotic regimes.

In a Hall thruster, the accelerating potential that gener-

ates E0 is typically much smaller than the electron rest mass.

Therefore, the electron dynamics is nonrelativistic, being

dictated by the Hamiltonian25

H ¼ 1

2m
Pþ eAð Þ2 � e/; (3)

where m and –e are the electron mass and charge, respec-

tively, and P is the canonical momentum related to the

mechanical momentum p by p¼Pþ eA. In Eq. (3), / and A

are the scalar and vector potentials, related to the electro-

magnetic fields by

E ¼ �r/� @A

@t
; (4)

B ¼ r� A: (5)

Since the electron density in the acceleration channel is

relatively low, we can safely disregard the self-fields, such

that E¼E0 and B¼B0. Using Eq. (4) and the electric field

described in (1), we find that the scalar potential is given by

/ðzÞ ¼ �Ezz: (6)

Here, we have chosen /ðz ¼ 0Þ ¼ 0, where z¼ 0 is the cath-

ode axial position. Using Eq. (5) and the magnetic field

described by Eq. (2), we can write the vector potential as

A r; zð Þ ¼ �Kr
z

r
þ Bz

r

2

� �
ĥ þ �Bhrð Þẑ: (7)

We conveniently define dimensionless quantities �H ¼ H=
mc2; �Pr ¼ Pr=mc; �Pz ¼ Pz=mc; �Ph ¼ xzPh=mc2; �r ¼ xzr=c;
�z ¼ xzz=c; gb ¼ eKr=mc; ge ¼ eEz=xzmc, and gp¼Bh/Bz,

where c is the speed of light in vacuum and xz� eBz/m.

Substituting (6) and (7) in (3) the normalized Hamiltonian

reads

H ¼ P2
r

2
þ 1

2

Ph

r
� gb

z

r
þ r

2

� �2

þ 1

2
Pz � gpr
� �2 þ gez; (8)

where for simplicity, we have suppressed the bars over

the dimensionless quantities. The electron dynamics satisfy

dr=dt ¼ @H=@Pr; dPr=dt ¼ �@H=@r; dz=dt ¼ @H=@Pz, and

dPz/dt¼ –@H/@z. Because the Hamiltonian (8) does not

explicitly depend on time, it is a conserved quantity along

the electron trajectory. Furthermore, since there is no depen-

dence on the angular variable h, its conjugate momentum Ph

is also a constant of motion. The values of these constants

are determined by the initial condition. In particular, we

assume that the electron is released from the cathode at t¼ 0

with a vanishingly small kinetic energy, which corresponds

to a vanishing initial mechanical momentum p(0)¼ 0.

In terms of the dimensionless quantities, the mechanical

momentum is given by p ¼ Pr r̂ þ ðPh=r � gbz=r þ r=2Þĥ
þðPz � gprÞẑ. Recalling that the cathode is located at z¼ 0

and defining as r0 its radial position, we readily obtain

that p(0)¼ 0 implies that Pr(0)¼ 0, Pz(0)¼ gpr0, and Ph

¼ �r2
0=2. The last condition sets the value of the constant of

motion Ph. As for the Hamiltonian, we notice that Eq. (8)

can be written in terms of the mechanical momentum as

H¼p2/2þ gez. By the fact that p¼ 0 and z¼ 0 at the cath-

ode, we conclude that the constant value of the Hamiltonian

is H¼ 0. It is worth noting that in practice the electrons are

released from the cathode with a thermal energy of the order

of a few electron-volts. However, because this energy is

much smaller than the typical accelerating energy, which is

on the order of hundreds of electron-volts, to a very good

approximation we can safely disregard the initial thermal

energy.

FIG. 1. Schematics of a Hall thruster. Given the symmetry of the device, it

is convenient to describe the problem using cylindrical coordinates with the

z-axis parallel to the symmetry axis of the accelerating channel.
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III. CONFINEMENT CRITERION

In order to avoid particle loss and wall heating due to

electron-wall collisions, it is of utmost relevance to deter-

mine conditions for the electron confinement in the accelera-

tion region. In this regard, perhaps a natural first step would

be to perform a linear stability analysis of the fixed points in

the electron dynamics.26 Nevertheless, a quick inspection on

the equations of motion dictated by Hamiltonian (8) shows

that in general the electron dynamics presents no fixed points

at all. Therefore, we need to resort to non-linear methods to

determine confinement conditions. Particularly, we take

advantage of the concept of limiting curves.19,20

The procedure to obtain these curves is as follows.

Isolating z in the Hamiltonian (8) we can write z¼ z(r, Pr,

Pz; H, Ph). We maximize this function with respect to the

momenta by equating @z/@Pr¼ 0 and @z/@Pz¼ 0, which

leads to Pr¼ 0 and Pz¼ rgp. Substituting these and the

value of the conserved quantities H¼ 0 and Ph ¼ �r2
0=2 in

z¼ z(r, Pr, Pz; H, Ph), we obtain

z rð Þ ¼
gb r2 � r2

0

� �
� 2ger2 6 2r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

er2 � gegb r2 � r2
0

� �q
2g2

b

(9)

which corresponds to the maximum excursion of z as a func-

tion of r that is compatible with the Hamiltonian (8) and thus

represents a limiting curve in the configuration space. It

is interesting to note that the limiting curve described by

Eq. (9) does not depend on the parameter gp. This indicates

that by varying gp it is possible to change the electron

dynamical behavior without modifying the confinement

characteristics in the acceleration channel. From Eq. (9), we

can readily obtain the maximum and the minimum values of

the trajectory along the axial direction as

zmax ¼ 0; (10)

zmin ¼ �
r2

0

2 gb � geð Þ
: (11)

Therefore, the electron trajectory axial span is jzminj.
Inverting the radial and axial variables in Eq. (9), we

can write the limiting curve as r¼ r(z). From this expression,

we can determine the maximum and minimum radii attained

by the electron along its trajectory as

rmax ¼ r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gb

gb � ge

r
; (12)

rmin ¼ 0: (13)

In practice, given the dimensions of a device, namely, the

cathode-anode axial distance L and the accelerating channel

radius R, one can use Eqs. (11) and (12) to determine the

parameters that guarantee that the electrons will not hit the

cathode and the accelerating channel wall by imposing jzminj
< L and rmax<R. From Eq. (12), we note that gb> ge must

be satisfied to exist a real maximum radius. If this condition

is not fulfilled, the trajectory becomes unbounded. Thus, this

parameter condition guarantees the electron confinement by

the electromagnetic fields. It should be stressed that in terms

of the dimensional quantities the confinement condition

reads Bz>mEz/eKr. This implies that in our model an axial

component of the magnetic field is necessary in order to con-

fine the electrons, as it introduces a radial force that balances

the centrifugal force of the gyrating electron. The radial

focusing introduced by the axial magnetic field is analogous

to the one employed in the transport of space-charge domi-

nated beams using solenoidal magnetic fields.27,28 It is worth

noting that other field configurations take advantage of field

gradients to provide radial confinement.1,14,17 Moreover, in a

real device the ions in the acceleration channel may also con-

tribute for the radial confinement of the electrons.

IV. NONLINEAR DYNAMICS AND POINCAR�E MAPS

The electron Hamiltonian (8) describes a system with

two effective degrees of freedom—the radial and the axial

degrees of freedom. They are nonlinearly coupled because in

general we cannot write the Hamiltonian in a separable form

H¼Hr(r, Pr)þHz(z, Pz). Hence, whenever the frequencies of

oscillation along these two different degrees of freedom

become commensurate—their ratio is equal to a rational num-

ber—a resonance and chaos are expected.18 A very conve-

nient and powerful method to investigate the dynamics and

possible onset of chaos in such system is to use Poincar�e
maps.18 Through the Poincar�e map analysis it is possible

to identify the periodic trajectories of the system and other rel-

evant dynamic features. For an integrable trajectory, the

Poincar�e maps lead to closed curves called Kolmogorov-

Arnold-Moser (KAM) curves. For a non-integrable trajectory,

there is a destruction of the closed orbit indicating chaos.18

To obtain a Poincar�e map that represents the entire

accessible phase-space, we need to consider a group of initial

conditions that correspond to the same values for the con-

stants of motion,29 namely, H¼ 0 and Ph ¼ �r2
0=2. A possi-

ble set with these characteristics is given by

rðt ¼ 0Þ ¼ ar0; (14)

Prðt ¼ 0Þ ¼ 0; (15)

z t ¼ 0ð Þ ¼ r2
0 a2 � 1ð Þ

2gb

þ
ar2

0 �geaþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ge gb þ ge � gbð Þa2
� �q� �

g2
b

; (16)

Pzðt ¼ 0Þ ¼ ar0gp; (17)

where a is a real positive number that parametrizes the dif-

ferent initial conditions. Specifically, a¼ 1 corresponds to

the initial condition of the real electron that is dispensed

with zero kinetic energy from the cathode.

To construct the Poincar�e maps, we numerically inte-

grate the trajectories dictated by Hamiltonian (8) and plot the

Pr� r phase space projection each time the trajectory crosses

Pz¼ 0 with dPz/dt< 0. In Fig. 2, we show the results

obtained for three different values of gp and for a number of
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initial conditions obtained by varying a in the range 0� a
� 1 in Eqs. (14)–(17). The remainder parameters are kept

fixed at ge¼ 0.0120, gb¼ 0.0245, and r0¼ 0.035. Note that

because these parameters are not changed, all the cases pre-

sented in Fig. 2 correspond to the same confinement features

and the same overall volume in the configuration space

available for the electron trajectory [see Eq. (9)]. These

parameters were chosen to represent a case where the accel-

erating potential is Va¼ 300 V and the acceleration channel

dimensions satisfy L=R � jzminj=rmax ¼ 1. This can be read-

ily verified using Eqs. (11) and (12) and the normalizations

introduced that lead to eVa=mc2 ¼ ger2
0=2ðgb � geÞ and

jzminj=rmax ¼ r0=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbðgb � geÞ

p
, where L ¼ jzminj has been

assumed. In the figure, the larger red dots are the results for

the trajectory with a¼ 1, i.e., for the electron dispensed with

zero kinetic energy from the cathode. The smaller blue dots

correspond to initial conditions with varying a values (differ-

ent from unity). In all the panels of Fig. 2 we see that the

Poincar�e maps only occupy a portion of the Pr� r space.

The occupied region is bounded by a Pr(r) limiting curve

that can be derived by using the prescribed values for the

constants of motion, H¼ 0 and Ph ¼ �r2
0=2, and the plotting

condition Pr¼ 0 in Eq. (8). This leads to

Pr ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

e � g2
bg

2
p

� �
r2 � gbge r2 � r2

0

� �r

gb

; (18)

which is represented in the figure by the dashed curves.

Panel (a), for gp¼ 0.0, shows a phase space that is predomi-

nantly regular with the occurrence of many KAM curves.

There is only a limited chaotic region near the boundary of

the forbidden area. In particular, the trajectory of the true
electron is regular and, as a consequence, tend to explore

very little of the available phase space. As gp is increased to

gp¼ 0.04, the phase space becomes more distorted—it is not

symmetric with respect to the Pr¼ 0 line anymore—and the

chaotic region tends to enlarge, as shown in panel (b).

Despite the enlarged chaotic region, the true trajectory is still

regular and restricted to a small portion of the available

phase space. We also notice the presence of a blank region

centered near r¼ 0.025 and Pr¼ 0.006. Although this region

lies within the limiting curve, it is not accessed by trajecto-

ries with the prescribed initial condition and, in particular,

by the true electron. If we keep increasing gp, as in panel (c)

with gp¼ 0.1163, we notice that the true trajectory is finally

arrested by the chaotic region and starts to explore a much

larger area in the phase space. Hence, we see that even when

the confinement condition and the total volume in the config-

uration space accessible to the particle are the same, the

effective area explored may largely increase as the trajectory

becomes chaotic.

V. CHAOS AND IONIZATION CROSS SECTION

As mentioned in Introduction, a key issue in order to

increase the thruster efficiency is to maximize the gas

ionization by the electrons in the acceleration channel. In

Sec. IV, we have shown that chaos can largely increase the

effective volume swept by the electron in phase space.

Therefore, a natural question that arises is: can chaos

improve the background gas ionization by the electrons?

In order to answer this question, we need to calculate for

which parameters the electron is more likely to ionize the

background gas. At any given point in its trajectory, the

probability of the electron ionizing a background atom is

measured by the ionization cross section r, which depends

on the electron kinetic energy e and the particular gas that is

being used. Multiplying the cross section by the electron

instantaneous displacement dl, we obtain an effective ioniza-

tion volume for the electron trajectory, given by

dVi¼r(e)dl. Since the magnetic field does no work on the

electron, its kinetic energy is completely determined by the

FIG. 2. Poincar�e maps for the Pr� r phase space. The large red dots indicate

the trajectory of the real electron that is ejected with vanishing energy from

the cathode and the small blue dots are the trajectories obtained for other ini-

tial conditions. The dashed line is the limiting curve given by Eq. (18). The

chaotic regions are indicated in the figures. The values of gp are: gp¼ 0.0 in

(a), gp¼ 0.04 in (b), and gp¼ 0.1163 in (c). The remainder parameters are

kept fix at ge¼ 0.0120, gb¼ 0.0245, and r0¼ 0.035.
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scalar potential as e ¼ �e/. Using (6) and dimensionless

quantities we find that

e ¼ �gez: (19)

Hence, we can express the ionization cross section in terms

of the axial coordinate, r(z). Moreover, we can write

dl¼ vdt, where v is the electron speed which can be written

in terms of the kinetic energy and, consequently, of the axial

coordinate as v¼ (�2gez)1=2. Taking all this into account,

the total effective ionization volume can be obtained by

integrating

dVi

dt
¼ �2gezð Þ1=2r zð Þ; (20)

along the electron trajectory. The larger Vi, the more likely is

the electron to ionize background gas atoms.

In Fig. 3, we show the results for the total effective ioni-

zation volume (dashed curve) as gp is varied. The results are

obtained by considering an accelerating potential of 300 V

and the first ionization cross section r for the argon.13 The

orbits were integrated along a fixed time interval which is

much larger than the typical oscillating period of the electron

in the accelerating channel. To simplify the comparison, we

normalize Vi to its lowest value in the range, Vmin. To com-

pare these results with the onset or not of chaos, we also

compute the largest Lyapunov exponent k (Refs. 18 and 30)

for the electron trajectory which gives a direct indication if

the trajectory is regular or chaotic for the given parameters.

The Lyapunov exponent is a measure of how fast the dis-

tance between neighboring initial conditions increase in

phase space as time evolves. It is known that when the sys-

tem is chaotic it presents a high sensitivity to initial condi-

tions, such that two orbits that are infinitely close at t¼ 0

tend to diverge exponentially with their distance scaling as

ekt. We use the method developed in Ref. 30 to numerically

calculate the largest Lyapunov exponent, such that when k is

positive, the trajectory is chaotic; when k is zero, the trajec-

tory is regular. The results for k are represented by the solid

curve in Fig. 3. We see that there is a great correlation

between chaos and increased effective ionization volume.

For the particular parameters used, an increase of up to

8% in Vi is found when the trajectory becomes chaotic. This

improvement may have an important impact on the device

efficiency.3,5,9

In order to investigate in more detail the role of chaos

and its effect on the ionization, we select from Fig. 3 two

sets of parameters that lead to completely distinct results. In

Fig. 4, we show results for gp¼ 0.0879, which corresponds

to Vi¼Vmin and a regular (non chaotic) electron orbit. In

panel (a), it is shown the quasiperiodic electron trajectory in

the configuration space (solid curve). The limiting curve

(dashed line) of Eq. (9) is also shown. It is clear that the tra-

jectory is indeed bounded by the limiting curve and that it

does not visit a good portion of the available space. In panel

(b), the probability distribution n(z) (histogram) along the

axial axis for the electron trajectory is presented. It presents

two peaks located in the vicinity of the turning points of the

orbit, where the velocity in z vanishes and the particle spends

a good amount of time. Typically, one can expect that any

regular orbit will present such peaks because the location of

the turning points along a given direction is relatively

well defined. To analyze how the distribution affects the

FIG. 3. Normalized ionization volume, Vi/Vmin (red dashed curve), and

Lyapunov exponent, k (blue solid curve), as a function of gp. Vmin is the low-

est value of Vi in the interval. The remainder parameters are the same as in

Fig. 2. The scale on the left (right) axis refers to Vi/Vmin (k). The range of

variation of the parameter ap, namely 0.010� gp� 0.0118, was chosen to

stress the transition from regular to chaotic trajectory that occurs in the

vicinity of gp¼ 0.118. Note that this transition is accompanied by a clear

increase in the effective ionization volume.

FIG. 4. Panel (a) displays the electron trajectory (solid curve) in the configu-

ration space (r� z) and the corresponding limiting curve (dashed curve)

described by Eq. (9). Panel (b) shows the cross-section r (solid curve) and

the probability distribution n (histogram) as a function of axial coordinate z
at bottom and as a function of energy e at top. Note that in our model there

is a direct relation between e and z given by Eq. (19). Here, gp¼ 0.0879

which leads to k¼ 0.0 and Vi/Vmin� 1.0 (see Fig. 3).
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ionization, we also show in panel (b) the corresponding ioni-

zation cross section r(z) (solid line). It is not difficult to fig-

ure out why this particular case leads to a relatively small

effective ionization volume: none of the peaks of n(z) match

the maximum of r(z). Even if one could perfectly tune the

parameters such that one of the peaks of n(z) matched the

maximum of r(z), the electron would still spend a good

amount of time near the other peak with a lower ionization

cross section and the increase in the total ionization volume

would be modest. This is exactly what Fig. 3 shows us: as

long as the trajectory is regular there are only slight varia-

tions in Vi.

In Fig. 5, we consider the case gp¼ 0.1163, which corre-

sponds to a chaotic trajectory that leads to the maximum

value of Vi in Fig. 3. In Fig. 5(a) we notice again that the tra-

jectory is well contained in the limiting curve. However, dif-

ferently from the regular trajectory of Fig. 4(a), now the

orbit explores basically all its accessible region due to the

chaotic diffusion. Also different from the regular case, the

probability distribution n(z) for the chaotic orbit shown in

Fig. 5(b) presents roughly a single peak. Tuning the parame-

ters to coincide this peak with the maximum of r(z) leads to

the enhanced total effective ionization volume observed.

In our model, we assume that the electron interacts with

static electromagnetic fields. However, in a real device there

may be instabilities that cause field oscillations at different

frequencies. In particular, plasma instabilities occur in the

MHz range31,32 and ionization oscillations cause variations

in the kHz range.33 It is therefore interesting to compare

these timescales to the typical ones found in our model for

the electron period and the onset of chaos. For that, let us

consider the case presented in Fig. 5 and assume that the

axial magnetic field—which determines the time normaliza-

tion—is of the order of Bz� 10�2 T.6 From the simulation,

we find that the electron trajectory period of oscillation To is

around 6.0 in terms of the normalized time. This corresponds

to To¼ 3.4 ns, which is much smaller than the typical period

of the afore mentioned instabilities. Hence, from the point of

view of nonlinear dynamics, their effect on the electron tra-

jectory is expected to be small since they are far from being

in resonance. As for the chaos onset time scale, we use the

Lyapunov exponent to estimate it.18 When the distance

between initially neighboring initial conditions increases by

a large factor, let us say ekt� 100, we expect noticeable cha-

otic effects. Taking into account that k¼ 0.125 for the exam-

ple presented in Fig. 5, this corresponds to times on the order

of Tchaos� 10�7 s, which are still on the same order of mag-

nitude of the fastest oscillations caused by plasma instabil-

ities. In the model, we also disregard the effects of the

background gas and ions, as well as the self-interaction

among the electrons. These assumptions are valid when the

ionization ratio and the space charge forces are sufficiently

small. Particularly, if we want the electron trajectory to fully

exhibit its chaotic properties without being much affected by

ionization, we must impose that ngVi(Tchaos) � 1, where ng

is the background gas density and Vi(Tchaos) represents the

effective ionization volume computed at a time Tchaos such

that the chaotic effects are noticeable. Using Tchaos computed

above and Vi(Tchaos) obtained from the simulation, this con-

dition leads to ng � 1022 m�3. Regarding the space charge,

we can estimate the self electric field Es by assuming that the

electrons are uniformly distributed in the cylindrical volume

of the accelerating channel and calculate its value along the

axis at z¼ 0. One can safely disregard the space charge

effects as long as the electron density ne is small enough

such that Es� Ez. Using the parameters of Fig. 5, this corre-

sponds to ne� 5� 1015 m�3. It should be noted that in prac-

tice the ions screen part of the self electric field and the

above condition may be somewhat relaxed.

To test the correlation between chaotic orbits and

enhanced ionization for a broader range of cases, we con-

sider the parameter space plots shown in Fig. 6. In these

plots, we vary both gb and gp. In panel (a), we show the larg-

est Lyapunov exponent k. The white (dark) regions corre-

spond to regular (chaotic) trajectories with k¼ 0 (k> 0). We

note that the chaotic regions are distributed in the parameter

space in a complex, nontrivial way. In panel (b), we present

the results obtained for the total effective ionization volume.

The darker is the region the more enhanced is the ionization.

Comparing panels (a) and (b), it is clear that there is a great

correlation between improved ionization and chaos.

We also performed an analogous analysis considering

different accelerating potentials and different acceleration

channel aspect ratios L/R. In agreement with the results

FIG. 5. Panel (a) displays the electron trajectory (solid curve) in the configu-

ration space (r� z) and the corresponding limiting curve (dashed curve)

described by Eq. (9). Panel (b) shows the cross-section r (solid curve) and

the probability distribution n (histogram) as a function of axial coordinate z
at bottom and as a function of energy e at top. Note that in our model there

is a direct relation between e and z given by Eq. (19). Here, gp¼ 0.1163

which leads to k¼ 0.125 and Vi/Vmin¼ 1.0825 (see Fig. 3).
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presented, we always find a great correlation between chaos

and improved ionization. Moreover, we also found that typi-

cally the larger is the accelerating potential, the larger is the

relative improvement that one can achieve by considering

chaotic trajectories.

VI. CONCLUSIONS

In the present paper, we have investigated how chaotic

electron trajectories may affect the ability to ionize the back-

ground gas in a Hall thruster system. We considered a sim-

plified three dimensional model with inhomogeneous

electromagnetic fields. Using a Hamiltonian formalism and

the concept of limiting curves,19,20 we were able to deter-

mine conditions that guarantee the confinement of the elec-

tron in the acceleration channel. It was also shown that as a

given parameter of the electromagnetic field is changed, the

particle trajectory could transit from regular to chaotic with-

out affecting the confinement. This allowed us to make a

detailed analysis of the role played by the chaos and to relate

it to the ionization volume, which measures the probability

of an electron in a given trajectory to ionize background gas

atoms. It was found that there is a great correlation between

chaos and increased effective ionization volume. This indi-

cates that a complex dynamical behavior tends to improve

the device efficiency. The chaotic electron dynamics dis-

cussed here may be an important ingredient to explain the

anomalous transport that tends to enhance the cross field

electron mobility in Hall thrusters.34 In real devices, the field

configuration is generally more involved than the one

considered in our model. The method employed here to ana-

lyze the electron trajectory can be extended to such field con-

figurations, leading to a more complex set of limiting curves

and a richer parameter space dependence concerning the

onset of chaos. Nevertheless, it is anticipated that the benefi-

cial effects generated by chaotic electron trajectories on their

ability to ionize background gas atoms is a general phenom-

ena, valid for any field configuration.
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