UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL CENTRO DE BIOTECNOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM BIOLOGIA CELULAR E MOLECULAR

Elisa Beatriz de Oliveira John

Desenvolvimento de parâmetros para simulação de flavonoides e chalconas no campo de força GROMOS

Porto Alegre 2017

Desenvolvimento de parâmetros para simulação de flavonoides e chalconas no campo de força GROMOS

Dissertação submetida ao Programa de Pós-Graduação em Biologia Celular e Molecular do Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul como parte dos requisitos necessários para a obtenção do grau de Mestre em Biologia Celular e Molecular.

Orientador: Hugo Verli

Porto Alegre

2017

John, Elisa Beatriz de Oliveira

Desenvolvimento de parâmetros para simulação de flavonoides e chalconas no campo de força GROMOS/ Elisa Beatriz de Oliveira John. – Porto Alegre, 2017-91 f.

Orientador: Hugo Verli

Dissertação (Mestrado) – Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia do Estado do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Celular e Molecular, Porto Alegre, BR-RS, 2017.

1, Dinâmica molecular. 2, Flavonoides. 3, Chalconas. 4, GROMOS I. Verli, Hugo, orient. II. Título

Elisa Beatriz de Oliveira John

Desenvolvimento de parâmetros para simulação de flavonoides e chalconas no campo de força GROMOS

Dissertação submetida ao Programa de Pós-Graduação em Biologia Celular e Molecular do Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul como parte dos requisitos necessários para a obtenção do grau de Mestre em Biologia Celular e Molecular.

Banca Examinadora:

Prof. Hugo Verli Orientador **Prof. Márcio Dorn** Instituto de Informática - UFRGS

Prof. Paulo Augusto Netz Instituto de Química - UFRGS **Prof. Felipe Ricachenevsky** Departamento de Biologia - UFSM

Dra. Cláudia Lemelle Fernandes (Suplente) Pós-Doutora - UFRGS

Porto Alegre, 17 de Fevereiro 2017

Agradecimentos

Ao meu orientador, Hugo Verli, por ter oferecido a oportunidade para desenvolver este trabalho e pelo suporte intelectual envolvido. Obrigada também por toda a paciência, desde os tempos de iniciação científica.

Aos membros da comissão de acompanhamento, Rodrigo Ligabue-Braun e Laércio Pol-Fachin, pela disponibilidade para ajudar em diversos aspectos do trabalho.

Aos membros do Grupo de Bioinformática Estrutural (e agregados), por todo o companheirismo ao longo destes anos. Alguns agradecimentos nominais, pois prometi: ao Pablo, por toda ajuda na reta final dos experimentos; ao Rodrigo, pelos conselhos e suporte em assuntos aleatórios; à Carla, pela companhia e conversas durante o período final (e de mais ansiedade) da realização deste trabalho; à Bianca, pelas pep talks e pelos bolinhos; ao Conrado, pelas caronas e pelos efeitos sonoros durante as tardes de trabalho no laboratório; ao Marcelo, pelos scripts que tanto facilitaram algumas tarefas e pelo doce de leite de Viçosa.

Aos amigos próximos, por ouvirem minhas reclamações e pelo enforço em tentarem entender sobre o meu trabalho. Ao Juliano, pela ajuda em vários momentos e pela companhia para comer docinhos.

À minha família, por todo suporte, amor e ajuda nos tempos mais difíceis.

Aos funcionários do Cbiot e PPGBCM, por toda prestatividade.

À Capes, pela bolsa.

A todos que contribuíram de alguma forma para a realização deste trabalho (e para o meu crescimento pessoal neste período).

"I was sitting writing at my textbook but the work did not progress; my thoughts were elsewhere. I turned my chair to the fire and dozed. Again the atoms were gamboling before my eyes. This time the smaller groups kept modestly in the background. My mental eye, rendered more acute by repeated visions of the kind, could now distinguish larger structures of manifold conformation: long rows, sometimes more closely fitted together all twining and twisting in snake-like motion. But look! What was that? One of the snakes had seized hold of its own tail, and the form whirled mockingly before my eyes. As if by a flash of lightning I awoke; and this time also I spent the rest of the night in working out the consequences of the hypothesis. *Let us learn to dream, gentlemen, then perhaps we shall find the truth.* But let us beware of publishing our dreams till they have been tested by the waking understanding."

Resumo

Chalconas e flavonoides são compostos comumente presentes em plantas, e constituem uma grande família de produtos naturais com um amplo espectro de atividades farmacológicas. Mudanças na estrutura destas moléculas tem se provado úteis no desenvolvimento de novos agentes terapêuticos, sendo assim, esses compostos tem sido intensamente estudados. Métodos computacionais como a dinâmica molecular (DM) são ferramentas poderosas para o acesso a informações de difícil obtenção por outros meios experimentais. Campos de força acurados são essenciais para a descrição de sistemas biológicos em simulações de DM, assim, um conjunto de parâmetros associado a um composto necessita ser cuidadosamente calibrado para garantir a obtenção de resultados confiáveis. Considerando a relevância dessa família de moléculas e a falta de parâmetros validados para a estrutura básica de chalconas e flavonoides no campo de força GROMOS, o presente trabalho tem como objetivo prover um novo conjunto de parâmetros para a simulação destes compostos. Um protocolo que combina cálculos ab initio e simulações de DM foi aplicado para obter novas cargas atômicas e parâmetros torsionais. Propriedades experimentais como densidade e entalpia de vaporização foram usadas como comparação aos valores obtidos em simulações, como forma de validação dos parâmetros. A comparação dos perfis torsionais obtidos por cálculos quânticos e por mecânica molecular auxiliou na geração de novos potenciais que permitem uma descrição conformacional mais acurada dos diedros de interesse. Diversos ajustes em grupos de cargas foram feitos, e os valores para propriedades termodinâmicas obtidos nas simulações estão em concordância com os dados experimentais. Simulações de metadinâmica foram realizadas para avaliar o comportamento conformacional de chalconas e flavonoides completos, e contatos de NOE foram medidos durante simulações de DM, obtendo uma reprodução quase completa das distâncias entre alguns grupos de prótons. O protocolo empregado gerou parâmetros de campo de força que reproduzem bem dados experimentais, e espera-se que estes resultados contribuam para a realização de estudos computacionais acurados envolvendo chalconas e flavonoides.

Palavras-chaves: Campos de força. Chalconas. Flavonoides. Dinâmica Molecular. GROMOS.

Abstract

Chalcones and flavonoids are polyphenolic compounds extensively distributed in plants, constituting a large family of natural products with a broad spectrum of pharmacological activities. Changes in their structure have been proven useful for the development of new therapeutic agents, thus these biomolecules are being intensively studied and modified. Computational methods such as molecular dynamics (MD) simulations are powerful tools to assess information that is difficult to obtain experimentally. Accurate force fields are essential for describing biological systems in a MD simulation, thus a parameter set associated to a certain compound need to be carefully calibrated to ensure reliable results. Considering the relevance of this family of molecules and the lack of validated parameters for the basic structure of chalcones and flavonoids in the GROMOS force field, this work intends to provide a new parameter set for the simulation of these compounds. We employed a protocol combining *ab initio* calculations and MD simulations for the obtention of new atomic charges and torsional parameters. Experimental properties such as density and enthalpy of vaporization were compared to the calculated values in order to validate the parameters. A fitting of molecular-mechanical to quantum-mechanical torsional profiles was performed for each of the dihedrals of interest in the structures, generating new torsional potentials that provide accurate description of conformational behavior. Additionally, adjustments in charge groups were made in topologies used for the MD simulations and the obtained values of the thermodynamic properties are in good agreement with experimental data. Metadynamics simulations were performed to evaluate the conformation of complete chalcones and flavonoids, and NOE contacts during MD simulations were measured, obtaining an almost complete reproduction of inter-proton interactions. The employed protocol generated force field parameters that reproduce well the target data and we expect they will contribute to more accurate computational studies on the biological role of chalcones and flavonoids.

Keywords: Force Field. Chalcones. Flavonoids. Molecular Dynamics. GROMOS.

Lista de ilustrações

Figura 1 –	Fármacos baseados em pequenas moléculas aprovados entre 1981 e	
	2014	14
Figura 2 $-$	Estrutura dos núcleos fundamentais de chalconas e flavonoides, com	
	seu esquema de numeração dos carbonos	16
Figura 3 $-$	Estrutura básica das principais subclasses de flavonoides e chalconas.	16
Figura 4 –	Biossíntese de chalconas e flavonoides	18
Figura 5 $-$	Composição geral dos termos de um campo de força para dinâmica	
	molecular.	21
Figura 6 –	Esquema representativo do protocolo de simulações para avaliação	
	das propriedades termodinâmicas da fase condensada	27

Lista de tabelas

Tabela 1 –	Exemplos de atividades farmacológicas associadas a diferentes chal-	
	conas e flavonoides naturais	19

Lista de abreviaturas e siglas

DM	Dinâmica Molecular
ESP	Electrostatic Potential derived Surface
GL	Graus de Liberdade
MD	Molecular Dynamics
NOE	Nuclear Overhauser Effect
NPT	Constant number, pressure and temperature (ensemble isotérmico- isobárico)
NVT	Constant number, volume and temperature (ensemble canônico)
PCM	Polarizable Continuum Model
PME	Particle Mesh Ewald
QM	Quantum mechanics
RMN	Ressonância Magnética Nuclear

Lista de símbolos

ΔH_{vap}	Entalpia de vaporização
ρ	Densidade
k_B	Constante de Boltzmann $[0,0083 \; kJ/(mol \times K)]$
K	Kelvin

Sumário

1	INTRODUÇÃO	14
1.1	Produtos naturais no campo do desenvolvimento de novos fármacos	14
1.2	Flavonoides e chalconas	15
1.2.1	Estrutura básica e biossíntese	15
1.2.2	Interesse nas atividades farmacológicas	17
1.3	Caracterização de biomoléculas por métodos computacionais	20
1.3.1	Campos de força	20
2	JUSTIFICATIVA	23
3	ΟΒJΕΤΙVΟ	24
4	METODOLOGIA	25
4.1	Estratégia de parametrização e escolha das moléculas de trabalho	25
4.2	Construção de topologias	25
4.2.1	Obtenção de cargas atômicas parciais	25
4.2.2	Obtenção de parâmetros torsionais	26
4.3	Avaliação das propriedades termodinâmicas da fase condensada	26
4.4	Avaliação conformacional de chalconas e flavonoides completos	28
4.4.1	Metadinâmica	29
4.4.2	Comparação com dados de RMN	29
5	RESULTADOS	30
6	DISCUSSÃO	60
7	CONCLUSÕES	62
8	PERSPECTIVAS	63
	REFERÊNCIAS	64
	ANEXOS	71
	ANEXO A – TOPOLOGIAS	72

CURRICULUM VITÆ

89

1 Introdução

1.1 Produtos naturais no campo do desenvolvimento de novos fármacos

Historicamente, produtos naturais tem uma importância reconhecida na terapêutica, e substâncias provenientes de plantas, em particular, formaram a base para os sistemas medicinais tradicionais [1,2]. Mesmo após um certo declínio no investimento em moléculas naturais, em favor de técnicas como a química combinatória para a geração de bibliotecas sintéticas [3,4], os produtos naturais ainda tem um papel dominante como fontes de novos fármacos e compostos-líder. Em uma análise [5] de todos os fármacos aprovados pela FDA (*Food and Drug Administration*, agência regulatória americana para administração de medicamentos e alimentos) entre 1981 e 2014, viu-se que pelo menos metade dos medicamentos que se constituem de pequenas moléculas são relacionados com produtos naturais, sendo produtos naturais inalterados, derivados ou moléculas sintéticas com a presença de um farmacóforo (porção estrutural carregando as características essenciais necessárias para a atividade) natural (Figura 1).

Figura 1 – Fármacos baseados em pequenas moléculas aprovados entre 1981 e 2014 (n=1211). As categorias marcadas com "/NM"referem-se a fármacos que atuam como "mímicos"de produtos naturais, ou seja, são inibidores competitivos de substratos naturais (Adaptado de Newman e Cragg [5]).

Compostos naturais frequentemente possuem atividades biológicas altamente específicas e seletivas, além de exibirem uma enorme diversidade estrutural [6]. Por este aspecto, entre os produtos naturais de origem vegetal, observa-se existência de muitas famílias diferentes de compostos, como flavonoides, lignanas, cumarinas, cromonas, quinonas, alcaloides, entre outras, que são de interesse frequente para o desenvolvimento de fármacos.

1.2 Flavonoides e chalconas

Flavonoides constituem um grupo de substâncias com estruturas fenólicas variáveis, que são comumente encontradas em frutas, flores, folhas, raízes e grãos, contribuindo na sua pigmentação [7,8]. A presença destes metabólitos secundários nos vegetais também está relacionada com funções de defesa (proteção contra raios ultravioleta e contra a ação de microorganismos) [9,10], atração de animais polinizadores [11], controle da ação de hormônios vegetais [12] e inibição de enzimas [13,14]. Chalconas são compostos relacionados, considerados "flavonoides abertos", que atuam como precursores na síntese destas moléculas [15].

Dados epidemiológicos sugerem um efeito protetor contra algumas doenças decorrente de dietas ricas em compostos polifenólicos [16]. Esta suposta associação do benefício da ingestão de flavonoides veio antes mesmo de estudos robustos, uma vez que no início do século XX já eram investigados efeitos de flavonoides na nutrição (inclusive com a classificação destas moléculas como "vitamina P" [17]). Uma característica marcante destas moléculas, que as relacionaria com seus benefícios, é sua potente ação antioxidante (observada principalmente *in vitro*), através de mecanismos como quelação de elementos traços envolvidos na formação de radicais livres e ação direta de *scavenging* de moléculas reativas [18].

1.2.1 Estrutura básica e biossíntese

O esqueleto básico dos flavonoides (Figura 2) consiste em dois aneis aromáticos (A e B) conectados por um anel heterocíclico (C) [19]. Algumas pequenas variações nesta estrutura básica de 15 átomos de carbono distinguem as principais subclasses de flavonoides (Figura 3). As chalconas, ou flavonoides abertos, apresentam no seu esqueleto principal dois aneis aromáticos (A e B) unidos por um sistema carbonil α,β insaturado, que sugere uma maior flexibilidade estrutural quando comparado aos esqueletos de flavonoides heterocíclicos.

Figura 2 – Estrutura dos núcleos fundamentais de chalconas e flavonoides, com seu esquema de numeração dos carbonos.

Figura 3 – Estrutura básica das principais subclasses de flavonoides e chalconas.

A estrutura básica dos flavonoides resulta de rotas biossintéticas distintas [8], esquematizadas na Figura 4. O anel A é formado pela condensação de três moléculas de malonil-CoA, derivadas de vias do metabolismo energético, enquanto o anel B e a base de três carbonos para o anel C são formados a partir de p-cumaril-CoA, derivado da via do ácido chiquímico. A partir destes intermediários, a enzima chalcona sintase catalisa a formação da estrutura básica de chalconas, que, subsequentemente, pode ser alvo da enzima chalcona isomerase para a conversão em flavanonas, com a ciclização do sistema insaturado central. As flavanonas são ponto de partida para a formação de outros tipos de flavonoides, através de processos de adição de insaturação no anel C e hidroxilação em diferentes posições.

O esqueleto básico de flavonoides e chalconas pode ser modificado pela adição de diversos tipos de substituintes nos aneis, como hidroxilas, metoxilas, metilas, subunidades isoprenoides, entre outros. Muitos destes compostos apresentam-se também conjugados a açúcares (nessa forma, chamados de glicosídeos ou heterosídeos), a partir da formação de ligações glicosídicas em grupos hidroxila da forma aglicona (porção do metabólito sem carboidrato).

1.2.2 Interesse nas atividades farmacológicas

Chalconas e flavonoides tem sido muito estudados quanto às suas propriedades biológicas, que podem inspirar a produção de novos produtos farmacológicos [20]. Há relatos de uma ampla gama de propriedades atribuídas a diferentes compostos, incluindo atividade antiproliferativa, antimicrobiana, antiinflamatória, entre outras (alguns compostos naturais com atividade caracterizada estão listados na Tabela 1).

Figura 4 – Biossíntese de chalconas e flavonóides.

 $\label{eq:tabelal} \begin{array}{l} \textbf{Tabela 1} - \text{Exemplos de atividades farmacológicas associadas a diferentes chalconas e flavonoides naturais} \end{array}$

^{*a*} Vários flavonoides e chalconas são conhecidos por nomes que possuem relação com a planta na qual os compostos foram identificados pela primeira vez - a exemplo, quercetina, que foi isolada de *Quercus sp.*

1.3 Caracterização de biomoléculas por métodos computacionais

A dificuldade na síntese ou extração de produtos naturais complexos se constitui num fator limitante para a realização de vários ensaios experimentais na área de química medicinal. Em situações como esta, o auxílio de métodos computacionais torna-se valioso, uma vez que é possível explorar diversas propriedades de potenciais novos produtos farmacológicos a partir de sua modelagem [36,37]. A modelagem molecular abrange todos os métodos teóricos e técnicas computacionais usadas para mimetizar o comportamento de moléculas, sejam elas sistemas pequenos, como a maior parte dos casos de compostos não-proteicos de interesse farmacêutico, até grandes moléculas, como receptores biológicos.

Dentre as técnicas computacionais usadas para a caracterização de moléculas, estão os métodos baseados em mecânica quântica, que representam explicitamente os elétrons durante os cálculos, sendo possível derivar propriedades que dependem da distribuição eletrônica. A base destes métodos envolve a equação de Schrödinger em função do tempo, com diferentes abordagens para sua resolução [38]. Os métodos quânticos são capazes de descrever as propriedades de sistemas moleculares com grande acurácia, mas tem sua aplicação inviável para o estudo de grandes biomoléculas, já que isto demandaria um grande custo computacional [39].

Uma abordagem alternativa para o estudo de moléculas complexas é a dinâmica molecular (DM), que oferece informações sobre as sucessivas configurações de um determinado sistema através de uma trajetória gerada baseando-se nas equações de movimento de Newton. Nas simulações de DM, os átomos são tratados como partículas de massa específica (com um raio de van der Waals associado) que possuem ligações, ângulos e diedros tratados como molas e interações regidas por potenciais de Coulomb e Lennard-Jones [38]. O conjunto de parâmetros descrevendo as interações ligadas e não-ligadas que agem sobre os átomos do sistema é chamado de campo de força.

1.3.1 Campos de força

A maioria dos campos de força usa as mesmas funções para descrição das interações entre os átomos do sistema. Uma função que descreve a energia potencial total do sistema é a soma dos potenciais de ligação, angulares, torsionais, potenciais de Coulomb e de Lennard-Jones (Figura 5). Esses potenciais são calibrados para reproduzir dados de mecânica quântica e diferentes propriedades experimentais, dependendo da estratégia de parametrização do campo de força.

Figura 5 – Esquema da forma funcional de um campo de força. O termo de $\vartheta_{covalente}$ é composto pelo somatório dos termos $\vartheta_{liga \in \tilde{a}o}$, $\vartheta_{\hat{a}ngulo}$ e ϑ_{diedro} , enquanto o termo de $\vartheta_{n\tilde{a}o-covalente}$ é composto pelo somatório dos potenciais $\vartheta_{eletrostático}$ e $\vartheta_{Lennard-Jones}$ (adaptado de Serdyuk, Zaccai e Zaccai [40]). Campos de força podem apresentar diferentes resoluções atomísticas, dividindo-se, de forma geral, em campos *all-atom*, *united-atom* e *coarse-grained*. Os campos *all-atom* consistem em uma descrição completa de todos os átomos presentes no sistema, enquanto campos *united-atom* apresentam alguns pseudoátomos, que consistem geralmente da fusão de átomos pesados com hidrogênios alifáticos. Os campos baseados em *coarsegraining* apresentam uma resolução atômica ainda menor, com fusão de grupamentos funcionais maiores. Um maior número de simplificações na representação atômica pode auxiliar na simulação de grandes biomoléculas, mas pode haver uma penalidade na acurácia de diversas análises [39].

Nas últimas décadas, uma variedade de campos de força para a simulação de biomoléculas foi desenvolvida. Exemplos típicos de campos de força baseados em fase condensada são AMBER [41], CHARMM [42], OPLS [43] e GROMOS [44]. Estes campos tem formas similares de funções de interação, mas variam consideravelmente nos valores dos parâmetros e na forma de parametrização. Os campos de força da série GROMOS são do tipo *united-atom*, e tratam os carbonos e hidrogênios alifáticos como pseudoátomos do tipo CH_3 (m.a. = 15.035 u), CH_2 (m.a. = 14.027 u) ou CH (m.a. = 13.019 u) e estes, por sua vez, possuem ajustes específicos para seus termos coulômbicos e de Lennard-Jones para descreverem suas propriedades químicas com a devida acurácia [45]. Essa abordagem, além de reduzir o custo computacional ao diminuir os graus de liberdade resolvidos pela mecânica molecular, também simplificam os descritores topológicos das moléculas, facilitando a transposição dos mesmos parâmetros para descreverem moléculas similares [44]. Vários estudos que envolvem a criação de parâmetros para o campo de força GROMOS usam propriedades termodinâmicas de líquidos (como entalpia de vaporização, densidade e entalpia de solvatação) como forma de validação [44,46,47]. Há também muitos casos avaliando a reprodução de dados provenientes de ressonância magnética nuclear (RMN), como contatos de NOE (Nuclear Overhauser Effect) [48,49].

2 Justificativa

A utilização de métodos computacionais é uma importante abordagem na área de química medicinal para superação de limitações impostas por métodos experimentais tradicionais. As simulações de DM podem auxiliar no estudo de produtos naturais como as chalconas e flavonoides, mas a ausência de parâmetros validados para estas moléculas num campo de força de uso bem difundido como o GROMOS inviabiliza a realização de simulações e obtenção de dados acurados sobre o comportamento conformacional destas moléculas.

Um empenho para suprir esta falta de parâmetros é necessário, a fim de que se possa explorar o uso de um campo de força *united-atom* (que permite um certo ganho de performance computacional) no estudo de chalconas e flavonoides.

3 Objetivo

O objetivo deste trabalho é o desenvolvimento de parâmetros compatíveis com o campo de força GROMOS para a descrição conformacional de flavonoides e chalconas. Para tal, o projeto envolve os seguintes objetivos específicos:

- Geração de cargas atômicas para fragmentos contendo grupos funcionais comumente encontrados na estrutura de chalconas e flavonoides;
- Geração de novos perfis torsionais, baseados em dados quânticos, para diedros flexíveis existentes nos fragmentos escolhidos;
- Validação dos modelos através de simulações de suas propriedades físico-químicas em solução;
- Validação dos parâmetros a partir da montagem de moléculas completas e comparação com dados de RMN (sinais de NOE).

4 Metodologia

4.1 Estratégia de parametrização e escolha das moléculas de trabalho

Uma estratégia envolvendo "building blocks" foi usada para a geração dos parâmetros deste trabalho: várias pequenas moléculas, chamadas aqui de fragmentos, contendo grupos funcionais comumente presentes na estrutura de chalconas e flavonoides foram escolhidas para aplicação em diferentes protocolos. O critério principal de escolha destes fragmentos foi a disponibilidade de dados experimentais de certas propriedades termodinâmicas, necessárias para a validação de parâmetros em campos de força de fase condensada [44,46,49,50]. O uso de moléculas menores também facilita a interpretação de perfis torsionais e a geração de cargas atômicas parciais a partir de métodos quânticos. Após a validação dos parâmetros usados para os fragmentos, chalconas e flavonoides completos foram montados com base nas topologias destas moléculas menores. As moléculas mais complexas, por sua vez, foram escolhidas com base na dispobilidade de dados de sinais de NOE (provenientes de experimentos de RMN), que serviram de referência experimental para comparação com o comportamento conformacional das moléculas durante simulações de DM.

4.2 Construção de topologias

As topologias das moléculas escolhidas foram construídas com base em alguns parâmetros (de ligação, angulares e de Lennard-Jones) já presentes no campo de força GROMOS53A6 [44]. Cargas atômicas parciais e potenciais torsionais foram gerados individualmente para os fragmentos de trabalho, baseados na reprodução de valores obtidos através de cálculos quânticos, como descrito nas próximas seções.

4.2.1 Obtenção de cargas atômicas parciais

Cargas atômicas parciais foram obtidas através de cálculos quânticos (QM) utilizando o método MP2 [51], conjunto de bases 6-31G^{*} e solvente implícito *Polarizable Continuum Model* (PCM) [52], com o intuito de reproduzir a superfície do potencial eletrostático (ESP) [53]. A utilização direta do módulo das cargas atômicas parciais obtidas por ESP-MP2/6-31G^{*} nos grupos de carga levou à uma superestimação dos valores das propriedades estudadas nesse trabalho, então os erros absolutos na simulação das propriedades foram utilizados para guiar modificações. Esses ajustes manuais foram realizados levando em consideração a manutenção da direção e sentido do momento de dipolo, utilizando o *plugin* DipWatch do programa VMD [54] para comparação dos conjuntos de cargas obtidos pelos cálculos quânticos e os usados nas topologias para DM [55]. Os grupos de carga foram limitados, na maioria das vezes, aos átomos do grupo funcional de interesse e aos átomos de carbono adjacentes. Em alguns casos mais complexos, a sobreposição de dois grupos de carga foi necessária para a descrição correta do grupo químico. Em todos os outros casos de grupos de carga complexos, os átomos que se sobrepõem foram manualmente ajustados para a correta descrição do momento de dipolo obtido por métodos quânticos.

4.2.2 Obtenção de parâmetros torsionais

O perfil torsional quântico de cada novo diedro das moléculas parametrizadas nesse trabalho foi calculado utilizando o *software* Gaussian [56]. As estruturas das moléculas foram construídas no *software* Molden [57]. Após, a rotina *Scan* foi utilizada com critério de convergência *tight*, com otimização geométrica, iniciando o cálculo com o diedro orientado em 0° e utilizando passos de 30° até completar a rotação de 360° [55]. A energia total das conformações das moléculas foi calculada para cada orientação do diedro utilizando o método MP2 e base 6-31G*. Para a construção do perfil torsional mecânico, o *software* GROMACS versão 4.6.1 [58] foi utilizado, com avaliação da energia associada aos mesmos ângulos calculados por métodos quânticos. Ambos os perfis foram submetidos ao servidor RotProf [59] para a obtenção de parâmetros de mecânica clássica que melhor descrevem o perfil torsional quântico [60, 61].

4.3 Avaliação das propriedades termodinâmicas da fase condensada

Campos de força de fase condensada, como o GROMOS, requerem validação de propriedades das moléculas em fase líquida, de forma que os fragmentos escolhidos para validação foram simulados na forma de líquidos puros orgânicos. O protocolo usado foi baseado no descrito por Caleman *et al.* [62], utilizado em um trabalho de estabelecimento de *benchmarks* para campos de força comumente aplicados em simulações de DM e implementado previamente em nosso grupo de pesquisas [55]. Basicamente, o protocolo se constitui de simulações dos compostos orgânicos em fase líquida e gasosa, de forma a extrair propriedades como densidade e entalpia de vaporização e realizar sua comparação com valores experimentais (Figura 6).

O pacote GROMACS versão 5.0.7 [63] foi utilizado em todas as simulações. Inicialmente, para construir as caixas de simulação dos líquidos orgânicos, uma caixa cúbica de 8 nm³ foi criada contendo uma única molécula. Um total de 125 dessas caixas foram empilhadas, formando uma caixa de 1000 nm³), a qual foi simulada sob alta pressão (100 bar) para a indução das moléculas até a fase líquida. Após, o sistema foi simulado e equilibrado a 1 bar. Posteriormente, a caixa foi escalonada em $2\times2\times2$ para obtenção de uma caixa de 1000 moléculas em fase líquida e simulada a 1 bar e até o desvio total de energia total convergir para valores menores que 0,5 J/(mol×ns×GL), critério necessário para o cálculo acurado de propriedades flutuantes [62]. Todas simulações de equilibração foram feitas com algoritmo de acoplamento de Berendsen [64] por sua eficiência em relaxações moleculares. Quando disponíveis, valores experimentais de compressibilidade foram utilizados para simulação dos líquidos (do contrário, a compressibilidade da molécula orgânica mais similar disponível foi utilizada).

Figura 6 – Esquema representativo do protocolo de simulações para avaliação das propriedades termodinâmicas da fase condensada.

A etapa de produção da fase líquida foi calculada por 10 ns após a equilibração (já que as propriedades físico-químicas avaliadas nesse trabalho são de rápida convergência),

utilizando um tempo de integração de 2 fs e o integrador *leapfrog* [65]. O método PME [66] foi utilizado para descrever interações de Coulomb e Lennard-Jones com um *switching distance* de 1,1 nm para uma descrição mais acurada dos líquidos [67]. Para as simulações com pressão constante, o algoritmo de acoplamento Parrinelo-Rahman [68] foi utilizado como barostato, utilizando uma constante de 5 ps. A temperatura das simulações foi escolhida de acordo com as temperaturas para as quais existem dados termodinâmicos experimentais disponíveis. Os *constraints* de ligações químicas foram mantidas utilizando o algoritmo LINCS [69]. Já simulações de fase gasosa foram realizadas com uma única molécula no vácuo por 100 ns utilizando o algoritmo LINCS e o integrador SD.

O cálculo da densidade ρ em uma simulação com pressão constante é dada pela massa do sistema M dividida pelo seu volume total V. Em nossas simulações, a densidade ρ foi calculada utilizando a média de 5 blocos de tempo de 2 ns cada.

$$\rho = \frac{M}{V} \tag{4.1}$$

A entalpia de vaporização ΔH_{vap} foi calculada à partir da equação:

$$\Delta H_{vap} = (E_{pot}(g) + k_B T) - E_{pot}(l) \tag{4.2}$$

de forma que $E_{pot}(g)$ é a energia potencial da fase gasosa, $E_{pot}(l)$ é a energia potencial da fase líquida, k_B é a constante de Boltzmann e T é a temperatura de obtenção das propriedades. As energias potenciais foram calculadas utilizando a média de 5 blocos ao longo da simulação, sendo 2 ns para cada bloco da fase líquida e 20 ns para a fase gasosa.

4.4 Avaliação conformacional de chalconas e flavonoides completos

Os parâmetros gerados foram aplicados na construção de compostos completos, que foram simulados para avaliação do seu comportamento conformacional. Foram escolhidos 3 flavonoides e 2 chalconas já caracterizados por RMN [70–73], com a descrição de vários contatos de NOE que poderiam ser usados como referência para comparação com as geometrias encontradas na DM (esta estratégia de comparação de NOEs e distâncias entre prótons durante as simulações já foi usada em outros trabalhos que envolvem a parametrização de moléculas para o campo de força GROMOS [50,74,75]).

4.4.1 Metadinâmica

Alguns eventos conformacionais ocorrem em escalas de tempo inacessíveis aos tempos computacionais disponíveis em simulações de DM convencionais. Métodos com amostragem ampliada, como a metadinâmica, permitem avaliar toda a superfície de energia livre do sistema, indicando quais são os estados conformacionais de maior estabilidade [76]. Esta técnica foi aplicada para determinação das conformações mais estáveis de chalconas e de flavonoides completos, como estruturas de partida para simulações de DM para avaliação de contatos de NOE. Estas simulações foram realizadas em solventes orgânicos (os mesmos da obtenção dos dados de RMN dos compostos, clorofórmio e DMSO) e água, à temperatura ambiente, durante 10 ns para a fase de produção. Os sistemas começaram sendo minimizados, utilizando o algoritmo de *steepest descent*, e seguiram para uma fase de equilibração de 1 ns. A metadinâmica foi realizada com os parâmetros de altura Gaussiana (h) no valor 0.1 e *width* (σ) igual a 0.5. A ferramenta *sum_hills* do pacote PLUMED [77] foi utilizada na cálculo de energia livre. Foram avaliadas as rotações dos diedros $\phi \in \psi$ das ligações glicosídicas e a rotação dos diedros da estrutura básica de chalconas (sistema central α , β insaturado).

4.4.2 Comparação com dados de RMN

As conformações de menor energia de chalconas e flavonoides completos, derivadas das simulações de metadinâmica, foram simulados durante 500 ns para avaliação das distâncias de sinais de NOE. As moléculas foram simuladas em caixas cúbicas em solventes orgânicos (clorofórmio ou DMSO) e água, à temperatura ambiente, com condições gerais semelhantes às simulações de metadinâmica. Para possibilitar a comparação com os dados de RMN, átomos de hidrogênio apolares (normalmente não descritos em campos de força *united-atom*) foram adicionados a frames retirados da trajetória, a cada 10 ps, utilizando o programa Pymol [78]. A distância média entre os prótons foi calculada usando a ferramenta $g_mindist$ do pacote GROMACS.

5 Resultados

Os resultados deste trabalho foram organizados na forma de um manuscrito, no modelo do *Journal of Chemical Theory and Computation*, que publica artigos originais reportando novas teorias, metodologias ou aplicações importantes envolvendo dinâmica molecular, métodos quânticos e mecânica estatística. O manuscrito preparado trata da criação e validação de parâmetros para simulação de chalconas e flavonoides no campo de força GROMOS, utilizando protocolos que envolvem a avaliação de propriedades termodinâmicas em líquidos orgânicos puros e avaliação do comportamento conformacional de compostos selecionados.

Parameter set for the simulation of flavonoids and chalcones in the GROMOS56A6 force field

Elisa B. O. John, Pablo R. Arantes, Marcelo D. Polêto, and Hugo Verli*

Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil

E-mail: hverli@cbiot.ufrgs.br

Phone: +55 (51) 3308-7770. Fax: +55 (51) 3308-7309

Abstract

Chalcones and flavonoids constitute a large family of plant secondary metabolites that has been explored as a source of novel pharmaceutical products. Computational methods, such as molecular dynamics (MD), are valuable tools to assess conformational properties of the molecules and play an essential role in drug discovery. Considering the relevance of this family of molecules and the lack of validated parameters for their basic structure in the GROMOS force field, this work intends to provide a new parameter set for MD simulations of these compounds. We employed a protocol combining ab initio calculations and MD simulations, that obtained new torsional parameters and atomic charges. Experimental properties of organic liquids were used as comparison to the calculated values to validate the parameters. Additionally, metadynamics simulations were performed to evaluate the conformation of complex chalcones and flavonoids, and NOE contacts during simulations were measured. The employed protocol generated force field parameters that reproduce well the target data and we expect they will contribute to more accurate computational studies on the biological role of such molecules.

Introduction

Plant natural products have been studied for many years until now as potential novel therapeutic agents.^{1,2} Among them, an interesting family of molecules are the flavonoids and chalcones, compounds that have two phenyl ring moiety associated to an heterocyclic ring (flavones) or to an α, β unsaturated system (chalcones) as structural features. With a great diversity of substituents in the rings, these compounds have been shown to present many biological activities, as cytotoxic,^{3–5} antioxidant,⁶ chemopreventive,⁷ antimicrobial⁸ or inhibitory effects against enzymes of medical relevance.^{9,10} Changes in their structure have been proven useful for the development of new therapeutic agents, thus these biomolecules are being intensively studied and modified.^{11–13} Computational methods permeate all aspects of drug discovery today, rationalizing and facilitating the process.^{14,15} Molecular dynamics (MD) simulations can be used to complement experimental data^{16,17} and to provide detailed conformational distributions in time and space that experimental measurements can only obtain as averages.^{18,19} Reliable results from MD simulations are dependent to the quality of the empirical potential energy functions and the force field parameters used, thus a parameter set associated to a certain compound need to be carefully calibrated.

Efforts to develop compounds based on these natural products through rational design, however, are impaired by the absence of reliable parameters necessary for the simulation of these molecules, constituting a major drawback for structural-based strategies in medicinal chemistry. Considering the relevance of this family of molecules and the lack of validated parameters for the basic structure of chalcones and flavonoids in the GROMOS force field,²⁰ this work intends to provide a new parameter set for the simulation of these compounds. The present work is based on a united-atom force field, which significantly reduce the computational costs, thus allowing faster simulations with longer time scales.²⁰ In this work, a protocol combining quantum mechanical (QM) calculations and MD simulations was employed to obtain new charge groups and torsional parameters, that were validated using experimental properties derived from the condensed phase of organic compounds. A fitting of molecular mechanical (MM) to quantum mechanical torsional profiles was performed for each of the dihedrals of interest in the structures, and has generated force field parameters that reproduce well the target data. Additionally, adjustments in charge groups were made in topologies used for the MD simulations and the obtained values of the thermodynamic properties are in good agreement with experimental data. The current work also aimed to characterize different complete chalcones and flavonoids in aqueous and nonaqueous solutions, in order to validate the new set of parameters using NMR data (NOE signals). The strategy employed in this work for conformational characterization of chalcones and flavonoids was previously described and validated against NMR data for other natural products.^{21–23} The characterization of their solution conformational ensemble is a necessary step toward a deeper understanding of the determinants for compounds biological activity and, consequently, for a more efficient design of new bioactive compounds. We expect that such parameters will be able to properly describe the conformational distribution of chalcones and flavonoids, a starting point to further studies on the biological role of such molecules at an atomistic level of detail.

Results and discussion

Parametrization of partial atomic charges and torsional potencials

Several small molecules resembling the structure of chalcones, flavonoids and their substituents were selected to act as "building blocks" for the later assembly of complete compounds. These fragments (compounds **1-10** in Table 1) had their topologies constructed using bond, angle and improper-dihedral parameters retrieved directly from the GRO-MOS53A6²⁰ set, with new atomic charges and dihedral parameters being generated for each molecule. The charges obtained through ESP-MP2/6-31* were empirically rounded to fit into arbitrary defined charge groups, maintaining the molecular polarity, as observed in comparisons of dipole moments of the QM charges and charges used in MD simulations (Figure 1 Supp. Material).

The potential energy term associated with the torsion around dihedral angle m, is described by the following equation, where $\phi_{\rm m}$ is the dihedral angle value, $n_{\rm m}$ is the multiplicity of the term, $\delta_{\rm m}$ the associated phase shift, and $k_{\phi,\rm m}$ the corresponding force constant:

$$V_{\phi,m} = k_{\phi,m} [1 + \cos\delta_m \cos(n_m \phi_m)] \tag{1}$$

We evaluated how GROMOS53A6 force field dihedral parameters behave in the description of torsional profiles of the fragments (Figure 1). The original parameters fail to reproduce the QM profile in MM calculations for most of the fragments, and this result exemplifies a drawback in using automated topology builders²⁴ in the simulations of these compounds, as the builders only will use the original force field set to construct the MD input files. To address this issue, new dihedral parameters potentials were generated (Table 1) and tested. The curves obtained using the new torsional parameters show good agreement with the respective values obtained by the QM calculations.

Figure 1: Comparison of MM to QM torsional profiles of the structures. The fitting has generated parameters that reproduce well the QM potential energy in the MM calculations.
Compound	Dihedral	δ	$k_{\phi,\mathrm{m}}$	n
1 (Acrylophenone)		0 0	8.92 -11.76	$\begin{array}{c} 0\\ 2 \end{array}$
2 (Acetophenone)		0 0	12.05 -13.26	$\begin{array}{c} 0 \\ 2 \end{array}$
3 (Propenal)		0 0	$16.38 \\ -15.54$	$\begin{array}{c} 0 \\ 2 \end{array}$
4 (Propanal)	0	0 0 0	2.01 -1.76 2.48	$\begin{array}{c} 0 \\ 2 \\ 3 \end{array}$
5 (Ethenylbenzene)		0 0	5.09 -7.11	$\begin{array}{c} 0 \\ 2 \end{array}$
6 (Etylbenzene)		0 0	9.99 9.99	$\begin{array}{c} 0 \\ 2 \end{array}$
7 (Benzaldehyde)	O O	0 0	15.11 -15.85	$\begin{array}{c} 0 \\ 2 \end{array}$
8 (Phenol)	OH	0 0	3.23 -3.10	$\begin{array}{c} 0 \\ 2 \end{array}$
9 (Methoxybenzene)		$\begin{array}{c} 0 \\ 0 \end{array}$	3.74 -3.35	$\begin{array}{c} 0 \\ 2 \end{array}$
10 (6-phenyl-2,3-dihydropyran-4-one)		0 0	4.08 -3.66	$\begin{array}{c} 0 \\ 2 \end{array}$

Table 1: Torsional parameters obtained based on QM calculations

Assessment of thermodynamic properties in MD simulations

Pure liquid simulations were performed in order to validate the parameters used in topologies for the compounds. This strategy of validation using the comparison to experimental thermodynamic properties of condensed-phase (ρ and ΔH_{vap}) was employed in other works involving the parametrization of molecules in GROMOS force field^{21,25–27} and for the establishment of force field benchmarks.²⁸ Invidually, most of the parametrized molecules obtained values that are in concordance with experimental data (Table 2), with just one major outlier (compound **3**).

Compound	Temp.	Exp. ρ	Calc. ρ	Error	Exp. ΔH_{vap}	Calc. ΔH_{vap}	Frmon
	[K]	$[g/cm^3]$	$[g/cm^3]$		[kJ/mol]	[kJ/mol]	Error
2	298.0^{29}	1.02^{30}	1.03	1.0%	53.4^{29}	53.5	0.3%
3	293.0^{29}	0.84^{30}	0.86	2.6%	31.9^{29}	22.9	28.0%
4	298.15^{29}	0.79^{30}	0.80	1.2%	29.6^{29}	26.4	10.6%
5	298.15^{29}	0.87^{30}	0.90	3.2%	43.9^{29}	39.2	10.8%
6	298.15^{29}	0.86^{30}	0.88	2.8%	42.2^{29}	43.8	3.8%
7	298.15^{29}	1.04^{30}	1.04	0.3%	39.6^{29}	45.9	15.9%
8	318.15^{29}	1.05^{30}	1.07	2.3%	56.3^{29}	60.9	8.3%
9	298.15^{29}	0.99^{30}	1.01	2.7%	45.0^{29}	48.5	8.6%

Table 2: Obtained values for thermodynamic properties in the simulated systems

Structural assessment

In order to evaluate the conformational profile of complete flavonoids and chalcones constructed with the generated parameters, metadynamics simulations were performed and free energy landscapes for the dihedral angles on the structures were produced. For compounds 11-13, two main minima were identified in the simulations (Figure 2), with minor influence of the different solvents on the free energy profiles. The conformation of the main structure of flavonoids is influenced by its substituents, as seen in the energy profile of compound 13, which has voluminous sugar moieties and has obtained a different energy profile, comparing with compounds 11 and 12. This influence of the substituents was further investigated in chalcones (compounds 14 and 15), where the addition of different groups on the external rings modifies the free energy landscape for the dihedrals adjacent to the carbonyl group (Figure 3), obtaining two main minimum conformations instead of one, like in the control compound. The free energy profiles associated to the sugar moieties of compounds 13 and 15 (Figure 2 Supp. Material) also suffered minor influence of the different solvents, obtaining similar minimum conformations.

Figure 2: Free energy profiles obtained from metadynamics simulations for the linkage on main structure of flavonoids for different compounds.

39

Figure 3: Free energy profiles obtained from metadynamics simulations for the linkages on the main structure of chalcones for different compounds.

41

Considering that compounds 11-15 have been previously characterized by NMR spectroscopy, ³¹⁻³⁴ the inter-proton contacts (NOE signals) were used to validate the conformational ensemble obtained from MD simulations. The absolute minimum conformations obtained in the metadynamics simulations on organic solvents were used as initial conformations for MD. Whenever a distance value was below a 5 Å cutoff, it was considered as a correct reproduction. As a general feature, most of the experimentally observed contacts between the analyzed protons were properly reproduced in the simulations using organic solvents (Table 3) and water (Table 1 in Supp. Material), pointing to a precise conformational characterization of these compounds on the performed MD simulations. One major deviation was observed for one of the contacts in compound **15**, that may be related to a higher flexibility associated to the main chalcone scaffold.

The conformational profile of the compounds is connected to the behavior of its main linkages. To evaluate the distribution of conformations adopted by the molecules in MD, a description of the most populated geometries was performed (Figures 4, 5). For most of the compounds, there were no significant differences in distributions of geometries in aqueous and in organic solvents. The results were also in concordance with the data provided by metadynamics simulations, with similar amounts of peaks in distributions and minimum conformations on free energy profiles. The chalcone structure has proven to be very flexible around the dihedral between the external ring and the carbonyl group ("D1"), as the geometry distribution demonstrated the population of many conformational states in the simulations (Figure 5).

	Compound 11		3 0 0 0 0 0 0 0 0 0 0 0 0 0	HO OH	Compound 13
NOE	Av. Distance (Å)	NOE	Av. Distance (Å)	NOE	Av. distance (Å)
1	3.63 ± 0.59	1	3.64 ± 0.58	1	3.35 ± 0.61
2	3.49 ± 0.62	2	3.49 ± 0.61	2	3.24 ± 0.72
3	3.37 ± 0.61	3	3.56 ± 0.60	3	4.89 ± 0.52
4	4.77 ± 0.74	4	3.56 ± 0.59		
5	4.67 ± 0.95	5	5.31 ± 0.61		
		6	5.13 ± 0.90		
1 3 5 0 CH_3 O O O CH_3 O			но Он		
	Compound 14	Co		ompoun	d 15
NOE	Av. Distance (Å	.)	NOE	А	v. Distance (Å)
1	3.56 ± 0.59		1		3.54 ± 0.59
2	3.55 ± 0.60		2		3.55 ± 0.60
3	3.32 ± 0.60		3		2.83 ± 0.54
4	3.34 ± 0.60		4		7.68 ± 0.97
5	3.38 ± 0.62		5		2.63 ± 0.47
6	3.46 ± 0.62				

Table 3: NOE contacts of compounds and inter-proton distances derived from MD simulations

Figure 4: Distribution of the dihedral angles associated with the linkage between the rings on flavonoid structure in MD simulations.

Figure 5: Distribution of the dihedral angles within the main chalcone structure in MD simulations.

Conclusions

The generated parameters for the description of small molecules (that would be used as basis for the simulation of chalcones and flavonoids) reproduce well QM and experimental data, as observed after the employment of different validation protocols. The MD simulation of complete chalcones and flavonoids provided the assessment of their behavior in solution and allowed the identification of most flexible dihedrals in the compounds. The reproduction of interproton NOE contacts during MD simulations in organic solvents suggests a precise conformational characterization of these molecules. This set of parameters is expected to contribute in future studies on these compounds, supplying accurate results through MD simulations.

Experimental

Parametrization strategy and topology construction

A set of organic molecules resembling the structure of chalcones and flavonoids was selected to act as "building blocks" and was submitted to a protocol for comparison of calculated properties during MD simulations to experimental data. Topologies were constructed for these fragments based on the parameters already present in the GROMOS53A6²⁰ force field, with refinements in atomic charges and torsional potentials. For the obtention of ESP atomic charges,³⁵ QM calculations were performed using Gaussian03,³⁶ at the secondorder Møller-Plesset perturbation (MP2)³⁷ level with the 6-31G* basis set, in implicit PCM (polarizable continuum model) solvent.³⁸ Some adjustments were made in the charge values, in order to create transferable and simpler charge groups that maintain the polarity of the molecules, based on dipole moment comparison. Dipole moments of charges obtained in QM calculations and the charges used for MD simulations were compared through the *DipWatch* plugin of VMD program.³⁹ All the input structures were built using Molden.⁴⁰ All of the MD

15

simulations and analyses were performed using the GROMACS simulation suite, 41 versions $4.6.1^{42}$ and $5.0.7.^{43}$

Obtention of new torsional parameters

The QM torsional profiles of dihedrals of interest within the structures were obtained using Gaussian03.³⁶ These QM calculations were carried out using the *scan* routine combined with the convergence criterion *tight*, at the second-order Møller-Plesset perturbation (MP2) level with the 6-31G* basis set, obtaining the relative energy associated with the rotation of each dihedral by increments of 30°. Analogue MM calculations were performed in GROMACS 4.6.1, using the force field parameter set 53A6, as described elsewhere.^{44,45} The QM and MM profiles were fitted by a cosine series in Rotational Profiler tool, ⁴⁶ which allowed to determine the required torsional parameters for each proper dihedral, and the new parameters were implemented in the topologies for MD simulations.

Liquid and gas-phase simulations for assessment of thermodynamic properties

Thermodynamic properties of organic liquids (density and enthalpy of vaporization) were used to validate our topologies, based on other works of parametrization of small biomolecules^{21,47} and validation of force fields.²⁸ The protocol described in Caleman *et al.*²⁸ was applied to all fragments containing functional groups necessary to the assembly of complex chalcones and flavonoids (these fragments were chosen considering the disponibility of experimental values of density and enthalpy of vaporization), and the topologies were accepted as useful when the percent error between experimental values and simulated properties was below 15%. Essentialy, the protocol consisted of simulations of the fragments in gas-phase (1 molecule) and in liquid-phase (1000 molecules), where, subsequently, the potential energy associated with the systems ($E_{pot}(g)$ for gas-phase and $E_{pot}(l)$ for liquid-phase) was extracted and used to

16

calculate (Eq. 2) the enthalpy of vaporization (ΔH_{vap}) of the fragments.

$$\Delta H_{vap} = (E_{pot}(g) + k_B T) - E_{pot}(l) \tag{2}$$

MD simulations were carried out by means of the GROMACS 5.0.7 package, and all the analyses employed dedicated tools from the GROMACS package, associated with in-house scripts to calculate thermodynamic properties.

Metadynamics simulations

For the structural assessment of complete chalcones and flavonoids, metadynamics simulations were performed in order to determine the conformational preferences of dihedral angles in the main scaffold of these compounds and the associated carbohydrate moieties. Several fragments containing the dihedrals of interest were constructed and simulated during 10 ns, at room temperature and in nonaqueous solvents (chloroform or DMSO, to reproduce the conditions of the NMR experiments concerning the chosen complete chalcones and flavonoids) and water, as a control, in cubic boxes using periodic boundary conditions. The systems were submitted to energy minimization by steepest Descents algorithm, followed by an equilibration phase of 2 ns and subsequently to MD simulations. Pressure was kept constant at 1 atm by a Parrinello-Rahman barostat,^{48,49} with a 2.0 ps coupling constant, and temperature was kept constant by a V-rescale thermostat (NVT step), with a coupling constant of $\tau = 0.1$. The Lincs method⁵⁰ was applied to constrain covalent bond lengths, allowing an integration step of 2 fs. For the systems solvated with DMSO, all bond lengths were constrained using the SHAKE algorithm.^{51,52} The particle mesh Ewald method⁵³ was applied in the calculation of electrostatic interactions. The GROMACS 4.6.1 interfaced with the PLUMED plugin package $1.2.2^{54}$ was used. As for the free energy surfaces, the sum hills tool from PLUMED package was applied.

NOE contacts assessment in MD simulations

Each minimum energy conformation obtained from the metadynamics of the complete chalcones and flavonoids was submitted to MD simulations in nonaqueous solvents (chloroform or DMSO) and water. The MD conditions were generally the same of the metadynamics calculations, with longer equilibration (20 ns) and production phases (500 ns). To allow a comparison of the simulations to H-NMR data (NOE signals) of the compounds, nonpolar hydrogens atoms were added to frames retrieved from trajectories, using Pymol.⁵⁵ The obtained models were used to calculate the average interproton distances from simulations, using the $g_{mindist}$ tool from GROMACS.

Acknowledgement

This research received funding by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq); the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES); and the Fundação de Amparo a Pesquisa do Estado do Rio Grande do Sul (FAPERGS). Research supported by the Centro Nacional de Supercomputação of the Universidade Federal do Rio Grande do Sul (CESUP/UFRGS).

Supporting Information Available

The following files are available free of charge.

• Supplementary material: Dipole moments of charge sets used in the topologies for the fragments, conformational data regarding the sugar moieties in complete compounds, inter-proton distances of the compounds simulated in water.

This material is available free of charge via the Internet at http://pubs.acs.org/.

References

- (1) Harvey, A. L. Drug Discovery Today **2008**, 13, 894–901.
- (2) Cragg, G. M.; Newman, D. J. Biochimica et Biophysica Acta General Subjects 2013, 1830, 3670–3695.
- (3) Yang, Z.; Wu, W.; Wang, J.; Liu, L.; Li, L.; Yang, J.; Wang, G.; Cao, D.; Zhang, R.;
 Tang, M. Journal of medicinal chemistry 2014, 57, 7977–7989.
- (4) Stoll, R. et al. *Biochemistry* **2001**, *40*, 336–344.
- Wang, H. M.; Zhang, L.; Liu, J.; Yang, Z. L.; Zhao, H. Y.; Yang, Y.; Shen, D.; Lu, K.;
 Fan, Z. C.; Yao, Q. W.; Zhang, Y. M.; Teng, Y. O.; Peng, Y. European Journal of Medicinal Chemistry 2015, 92, 439–448.
- (6) Duarte, J.; Pérez-Palencia, R.; Vargas, F.; Ocete, M. a.; Pérez-Vizcaino, F.;
 Zarzuelo, A.; Tamargo, J. British journal of pharmacology 2001, 133, 117–124.
- (7) Seufi, A. M.; Ibrahim, S. S.; Elmaghraby, T. K.; Hafez, E. E. Journal of experimental & clinical cancer research : CR 2009, 28, 80.
- (8) López, S. N.; Castelli, M. V.; Zacchino, S. a.; Domínguez, J. N.; Lobo, G.; Charris-Charris, J.; Cortés, J. C.; Ribas, J. C.; Devia, C.; Rodríguez, a. M.; Enriz, R. D. Bioorganic & medicinal chemistry 2001, 9, 1999–2013.
- (9) Liu, H.-r.; Liu, X.-j.; Fan, H.-q.; Tang, J.-j.; Gao, X.-h.; Liu, W.-K. Bioorganic & medicinal chemistry 2014, 22, 6124–33.
- (10) Niu, Y.; Zhu, H.; Liu, J.; Fan, H.; Sun, L.; Lu, W.; Liu, X.; Li, L. Chemico-Biological Interactions 2011, 189, 161–166.
- (11) Santos-Buelga, C.; Escribano-Bailon, M. T.; Lattanzio, V. Recent Advances in Polyphenol Research; 2010; Vol. 2; pp 1–332.

- (12) Singh, P.; Anand, A.; Kumar, V. European Journal of Medicinal Chemistry 2014, 85, 758–777.
- (13) Cazarolli, L. H.; Zanatta, L.; Alberton, E. H.; Figueiredo, M. S. R. B.; Folador, P.; Damazio, R. G.; Pizzolatti, M. G.; Silva, F. R. M. B. *Mini reviews in medicinal chemistry* **2008**, *8*, 1429–1440.
- (14) Jorgensen, W. L. Science (New York, N.Y.) 2004, 303, 1813–8.
- (15) Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe, E. W. Pharmacological reviews 2014, 66, 334–95.
- (16) Durrant, J. D.; McCammon, J. A. BMC biology 2011, 9, 71.
- (17) De Vivo, M.; Masetti, M.; Bottegoni, G.; Cavalli, A. Role of Molecular Dynamics and Related Methods in Drug Discovery. 2016.
- (18) Van Gunsteren, W. F. et al. Biomolecular modeling: Goals, problems, perspectives.2006.
- (19) Cunha, R.; Soares, T.; Husu, V.; Pontes, F.; Franca, E.; Lins, R. The Complex World of Polysaccharides; InTech, 2012; Chapter 9, pp 229–256.
- (20) Oostenbrink, C.; Villa, A.; Mark, A. E.; Van Gunsteren, W. F. Journal of Computational Chemistry 2004, 25, 1656–1676.
- (21) Pedebos, C.; Pol-Fachin, L.; Verli, H. Journal of Natural Products 2012, 75, 1196–1200.
- (22) Pol-Fachin, L.; Serrato, R. V.; Verli, H. Carbohydrate Research 2010, 345, 1922–1931.
- (23) Arantes, P. R.; Sachett, L. G.; Graebin, C. S.; Verli, H. Molecules 2014, 19, 5421–5433.
- (24) Lemkul, J. A.; Allen, W. J.; Bevan, D. R. Journal of Chemical Information and Modeling 2010, 50, 2221–2235.

- (25) Micaelo, N. M.; Baptists, A. M.; Soares, C. M. Journal of Physical Chemistry B 2006, 110, 14444–14451.
- (26) Horta, B. A. C.; Fuchs, P. F. J.; Van Gunsteren, W. F.; H??nenberger, P. H. Journal of Chemical Theory and Computation 2011, 7, 1016–1031.
- (27) Horta, B. A. C.; Merz, P. T.; Fuchs, P. F. J.; Dolenc, J.; Riniker, S.; H??nenberger, P. H. Journal of Chemical Theory and Computation 2016, 12, 3825–3850.
- (28) Caleman, C.; van Maaren, P. J.; Hong, M.; Hub, J. S.; Costa, L. T.; van der Spoel, D. Journal of chemical theory and computation 2012, 8, 61–74.
- (29) Chickos, J. S.; Acree, W. E. Journal of Physical and Chemical Reference Data 2003, 32, 519–878.
- (30) Haynes, W. Handbook of Chemistry and Physics; 2014; Vol. 54; p 2704.
- (31) Koteswara Rao, Y.; Vimalamma, G.; Venkata Rao, C.; Tzeng, Y. M. Phytochemistry 2004, 65, 2317–2321.
- (32) Reddy, M. K.; Reddy, M. V. B.; Reddy, B. A. K.; Gunasekar, D.; Caux, C.; Bodo, B. Chemical and pharmaceutical bulletin 2003, 51, 854–856.
- (33) Nørbæk, R.; Nielsen, J. K.; Kondo, T. Phytochemistry 1999, 51, 1139–1146.
- (34) Jayaprakasam, B.; Gunasekar, D.; Rao, K. V.; Blond, a.; Bodo, B. Journal of Asian Natural Products Research 2001, 3, 43–48.
- (35) Bayly, C.; Cieplak, P.; Cornell, W.; Kollman, P. The Journal of Physical Chemistry 1993, 10269–10280.
- (36) Frisch, M. J. et al. Gaussian 03 Revision A.01.
- (37) Head-Gordon, M.; Pople, J. A.; Frisch, M. J. Chemical Physics Letters 1988, 153, 503–506.

- (38) Mennucci, B.; Tomasi, J. The Journal of Chemical Physics 1997, 106, 5151.
- (39) Humphrey, W.; Dalke, A.; Schulten, K. Journal of Molecular Graphics 1996, 14, 33–38.
- (40) Schaftenaar, G.; Noordik, J. H. Journal of Computer-Aided Molecular Design 2000, 14, 123–134.
- (41) Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A. E.; Berendsen, H. J. C. GROMACS: Fast, flexible, and free. 2005.
- (42) Hess, B.; Kutzner, C.; Van Der Spoel, D.; Lindahl, E. Journal of Chemical Theory and Computation 2008, 4, 435–447.
- (43) Abraham, M. J.; Murtola, T.; Schulz, R.; P??ll, S.; Smith, J. C.; Hess, B.; Lindah, E. SoftwareX 2015, 1-2, 19–25.
- (44) Pol-Fachin, L.; Rusu, V. H.; Verli, H.; Lins, R. D. Journal of Chemical Theory and Computation 2012, 8, 4681–4690.
- (45) Pol-Fachin, L.; Verli, H.; Lins, R. D. Journal of computational chemistry 2014, 35, 2087–2095.
- (46) Rotational Profiler. http://dqfnet.ufpe.br/biomat/rotprof/, Last accessed on 2016-12-10.
- (47) Figueira, F.; Farinha, A. S. F.; Muteto, P. V.; Polêto, M. D.; Verli, H.; Gomes, M. T. S. R.; Tomé, A. C.; Cavaleiro, J. A. S.; Tomé, J. P. C. Chem. Commun. 2016, 52, 2181–2184.
- (48) Parrinello, M.; Rahman, A. J. Appl. Phys. 1981, 52, 7182.
- (49) Nosé, S.; Klein, M. L. Mol. Phys. 1983, 50, 1055–1076.
- (50) Hess, B.; Bekker, H.; Berendsen, H. J. C.; Fraaije, J. G. E. M. Journal of Computational Chemistry 1997, 18, 1463–1472.

- (51) Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. J. C. Journal of Computational Physics 1977, 23, 327–341.
- (52) Geerke, D. P.; van Gunsteren, W. F. ChemPhysChem 2006, 7, 671–678.
- (53) Darden, T.; York, D.; Pedersen, L. The Journal of Chemical Physics 1993, 98, 10089.
- (54) Bonomi, M.; Branduardi, D.; Bussi, G.; Camilloni, C.; Provasi, D.; Raiteri, P.; Donadio, D.; Marinelli, F.; Pietrucci, F.; Broglia, R. A.; Parrinello, M. Computer Physics Communications 2009, 180, 1961–1972.
- (55) DeLano, W. CCP4 Newsletter On Protein Crystallography 2002, 700.

Graphical TOC Entry

Parameter set for the simulation of flavonoids and chalcones in the GROMOS56A6 force field

Elisa B. O. John, Pablo R. Arantes, Marcelo D. Poleto, and Hugo Verli*

Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS,

Brazil

E-mail: hverli@cbiot.ufrgs.br

Supporting Information

List of Figures

1	Representation of dipole moment of the fragments, as derived from ESP	
	charges (red arrows) and the proposed MM charges (gray arrows)	2
2	Free energy profiles obtained from metadynamics simulations for the glycosidic	
	linkages on different compounds	3
3	Distribution of geometries of the glycosidic linkages during MD simulations .	5

List of Tables

1	NOE contacts of compounds and inter-proton distances derived from MD	
	simulations perfomed in water	4

Figure 1: Representation of dipole moment of the fragments, as derived from ESP charges (red arrows) and the proposed MM charges (gray arrows).

Figure 2: Free energy profiles obtained from metadynamics simulations for the glycosidic linkages on different compounds.

 Table 1: NOE contacts of compounds and inter-proton distances derived from MD simulations performed in water

Figure 3: Distribution of geometries of the glycosidic linkages during MD simulations

5

6 Discussão

O intuito desse trabalho foi a criação de parâmetros para descrição conformacional de chalconas e flavonoides. Antes da montagem de moléculas completas, um conjunto de moléculas menores, com propriedades físico-químicas conhecidas foi selecionado para aplicação em protocolos de validação baseados em outros trabalhos da literatura, que envolviam tanto a parametrização de pequenas moléculas para o campo de força GROMOS [50,55] quanto a avaliação de performance de diferentes campos de força [62].

Desta forma, vários fragmentos foram satisfatoriamente parametrizados, utilizando novas cargas atômicas parciais e novos potenciais torsionais. Para formação dos grupos de carga, uma estratégia envolvendo observação de direção e sentido dos momentos de dipolo foi aplicada [55], com objetivo da manutenção da polaridade das moléculas através da comparação dos conjuntos de cargas obtidos por métodos quânticos e dos conjuntos que seriam usados para as simulações. Como foi observado, uma boa concordância entre os momentos de dipolo obtidos por QM e os usados na DM resulta em uma reprodução satisfatória das propriedades termodinâmicas dos líquidos orgânicos. Um dos compostos selecionados (propenal) não atingiu um valor satisfatório para uma das propriedades avaliadas, ΔH_{vap} , necessitando ainda de ajustes em cargas ou no assinalamento dos tipos de átomos na topologia.

Uma análise da performance dos parâmetros torsionais já presentes no campo de força GROMOS53A6 revelou que os potenciais disponíveis são inadequados para a descrição do comportamento dos diedros presentes nas moléculas de trabalho (e, consequentemente, para a descrição do perfil torsional de chalconas e flavonoides), uma vez que as curvas de energia obtidas por QM não foram reproduzidas pelos resultados das simulações. Resultados como este representam uma desvantagem no uso direto de conjuntos de parâmetros que não foram calibrados para moléculas semelhantes às moléculas de interesse. O conjunto de parâmetros 53A6 foi validado inicialmente com o intuito de aplicação dos parâmetros na simulação de proteínas [44, 49], mas tem sido usado em diversos trabalhos que envolvem também a simulação de outros tipos de pequenas moléculas [79–82] (utilizando construtores automáticos para a geração de topologias), o que pode gerar resultados não confiáveis. Para garantir uma uma descrição conformacional mais adequada de chalconas e flavonoides, novos parâmetros torsionais foram gerados e testados, obtendo bons resultados nos modelos analisados.

Dados provenientes de RMN podem ser usados como comparação para o com-

portamento conformacional de biomoléculas [48,49]. A estratégia usada neste trabalho é semelhante à usada em outros estudos envolvendo a parametrização de compostos naturais [50,74,75], e se baseia na medida de distâncias entre prótons específicos, durante a DM, que correpondem a sinais de NOE identificados durante experimentos. Algumas chalconas e flavonoides completos foram escolhidos, baseado na disponibilidade de dados de NOE [70–73], e tiveram suas topologias construídas com base nos parâmetros usados para as simulações anteriores de pequenos fragmentos, obedecendo a uma ideia de transferibilidade. As conformações iniciais destes compostos para a DM foram geradas a partir dos resultados de metadinâmica, técnica que permite uma amostragem ampliada de conformações e identifica geometrias de menor energia para as estruturas. Na metadinâmica, vários diedros dos compostos exibiram mais de uma região de geometria de baixa energia, mas somente os mínimos absolutos (ângulos em que a energia livre tende a zero) foram escolhidos, fazendo que apenas um confôrmero de menor energia de cada composto fosse simulado. A análise das simulações de DM revelou uma reprodução satisfatória dos contatos de NOE, com praticamente todas as distâncias medidas ficando na faixa de 5 Å. A população de geometrias durante a DM também foi analisada, e se obteve uma concordância entre as conformações mais frequentes dos diedros na DM e as posições de mínima energia identificadas na metadinâmica.

7 Conclusões

O presente trabalho teve como objetivo o desenvolvimento de parâmetros para simulações de chalconas e flavonoides, que representem com acurácia suas propriedades termodinâmicas e conformacionais no campo de força GROMOS. A partir dos resultados expostos, pode-se concluir que:

- Novos grupos de carga foram gerados para os grupos funcionais presentes em chalconas e flavonoides, em uma estratégia baseada na comparação de dipolos, que se mostrou bastante eficiente;
- A geração de novos potenciais torsionais baseados em dados de QM permitiu o estabelecimento de parâmetros acurados para descrição conformacional das moléculas orgânicas;
- As topologias construídas para os fragmentos tem boa reprodução de propriedades termodinâmicas, como visto na aplicação do protocolo de validação usando simulação de líquidos;
- Os parâmetros construídos parecem descrever bem o comportamento comformacional de compostos completos, como visto nas simulações para medidas de contatos de NOE.

8 Perspectivas

O desenvolvimento do presente trabalho abre outras perspectivas dentro do campo de desenvolvimento de parâmetros e do estudo de produtos naturais, tais como:

- Expandir os protocolos de validação e implementar a avaliação de outras propriedades da fase condensada (como energia de solvatação), para a uma parametrização de qualidade de compostos relacionados;
- Utilização dos parâmetros gerados para a simulação de chalconas e flavonoides com o objetivo de investigar fenômenos biológicos, como a interação com proteínas.

Referências

1 SHEN, B. A New Golden Age of Natural Products Drug Discovery. *Cell*, v. 6, n. 163, p. 1297–1300, 2015. Citado na página 14,

2 HARVEY, A. L. Natural products in drug discovery. *Drug Discovery Today*, v. 13, n. 19-20, p. 894–901, 2008. ISSN 13596446. Citado na página 14,

3 LAM, K. S. New aspects of natural products in drug discovery. *Trends in Microbiology*, v. 15, n. 6, p. 279–289, 2007. ISSN 0966842X. Citado na página 14,

4 GANESAN, A. The impact of natural products upon modern drug discovery. *Current Opinion in Chemical Biology*, v. 12, n. 3, p. 306–317, 2008. ISSN 13675931. Citado na página 14,

5 NEWMAN, D. J.; CRAGG, G. M. Natural Products as Sources of New Drugs from 1981 to 2014. *Journal of Natural Products*, American Chemical Society, v. 79, n. 3, p. 629–661, 2016. Citado na página 14,

6 SPRINGOB, K.; KUTCHAN, T. M. Introduction to the different classes of natural products. In: *Plant-derived Natural Products: Synthesis, Function, and Application*. [S.l.: s.n.], 2009. p. 3–50. ISBN 9780387854984. Citado na página 15,

7 NIJVELDT, R. J. et al. Flavonoids : a review of probable mechanism of action and potential applications. *The American journal of clinical nutrition*, v. 74, n. 4, p. 418–425, 2001. ISSN 0002-9165. Citado na página 15,

8 WINKEL-SHIRLEY, B. Flavonoid biosynthesis. a colorful model for genetics, biochemistry, cell biology, and biotechnology. *Plant physiology*, Am Soc Plant Biol, v. 126, n. 2, p. 485–493, 2001. Citado 2 vezes nas páginas 15 e 17,

9 STAFFORD, H. A. Roles of flavonoids in symbiotic and defense functions in legume roots. *The Botanical Review*, Springer, v. 63, n. 1, p. 27–39, 1997. Citado na página 15,

10 POURCEL, L. et al. Flavonoid oxidation in plants: from biochemical properties to physiological functions. *Trends in plant science*, Elsevier, v. 12, n. 1, p. 29–36, 2007. Citado na página 15,

11 SASAKI, K.; TAKAHASHI, T. A flavonoid from brassica rapa flower as the uv-absorbing nectar guide. *Phytochemistry*, Elsevier, v. 61, n. 3, p. 339–343, 2002. Citado na página 15,

12 BROWN, D. E. et al. Flavonoids act as negative regulators of auxin transport in vivo in arabidopsis. *Plant physiology*, Am Soc Plant Biol, v. 126, n. 2, p. 524–535, 2001. Citado na página 15,

13 FERRIOLA, P. C.; CODY, V.; MIDDLETON, E. Protein kinase c inhibition by plant flavonoids: kinetic mechanisms and structure-activity relationships. *Biochemical pharmacology*, Elsevier, v. 38, n. 10, p. 1617–1624, 1989. Citado na página 15,

14 SCHUBERT, S. Y.; LANSKY, E. P.; NEEMAN, I. Antioxidant and eicosanoid enzyme inhibition properties of pomegranate seed oil and fermented juice flavonoids. *Journal of ethnopharmacology*, Elsevier, v. 66, n. 1, p. 11–17, 1999. Citado na página 15,

15 WONG, E. The role of chalcones and flavanones in flavonoid biosynthesis. *Phytochemistry*, Elsevier, v. 7, n. 10, p. 1751–1758, 1968. Citado na página 15,

16 KNEKT, P. et al. Flavonoid intake and risk of chronic diseases. *The American journal of clinical nutrition*, Am Soc Nutrition, v. 76, n. 3, p. 560–568, 2002. Citado na página 15,

17 RUSZNYAK, S.; SZENT-GYÖRGYI, A. Vitamin p: flavonols as vitamins. *Nature*, v. 138, p. 27, 1936. Citado na página 15,

18 PIETTA, P.-G. Flavonoids as antioxidants. *Journal of natural products*, ACS Publications, v. 63, n. 7, p. 1035–1042, 2000. Citado na página 15,

19 BEECHER, G. R. Overview of dietary flavonoids: nomenclature, occurrence and intake. *The Journal of nutrition*, Am Soc Nutrition, v. 133, n. 10, p. 3248S–3254S, 2003. Citado na página 15,

20 CAZAROLLI, L. H. et al. Flavonoids: prospective drug candidates. *Mini reviews in medicinal chemistry*, v. 8, n. 13, p. 1429–1440, 2008. ISSN 13895575. Citado na página 17,

21 GUARDIA, T. et al. Anti-inflammatory properties of plant flavonoids. Effects of rutin, quercetin and hesperidin on adjuvant arthritis in rat. *Farmaco*, v. 56, n. 9, p. 683–687, 2001. ISSN 0014827X. Citado na página 19,

22 CHOI, E. J.; BAE, S. M.; AHN, W. S. Antiproliferative effects of quercetin through cell cycle arrest and apoptosis in human breast cancer MDA-MB-453 cells. *Archives of Pharmacal Research*, v. 31, n. 10, p. 1281–1285, 2008. ISSN 02536269. Citado na página 19,

23 HUBBARD, G. P. et al. Ingestion of quercetin inhibits platelet aggregation and essential components of the collagen-stimulated platelet activation pathway in humans. *Journal of Thrombosis and Haemostasis*, v. 2, n. 12, p. 2138–2145, 2004. ISSN 15387933. Citado na página 19,

24 JOHARI, J. et al. Antiviral activity of baicalein and quercetin against the Japanese encephalitis virus. *International Journal of Molecular Sciences*, v. 13, n. 12, p. 16020–16045, 2012. ISSN 16616596. Citado na página 19,

25 MELZIG, M. F.; HENKE, K. Inhibition of thrombin activity by selected natural products in comparison to neutrophil elastase. *Planta Medica*, v. 71, n. 8, p. 787–789, 2005. ISSN 00320943. Citado na página 19,

26 KIM, N. Y. et al. Butein, a plant polyphenol, induces apoptosis concomitant with increased caspase-3 activity, decreased Bcl-2 expression and increased Bax expression in HL-60 cells. *Pharmacol Toxicol*, v. 88, n. 5, p. 261–266, 2001. ISSN 0901-9928. Citado na página 19,

27 MOON, D. O. et al. Butein suppresses c-Myc-dependent transcription and Akt-dependent phosphorylation of hTERT in human leukemia cells. *Cancer Letters*, v. 286, n. 2, p. 172–179, 2009. ISSN 03043835. Citado na página 19,

28 KIL, J. S. et al. Okanin, a chalcone found in the genus Bidens, and 3-penten-2-one inhibit inducible nitric oxide synathase expression via heme oxygenase-1 induction in RAW264.7 macrophages activated with lipolysaccharide. *Journal of Clinical Biochemistry and Nutrition*, v. 50, n. 1, p. 53–58, 2012. ISSN 09120009. Citado na página 19,

29 RIZVI, S. I.; ZAID, M. A. Insulin-like effect of (-)epicatechin on erythrocyte membrane acetylcholinesterase activity in type 2 diabetes mellitus. *Clinical and Experimental Pharmacology and Physiology*, v. 28, n. 9, p. 776–778, 2001. Citado na página 19,

30 SI, H. et al. Dietary epicatechin promotes survival of obese diabetic mice and Drosophila melanogaster. *The Journal of nutrition*, v. 141, n. 6, p. 1095–100, 2011. ISSN 1541-6100. Citado na página 19,

31 HU, C. Q. et al. Anti-AIDS agents, 10. Acacetin-7-O-beta-D-galactopyranoside, an anti- HIV principle from Chrysanthemum morifolium and a structure-activity correlation with some related flavonoids. *Journal of Natural Products*, v. 57, n. 1, p. 42–51, 1994. ISSN 01633864. Citado na página 19,

32 SINGH, R. P. et al. Acacetin inhibits cell growth and cell cycle progression, and induces apoptosis in human prostate cancer cells: Structure-activity relationship with linarin and linarin acetate. *Carcinogenesis*, v. 26, n. 4, p. 845–854, 2005. ISSN 01433334. Citado na página 19,

33 FELDMAN, M.; SANTOS, J.; GRENIER, D. Comparative evaluation of two structurally related flavonoids, isoliquiritigenin and liquiritigenin, for their oral infection therapeutic potential. *Journal of Natural Products*, v. 74, n. 9, p. 1862–1867, 2011. ISSN 01633864. Citado na página 19,

34 TAKAHASHI, T. et al. Isoliquiritigenin, a flavonoid from licorice, reduces prostaglandin E2 and nitric oxide, causes apoptosis, and suppresses aberrant crypt foci development. *Cancer Science*, v. 95, n. 5, p. 448–453, 2004. ISSN 13479032. Citado na página 19,

35 KANAZAWA, M. et al. Isoliquiritigenin inhibits the growth of prostate cancer. *European Urology*, v. 43, n. 5, p. 580–586, 2003. ISSN 03022838. Citado na página 19,

36 JORGENSEN, W. L. The many roles of computation in drug discovery. *Science* (*New York, N.Y.*), v. 303, n. 5665, p. 1813–8, 2004. ISSN 1095-9203. Citado na página 20,

37 SLIWOSKI, G. et al. Computational methods in drug discovery. *Pharmacological reviews*, v. 66, n. 1, p. 334–95, 2014. ISSN 1521-0081. Citado na página 20,

38 LEACH, A. R. *Molecular modelling : principles and applications*. [S.l.]: Longman, 1996. 595 p. ISBN 9780582239333. Citado na página 20,

39 TOZZINI, V. Multiscale Modeling of Proteins. Accounts of Chemical Research, American Chemical Society, v. 43, n. 2, p. 220–230, feb 2010. ISSN 0001-4842. Citado 2 vezes nas páginas 20 e 22,

40 SERDYUK, I. N.; ZACCAI, N. R.; ZACCAI, J. Methods in Molecular Biophysics -Structure, Dynamics, Function. [S.l.: s.n.], 2007. ISBN 9780511276118. Citado na página 21,

41 CORNELL, W. D. et al. A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules. *Journal of the American Chemical Society*, American Chemical Society, v. 117, n. 19, p. 5179–5197, may 1995. ISSN 0002-7863. Citado na página 22,

42 MACKERELL, A. D. et al. All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins. *The Journal of Physical Chemistry B*, American Chemical Society, v. 102, n. 18, p. 3586–3616, apr 1998. ISSN 1520-6106. Citado na página 22,

43 JORGENSEN, W. L.; MAXWELL, D. S.; TIRADO-RIVES, J. Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. *Journal of the American Chemical Society*, American Chemical Society, v. 118, n. 45, p. 11225–11236, jan 1996. ISSN 0002-7863. Citado na página 22,

44 OOSTENBRINK, C. et al. A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. *Journal of computational chemistry*, v. 25, n. 13, p. 1656–76, oct 2004. ISSN 0192-8651. Citado 3 vezes nas páginas 22, 25 e 60,

45 W. F. van Gunsteren; BERENDSEN, H. J. C. Groningen Molecular Simulation (GROMOS) Library Manual. *Biomos, Groningen, The Netherlands*, p. 1–221, 1987. Citado na página 22,

46 HORTA, B. A. C. et al. New Interaction Parameters for Oxygen Compounds in the GROMOS Force Field: Improved Pure-Liquid and Solvation Properties for Alcohols, Ethers, Aldehydes, Ketones, Carboxylic Acids, and Esters. *Journal of Chemical Theory and Computation*, American Chemical Society, v. 7, n. 4, p. 1016–1031, 2011. ISSN 1549-9618. Citado 2 vezes nas páginas 22 e 25,

47 HORTA, B. A. C. et al. A GROMOS-Compatible Force Field for Small Organic Molecules in the Condensed Phase: The 2016H66 Parameter Set. *Journal of Chemical Theory and Computation*, American Chemical Society, v. 12, n. 8, p. 3825–3850, 2016. ISSN 1549-9618. Citado na página 22,

48 SOARES, T. A. et al. Validation of the GROMOS force-field parameter set 45A3 against nuclear magnetic resonance data of hen egg lysozyme. *Journal of Biomolecular NMR*, v. 30, n. 4, p. 407–422, 2004. ISSN 09252738. Citado 2 vezes nas páginas 22 e 61,

49 OOSTENBRINK, C. et al. Validation of the 53A6 GROMOS force field. *European Biophysics Journal*, Springer-Verlag, v. 34, n. 4, p. 273–284, jun 2005. ISSN 0175-7571. Citado 4 vezes nas páginas 22, 25, 60 e 61,

50 PEDEBOS, C.; POL-FACHIN, L.; VERLI, H. Unrestrained conformational characterization of stenocereus eruca saponins in aqueous and nonaqueous solvents. *Journal of Natural Products*, v. 75, n. 6, p. 1196–1200, 2012. Citado 4 vezes nas páginas 25, 28, 60 e 61,

51 HEAD-GORDON, M.; POPLE, J. A.; FRISCH, M. J. MP2 energy evaluation by direct methods. *Chemical Physics Letters*, North-Holland, v. 153, n. 6, p. 503–506, dec 1988. ISSN 00092614. Citado na página 25,

52 MENNUCCI, B.; TOMASI, J. Continuum solvation models: A new approach to the problem of solute's charge distribution and cavity boundaries. *The Journal of Chemical Physics*, AIP Publishing, v. 106, n. 12, p. 5151, 1997. ISSN 00219606. Citado na página 25,

53 BAYLY, C. I. et al. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. *The Journal of Physical Chemistry*, American Chemical Society, v. 97, n. 40, p. 10269–10280, oct 1993. ISSN 0022-3654. Citado na página 25,

54 HUMPHREY, W.; DALKE, A.; SCHULTEN, K. VMD: Visual molecular dynamics. *Journal of Molecular Graphics*, v. 14, n. 1, p. 33–38, 1996. Citado na página 26,

55 POLETO, M. D. Parametrização de anéis aromáticos comumente usados no desenvolvimento de fármacos e química medicinal. Dissertação (Mestrado) — Universidade Federal do Rio Grande do Sul, Brasil, 2016. Citado 2 vezes nas páginas 26 e 60,

56 FRISCH, M. J. et al. Gaussian 03 Revision A.01. Citado na página 26,

57 SCHAFTENAAR, G.; NOORDIK, J. H. Molden: A pre- and post-processing program for molecular and electronic structures. *Journal of Computer-Aided Molecular Design*, v. 14, n. 2, p. 123–134, 2000. Citado na página 26,

58 HESS, B. P-LINCS: A Parallel Linear Constraint Solver for Molecular Simulation. Journal of Chemical Theory and Computation, American Chemical Society, v. 4, n. 1, p. 116–122, 2008. ISSN 1549-9618. Citado na página 26,

59 LINS, R. D. *Biomat - Rotational Profiler*. Disponível em: <http://dqfnet.ufpe.br/biomat/rotprof/>. Citado na página 26,

60 POL-FACHIN, L. et al. GROMOS 53A6 GLYC , an Improved GROMOS Force Field for Hexopyranose-Based Carbohydrates. *Journal of Chemical Theory and Computation*, American Chemical Society, v. 8, n. 11, p. 4681–4690, nov 2012. ISSN 1549-9618. Citado na página 26,

61 POL-FACHIN, L.; VERLI, H.; LINS, R. D. Extension and validation of the GROMOS 53A6(GLYC) parameter set for glycoproteins. *Journal of computational chemistry*, v. 35, n. 29, p. 2087–95, nov 2014. ISSN 1096-987X. Citado na página 26,

62 CALEMAN, C. et al. Force Field Benchmark of Organic Liquids: Density, Enthalpy of Vaporization, Heat Capacities, Surface Tension, Isothermal Compressibility, Volumetric Expansion Coefficient, and Dielectric Constant. *Journal of chemical theory* and computation, v. 8, n. 1, p. 61–74, jan 2012. ISSN 1549-9626. Citado 3 vezes nas páginas 26, 27 e 60,

63 ABRAHAM, M. J. et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. *SoftwareX*, v. 1, p. 19–25, 2015. ISSN 23527110. Citado na página 27,

64 BERENDSEN, H. J. C. et al. Molecular dynamics with coupling to an external bath. *The Journal of Chemical Physics*, AIP Publishing, v. 81, n. 8, p. 3684, 1984. ISSN 00219606. Citado na página 27,

65 GUNSTEREN, W. F. van; BERENDSEN, H. J. C. Computer Simulation of Molecular Dynamics: Methodology, Applications, and Perspectives in Chemistry. *Angewandte Chemie International Edition in English*, Hüthig & Wepf Verlag, v. 29, n. 9, p. 992–1023, sep 1990. ISSN 0570-0833. Citado na página 28,

66 ESSMANN, U. et al. A smooth particle mesh Ewald method. *The Journal of Chemical Physics*, AIP Publishing, v. 103, n. 19, p. 8577, 1995. ISSN 00219606. Citado na página 28,

67 FISCHER, N. M. et al. Properties of Organic Liquids when Simulated with Long-Range Lennard-Jones Interactions. *Journal of Chemical Theory and Computation*, American Chemical Society, v. 11, n. 7, p. 2938–2944, 2015. ISSN 1549-9618. Citado na página 28,

68 PARRINELLO, M.; RAHMAN, A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys., v. 52, n. 12, p. 7182, 1981. ISSN 00218979. Citado na página 28,

69 HESS, B. et al. LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, John Wiley & Sons, Inc., v. 18, n. 12, p. 1463–1472, 1997. ISSN 0192-8651. Citado na página 28,

70 NØRBÆK, R.; NIELSEN, J. K.; KONDO, T. Flavonoids from flowers of two Crocus chrysanthus-biflorus cultivars: 'Eye-catcher' and 'Spring Pearl' (Iridaceae). *Phytochemistry*, v. 51, n. 8, p. 1139–1146, 1999. ISSN 00319422. Citado 2 vezes nas páginas 28 e 61,

71 JAYAPRAKASAM, B. et al. Androechin, A New Chalcone Glucoside from Andrographis Echioides. *Journal of Asian Natural Products Research*, v. 3, n. 1, p. 43–48, 2001. ISSN 1028-6020. Citado 2 vezes nas páginas 28 e 61,

72 Koteswara Rao, Y. et al. Flavonoids and andrographolides from Andrographis paniculata. *Phytochemistry*, v. 65, n. 16, p. 2317–2321, 2004. ISSN 00319422. Citado 2 vezes nas páginas 28 e 61,

73 REDDY, M. K. et al. A new chalcone and a flavone from andrographis neesiana. *Chemical and pharmaceutical bulletin*, The Pharmaceutical Society of Japan, v. 51, n. 7, p. 854–856, 2003. Citado 2 vezes nas páginas 28 e 61,

74 ARANTES, P. R. et al. Conformational characterization of ipomotaosides and their recognition by COX-1 and 2. *Molecules*, Molecular Diversity Preservation International, v. 19, n. 4, p. 5421–5433, 2014. Citado 2 vezes nas páginas 28 e 61,

75 POL-FACHIN, L.; SERRATO, R. V.; VERLI, H. Solution conformation and dynamics of exopolysaccharides from Burkholderia species. *Carbohydrate Research*, v. 345, n. 13, p. 1922–1931, 2010. ISSN 00086215. Citado 2 vezes nas páginas 28 e 61,

76 LAIO, A.; GERVASIO, F. L. Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science. *Reports on Progress in Physics*, IOP Publishing, v. 71, n. 12, p. 126601, 2008. Citado na página 29,

77 BONOMI, M. et al. PLUMED: A portable plugin for free-energy calculations with molecular dynamics. *Computer Physics Communications*, v. 180, n. 10, p. 1961–1972, oct 2009. Citado na página 29,

78 DELANO, W. Pymol: An open-source molecular graphics tool. *CCP4 Newsletter* On Protein Crystallography, v. 700, 2002. Citado na página 29,

79 JO, A. R. et al. Soluble epoxide hydrolase inhibitory components from rheum undulatum and in silico approach. *Journal of Enzyme Inhibition and Medicinal Chemistry*, Taylor & Francis, v. 31, n. sup2, p. 70–78, 2016. Citado na página 60,

80 CHINNADURAI, R. K.; SARAVANARAMAN, P.; BOOPATHY, R. Understanding the molecular mechanism of aryl acylamidase activity of acetylcholinesterase - An in silico study. *Archives of Biochemistry and Biophysics*, v. 580, p. 1–13, 2015. ISSN 10960384. Citado na página 60,

81 UNTERGEHRER, M. et al. Structure-Dependent Deconjugation of Flavonoid Glucuronides by Human β -Glucuronidase - In Vitro and In Silico Analyses. *Planta Medica*, v. 81, n. 12-13, p. 1182–1189, 2015. ISSN 14390221. Citado na página 60,

82 DING, F.; PENG, W.; PENG, Y.-K. Biophysical Exploration of Protein-Flavonols Recognition: Effects of Molecular Property and Conformational Flexibility. *Phys. Chem. Chem. Phys.*, 2016. ISSN 1463-9076. Citado na página 60, Anexos
ANEXO A – Topologias

; Acrylopheno [CHL1] [atoms]	ne	0	CA CB CB	CB C C	C O CG	ga ga ga	_27 _30 _15
CB CR1 C C O O	0.00000 0.32000 -0.32000	0 1 1	C C CD1	CG CG CG	CD1 CD2 CD2 CD2	ga ga ga	_27 _27 _27 _27
CD1 C HD1 HC CD2 C	-0.12000 0.12000 -0.12000	2 3 3 4	CG HD1 CG	CD1 CD1 CD2	CE1 CE1 HD2	ga ga ga	_27 _27 _25 _25
HD2 HC CE1 C HE1 HC CE2 C	0.12000 -0.12000 0.12000 -0.12000	4 5 5 6	CG HD2 CD1 CD1	CD2 CD2 CE1 CE1	CE2 CE2 HE1 CZ	ga ga ga	_27 _25 _25 _27
HE2 HC CZ C HZ HC [bonds]	-0.12000 0.12000	6 7 7	HEI CD2 CD2 HE2	CE1 CE2 CE2 CE2	HE2 CZ CZ	ga ga ga	_25 _25 _27 _25
CA CB CB C C O C CG	gb_10 gb_27 gb_5 gb_27		CE1 CE1 CE2 [impi	CZ CZ CZ copers	CE2 HZ HZ]	ga ga ga	_27 _25 _25
CG CD1 CG CD2 CD1 HD1 CD1 CE1 CD2 HD2	gb_16 gb_16 gb_3 gb_16 gb_3		; ai CG CG CG	aj CD1 CD1 CD2	ak CD2 CE1 CE2 CD2	al C CZ CZ	gı
CD2 CE2 CE1 HE1 CE1 CZ	gb_3 gb_16 gb_3 gb_16 gb_3		CD1 CD1 CD2 CD2	CG CE1 CG	CE1 CZ CD1	HD1 CE2 CE1	
CE2 CZ CE2 CZ CZ HZ [exclusions	gb_3 gb_16 gb_3]		CD2 HE1 HE2	CE2 CD1 CD2	CZ CZ CZ	CE1 CE1 CE2	
, al aj CA O CA CG CB CD2			C C [diheo : ai	CG drals	CEZ CB] ak	nz O al	ar
CB CD1 O CD2 O CD1 C CF1			CG CD2 CD2	C CG CG	CB C C	CA CB CB	9-
C CE2 C HD1 C HD2			; Aceto [CHL2 [atoms	opheno] 5]	ne		
CG HEI CG HE2 CG CZ CD1 HD2			CA C O CG	CH3 C O C	0.0 -0.3 0.0	32000 32000 32000 00000	
CD1 CE2 CD1 HZ HD1 CD2 HD1 HE1			CD1 HD1 CD2 HD2	C HC C HC	-0.1 0.1 -0.1	12000 12000 12000 12000	
HD1 CZ CD2 CE1 CD2 HZ HD2 HE2			CE1 HE1 CE2 HE2	C HC C HC	-0.1 0.1 -0.1	12000 12000 12000 12000	
HD2 CZ CE1 HE2 HE1 CE2 HE1 HZ			CZ HZ [bonds CA	C HC 3] C	-0.1 0.1 gb_1	12000 12000 27	
HE2 HZ [angles] ; ai aj	ak gromos	s type	C C CG	O CG CD1	gb_ gb_2	5 27 16	

gromos type gi_1 gi_1 gi_1 gi_1 gi_1 gi_1

CG CD1	CD2 HD1	gb_16 ab_3	CZ CE1 CE2	HZ gi_1
CD1	CE1	gb_3 ab 16	[dihedrals]	0 gr_1
CD2	HD2	ga qb3	; ai aj ak	al gromos type
CD2	CE2	gb_16	CD2 CG C	CA gd_90
CE1	HE1	gb_3	CD2 CG C	CA gd_91
CE1	CZ	gb_16		
CE2	HE2	gb_3	; Propenal	
CE2	CZ	gb_16	[CHL3]	
CZ	ΗZ	gb_3	[atoms]	
[excl	usions j		CA CR1 0.	00000 0
; ai	aj		CB CR1 0.	00000 0
CA	CDI			0.300 1
CA	CDZ CE1		HI H	0.020 1
C	CE1 CE2		[bonds]	0.320 1
С	HD1		CA CB gb	13
C	HD2		CB C gb_	27
Õ	CD2		C O ab	5
0	CD1		C H1 qb_	3
CG	HE1		[exclusions]	
CG	HE2		; ai aj	
CG	CZ		CA O	
CD1	HD2		[angles]	
CD1	CE2		; ai aj ak	gromos type
CD1	ΗZ		C CB CA	ga_27
HD1	CD2		H1 C CB	ga_21
HD1	HEI			ga_33
	CE1		[impropers]	ga_25
CD2	HZ		· ai ai ak	al gromos type
HD2	HE2		C O H1	CB gil
HD2	CZ		[dihedrals]	5 —
CE1	HE2		; ai aj ak	al gromos type
HE1	CE2		O C CB	CA gd_114
HE1	ΗZ		O C CB	CA gd_115
HE2	HZ			
[angl	es]		; Propanal	
; al	aj	ak gromos type	[CHL4]	
L.A		() (2) (1)		
C7	c	0 ga_30	[alons]	00000 0
CA	c	0 ga_30 CG ga_15 0 ga_30	CA CH3 0. CB CH2r 0	
CA CG C	C C CG	0 ga_30 CG ga_15 0 ga_30 CD1 ga 27	CA CH3 0. CB CH2r 0. C C	00000 0 00000 0 0.300 1
CA CG C C	C C CG CG	0 ga_30 CG ga_15 0 ga_30 CD1 ga_27 CD2 ga_27	CA CH3 0. CB CH2r 0. C C H1 H	00000 0 00000 0 0.300 1 0.020 1
CA CG C C CD1	C C CG CG CG	0 ga_30 CG ga_15 0 ga_30 CD1 ga_27 CD2 ga_27 CD2 ga_27	CA CH3 0. CB CH2r 0. C C H1 H 0 0 -	00000 0 00000 0 0.300 1 0.020 1 0.320 1
CA CG C C CD1 CG	C C CG CG CG CD1	O ga_30 CG ga_15 O ga_30 CD1 ga_27 CD2 ga_27 CD2 ga_27 HD1 ga_25	[alons] CA CH3 0. CB CH2r 0. C C H1 H 0 0 - [bonds]	00000 0 00000 0 0.300 1 0.020 1 0.320 1
CA CG C CD1 CG CG	C C CG CG CG CD1 CD1	0 ga_30 CG ga_15 0 ga_20 CD1 ga_27 CD2 ga_27 CD1 ga_27 CD1 ga_27 CD2 ga_27 HD1 ga_25 CE1 ga_27	CA CH3 0. CB CH2r 0. C C H1 H 0 0 - [bonds] CA CB gb_	00000 0 00000 0 0.300 1 0.020 1 0.320 1
CA CG C CD1 CG CG HD1	C C C C C C C C C D 1 C D 1 C D 1	0 ga_30 CG ga_15 0 ga_20 CD1 ga_27 CD2 ga_27 CD1 ga_27 CD2 ga_27 CD1 ga_27 CD2 ga_27 HD1 ga_25 CE1 ga_27 CE1 ga_25	CA CH3 0. CB CH2r 0. C C H1 H 0 0 - [bonds] CA CB gb_ CB C gb_	00000 0 00000 0 0.300 1 0.020 1 0.320 1 27 27
CA CG C CD1 CG CG HD1 CG	C C C C C C C C C C C C C C C C C C C	0 ga_30 CG ga_15 0 ga_20 CD1 ga_27 CD2 ga_27 HD1 ga_25 CE1 ga_27 CE1 ga_27 CE2 ga_27 Ga Ga CD2 ga_25 CE1 ga_25 CE2 ga_27	CA CH3 0. CB CH2r 0. C C H1 H 0 0 - [bonds] CA CB gb_ CB C gb_ C 0 gb_ C 11 cb	00000 0 00000 0 0.300 1 0.020 1 0.320 1 27 27 5 2
CA CG C CD1 CG CG HD1 CG CG HD2	C C CG CG CG CD1 CD1 CD1 CD2 CD2 CD2	0 ga_30 CG ga_15 0 ga_27 CD2 ga_27 CD2 ga_27 HD1 ga_25 CE1 ga_27 CE1 ga_27 CE2 ga_27 CE3 ga_27 CE4 ga_27 CE5 CE6 CE6 Ga_27 CE7 Ga_25 CE8 Ga_25 CE9 Ga_25	CA CH3 0. CB CH2r 0. C C H1 H 0 0 - [bonds] CA CB gb_ CB C gb_ C H1 gb_ C H1 gb_	00000 0 00000 0 0.300 1 0.020 1 0.320 1 27 27 5 3
CA CG CD1 CG CG HD1 CG CG HD2 CD1	C C CG CG CD1 CD1 CD1 CD2 CD2 CD2 CD2 CD2 CE1	0 ga_30 CG ga_15 0 ga_27 CD2 ga_27 CD2 ga_27 HD1 ga_25 CE1 ga_27 CD2 ga_27 CD2 ga_27 CD2 ga_27 CD2 ga_27 CE1 ga_27 CE2 ga_25 CE2 ga_27 CE2 ga_25 HE1 ga_25	[alons] CA CH3 0. CB CH2r 0. C C H1 H 0 0 - [bonds] CA CB gb_ CB C gb_ C H1 gb_ [exclusions] ; ai aj	00000 0 00000 0 0.300 1 0.020 1 0.320 1 27 27 5 3
CA CG CD1 CG CG HD1 CG CG HD2 CD1 CD1	C C CG CG CD1 CD1 CD1 CD2 CD2 CD2 CD2 CD2 CE1 CE1	0 ga_30 CG ga_15 0 ga_27 CD1 ga_27 CD2 ga_27 HD1 ga_25 CE1 ga_27 CE2 ga_27 HD2 ga_25 CE2 ga_27 CE2 ga_27 HE1 ga_25 CZ ga_27	[alons] CA CH3 0. CB CH2r 0. C C H1 H 0 0 - [bonds] CA CB gb_ CB C gb_ C C gb_ C H1 gb_ [exclusions] ; ai a aj CA O	00000 0 00000 0 0.300 1 0.020 1 0.320 1 27 27 5 3
CA CG CD1 CG CG HD1 CG HD2 CG HD2 CD1 HE1	C C CG CG CD1 CD1 CD1 CD2 CD2 CD2 CD2 CD2 CE1 CE1 CE1	0 ga_30 CG ga_15 0 ga_20 CD1 ga_27 CD2 ga_27 HD1 ga_25 CE1 ga_27 CE2 ga_27 HD2 ga_25 CE2 ga_27 CE2 ga_25 CE3 ga_25 CE4 ga_25 CE5 C2 C2 ga_25	[alons] CA CH3 0. CB CH2r 0. C C H1 H 0 0 - [bonds] CA CB gb_ CB C gb_ C H1 gb_ [exclusions] ; ai aj CA 0 [angles]	00000 0 00000 0 0.300 1 0.020 1 0.320 1 27 27 5 3
CA CG CD1 CG CG HD1 CG HD2 CD1 HE1 CD2	C C CG CG CD1 CD1 CD1 CD2 CD2 CD2 CD2 CD2 CE1 CE1 CE1 CE2	0 ga_30 CG ga_15 0 ga_20 CD1 ga_27 CD2 ga_27 HD1 ga_25 CE1 ga_27 CE2 ga_27 CE2 ga_27 CE2 ga_27 CE2 ga_25 CE2 ga_27 CE2 ga_25 HE1 ga_25 CZ ga_27 CZ ga_25 HE2 ga_25	[alons] CA CH3 0. CB CH2r 0. C C H1 H 0 0 - [bonds] CA CB gb_ CB C gb_ C H1 gb_ [exclusions] ; ai aj CA 0 [angles] ; ai aj ak	00000 0 00000 0 0.300 1 0.020 1 27 27 5 3 gromos type
CA CG CD1 CG CG HD1 CG HD2 CD1 HE1 CD2 CD2	C C CG CG CD1 CD1 CD1 CD2 CD2 CD2 CD2 CD2 CE1 CE1 CE1 CE2 CE2	0 ga_30 CG ga_15 0 ga_20 CD1 ga_27 CD2 ga_27 HD1 ga_25 CE1 ga_27 CE2 ga_27 CE2 ga_27 CE2 ga_27 CE2 ga_25 CE2 ga_27 CE2 ga_25 CE2 ga_25 CE2 ga_25 CZ ga_25 CZ ga_25 HE2 ga_25 CZ ga_25 CZ ga_27	CA CH3 0. CB CH2r 0. C C H1 H 0 0 - [bonds] CA CB gb_ CB C gb_ C C gb_ C H1 gb_ [exclusions] ; ai aj CA 0 [angles] ; ai aj ak C CB CA	00000 0 00000 0 0.300 1 0.020 1 27 27 5 3 gromos type ga_15
CA CG CD1 CG CG HD1 CG HD2 CD1 HE1 CD2 CD2 HE2 CD2 HE2	C C CG CG CD1 CD1 CD1 CD2 CD2 CD2 CD2 CD2 CE1 CE1 CE1 CE2 CE2 CE2 CE2	O ga_30 CG ga_15 O ga_20 CD1 ga_27 CD2 ga_27 CD2 ga_27 HD1 ga_25 CE1 ga_25 CE2 ga_27 CE2 ga_25 CE2 ga_27 CE2 ga_25 CE2 ga_25 CZ ga_25 CZ ga_25 HE2 ga_25 CZ ga_27	CA CH3 0. CB CH2r 0. C C H1 H 0 0 - [bonds] CA CB gb_ CB C gb_ C C gb_ C H1 gb_ [exclusions] ; ai aj CA 0 [angles] ; ai aj ak C CB CA H1 C CB	00000 0 00000 0 0.300 1 0.020 1 27 27 5 3 gromos type ga_15 ga_21
CA CG CD1 CG CG HD1 CG HD2 CD1 HE1 CD2 CD2 HE2 CE1	C C C C C C C C C C C C C C C C C C C	0 ga_30 CG ga_15 0 ga_20 CD1 ga_27 CD2 ga_27 CD2 ga_27 HD1 ga_25 CE1 ga_25 CE2 ga_27 CE2 ga_25 CE2 ga_25 CZ ga_25 CZ ga_25 CZ ga_25 CZ ga_25 HE2 ga_25 CZ ga_27 CZ ga_27 <td>CA CH3 0. CB CH2r 0. C C H1 H 0 0 - [bonds] CA CB gb_ CB C gb_ C G C gb_ C H1 gb_ [exclusions] ; ai aj CA 0 [angles] ; ai aj ak C CB CA H1 C CB 0 C CB</td> <td>00000 0 00000 0 0.300 1 0.020 1 27 27 5 3 gromos type ga_15 ga_21 ga_33</td>	CA CH3 0. CB CH2r 0. C C H1 H 0 0 - [bonds] CA CB gb_ CB C gb_ C G C gb_ C H1 gb_ [exclusions] ; ai aj CA 0 [angles] ; ai aj ak C CB CA H1 C CB 0 C CB	00000 0 00000 0 0.300 1 0.020 1 27 27 5 3 gromos type ga_15 ga_21 ga_33
CA CG CD1 CG CG HD1 CG HD2 CD1 HE1 CD2 CD2 HE2 CE1 CE2	C C C C C C C C C C C C C C C C C C C	O ga_30 CG ga_15 O ga_20 CD1 ga_27 CD2 ga_27 CD2 ga_27 CD1 ga_27 CD2 ga_27 CD1 ga_25 CE1 ga_25 CE1 ga_25 CE2 ga_27 CE2 ga_27 CE2 ga_27 CZ ga_25 HE1 ga_25 CZ ga_27 CZ ga_27 CZ ga_27 CZ ga_25 HE2 ga_25 CZ ga_27 CZ ga_25 CE2 ga_27 CZ ga_25	CA CH3 0. CB CH2r 0. C C H1 H 0 0 - [bonds] CA CB gb_ CB C gb_ C C gb_ C H1 gb_ [exclusions] ; ai aj CA 0 [angles] ; ai aj ak C CB CA H1 C CB 0 C H1 (impropers)	00000 0 00000 0 0.300 1 0.200 1 27 27 5 3 gromos type ga_15 ga_21 ga_33 ga_25
CA CG CD1 CG CG HD1 CG HD2 CD1 HE1 CD2 CD2 HE2 CE1 CE2	C C C C C C C C C C C C C C C C C C C	O ga_30 CG ga_15 O ga_20 CD1 ga_27 CD2 ga_27 CD2 ga_27 CD1 ga_27 CD2 ga_27 CD1 ga_27 CD2 ga_27 CD2 ga_27 CE1 ga_25 CE2 ga_27 CE2 ga_25 CZ ga_27 CZ ga_27 CZ ga_27 CZ ga_27 CZ ga_27 CZ ga_27 CZ ga_25 HE2 ga_25 CZ ga_27 CZ ga_27 CZ ga_27 CZ ga_27 CZ ga_25 CZ ga_27 CZ ga_27 CZ ga_25 CE2 ga_27 CZ ga_25 CE2 ga_25 CE2 ga_25 CE2 ga_25	CA CH3 0. CB CH2r 0. C C H1 H 0 0 - [bonds] CA CB gb_ CB C gb_ C C G C H1 gb_ [exclusions] ; ai aj CA 0 [angles] ; ai aj ak C CB CA H1 C CB 0 C CB 1 C CB 0 C H1 1 G 1 C CB 1 C CB	00000 0 00000 0 0.300 1 0.020 1 27 27 5 3 gromos type ga_15 ga_21 ga_33 ga_25 al gromos type
CA CG C CD1 CG CG HD1 CG CG HD2 CD1 CD1 CD1 CD1 CD1 CD1 CD1 CD2 HE2 CD2 HE2 CE1 CE1 CE2 CE1 CE2 CE1 CE2 CE1 CE C C C C C C C C C C C C C C C C	C C C C C C C C C C C C C C C C C C C	0 ga_30 CG ga_15 0 ga_20 CD1 ga_27 CD2 ga_27 CD2 ga_27 CD1 ga_27 CD2 ga_27 CD1 ga_27 CD2 ga_27 CD2 ga_27 CE1 ga_25 CE2 ga_27 CE2 ga_27 CZ ga_25 CZ ga_25 CZ ga_27 CZ ga_27 CZ ga_27 CZ ga_27 CZ ga_25 CE2 ga_27 CZ ga_25 CE2 ga_25 CE2 ga_25 HZ ga_25 HZ ga_25 HZ ga_25 HZ ga_25	CA CH3 0. CB CH2r 0. C C H1 H 0 0 - [bonds] CA CB gb_ CB C gb_ C C G C H1 gb_ [exclusions] ; ai aj CA 0 [angles] ; ai aj ak C CB CA H1 C CB 0 C CB 0 C H1 [impropers] ; ai aj ak C 0 C H1	00000 0 00000 0 0.300 1 0.020 1 27 27 5 3 gromos type ga_15 ga_21 ga_33 ga_25 al gromos type CB gi 1
CA CG CD1 CG CG HD1 CG HD2 CD1 HE1 CD2 CD2 HE2 CE1 CE2 [imp ; ai CG	C C C C C C C C C C C C C C C C C C C	0 ga_30 CG ga_15 0 ga_20 CD1 ga_27 CD2 ga_27 CD2 ga_27 HD1 ga_25 CE1 ga_27 CE2 ga_27 CE2 ga_27 CE2 ga_27 CE2 ga_27 CE2 ga_27 CE2 ga_27 CZ ga_25 CZ ga_27 CZ ga_25 CZ ga_27 CZ ga_25 CZ ga_27 CZ ga_25 CZ ga_27 CZ ga_27 CZ ga_25 CZ ga_25 CZ ga_25 HZ ga_25 A al gromos type CD2 C c gi_1	CA CH3 0. CB CH2r 0. C C H1 H 0 0 - [bonds] CA CB gb_ CB C gb_ CB C gb_ C H1 gb_ [exclusions] ; ai aj CA 0 [angles] ; ai aj ak C CB CA H1 C CB 0 C CB 0 C CH1 [impropers] ; ai aj ak C 0 H1 [dihedrals]	00000 0 00000 0 0.300 1 0.200 1 27 27 5 3 gromos type ga_15 ga_21 ga_33 ga_25 al gromos type CB gi_1
CA CG C CD1 CG HD1 CG CG HD2 CD1 CD1 CD1 CD1 CD1 CD2 CD2 HE2 CE1 CE2 CE1 CE2 CE1 CE2 CE1 CE2 CE1 CE2 CE2 CE CE CC CC CC CC CC CC CC CC CC CC CC	C C C C C C C C C C C C C C C C C C C	0 ga_30 CG ga_15 0 ga_20 CD1 ga_27 CD2 ga_27 CD2 ga_27 CD1 ga_27 CD2 ga_27 CD1 ga_25 CE1 ga_25 CE1 ga_25 CE2 ga_27 CE2 ga_27 CE2 ga_27 CZ ga_25 CZ ga_27 CZ ga_25 CZ ga_27 CZ ga_25 CZ ga_25 CZ ga_25 CZ ga_25 CZ ga_25 CZ ga_25 HZ ga_25 HZ ga_25 ak al gromos type CD2 C gi_1 CE1 CZ gi_1	<pre>(atoms) CA CH3 0. CB CH2r 0. C C H1 H 0 0 - [bonds] CA CB gb_ CA CB gb_ CB C gb_ C CB gb_ C 0 gb_ C H1 gb_ [exclusions] ; ai aj CA 0 [angles] ; ai aj ak C CB CA H1 C CB 0 C CB 0 C CH 11 C CB 0 C CH 0 C CH 0 C CH 11 C CB 0 C CH 11 c CB 1 c CB 0 C CH 1 c CB 0 C CH 1 c CB 0 C CH 1 c CB 0 C CH 1 c c CB 1 c CB 0 C CH 1 c c CB 1 c c CB c c c c c c c c c c c c c c c c</pre>	00000 0 00000 0 0.300 1 0.020 1 27 27 5 3 gromos type ga_15 ga_21 ga_33 ga_25 al gromos type CB gi_1 al gromos type
CA CG CC CD1 CG HD1 CG CG HD2 CD1 CD1 CD1 CD2 CD2 HE2 CE1 CE1 CE2 CE1 CE2 CE1 CE2 CE1 CE2 CE2 CE1 CE2 CE2 CE2 CC CC CC CG CG HD2 CG CG HD2 CG CG HD2 CG CG HD2 CG CG HD2 CG CG HD2 CG CG HD2 CG CG HD2 CG CG CC CG HD2 CG CG CC CC CC CC CG HD2 CG CG CC CC CC CC CC CC CC CC CC CC CC	C C C C C C C C C C C C C C C C C C C	0 ga_30 CG ga_15 0 ga_20 CD1 ga_27 CD2 ga_27 CD2 ga_27 CD1 ga_27 CD2 ga_27 CD2 ga_27 CD1 ga_25 CE1 ga_25 CE2 ga_27 CE2 ga_27 CE2 ga_27 CZ ga_25 HE1 ga_25 CZ ga_27 CZ ga_27 CZ ga_25 HE2 ga_25 CZ ga_27 CZ ga_25 CZ ga_27 CZ ga_25 CZ ga_25 CZ ga_25 HZ ga_25 Ak al gromos type CD2 C gi_1 CE1 CZ gi_1 CE2 CZ gi_1	CA CH3 0. CB CH2r 0. C C H1 H 0 0 - [bonds] CA CB gb_ CB C gb_ CB C gb_ C H1 gb_ [exclusions] ; ai aj CA 0 [angles] ; ai aj ak C CB CA H1 C CB 0 C CB 0 C H1 [impropers] ; ai aj ak C 0 H1 [dihedrals] ; ai aj ak C CB C	00000 0 00000 0 0.300 1 0.020 1 27 27 5 3 gromos type ga_15 ga_21 ga_33 ga_25 al gromos type CB gi_1 al gromos type 0 gd_111
CA CG C CD1 CG HD1 CG CG HD2 CD1 CD1 CD1 CD2 CD2 HE2 CE1 CE2 CE1 CE2 CE1 CE2 CE1 CE2 CE1 CE2 CE1 CC2 CG CD2 HE2 CD2 CC2 CD2 HE2 CC2 CD2 HE2 CD2 CD2 HE2 CD2 CD2 HD1 CD2 CD3 CD3 CD3 CD3 CD3 CD3 CD3 CD3 CD3 CD3	C C C C C C C C C C C C C C C C C C C	C ga_30 CG ga_15 O ga_30 CD1 ga_27 CD2 ga_27 CD2 ga_27 CD2 ga_27 CD2 ga_27 CD1 ga_25 CE1 ga_25 CE1 ga_25 CE2 ga_27 CE2 ga_27 CE2 ga_27 CZ ga_25 HE1 ga_25 CZ ga_27 CZ ga_25 HE2 CZ Ga_27 CZ CZ Ga_25 HE2 CZ Ga_25 HE2 CZ Ga_25 HE2 CZ Ga_25 HE2 CZ Ga_25 HE2 CZ Gi_1 CE2 CZ Gi_1 CE2 CZ Gi_1 CE2 CZ Gi_1	<pre>CA CH3 0. CB CH2r 0. C C H1 H 0 0 - [bonds] CA CB gb_ CB C gb_ C C G C H1 gb_ C H1 gb_ [exclusions] ; ai aj CA 0 [angles] ; ai aj ak C CB CA H1 C CB 0 C CB 0 C H1 [impropers] ; ai aj ak C 0 H1 [dihedrals] ; ai aj ak CA CB C</pre>	00000 0 00000 0 0.300 1 0.020 1 27 27 5 3 gromos type ga_15 ga_21 ga_33 ga_25 al gromos type CB gi_1 al gromos type 0 gd_111 0 gd_112
CA CG C CD1 CG HD1 CG CG HD2 CD1 CD1 HE1 CD2 CD2 HE2 CE1 CE1 CE2 CE1 CE2 CE1 CE2 CG CG CG CG CG CD1 CD1	C C C C C C C C C C C C C C C C C C C	0 ga_30 CG ga_15 0 ga_20 CD1 ga_27 CD2 ga_27 CD2 ga_27 CD1 ga_27 CD2 ga_27 CD1 ga_25 CE1 ga_25 CE2 ga_27 CE2 ga_27 CE2 ga_27 CE2 ga_27 CZ ga_25 CZ ga_27 CZ ga_25 CZ ga_27 CZ ga_25 CZ ga_25 CZ ga_25 CZ ga_25 CZ ga_25 HZ ga_25 HZ ga_25 ak al gromos type CD2 C gi_1 CE1 CZ gi_1 CE2 CZ gi_1 CE2 CZ gi_1 CE2 CZ gi_1 CE2 CZ gi_1	CA CH3 0. CB CH2r 0. C C H1 H 0 0 - [bonds] CA CB gb_ CB C gb_ CB C gb_ C H1 gb_ [exclusions] ; ai aj CA 0 [angles] ; ai aj ak C CB CA H1 C CB 0 C H1 [impropers] ; ai aj ak C 0 H1 [impropers] ; ai aj ak C 0 H1 [dihedrals] ; ai aj ak CA CB C CA CB C	00000 0 00000 0 0.300 1 0.020 1 27 27 5 3 gromos type ga_15 ga_21 ga_33 ga_25 al gromos type CB gi_1 al gromos type 0 gd_111 0 gd_112 0 gd_113
CA CG CD1 CG CD1 CG HD1 CG CG HD2 CD1 CD1 HE1 CD2 CD2 HE2 CE1 CE1 CE2 [imp ; ai CG CG CD1 CD1 CD1 CD2 CC2 CD2 HD2 CD2 CD2 HD2 CD2 CD2 HD2 CD2 CD2 HD2 CD2 CD2 HD2 CD1 CD2 CD3 CD2 HD2 CD1 CD2 CD1 CD3 CD2 HD2 CD1 CD2 CD3 CD2 HD2 CD1 CD2 CD3 CD2 HD2 CD2 CD3 CD2 HD2 CD2 CD3 CD2 HD2 CD2 CD3 CD3 CD3 CD3 CD3 CD3 CD3 CD3 CD3 CD3	C C C C C C C C C C C C C C C C C C C	0 ga_30 CG ga_15 0 ga_20 CD1 ga_27 CD2 ga_27 CD2 ga_27 CD1 ga_27 CD2 ga_27 CD1 ga_27 CD2 ga_27 CD2 ga_27 CE1 ga_25 CE2 ga_27 CE2 ga_27 CZ ga_27 CZ ga_27 CZ ga_25 CZ ga_27 CZ ga_25 CZ ga_25 CZ ga_25 CZ ga_25 CZ ga_25 HZ ga_25 CZ ga_25 Ak al gromos type CD2 C gi_1 CE1 CZ gi_1 CE2 CZ gi_1 CE1 HD1 gi_1 CZ CE2 gi_1 CE1 HD1 gi_1	<pre>(atoms) CA CH3 0. CB CH2r 0. C C H1 H 0 0 - [bonds] CA CB gb_ CB C gb_ C 0 gb_ C 0 gb_ C 0 gb_ C H1 gb_ [exclusions] ; ai aj CA 0 [angles] ; ai aj cA 0 [angles] ; ai aj cA 0 [angles] ; ai aj cB CA H1 C CB 0 C CH1 [impropers] ; ai aj ak C 0 H1 [dihedrals] ; ai aj ak CA CB C CA CB C</pre>	00000 0 00000 0 0.300 1 0.020 1 27 27 5 3 gromos type ga_15 ga_21 ga_33 ga_25 al gromos type CB gi_1 al gromos type 0 gd_111 0 gd_112 0 gd_113
CA CG CD1 CG CD1 CG HD1 CG CG HD2 CD1 CD1 HE1 CD2 CD2 HE2 CE1 CE2 [imp ; ai CG CG CD1 CD1 CD1 CD2 CC2 CC2 CC2 CC2 CC2 CD2 CC2 CC2 CC2	C C C C C C C C C C C C C C C C C C C	0 ga_30 CG ga_15 0 ga_20 CD1 ga_27 CD2 ga_27 CD2 ga_27 CD1 ga_27 CD2 ga_27 CD1 ga_25 CE1 ga_25 CE2 ga_27 CE2 ga_27 CE2 ga_27 CE2 ga_27 CZ ga_25 CZ ga_27 CZ ga_25 CZ ga_27 CZ ga_25 CZ ga_25 CZ ga_25 CZ ga_25 CZ ga_25 HZ ga_25 Ak al gromos type CD2 C gi_1 CE1 CZ gi_1 CE2 CZ gi_1 CD2 CE2 gi_1 CD2 CE2 gi_1 CD2 CE2 gi_1 CD2 CE2 gi	<pre>(atoms) CA CH3 0. CB CH2r 0. C C H1 H 0 0 - [bonds] CA CB gb_ CB C gb_ C 0 gb_ C H1 gb_ [exclusions] ; ai aj CA 0 [angles] ; ai aj ak C CB CA H1 C CB 0 C CH [impropers] ; ai aj ak C 0 C H1 [impropers] ; ai aj ak C 0 C H1 [dihedrals] ; ai aj ak CC CB CA CA CB C CA CB C</pre>	00000 0 00000 0 0.300 1 0.200 1 27 27 5 3 gromos type ga_15 ga_21 ga_33 ga_25 al gromos type CB gi_1 al gromos type 0 gd_111 0 gd_112 0 gd_113
CA CG CD1 CG CD1 CG HD1 CG CG HD2 CD1 CD1 CD2 CD2 CD2 CE1 CE1 CE2 CE1 CE2 CE1 CE2 CD2 CD2 CD1 CD1 CD2 CD2 CD1 CD1 CG HD2 CD2 CD2 CD2 CD2 CD2 CD2 CD2 CD2 CD2 C	C C C C C C C C C C C C C C C C C C C	0 ga_30 CG ga_15 0 ga_20 CD1 ga_27 CD2 ga_27 CD2 ga_27 CD1 ga_27 CD2 ga_27 CD1 ga_25 CE1 ga_25 CE2 ga_27 CE2 ga_27 CE2 ga_27 CE2 ga_27 CE2 ga_27 CZ ga_25 CZ ga_25 CZ ga_27 CZ ga_25 CZ ga_25 CZ ga_25 CZ ga_25 CZ ga_25 HZ ga_25 Ak al gromos type CD2 C gi_1 CE1 CZ gi_1 CE2 CZ gi_1 CD2 CE2 gi_1 CD2 CE2 gi_1 CE1 HD1 gi_1 CE2 CE2 g	<pre>(atoms) CA CH3 0. CB CH2r 0. C C H1 H 0 0 - [bonds] CA CB gb_ CB C gb_ C 0 gb_ C 0 gb_ C 0 gb_ C 0 gb_ C 0 gb_ C 0 gb_ C H1 gb_ [exclusions] ; ai aj CA 0 [angles] ; ai aj ak C CB CA H1 C CB 0 C CB 0 C H1 [impropers] ; ai aj ak C 0 H1 [dihedrals] ; ai aj ak CA CB C CA CB C</pre>	00000 0 00000 0 0.300 1 0.020 1 27 27 5 3 gromos type ga_15 ga_21 ga_33 ga_25 al gromos type CB gi_1 al gromos type 0 gd_111 0 gd_112 0 gd_113
CA CG CD1 CG CD1 CG HD1 CG CG HD2 CD1 CD1 CD2 CD2 CD2 HE2 CE1 CE1 CE2 CE1 CE2 CE1 CE2 CD1 CD2 CD2 CD1 CD1 CD2 CD2 CD1 CD2 CD2 CD1 CD2 CD2 CD1 CD2 CD1 CD2 CD2 CD1 CD2 CD2 CD1 CD2 CD2 CD2 CD2 CD2 CD2 CD2 CD2 CD2 CD2	C C C C C C C C C C C C C C C C C C C	C ga_30 CG ga_15 O ga_30 CD1 ga_27 CD2 ga_27 CD2 ga_27 CD2 ga_27 CD2 ga_27 CD1 ga_25 CE1 ga_25 CE1 ga_25 CE2 ga_27 CE2 ga_27 CE2 ga_27 CZ ga_25 HE1 ga_25 CZ ga_27 CZ ga_25 HE2 ga_26 HE2 ga_27 CZ ga_27 CZ ga_25 HE2 ga_26 HE2 ga_27 CZ ga_27 CZ ga_25 HE2 ga_26 HE2 ga_27 CZ ga_27 CZ ga_27 CZ ga_27 CZ ga_21 CE2 cZ gi_1 CE1 CZ gi_1 CE2 CE2 gi_1 CE1 HD1 gi_1 CZ CE2 gi_1 CE1 CE1 CE1 Gi_1 CE1 CE1 Gi_1 CE1 CE1 Gi_1 CE1 CE1 Gi_1 CE1 CE1 CE1 CE1 CE1 CE1 CE1 CE1 CE1 CE1	<pre>(atoms) CA CH3 0. CB CH2r 0. C C H1 H 0 0 - [bonds] CA CB gb_ CB C gb_ C 0 gb_ C 0 gb_ C 0 gb_ C 0 gb_ C 0 gb_ C H1 gb_ [exclusions] ; ai aj CA 0 [angles] ; ai aj ak C CB CA H1 C CB 0 C CB 0 C H1 [impropers] ; ai aj ak C 0 H1 [dihedrals] ; ai aj ak CC CB C H1 [dihedrals] ; ai aj ak CA CB C CA CB C</pre>	00000 0 00000 0 0.300 1 0.200 1 27 27 5 3 gromos type ga_15 ga_21 ga_33 ga_25 al gromos type CB gi_1 al gromos type 0 gd_111 0 gd_112 0 gd_113

CB CG CD1	CR1 C C	-0.00 0.22 -0.23	6000 2000 3000	0 0 0		CE1 CE2	CZ CZ	HZ HZ	ga_ ga_	.25 .25	
HD1 CD2 HD2 CE1	HC C HC C	0.12 -0.23 0.12 -0.12	2000 3000 2000 2000	0 0 0 1	;	[dihe ai CD2 CD2	edrals aj CG CG] ak CB CB	al CA CA	gromos gd_6 gd 6	type 50 51
HE1 CE2 HE2 CZ HZ	HC C HC C HC	0.12 -0.12 0.12 -0.12 0.12	2000 2000 2000 2000 2000 2000	1 1 1 1 1	;	[impi ai CG CG	copers aj CD1 CD1] ak CD2 CE1	al CB CZ	gromos gi_1 gi 1	type
[bond CA CB CG CD1 CD1 CD2 CD2 CD2 CE1	ds] CB CG CD1 CD2 HD1 CE1 HD2 CE2 HE1	gb_1(gb_2 gb_1(gb_3 gb_3 gb_1(gb_3 gb_1(gb_3	0 7 6 6 6			CG CD1 CD1 CD2 CD2 CD2 CD2 HE1 HE2 CZ	CD2 CG CE1 CG CG CE2 CD1 CD2 CE1	CE2 CD2 CE1 CZ CD1 CE2 CZ CZ CZ CZ CZ	CZ CE2 HD1 CE2 CE1 HD2 CE1 CE1 CE2 HZ	gi_1 gi_1 gi_1 gi_1 gi_1 gi_1 gi_1 gi_1	
CE1 CE2 CE2 CZ	CZ HE2 CZ HZ	gb_10 gb_3 gb_10 gb_3	6		; [Etylk CHL6 [aton CA	oenzene] ns] CH3	0.0	0000	0	
[exc; ; ai CA CB CB CB CG CG CD1 CD1 CD1 CD1 HD1 HD1 HD1 HD1 HD1 HD1 HD1 HD1 HD2 CC2 HD2 CE1 HE1 HE1 HE2	lusions aj CD2 CD1 CE1 CE2 HD1 HD2 HE1 HE2 CZ HD2 CE2 HZ CD2 HE1 CZ CZ HE1 CZ CZ HE2 CZ HE2 CZ HE2 CZ HE2 CZ HE2 CZ HE2 CZ HE2 CZ HE3 CZ HE3 HE3 CZ HE3 HE3 CZ HE3 HE3 CZ HE3 HE3 HE3 CZ HE3 HE3 HE3 HE3 HE3 HE3 HE3 HE3 HE3 HE3	:]				CB CG CD1 HD1 CD2 HD2 CE1 HE1 CE2 HZ CZ HZ CB CG CD1 CD2 CD1 CD2 CD1 CD2 CD1 CD2 CD1 CD2 CD2 CD1 CD2 HZ CC2 CD2 CD2 CD2 CD2 CD2 CD2 HD2 CE2 HZ CC2 CD2 HD2 CE2 HZ CC2 CC2 HZ CC2 CC2 HZ CC2 CC2 HZ CC2 CC2 HZ CC2 CC2 HZ CC2 CC2 HZ CC2 CC2 HZ CC2 CC2 HZ CC2 CC2 HZ CC2 CC2 HZ CC2 CC2 HZ CC2 CC2 HZ CC2 CC2 CC2 HZ CC2 CC2 HZ CC2 CC2 HZ CC2 CC2 HZ CC2 CC2 CC2 CC2 CC2 CC2 CC2 CC2 CC2 CC	CH2r C C HC C HC C HC C HC C HC C C C HC C C C L1 C HC C C C L1 C C C C L1 C C C C L1 C C C C	0.0 0.0 -0.1 0.1 -0.1 0.1 -0.1 0.1 -0.1 0.1 -0.1 0.1 gb_2 gb_1 gb_3 gb_1 gb_3 gb_1 gb_3 gb_1 gb_3 gb_1 gb_3 gb_1 gb_3 gb_1 gb_3	00000 2000 2000 2000 2000 2000 2000 20	0 1 1 2 3 3 4 4 5 5	
[ang: ai CA CB CD1 CG CG HD1 CG CG HD2 CD1 CD1 HD2 CD1 HD2 CD1 CD1 HC12 CD2 HE2 CE1	les] aj CB CG CG CD1 CD1 CD1 CD2 CD2 CD2 CD2 CD2 CE1 CE1 CE1 CE2 CE2 CE2 CE2 CZ	ak CG CD1 CD2 CD2 HD1 CE1 HD2 CE2 CE2 HE1 CZ CZ HE2 CZ CZ CZ CZ	gromos t ga_27 ga_27 ga_27 ga_25 ga_27	уре	;	excl ai CA CB CB CB CB CG CG CG CD1 CD1 HD1 HD1 HD1 CD2 CD2	usions aj CD1 CD2 CE1 HD1 HD2 HE1 HE2 CZ HD2 CE2 HZ CD2 HE1 CZ CE1 HZ				

HD2 HD2	HE2 CZ						CG CD1	CD2 HD1	gb_1 ab_3	.6			
CE1	HE2						CD1	CE1	gb_1	.6			
HE1	CE2						CD2	HD2	gb_3	3			
HE1	HZ						CD2	CE2	gb_1	.6			
HE2	ΗZ						CE1	HEI CZ	gb_3	6			
[ang	les]						CE2	HE2	ap 3	}			
; ai	aj	ak	grom	os type			CE2	CZ	gb_1	. 6			
CA	СВ	CG	ga_	_15			CZ	ΗZ	gb_3	3			
CB	CG	CD1	ga_	_27					1				
CD1	CG	CD2 CD2	ga_ ga	_27			exc.	Lusions ai	1				
CG	CD1	HD1	ga. ga	25		,	CD1	0					
CG	CD1	CE1	ga_	_27			CD2	0					
HD1	CD1	CE1	ga_	_25			CD1	H1					
CG	CD2	HD2	ga_	_25			CD2	H1					
HD2	CD2 CD2	CE2 CE2	ga_ ga	_27 25			C	HDZ HD1					
CD1	CE1	HE1	ga_	_25			Ĉ	CE1					
CD1	CE1	CZ	ga_	_27			С	CE2					
HE1	CE1	CZ	ga_	_25			CG	HE1					
CD2 CD2	CE2 CE2	CZ	ya_ ra	27			CG	СZ					
HE2	CE2	CZ	ga. ga	_25			CD1	HD2					
CE1	CZ	CE2	ga_	_27			CD1	CE2					
CE1	CZ	HZ	ga_	_25			CD1	HZ					
CEZ	CZ	ΗZ	ga_	_25			HDI HD1	CD2 HF1					
[dih	edrals	1					HD1	CZ					
; ai	aj	ak	al	gromos t	type		CD2	CE1					
CD2	CG	CB	CA	gd_62			CD2	HZ					
CD2	ĊĠ	СВ	CA	ga_63			HD2 HD2	HE2 CZ					
[imp	ropers]					CE1	HE2					
; ai	aj	ak	al	gromos t	type		HE1	CE2					
CG	CD1	CD2	CB	gi_1			HE1	ΗZ					
CG	CD1 CD2	CE1 CE2	CZ CZ	gi_l gi_l			HE2	ΗZ					
CD1	CG	CD2	CE2	gi_1		1	ang	les]					
CD1	CG	CE1	HD1	gi_1		;	ai	aj	ak	gron	nos typ	be	
CD1	CE1	CZ	CE2	gi_1			0	С	H1	ga	L_25		
CDZ CD2	CG	CE2	CEI HD2	gi_l gi_l			- О Н1	C	CG	ga	L_33		
CD2	CE2	CZ	CE1	gi_1			C	CG	CD1	ga	25		
HE1	CD1	CZ	CE1	gi_1			С	CG	CD2	ga	L_25		
HE2	CD2	CZ	CE2	gi_1			CD1	CG	CD2	ga	L_27		
CZ	CEI	CEZ	ΗZ	gī_ī			CG	CD1 CD1	HDI CE1	ga	1_25 27		
							HD1	CD1	CE1	ga	25		
; Benz	aldehyd	de					CG	CD2	HD2	ga	L_25		
[BNZ]	ma 1						CG	CD2	CE2	ga	1_27		
C C	C	0.	30000	0			CD1	CE1	HE1	ya œa	L_25		
H1	Н	0.	02000	0			CD1	CE1	CZ	ga	27		
0	0	-0.	32000	0			HE1	CE1	CZ	ga	_25		
CG	С	0.	00000	0			CD2	CE2	HE2	ga	L_25		
HD1	HC	-0.	12000	2			HE2	CE2 CE2	CZ CZ	ya œa	2.5		
CD2	C	-0.	12000	3			CE1	CZ	CE2	ga	27		
HD2	HC	0.	12000	3			CE1	CZ	ΗZ	ga	L_25		
CE1	С	-0.	12000	4			CE2	CZ	ΗZ	ga	L_25		
CE2	С	-0.	12000	4		1	dihe	edrals	1				
HE2	НĊ	0.	12000	5		;	ai	aj	ak	al	gror	nos	type
CZ	С	-0.	12000	6			0	С	CG	CD2	go	a_56	
ΗZ	HC	0.	12000	6			0	С	CG	CD2	go	1_57	
[bon	ds 1					1	imp	ropers	1				
С	0	gb_	5			;	ai	aj	ak	al	gror	nos	type
С	H1	gb_	3				С	0	H1	CG	gi	_1	
CG	C CD1	gb_	27 16				CG	CD1	CE1	CZ	gi ~-	1	
CG	CDT	yn_	- V				00		کنتب	04			

CD1 CD1 CD1	CG CG CE1	CD2 CE2 CE1 HD1 CZ CE2	gi_1 gi_1 gi_1	OG (CD1 (CG CI	CG CG D1
CD2	CG	CD1 CE1	gi_1	CG CI	D1
CD2	CG	CEZ HDZ	gi_l	HDI CI	
HE1	CD1	CZ CE1	gi_i	CD1 C1 CD1 C1	51 E1
IE2	CD2	CZ CE2	gi 1	HE1 CI	E1
CZ	CE1	CE2 HZ	gi_1	CE1 (CZ
				CE1 (CZ
M	1			HZ	CZ
MBO 1	xypenz	ene			≞∠ E2
[atom	ns]			HE2 CI	E2
CG	G C	0.41000	1	CE2 CI	D2
00	G OE	-0.35000	1	HD2 CI	22
CH3	снз	0.18000	1	HD2 CI)2 00
HD1	. С НС	-0.28000	1	СПО	JG
CD2	2 C	-0.28000	1	[dihedra	ls]
HD2	2 HC	0.16000	1	; ai a	j
CE1	. С	-0.12000	2	CD1 CO	G
HE1	. HC	0.12000	2	CD1 CO	3
CE2	: С) чс	-0.12000	ک ۲	[impropo	re 1
C7	. пс С С	-0.12000	4	; ai a	
ΗZ	L HC	0.12000	4	CG CI	 D1
				CG CI	D1
bond	is]	~h 10		CG CI	52 20
CG	OG CH3	21_ap ab_13		CDI (רח)	UG CG
CG	CD1	gb_13 ab 16		CD1 CD1 CD	5G E1
CG	CD2	g≈_16		CE1 CI	D1
CD1	CE1	gb_16		CE1 CI	D1
CD1	HD1	gb_3		CE1 (CZ
CEI CEI	CZ HF1	gb_16 gb_3		CZ CI	51 C7
CZ	HZ	gb_3		CD2 CI	E2
CZ	CE2	gb_16		CD1 CI	E1
CE2	HE2	gb_3			
CE2	CD2	gb_16		; Phenol	
CD2	HD2	gb_3		[PHN]	;
exclu	sions	1		OH O	A
ai	aj	-		HH	H
i,	i+3			CG	2
CG	HE1			CD1 (2
CG CG	пњ2 С7			HUI H הסי	C
CD1	HD2			HD2 H	C
CD1	CE2			CE1 (С
CD1	HZ			HE1 H	2
HD1 HD1	CD2 HF1			CE2 (
HD1	CZ			п <u>с</u> ∠ п Н7. Н(C
CD2	CE1			CZ (Ĉ
CD2	ΗZ				
HD2	HE2			[bonds]	
HD2	CZ			CG	ЭН
CEI HF1	HEZ CE2			OH I	пН П1
HE1	UEZ H7				D2
HE2	HZ			CD1 CI	- E1
CE1	OG			CD1 HI	D1
CE2	OG			CE1 (CZ
OG	HD1			CE1 HI	E1
OG CH3	HDZ CD2			CZ I	НZ F2
CH3	CDZ CD1			CE2 HI	⊔∠ E2
0.1.0	021			CE2 CI	 D2
[angl	es]			CD2 HI	D2
; ai	aj cc	ak gromo	os type		ne 1
UG	CG.	UDI Ya_2		[exclusion	.13]

OG CD1 CG CD1 CD1 CD1 HE1 CE1 CE1 HZ CZ CZ HE2 CE2 HD2 HD2 CH3	CG CG CD1 CD1 CE1 CE1 CZ CZ CZ CZ CE2 CE2 CE2 CD2 CD2 CD2 OG	CD2 CD2 HD1 CE1 CZ CZ HZ CE2 CE2 CE2 CD2 CD2 CD2 CG CG CG	ga ga ga ga ga ga ga ga ga ga ga ga ga g	_25 _27 _25 _27 _25 _27 _25 _27 _25 _27 _25 _27 _25 _27 _25 _27 _25 _27 _25 _27 _25 _27
[diheo ; ai CD1 CD1	irals aj CG CG] OG OG	al CH3 CH3	gromos type gd_64 gd_65
[impro ; ai CG CG CD1 CD1 CD1 CE1 CE1 CE1 CE1 CZ CE2 CD2 CD1	aj CD1 CD2 CG CG CE1 CD1 CD1 CZ CE1 CZ CE2 CE1] ak CD2 CE1 CD2 CZ CZ CZ CG CE2 CE2 CD2 CG CZ	al OG CZ HD1 CE2 CE2 HE1 CD2 CD2 HZ HE2 HD2 CE2	<pre>gromos type gi_1 gi_1</pre>
; Phenol [PHN] [atoms OH HH CG CD1 HD1 CD2 HD2 CE1 HE1 CE2 HE2 HZ CZ	; OA H C HC C HC C HC C HC C HC C C HC C C C C C C C C C C C C C C C C C C C	-0. 0. 0. -0. 0. -0. 0. -0. 0. 0. -0. 0. 0.	55000 40000 25000 15000 15000 12000 12000 12000 12000 12000 12000	1 1 1 1 1 2 2 3 3 4 4
[bonds CG OH CG CD1 CD1 CE1 CE1 CZ CZ CZ CE2 CE2 CD2	<pre>Gamma Content of the second seco</pre>	a a a a a a a a a a a a a a a a	b_13 b_1 b_16 b_16 b_3 b_16 b_3 b_16 b_3 b_16 b_3 b_16 b_3 b_16 b_3	

; remov th:	val of ird nei	Lenna: .ghbor	rd-Jone s (i,i·	es intera +3)	ction w	ith	[atom CD1	s] HC	0.00000
; ai	aj						CP	HC	0.00000
; i,	i+3						CE1	С	0.40000
CG	HEI						CE2	C	-0.24000
CG	HEZ						OE	OE C	-0.30000
CD1	UД 402						0	0	-0.50000
CD1	CE2						CG	C	0.29000
CD1	HZ						CD2	C	-0.48000
HD1	CD2						HD2	HC	0.19000
HD1	HE1						CG2	С	0.00000
HD1	CZ						CZ2	С	-0.12000
CD2	CE1						HZ2	HC	0.12000
CD2	ΗZ						CM2	С	-0.12000
HD2	HE2						OM2	HC	0.12000
HD2	CZ						CM3	С	-0.12000
CEL	HE2						OM3	HC	0.12000
ны. чғ1	UEZ U7						сD3 НD3	ЧС	-0.12000
HE2	HZ						CE3	C	-0 12000
CE1	OH						HE	НС	0.12000
CE2	OH						[bond	.s]	0.120000
OH	HD1						CD3	CG2	qb_16
OH	HD2						CD1	CE1	gb_3
HH	CD2						CE1	CE2	gb_16
HH	CD1						CE2	CP	gb_3
							CE1	OE	gb_13
[ang]	les]						OE	CG	gb_13
; ai	aj	ak	gror	nos type			CG	CD2	gb_16
OH	CG	CD1	ga_	_25			CD2	HD2	gb_3
OH CD1	CG	CD2	ga_	_25			CD2	CO	gb_16
CDI	CG CD1	UDZ HD1	ga_	25			C0	CE2	gb_s ab_16
CG	CD1	CE1	ya_ da	27			CG	CG2	gb_10 ab_16
HD1	CD1	CE1	ga_ da	25			CD 3	HD3	gb_10 gb_3
CD1	CE1	HE1	ga_ ga	25			CD3	CE3	gb_0 gb_16
CD1	CE1	CZ	qa_	27			CE3	HE	gb_3
HE1	CE1	CZ	ga_	_25			CE3	CZ2	gb_16
CE1	CZ	ΗZ	ga_	_25			CZ2	HZ2	gb_3
CE1	CZ	CE2	ga_	_27			CZ2	CM2	gb_16
ΗZ	CZ	CE2	ga_	_25			CM2	OM2	gb_3
CZ	CE2	HE2	ga_	_25			CM2	CM3	gb_16
CZ	CE2	CD2	ga_	_27			CM3	OM3	gb_3
HEZ	CE2	CD2	ga_	_25			CM3	CG2	gb_16
UE2 4D2	CDZ CD2	CE2	ya_	25			CP CD1	ustons]
HD2	CD2	CG	ga_ ga	2.5			CP OE		
HH	OH	CG	ga_	12			CP CD2		
				-			CP O		
[dihe	edrals]					CD1 CG		
; ai	aj	ak	al	gromos	type		CD1 CO		
HH	OH	CG	CD1	gd_50			CE1 CG2		
HH	OH	CG	CDI	gd_51			CEI CD2		
[imma		1					CEL O		
· əi	opers.] ək	- 1	aromos	tuno		CE2 CG		
, ar	CD1	CD2	OH	gromos ai 1	cypc		CO OE		
CG	CD1	CE1	CZ	gii			CO CG2		
CG	CD2	CE2	CZ	gi_1			O HD2		
CD1	CG	CE1	HD1	gi_1			O CG		
CD1	CG	CD2	CE2	gi_1			HD2 CG2		
CD1	CE1	CZ	CE2	gi_1			HD2 OE		
CE1	CD1	CZ	HE1	gi_1			CD2 CD3		
CE1	CD1	CG	CD2	gi_1			CD2 CM3		
CE1	CZ	CE2	CD2	gi_1			OE CD3		
CZ	CE1	CE2	HZ	gi_1			OE CM3		
CE2	CZ CEO	CDZ	HEZ UDO	gı_l			CG CE3		
CD2 CD1	CE2 CF1	CG C7	CES	y⊥_l ai 1			CG OMR		
CDI	CLT	CΔ	CEZ	ATTT			CG HD3		
; 6-ahe	envl-2.	3-dih	vdropvi	can-4-one	:		CG2 CZ2		
[FLV]	_ =/		1- 1 -				CG2 HE		

 $\begin{array}{c} 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 4 \\ 4 \\ 5 \\ 5 \end{array}$

HD3 HE HD3 CZ2 HD3 CM3 CD3 CM2 CD3 OM3 CD3 HZ2 HE HZ2 HE CM2 CE3 CM3 CE3 OM2 HZ2 OM2 HZ2 CM3 CZ2 OM3 OM2 OM3 [angles]	
<pre>[angles] ; ai aj ak g CD1 CE1 CE2</pre>	romos type ga 27
CD1 CE1 OE CE2 CE1 OE	ga_27 ga_27 ga_27
CE1 CE2 CP CE1 CE2 CO	ga_27 ga_27 ga_27
CP CE2 CO CE1 OE CG	ga_27 ga_27 ga_27
OE CG CD2	ga_27
OE CG CG2	ga_25
CD2 CG CG2	ga_25
CG CD2 CO	ga_27
CG CD2 HD2	ga_25
HD2 CD2 CO	ga_25
CD2 CO O	ga_25
CE2 CO O	ga_25
CD2 CO CE2	ga_27
CG CG2 CD3	ga_25
CG CG2 CM3 CD3 CG2 CM3	ga_25 ga_27 ga_25
CG2 CD3 HD3	ga_25
CG2 CD3 CE3	ga_27
HD3 CD3 CE3	ga_25
CD3 CE3 CZ2 CD3 CE3 HE	ga_23 ga_27 ga_25
HE CE3 CZ2	ga_25
CE3 CZ2 CM2	ga_27
CE3 CZ2 HZ2	ga_25
HZ2 CZ2 CM2	ga_25
CZ2 CM2 OM2	ga_25
CZ2 CM2 CM3	ga_27
OM2 CM2 CM3	ga_25
CM2 CM3 CG2	ga_27
CM2 CM3 OM3	ga_25
CG2 CM3 OM3	ga_25
[impropers] CD1 CE1 CE2 CP gi_3 CE2 CE1 OE CG gi_3 CE1 OE CG CD2 gi_3 OE CG CD2 CO gi_3 CG CD2 CO CE2 gi_3 CD2 CO CE2 CE1 gi_3 CD3 CE3 CZ2 CM2 gi_3 CD3 CE3 CZ2 CM2 gi_3 CM3 CG2 CD3 CE3 G22 gi_3 CM3 CG2 CD3 CE3 gi_3 CM3 CG2 CD3 CE3 gi_3 CD2 CO CE2 CD3 gi_3 CM3 CG2 CD3 G2 gi_3 CD3 CE3 CZ2 CM2 gi_3 CM3 CG2 CD3 G2 gi_3 CM3 CG2 CD3 HE gi_3 CC2 CM2 CM3 HE gi_3 CC2 CM2 CC3 HZ2 gi_3 CM3 CM2 CG2 OM3 gi_3 CM3 CM2 CG2 OM3 gi_3 CM3 CM2 CG2 OM3 gi_3 CM3 CM2 CG2 OM3 gi_3	

CG2 CM3	CD3	CG gi_3	
[dihed	rals]	7D3 ad 52	
OE CG	CG2 (CD3 gd_53	
; Compo	und 11		
[FLV1]			
[atom HZ1	B J HC	0.20000	
CZ1	C	-0.38000	
CM1	С	0.41000	
OM1 MF1	OE CH3	-0.35000	
CD1	C	-0.24000	
HD1	HC	0.16000	
CP	C OA	0.25000	
HP	H	0.40000	
CE1	С	0.40000	
CE2	C OF	-0.24000	
CO	C	0.64000	
0	0	-0.50000	
CG CD2	C	-0.48000	
HD2	HC	0.19000	
CG2	С	-0.12000	
CZZ HZ2	C HC	-0.24000	
CM2	C	0.19000	
OM2	OE	-0.32000	
ME2 CM3	CH3 C	0.25000	
OM3	ŌE	-0.32000	
ME 3	CH3	0.25000	
CD3 HD3	C HC	-0.12000	
CE3	C	-0.12000	
HE	HC	0.12000	
HZ1	CZ1	ap 3	
CZ1	CM1	gb_16	
CZ1	CP	gb_16	
CD3 CM1	OM1	gb_16 qb 13	
OM1	ME1	gb_13	
CM1	CD1	gb_16	
CD1 CD1	CE1	gb_3 ab 16	
CE1	CE2	gb_16	
CE2	CP	gb_16 gb_13	
OP	HP	gb_15 gb_1	
CE1	OE	gb_13	
OE	CG CD2	gb_13 gb_16	
CD2	HD2	gb_10 gb_3	
CD2	CO	gb_16	
CO CO	0 CF2	gb_5 gb_16	
CG	CG2	gb_10 gb_16	
CD3	HD3	gb_3	
CD3 CE3	CE3 HE	gb_16 gb_3	
CE3	CZ2	g∼_3 gb_16	
CZ2	HZ2	gb_3	
CZ2 CM2	CM2 OM2	gb_16 gb_13	
OM2	ME2	gb_13	
CM2	CM3	gb_16	
CM3 OM3	OM3 MF3	gb_13 gb_13	
0110	ט ביניי	90 ⁻¹ 2	

CM3 CG2 gb 16	CE1	CE2	CP	ga 27
	CE1	000	<u> </u>	~
[exclusions]	CEI	CEZ	CO	ga_z/
OM1 HZ1	CP	CE2	CO	ga 27
	~~~		0.7.1	J
OMI HDI	CEZ	CP	CZI	ga_z/
OM1 CE1	CE2	CP	OP	ga 25
OM1 CD		CD	071	~ ~2E
OMI CF	OF	CF	CZI	ya_zJ
CM1 CE2	CP	OP	HP	qa_12
CM1 OF	CD	071	CM1	 
CMI DE	CF	CLI	CMI	ya_z/
CM1 OP	CP	CZ1	HZ1	ga_25
H71 CD1	H71	C71	CM1	cra 25
	1101	001	0111	gu_20
HZI CEZ	CEI	OE	ĊĠ	ga_2/
HZ1 OP	OE	CG	CD2	ga 27
			020	9 <u>4</u> _2;
CZI CEI	OE	ĊĠ	CGZ	ga_25
CZ1 CO	CD2	CG	CG2	ga 25
	00	000	20	20 _ 07
CZI HDI	CG	CDZ	CO	ga_z/
OP CO	CG	CD2	HD2	qa_25
OB CE1	HD2	CD2	CO	a 25
OI CEI	11DZ	CDZ	00	ya_zJ
CP CD1	CD2	CO	0	ga_25
CP OF	CF2	CO	$\cap$	- a 25
	012		~	9u_20
CP CD2	CD2	CO	CE2	ga_2/
CP O	CG	CG2	CD3	ga 25
CD1 CC	00	CC2	CM3	0
CDT CG	ÚG.	UG2	CM3	ya_∠⊃
CD1 CO	CD3	CG2	CM3	ga_27
HD1 OF	CC2	CD3	нр 3	 (7a 25
	CGZ	CUD	1105	ya_2J
HD1 CE2	CG2	CD3	CE3	ga_27
CEL CG2	HD 3	CD3	CE3	a 25
GE1 GB2	11D 0	000	010	94_25
CEI CD2	CD3	CE3	CZ2	ga_27
CE1 O	CD3	CE3	HE	ga 25
		0 - 2	0 7 0	
CEZ (G	HL	CE3	C2Z	ga_zs
CE2 HD2	CE3	CZ2	CM2	ga 27
CO. 0E	05.5	072	1170	~ ~
COUL	CES	CZZ	пдд	ya_zJ
CO CG2	HZ2	CZ2	CM2	ga_25
O HD2	C72	CM2	OM2	ga 25
0 66	0110	0110	MEO	9 <u>4</u> _20
0 CG	CMZ	OMZ	MEZ	ga_12
HD2 CG2	CZ2	CM2	CM3	qa_27
UD2 OF	OM2	CM2	CM3	an 25
HDZ VE	OMZ	CMZ	CMS	ya_zJ
CD2 CD3	CM2	CM3	CG2	ga_27
CD2 CM3	CM2	CM3	OM3	ga 25
052 000	220	0110	0110	9u_20
OE CD3	CGZ	CM3	OM3	ga_25
OE CM3	CM3	OM3	ME 3	ga 12
CC CE2	[ + mm m		1	
CG CES	[ Imbr	opers	]	
CG CM2	CZ1 CM1	CD1 C	E1 gi 3	
CC OM3	CM1 CD1	CE1 C	F2 ai 3	
		011 0	12 gr_5	
CG HD3	CD1 CE1	CE2 C	P gi_3	
CG2 CZ2	CE1 CE2	CP CZ	1 ai 3	
CC2 UF	CE2 CD	C71 CM	1 at 3	
CGZ HE	CEZ CF	CZI CM	u gr_s	
CG2 OM2	CP CZ1	CM1 CD	1 gi_3	
HD3 HE	CE2 CE1	OF CG	ai 3	
	022 021	~~ ~~	94_0	
HD3 CZZ	CEI OE	CG CD2	gı_3	
HD3 CM3	OE CG C	D2 CO	ai 3	
CD3 CM3	CC CD2	CO CES	~i 3	
CD3 CMZ	CG CDZ		91_3	
CD3 OM3	CD2 CO	CE2 CE	⊥ gi_3	
CD3 H72	CG2 CD3	CE3 C	72 ai 3	
	002 002	020 0	<u>j-</u>	
	CDD CED	U42 C	nc gr_3	
HE CM2	CE3 CZ2	CM2 C	M3 gi_3	
CE3 CM3	C72 CM2	CM3C	G2 di 3	
		0.000		
UEJ UMZ	CM2 CM3	CG2 C	na dī73	
HZ2 OM2	CM3 CG2	CD3 C	E3 gi 3	
H72 CM3	C71 CM1	ייזי מיי <u>ן</u>	1 ~	
	CAI CMI	CF HZ	⊥ y⊥_3	
CZ2 OM3	CD1 CE1	CM1 H	D1 gi_3	
OM2 OM3	CO CD2	CE2 O	ai 3	
		~~~~~~	3+_2	
[angies]	CD2 CG	CO HD2	gı_3	
; ai aj ak gromos type	CD3 CE3	CG2 H	D3 qi 3	
$ME1 \cap M1 \cap M1 \longrightarrow 12$	020 620	יי כחי	F ~ ?	
mai Uni Uni ya_iz	CE3 (44	сиз Н	yı3	
OM1 CM1 CD1 ga_25	CZ2 CM2	CE3 H	Z2 gi_3	
OM1 CM1 CZ1 da 25	CG OF	CD2 C	G2 ai 3	
ga_{20}	00 OE	0020		
CZI CMI CDI ga_27	CP CE2	CZ1	OP gi_3	
CM1 CD1 HD1 ga 25	CM1 CZ1	CD1 O	M1 qi 3	
HD1 CD1 CF1 cp 25	CM3 CM3	CG2 0	M3 at 2	
$\frac{1}{2} \frac{1}{2} \frac{1}$		002 0	yr	
CMI CDI CEI ga_27	ano aro	CM3 0	M2 ai 3	
	CMZ CZZ	CMS 0	MZ YI_J	
CD1 CE1 CE2 ga 27	CMZ CZZ CG2 CM3	CD3	CG gi 3	
CD1 CE1 CE2 ga_27	CG2 CM3	CD3 CD3	M2 g1_3 CG g1_3	
CD1 CE1 CE2 ga_27 CD1 CE1 OE ga_27	CM2 CZ2 CG2 CM3 [dihed	CD3 .rals]	CG gi_3	10

OE CG ME2 OM ME2 OM ME3 OM HP OP HP OP ME1 OM ME1 OM OE C OE C	G CG2 12 CM2 12 CM2 13 CM3 13 CM3 13 CM3 13 CM3 13 CM3 13 CM3 14 CM3 11 CM1 11 CM1 11 CM1 12 CG2 23 CG2	CD3 CZ2 CZ2 CM2 CM2 2 CD1 CD1 CM3 CM3	gd_43 gd_44 gd_45 gd_45 gd_46 gd_46 gd_47 gd_44 gd_45 gd_43 gd_42	
; Compo [FLV2]	ound 12	2		
[atom HZ1	ns] HC	0	.20000	0
CZ1	С	-0	.38000	0
CM1	C	0	.41000	0
ME1	CH3	0_	.18000	0
CD1	С	-0	.24000	0
HD1	HC	0	.16000	0
OP	OA	-0	.63000	0
HP	Н	0	.40000	0
CE1	С	0	.40000	1
OE OE	OE.	-0	.24000	1
CO	C	0	.64000	1
0	0	-0	.50000	1
CG CD2	C	-0	.29000	2
HD2	HC	0	.19000	2
CG2	С	-0	.12000	3
OM3	OE.	-0	.35000	3
ME 3	СНЗ	0	.18000	3
CM2	С	-0	.28000	3
HM CZ2	HC	0 _0	.16000	3 4
HZ2	HC	0	.16000	4
CD3	С	-0	.28000	4
HD3 CF3	HC	0	.16000	4
OM2	OE	-0	.35000	4
ME2	CH3	0	.18000	4
[bond	ls]	ab	3	
CZ1	CM1	dp dp		
CZ1	CP	gb	_16	
CD3 CM1	CG2 OM1	gb ab	_16 _13	
OM1	ME1	gb gb	_13	
CM1	CD1	gb	_16	
CD1 CD1	HD1 CF1	gb ab	_3 _16	
CE1	CE2	gb gb	_16	
CE2	CP	gb	_16	
CP	OP HP	gb ab	_13	
CE1	OE	gb gb	_13	
OE	CG	gb	_13	
CG CD2	CD2	gb ab	_16	
CD2	CO	gb		
CO	0	gb	_5	
CO	CE2	gb ab	_16	
CD3	HD3	dp dp	3	
CD3	CE3	gb	_16	
CE3	OM2 ME 2	gb ab	_13	
CE3	CZ2	gb	_16	

CZ2 CZ2 CM2 CM3 OM3 CM3 [exclu OM1 H21 OM1 H21 OM1 C21 OM1 C2 CM1 OP CM1 C22 CM1 OP HZ1 CD1 CZ1 C0 CZ1 C1 C21 C0 CZ1 HD1 OP C0 OP C1 C21 C21 CP CD2 CP CD2 CD1 CG CD2 CC2 CD1 C2 CD1 C2 C2 CD1 C2 C2 CD1 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C	HZ2 CM2 HM CM3 OM3 CG2 Isions	gb_3 gb_16 gb_3 gb_16 gb_13 gb_13 gb_16]		
HD2 CG2 HD2 CG CD2 CD3 CD2 CM3 CD2 CM3 CG CC3 CG CM3 CG CC3 CG CM3 CG CM3 CG CM3 CG CM3 CG2 CZ2 CG2 OM3 CG2 CM2 CG2 MM HD3 CM2 HD3 CM2 CD3 CM3 CD3 CM3 CD3 HZ2 CM3 CM3 CD3 HZ2 CM3 CM3 CC3 HM HZ2 CM3 CC3 HM HZ2 CM3 CC2 OM3 I angle ; ai ME1 OM1 CZ1	es] aj OM1 CM1 CM1 CM1 CM1	ak CM1 CD1 CZ1 CD1	gromos ga_12 ga_25 ga_25 ga_25 ga_27	type

CM1 HD1	CD1 CD1	HD1 CE1	ga_25 ga_25
CM1	CD1	CE1	ga_27
CD1 CD1	CE1 CE1	OE	ga_27 ga_27
CE2	CE1	OE	ga_27
CEI CEI	CE2 CE2	CP CO	ga_27 ga_27
CP	CE2	CO	ga_27
CE2 CE2	CP CP	CZ1 OP	ga_27 qa 25
OP	CP	CZ1	ga_25
CP CP	OP CZ1	HP CM1	ga_12 ga_27
CP	CZ1	HZ1	ga_25
HZI CE1	CZI OE	CMI CG	ga_25 ga 27
OE	CG	CD2	ga_27
OE CD2	CG CG	CG2 CG2	ga_25 ga_25
CG	CD2	CO	ga_27
CG HD2	CD2 CD2	HD2 CO	ga_25 qa 25
CD2	CO	0	ga_25
CE2 CD2	CO CO	O CE2	ga_25 ga_27
CG	CG2	CD3	ga_25
CG CD3	CG2 CG2	CM3 CM3	ga_25 ga_27
CG2	CD3	HD3	ga_25
CG2 HD3	CD3 CD3	CE3 CE3	ga_27 ga_25
CD3	CE3	CZ2	ga_27
CD3 OM2	CE3 CE3	OM2 CZ2	ga_25 ga 25
CE3	OM2	ME2	ga_12
CE3 CE3	CZ2 CZ2	CM2 HZ2	ga_27 ga_25
HZ2	CZ2	CM2	ga_25
CZ2	CM2 CM2	CM3	ga_25 ga_27
HM CM2	CM2 CM3	CM3	ga_25
CM2	CM3	OM3	ga_25 ga_25
CG2 CM3	CM3 OM3	OM3 ME3	ga_25 ga 12
[impr	opers]	5*=
CZI CMI CM1 CD1	CDI (CE1 (CEL gi_3 CE2 gi 3	
CD1 CE1	CE2	CP gi_3	
CEI CEZ CE2 CP	CP C: CZ1 CI	41 gi_3 M1 gi_3	
CP CZ1	CM1 CI	D1 gi_3	
CE1 OE	CG CD:	3 g1_3 2 gi_3	
OE CG C	D2 CO	gi_3	
CD2 CO	CE2 CI	2 gi_3 E1 gi_3	
CG2 CD3	CE3 (CZ2 gi_3	
CE3 CZ2	CM2 (CM3 gi_3	
CZ2 CM2	CM3 (CG2 gi_3	
CM3 CG2	CD3 (CE3 gi_3	
CZ1 CM1 CD1 CE1	CP H CM1	∠⊥ gi_3 HD1 qi 3	
CO CD2	CE2 O	gi_3	
CD2 CG CD3 CE3	CO HD: CG2 I	∠ gi_3 HD3 qi_3	
CE3 CZ2	CD3 (OM2 gi_3	
CG OE	CE3 CD2 (n42 g1_3 CG2 gi_3	
CP CE2	CZ1	OP gi_3	

CM1 CZ1 C CM3 CM2 C CM2 CZ2 C CG2 CM3 C [dihedra OE CG OE CG ME2 OM2 ME3 OM3 ME3 OM3 HP OP CE HP OP CE ME1 OM1 ME1 OM1	CD1 OM1 CG2 OM3 CM3 HM CD3 CG als] CG2 CE CG2 CE CG3 CZ CG3 CZ CM3 CM CM3 CM CM2 CE2 CC2 CC1 CE CC1 CE	. gi 3 gi 1 gi 3 gi 3 gi 3 gi 3 gi 3 gi 3 gi 3 gi 3	3 3 3 gd_ gd_ gd_ gd_ gd_ gd_ gd_ gd_ gd_ gd_	_4: _4: _4: _4: _4: _4: _4: _4: _4: _4:	2 3 4 5 4 5 6 7 4 5
OE CG OE CG	CG2 CM	13 13	ga_ qd	_4 _4	3 2
			5.5	_	
; Compour	nd 13				
[FLV3]	1				
HZ1	HC	Ο.	150	00	0
CZ1	С	-0.	200	00	0
CP1	С	0.	250	00	0
OP1 Hp1	ОА н	-0.	201	יטנ חחר	U N
CD1	C	-0.	200	00	0
HD1	HC	0.	150	00	0
CP	С	0.	250	00	0
OP	OA u	-0.	550	201	0
CE1	п С	0.	400	201	0
CE2	C	-0.	240	0 C	0
OE	OE	-0.	300	00	D
CO	С	0.	640	200	0
0 CD2	0 C	-0.	23	201 201	U N
CG	С	0.	170	200	0
CG2	С	-0.	050	00	0
CM2	С	-0.	240	00	0
HM CD4	HC	0.	120	201	0
HD4	HC	-0.	120	201	0
CD3	С	-0.	240	0 C	0
HD 3	HC	0.	120	00	0
CE3	С	0.	190	200	0
OMZ ME 2	CH3	-0.	321) () () ()	D N
CZ2	C	0.	232	201	0
[bonds]				
HZ1 (CZ1	gb_	3		
CZ1 (CP	gp_ dp	16		
CD3 (CG2	gb_	16		
CP1 (DP1	gb_	13		
OP1 H	HP1	gb_	1		
CD1 F	JDI ID1	gp_ dp	3 10		
CD1 (CE1	gb_	16		
CE1 (CE2	gb_	16		
CE2	CP	gb_	16		
OP	0P HP	gp_ ab	13		
CE1	OE	gb_	13		
OE	CG	gb_	13		
CG (CD2	gb_	16		
CD2 CO	0	gp_ dh	_16 5		
co d	CE2	dp	16		
CG (CG2	gb_	16		
CD3 H	HD3	gb_	3		
CD3 (ンビ3 M2	gb_	_⊥6 1 २		
		3n-	-+ 0		

 $\begin{array}{c}1\\1\\2\\3\\3\\3\\4\\4\\4\\4\\5\end{array}$

01/0	ME O	. 1. 4.0			~~ 1	001	115.1	
OM2	MEZ	gp_13	5		CPI	CDI	HDI	
CE3	C72	ab 16			HD1	CD1	CE1	
070	CMO	ab 16	-		CD 1	CD1	CE 1	
CZZ	CMZ	gp_re)		CPI	CDI	CEI	
CM2	HM	gb_3			CD1	CE1	CE2	
CM2	CD4	ab 16	5		CD1	CE1	OE	
0110	001	92-20	·		021	021		
CD4	HD4	gb_3			CE2	CEI	OE	
CD4	CG2	qb 16	5		CE1	CE2	CP	
[ova]	lugiong	1 1			CE1	CE2	ĊO	
[exci	LUSIONS]			CEI	CEZ	CO	
OP1 HZ	Z1				CP	CE2	CO	
OP1 HE	1				CE2	CP	C71	
011 111	-1				002	201	011	
OPI CE	51				CEZ	CP	OP	
OP1 CF	>				OP	CP	CZ1	
CD1 CT					0D	0.0		
CPI CE	52				CP	OP	HP	
CP1 OF	2				CP	CZ1	CP1	
CD1 OF	~				CD	071	1 7 1	
CPI OF	-				CP	CZI	пдт	
HZ1 CI	01				HZ1	CZ1	CP1	
H71 CH	72				CF1	OF	CC	
NZI CE	52				CEI	0E	CG	
HZ1 OF	2				OE	CG	CD2	
C71 CF	71				OF	CC	CC2	
021 01	а т				UL -	CG	CGZ	
CZ1 CC)				CD2	CG	CG2	
CZ1 HE	51				CG	CD2	CO	
00 00					00	220	00	
OF CO					CD2	CO	0	
OP CE1	1				CE2	CO	0	
					000	~~~	000	
CP CDI					CD2	CO	CE2	
CP OE					CG	CG2	CD3	
					00	CC2	CD 4	
CF CDZ					UG	UGZ	CD4	
CP O					CD3	CG2	CD4	
CD1 CC					CC2	CD3	нр з	
CDI CG					CGZ	CDS	HD 5	
CD1 CO					CG2	CD3	CE3	
HD1 OF					нрз	CD3	CES	
	_				110.5	CDJ	010	
HD1 CE2	2				CD3	CE3	CZ2	
CE1 CG2	2				CD 3	CE3	OM2	
0E1 002	2				020	020	0110	
CEI CD2	2				OMZ	CE3	CZZ	
CE1 O					CE3	OM2	ME 2	
CE2 CC					CE3	072	CM2	
CEZ CG					CED	CZZ	CMZ	
CE2 +01	1				CZ2	CM2	HM	
COOF					C72	CM2	CD/	
COUL					042	CMZ	CD4	
CO CG2					HM	CM2	CD4	
0 +01					CM2	CD4	CG2	
0 101					0112	CD4	002	
O CG					CM2	CD4	HD4	
+01 CG2	2				CG2	CD4	HD4	
. 01 002	-					021	,	
+01 OE					[ımp	ropers]	
CD2 CD3	3				CZ1 CP	1 CD1 (CE1 ai	3
CD 2 CD /	4				CD1 CD	1 0 1 1		
CDZ CD4	1				CPI CD	I CEI (JEZ GI_	_3
OE CD3					CD1 CE	1 CE2 (CP qi_	_3
OF CD4					CF1 CF		71 ai	2
OL CD4							51 91 <u></u>	-2
CG CE3					CE2 CP	CZ1 CI	?l gi_	_3
CG CM2					CP C71	CP1 CI)1 ai	3
00 UD 4					000 00	1 01 01		
CG HD4					CEZ CE	LOFC	J g1_	_3
CG HD3					CE1 OE	CG CD2	2 ai	3
000 070	۰				OF CC	702 00		
CGZ CZZ	2				OE CG	JDZ (U	91_	_>
CG2 OM2	2				CG CD2	CO CE2	2 gi_	_3
CG2 HM					CD2 CO	CE2 CI	 in [5	З
UD2 011	- -				002 00		Y	-~
ныз ОМ2	2				CG2 CD	3 CE3 (-27 dī	_3
HD3 C7.2	2				CD3 CE	3 C7.2 (CM2 ai	3
	4						ייי אםר. ייס	-~
прз Ср4	±				CE3 CZ	Z CMZ (JD4 g1_	_3
CD3 CM2	2				CZ2 CM	2 CD4 (CG2 qi	_3
CD3 UD/	1				CM2 CD	1 002 0	יים כתר	- 2
CD3 HD4	1				CMZ CD	4 CGZ (-D2 GT	_>
CD3 -01	1				CD4 CG	2 CD3 (CE3 gi_	_3
OM2 -01	1				C71 CD	1 CD H	71 ai	2
0112 01	L				CZI CI		or gr_	- 7
OM2 CM2	2				CD1 CE	L CP1 I	HDl gi_	_3
CE3 CD4	4				CO CD2	CE2 ∩	αi	3
CE2						· · · · ·	י כחוי– יי כחוי	-~
CE3 HM					CD3 CE	S UGZ I	_rns dr	_3
-01 HM					CE3 CZ	2 CD3 (DM2 qi	_3
-01 CD/	1					י כתי ב	- G2 ~-	Ş
	4						-ur At-	
CZZ HD4	4				CP CE	Z CZ1	OP gi_	_3
НМ НР4	4				CP1 C7.	1 CD1 (in LAC	3
							9	-~
i angl	ies I				CD4 CM	z ugz i	ina di"	_3
[angi	1	. 1	aromos	t.vpe	CM2 CZ	2 CD4	HM ci	_3
; ai	ai	ак	gromos	- ,			III OI	
; ai	aj	CP1	g101103	• 1 1- •	(C) (D	4 ("")	CC ~i	
; ai HP1	aj OP1	aĸ CP1	ga_12	-11	CG2 CD	4 CD3	CG gi_	_3
; ai HP1 OP1	aj OP1 CP1	ak CP1 CD1	ga_12 ga_25	-11	CG2 CD CZ2 CE	4 CD3 3 CM2 ·	CG gi_ -01 gi_	_3 _3
; ai HP1 OP1 OP1	aj OP1 CP1 CP1	ak CP1 CD1 CZ1	ga_12 ga_25 ga_25	-11-	CG2 CD CZ2 CE CD2 CD	4 CD3 3 CM2 -	CG gi_ -01 gi_ +01 gi	_3 _3 _3
; ai HP1 OP1 OP1	aj OP1 CP1 CP1	CP1 CD1 CZ1	ga_12 ga_25 ga_25	-71	CG2 CD CZ2 CE CD2 CU	4 CD3 3 CM2 - 0 CG -	CG gi_ -01 gi_ +01 gi_	_3 _3 _3

ga_25

-ga_25

ga_27 ga_27

ga_27

ga_27

ga_27

ga_27 ga_27

ga_27

ga_25

ga_25

ga_12

ga_27

ga_25 ga_25

ga_27

ga_27

ga_25

ga_25 ga_27

ga_25

ga_25

ga_27

ga_25

ga_25

ga_27

ga_25 ga_27

ga_25

ga_27

ga_25

ga_25 ga_12 ga_27

ga_25

-ga_27

-ga_25

ga_27

ga_25

ga_25

OE	CG CC	G2 CD	3	gd_	42		
OE	CG CC	52 CD	3	gd_	43		
ME 2	OM2 CI	53 CA 73 C7	2	ga_ ad	44		
HP ()P CP (15 CZ 1E2	2	ad	46		
HP C	OP CP (CE2		ad	47		
HP1	OP1 CI	21 CD	1	gd_	46		
HP1	OP1 CH	21 CD	1	gd_	47		
OE	CG CC	G2 CD	4	gd_	43		
OE	CG CC	G2 CD	4	gd_	42		
	C 1				1 1 0		
; IST	C GLUCO	ose c	omp	oun	a 13	, ,	
[DGL	ome j						
C4	1 CH.	1	0.	232	0.0		0
04	1 02	-	-0.	642	00		0
HO4	1 I	ł	Ο.	410	00		0
C3	B CH	L	Ο.	232	00		1
03	3 Ož	Ą	-0.	642	00		1
HOS	3 I	ł	0.	410	00		1
C2	2 CH	L	0.	232	00		2
U2 1102	2 04	7	-0.	64Z	00		2
п02 С4	сц' Сц'	1	0.	232	00		2
06	5 07	4	-0.	642	00		3
HO	5 I	ł	0.	410	00		3
C5	5 CH1	L	Ο.	376	00		4
05	5 02	Ą	-0.	480	00		4
Cl	CH1	L	Ο.	232	00		4
01	L 07	Į	-0.	360	00		4
[bo	onds]		,	~ ~			
04		1	gb_ ~b	20			
C4		± २	gb_ ab	.⊥ 26			
C4		5	gn ap	26			
C3	3 03	3	g≈_ ab	20			
C3	3 C2	2	qb_	26			
03	в но	3	gb_	1			
C2	2 02	2	gb_	20			
C2	2 C1	L	gp_	26			
02	2 HO2	-	gb_	1			
		5	go_ ab	20			
06	5 HO	5	gb_ ab	1			
C5	5 05	5	qb_	20			
05	5 C.	L	gb_	20			
Cl	L 01	L	gb_	20			
01	+CZ2	2	gb_	13			
[ar	ngles		,				
; al	La:] 1	aĸ C4	g	romc	12 12	ype
04		± 1	C3		ya_ da	_1Z 9	
04	1 C4	1	C5		g∝_ qa	9	
C3	3 C4	1	C5		ga_	8	
C4	1 C.	3	03		ga_	9	
C4	1 C.	3	C2		ga_	8	
03	3 C.	3	C2		ga_	9	
C3	3 03	3 Н	03		ga_	12	
03		2	02 C1		ga_	9	
02		2	C1		ya_ ra	_0 _0	
C2	2 02	- ?н	02		ga_ aa	12	
06	5 C	5	C5		ga_	9	
Ce	5 00	5 Н	06		ga_	12	
C4	1 C.	5	C6		ga_	8	
C4	1 C!	5	05		ga_	9	
Ce	D C	-	05		ga_	9	
Ct) I	05		ga_	0 TU	
C2 C2	. C. 2 C'	- 	01		ya_ aa	9	
05	5 C	- L	01		ga_	9	
Cl	L O	L +C	Z2		ga_	10	
01	+CZ2	2 +C	ЕЗ		ga_	25	

	01	+CZ2	+CM2	ga_	_25	
[imp	ropers]	-		
;	aı	aj	ak	al	gromos type	è
	C4	02	05	C5	g1_2	
	C5	03	C2	C4	gi_2	
	C1	C 3	02	C2	gi_2	
	C2	05	01	C1	gi_2	
ſ	dih	edrals	1	01	9	
;	ai	aj	ak	al	gromos type	è
	HO4	04	C4	C3	gd_30	
	04	C4	C3	03	gd_18	
	04	С4	C3	C2	gd_54	
	04	C4	C3	C2	gd_55	
	C5	C4	C3	03	gd_54	
	C5	C4	C3	03	gd_55	
	C5	C4	C3	C2	gd_34	
	04	C4	C5	C6	gd_54	
	04	C4	C5	C6	gd_55	
	03	C4	C5	C6	gd_34	
	C3	C4	C5 CE	05	ga_54 ad EE	
	C3	C4 C3	03	нОЗ	ga_55 ad 30	
	C1	C3	C2	02	ga_50 ad 54	
	C4	C3	C2	02	ga_54 ad 55	
	C4	C3	C2	C1	gd_34	
	03	C3	C2	02	ad 18	
	03	C3	C2	C1	gd 54	
	03	C3	C2	C1	gd 55	
	C1	C2	02	HO2	gd_30	
	C3	C2	C1	05	gd_54	
	C3	C2	C1	05	gd_55	
	CЗ	C2	C1	01	gd_54	
	C3	C2	C1	01	gd_55	
	02	C2	C1	01	gd_18	
	C5	C6	06	HO6	gd_30	
	06	C6	C5	05	gd_5	
	06	C6	C5	05	gd_37	
	C4	C5	05	C1	gd_29	
	C5	05	CI	C2	gd_29	
	05	CI CI	01	+CZZ	ga_z	
	05	01	UI LCZ2	+CZZ	ga_32	
	CI	01	+022	TCED	gu_29	
;	2nd	Glucose	e comp	ound 13	3	
[]	BGD2]	1			
[ato	ms]				
	C4	CH1	0.	23200	0	
	04	OA	-0.	64200	0	
	HO4	Н	0.	41000	0	
	C3	CH1	0.	23200	1	
	03	OA	-0.	64200	1	
	HO3	H	0.	41000	1	
	C2	CHI	0.	23200	2	
	02	0A	-0.	64200	2	
	HOZ	H	0.	41000	2	
	06	CHZ	_0.	23200 64200	3	
	ноб Ноб	UA H	-0.	41000	3	
	C5	CH1	0.	37600	4	
	05	0A	-0	48000	4	
	C1	CH1	0.	23200	4	
	01	OA	-0.	36000	4	
[bon	ds]				
-	C4	04	gb_	20		
	04	HO4	gb_	1		
	C4	C3	gb_	26		
	C4	C5	gb_	26		
	C3	03	gb_	20		
	С3	C2	gp_	26		
	03	HO3	gp_	L		
	C2	02	gb_	20		
	C2	CI	gb_	26		

	02	HO2	gb_1		
	C6	06	gb_2	0	
	06	HO6	gb_2 ab 1	0	
	C5	05	gb_2	0	
	05	C1	gb_2	0	
	C1 01	01 -CD2	gb_2 ab_1	0 3	
	[angi	les]	90_1	5	
;	ai	aj	ak	gromo	os type
	HO4	04	C4	ga_	_12
	04	C4 C4	C5	ga_ ga	_9 9
	C3	C4	C5	ga_	_8
	C4	C3	03	ga_	_9
	C4 03	C3 C3	C2 C2	ga_ ga	_8 9
	C3	03	HO3	ga_ ga_	
	C3	C2	02	ga_	_9
	C3	C2	C1	ga_	_8
	C2	02	HO2	ga_ ga	_9 12
	06	C6	C5	ga_	_9
	C6	06	HO6	ga_	_12
	C4 C4	C5	05	ga_ ga	_8 9
	C6	C5	05	ga_ ga_	_9
	C5	05	C1	ga_	_10
	C2	C1	05	ga_	_9
	05	C1	01	ga_ ga	9
	C1	01	-CD2	ga_	_10
	01	-CD2	-CO	ga_	_25
	[imp	-CDZ ropers	-CG 1	ga_	_25
;	ai	aj	ak	al	gromos type
	C4	C6	05	C5	gi_2
	C3 C5	03	C2	C4	gi_2
	C1	C3	02	C2	gi_2 gi_2
	C2	05	01	C1	gi_2
	[dihe	edrals]	- 1	aromoa turo
'	HO4	04	C4	C3	gromos cype gd_30
	04	C4	C3	03	gd_18
	04	C4	C3	C2	gd_54
	C5	C4 C4	C3	03	ga_55 ad 54
	C5	C4	C3	03	gd_55
	C5	C4	C3	C2	gd_34
	04	C4	C5 C5	C6 C6	gd_54 ad_55
	C3	C4	C5	C6	gd_34
	C3	C4	C5	05	gd_54
	C3	C4	C5	05 ноз	gd_55 gd_30
	C4	C3	C2	02	gd_54
	C4	C3	C2	02	gd_55
	C4	C3	C2	C1	gd_34
	03	C3	C2	C1	ga_18 ad 54
	03	C3	C2	C1	gd_55
	C1	C2	02	HO2	gd_30
	C3 C3	C2 C2	C1	05	ga_54 ad 55
	C3	C2	C1	01	gd_54
	C3	C2	C1	01	gd_55
	02	C2	C1	01 ноб	gd_18 ad_30
	06	C6	C5	05	gd_5
	06	C6	C5	05	gd_37
	C4	C5	05 C1	C1 C2	gd_29 ad_29
	00		<u> </u>	22	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

05 05 C1	C1 C1 O1	01 01 -CD2	-CD2 -CD2 -CO	gd_2 gd_32 gd_29
; Comp [CHC1]	ound 14			
[atom	s]	0	20000	0
0	C	-0	32000	0
CG1	C	-0.	24000	1
CM2	С	0.	40000	1
OM2	OE	-0.	30000	1
CM3	CH3 C	0.	40000	1
OM3	OE	-0.	30000	1
ME 3	CH3	Ο.	14000	1
CE1	С	-0.	41000	1
CE2	С	-0.	41000	1
HE2	НĊ	0.	17000	1
CM1	С	0.	40000	1
OM1 MF1	OE CH3	-0.	30000	1
CA	CR1	0.	00000	2
CB	CR1	0.	00000	2
CG2	С	-0.	12000	3
HP	Н	-0.	12000	3
CD1	С	0.	19000	3
OM6	OE	-0.	32000	3
ME6 CE3	СНЗ	0.	21000	3
HE3	HC	0.	12000	3
CE4	С	0.	19000	3
OM5	OE	-0.	32000	3
ME5 CZ	CH3 C	0.	21000	3
OM4	OE	-0.	32000	3
ME4	CH3	0.	21000	3
CA	CO	ap	27	
CO	0	gb_	5	
CG1	CO	gb_	27	
CG1 CG1	CM2 CM3	gp_ dp	16	
CM2	OM2	gb_	13	
OM2	ME2	gb_	13	
CM2 CM3	OM3	_ap 	.16 13	
OM3	ME3	gb_	13	
CM3	CE2	gb_	16	
CE1	HE1 CM1	gb_	.3 16	
CE1 CE2	HE2	dp_	.10	
CE2	CM1	gb_	16	
CM1 OM1	OM1 ME1	gb_	13	
CA	CB	dp dp	13 13	
CB	CG2	gb_	27	
CG2	CP	gp_	.16	
CG2 CP	CDI HP	gb_ db	.16 3	
CP	CE3	gb_	16	
CD1	OM6	gb_	13	
CD1	ME6 CE4	gb_ db	.⊥3 16	
CE3	HE3	gb_	 .3	
CE3	CZ	gb_	16	
CE4	OM5 MF5	gb_ ah	,⊥3 13	
CE4	CZ	dp"	16	
CZ	OM4	gb_	13	
OM4	ME4	gb_	Ľζ	

[excl	lusions]		ME 1	OM1	CM1	ga_	_12	
; ai	aj			OM1	CM1	CE1	ga_	_25	
CM2	0			OM1	CM1	CE2	ga_	_25	
CM3	0			CA	CB	CG2	ga_	_27	
CO	OM2			CB	CG2	CP	ga_	_27	
СО	OM3			CB	CG2	CD1	σa	27	
CO	CE1			CP	CG2	CD1	da	27	
C0	CE2			CC2	CD		ga_	25	
CU	UEZ			CGZ	CP	nr cn2	ga_	_23	
CGI	HEL			CGZ	CP	CE3	ga_	_2 /	
CG1	HE2			HP	CP	CE3	ga_	_25	
CG1	CM1			CG2	CD1	OM6	ga_	_25	
CM2	OM3			CG2	CD1	CE4	qa_	_27	
CM2	CE2			OM6	CD1	CE4	a da	2.5	
CM2	OM1			CD1	OM6	ME 6	94 <u>-</u>	12	
OM2	CM2			CDI	0000	1112.0	gu_	 	
OMZ	CM3			CP	CE3	HE3	ga_	_25	
OM2	HEI			CP	CE3	CZ	ga_	_27	
OM2	CM1			HE3	CE3	CZ	ga_	_25	
CM3	CE1			CD1	CE4	OM5	ga	_25	
CM3	OM1			CD1	CE4	CZ	qa	27	
OM3	HE2			OM5	CE4	CZ	a da	2.5	
OM3	СМ1			CF4	OM5	ME 5	0 0	12	
CE1	UEO			CE 2	0113	CE 4	gu_		
CEI UE1	TEZ STO			CE3	C2	CE4	ga_	_2 /	
HEI	CEZ			CE3	CΖ	OM4	ga_	_25	
HE1	OM1			CE4	CZ	OM4	ga_	_25	
HE2	OM1			CZ	OM4	ME 4	ga_	_12	
CA	CD1			[imp	ropers]			
CA	CP			: ai	ai	ak	al	aromos	t.vpe
CB	CE3			,	0	CA	CG1	ai 3	-11
CP	CEA			co	CM3	CMD	CC1	9±_0	
CB	CE4			00	CMS		CGI	91_3	
CB	HP			CGI	CM2	CEI	CMI	g1_3	
CB	OM6			CG1	CM3	CE2	CM1	gi_3	
CG2	HE3			CM2	CG1	CM3	CE2	gi_3	
CG2	OM5			CM2	CG1	CE1	OM2	qi 3	
CG2	CZ.			CM2	CE1	CM1	CE2	ai 3	
CP	OME			CM3	CC1	CM2	CE1	g0 gi 3	
CI	OPIO OPI			CMD	CG1	CH2 CE2	OMD	91_0	
CP	CE4			CM3	CGI	CEZ	OM3	g1_3	
CP	OM4			CM3	CE2	CM1	CE1	gi_3	
HP	CD1			HE1	CM2	CM1	CE1	gi_3	
HP	HE3			HE2	CM3	CM1	CE2	gi_3	
HP	CZ.			CM1	CE1	CE2	OM1	ai 3	
CD1	CE3			CC2	CD	CD1	CB	g0 gi 3	
CD1	CLJ			CGZ	CI	CD1 CD2		91_0	
CDI	OM4			CG2	CP	CE3	CZ	g1_3	
OM6	OM5			CG2	CD1	CE4	CZ	gi_3	
OM6	CZ			CP	CG2	CD1	CE4	gi_3	
CE3	OM5			CP	CG2	CE3	HP	gi_3	
HE3	CE4			CP	CE3	CZ	CE4	ai 3	
HE3	OM4			CD1	CG2	CP	CE3	gi 3	
OM5	OMA			CD1	CC2	CE/	OMG	9±_0	
01415	014			CDI	CGZ	CE4	0140	91_3	
[ang]	les]			CDI	CE4	CZ	CE3	g1_3	
; ai	aj	ak	gromos type	HE3	CP	CZ	CE3	gi_3	
CO	CA	CB	ga_27	OM5	CD1	CZ	CE4	gi_3	
CG1	CO	CA	ga_27	CZ	CE3	CE4	OM4	gi_3	
0	CO	CA	ga 33	[dih	edrals	1			
0	CO	CG1	da 33	·ai	ai	ak	al	aromos	tvne
со С	CC1	CMO	ga_00	,	co	CC1	CMD	gromob	cype
0	CGI	CMZ	ga_zb	0	0	CGI	CMS	90_40	
CO	CGI	CM3	ga_25	0	CO	CGI	CM3	ga_49	
CM2	CG1	CM3	ga_27	CB	CA	CO	0	gd_52	
ME 3	OM3	CM3	ga_12	CB	CA	СО	0	gd_53	
OM3	СМЗ	CG1	ga 25	CD1	CG2	CB	CA	qd 50	
OM3	CM3	CE2	ga 25	CD1	CG2	CB	CA	rd 51	
00110	CWD	001	34 <u>2</u> 2	001	002	CD	CC.2	94_JI 74 14	• Double
CGI		CEI	ya_z/	CU	CA	СВ	CGZ	gu_14	, Doubte-
MEZ	OM2	CM2	ga_12		bond			_	
OM2	CM2	CE1	ga_25	CO	CA	CB	CG2	gd_14	;Double-
OM2	CM2	CG1	ga_25		bond				
CG1	CM3	CE2	ga_27	ME1	OM1	CM1	CE1	gd_44	
HD2	CM3	CE2	ga 25	MF.1	OM1	CM1	CE1	ad 45	
CM3	CF1	 нг1	ga_25	ME 2	OM2	CM3	CC1	ad 11	
CIVIC	001	CM1	ya_2J	ME O	OMO	CMO	CC1	9u_44 ~~ /~	
	CEI OR1		ya_z/	매보고			CGI	ya_45	
HEl	CEI	CMI	ga_25	ME3	OM3	CM3	CE2	gd_44	
CM3	CE2	HE2	ga_25	ME 3	OM3	CM3	CE2	gd_45	
CM3	CE2	CM1	ga_27	ME4	OM4	CZ	CE3	gd_44	
HE2	CE2	CM1	ga_25	ME4	OM4	CZ	CE3	gd_45	
CE1	CM1	CE2	 αa_27	ME 5	OM5	CE4	C7.	gd 44	
			_ · ·						

ME5	OM5	CE4	CZ	gd_45	CG1	HE2			
ME 6	OM6	CD1	CE4	gd_44	CG1	CM1			
MEO	OPIO	CDI	CE4	yu_45	CM2 CM2	OM1			
; Compo	ound 15				OM2	СМЗ			
[CHC2]					OM2	HE1			
[atoms	3]	0	22000	0	OM2	CM1			
0	0	-0	32000	0	CM3 CM3	OM1			
CG1	C	-0.0	08000	0	CE1	HE2			
CM2	С	0.2	25000	1	HE1	CE2			
OM2	OA	-0.	55000	1	HE1	OM1			
MEZ CM3	н С	0.4	40000 23200	1	HEZ CA	CD1			
CE1	C	-0.3	38000	1	CA	CP			
HE1	HC	0.2	20000	1	CB	CE3			
CE2	C	-0.2	24000	1	CB	CE4			
CM1	С	0.	41000	1	CB	HD1			
OM1	OE	-0.3	35000	1	CG2	HE3			
ME1	CH3	0.1	18000	1	CG2	HE4			
CA	CR1	0.0	00000	3	CG2	CZ			
CG2	CRI	-0.0	05000	4	CP	CE4			
CP	C	0.1	25000	4	CP	HZ			
OP	OA	-0.	55000	4	OP	CD1			
HP CD1	H	-0	40000	4	OP	HE3			
HD1	НС	0.	12000	4	CD1	CE3			
CE3	C	-0.2	20000	4	CD1	HZ			
HE3	HC	0.1	15000	4	HD1	HE4			
CE4	C	-0.1	12000	4	HD1	CZ			
CZ	С	-0.	12000	4	HE3	CE4			
HZ	HC	0.	12000	4	HE3	ΗZ			
[bond	ls]				HE4	HZ			
[bond CA CO	ls] CO	gb_2	27		HE4 [angi	HZ les]	- le	gromos tupo	
[bond CA CO CG1	ls] CO O CO	dp_; dp_;	27 5 27		HE4 [ang] ; ai CO	HZ les] aj CA	ak CB	gromos type ga 27	
[bond CA CO CG1 CG1	ls] CO O CO CM2	dp_; dp_; dp_;	27 5 27 16		HE4 [ang] ; ai CO O	HZ les] aj CA CO	ak CB CA	gromos type ga_27 ga_33	
[bond CA CO CG1 CG1 CG1	ls] CO CO CM2 CM3	gb_ gb_ gb_	27 5 27 16 16		HE4 [ang] ; ai CO 0 0	HZ les] CA CO CO	ak CB CA CG1	gromos type ga_27 ga_33 ga_33	
[bond CA CO CG1 CG1 CG1 CG1 CM2 OM2	ls] CO O CO CM2 CM3 OM2 ME2	dp" dp" dp" dp" dp"	27 5 27 16 16 13		HE4 [ang: ; ai CO 0 CG1 CO	HZ les] CA CO CO CO	ak CB CA CG1 CA	gromos type ga_27 ga_33 ga_33 ga_27 ga_25	
[bond CA CO CG1 CG1 CG1 CM2 OM2 CM2	is] CO CO CM2 CM3 OM2 ME2 CE1	dp" dp" dp" dp" dp" dp"	27 5 27 16 13 1 1		HE4 [ang] ; ai C0 0 CG1 C0 C0	HZ aj CA CO CO CO CO CG1 CG1	ak CB CG1 CA CM2 CM3	gromos type ga_27 ga_33 ga_33 ga_27 ga_25 ga_25	
[bond CA CO CG1 CG1 CG1 CG1 CM2 OM2 CM2 CM2 CM3	is] CO CO CM2 CM3 OM2 ME2 CE1 CE2	dp" dp" dp" dp" dp" dp" dp"	27 5 27 16 13 1 16 16		HE4 [ang: ; ai CO O CG1 CO CO CM2	HZ aj CA CO CO CO CG1 CG1 CG1	ak CB CA CG1 CA CM2 CM3 CM3	gromos type ga_27 ga_33 ga_33 ga_27 ga_25 ga_25 ga_27	
[bond CA CO CG1 CG1 CG1 CM2 OM2 CM2 CM2 CM3 CE1	is] CO CM2 CM3 OM2 CE1 CE2 HE1 CM1	gb_ gb_ gb_ gb_ gb_ gb_ gb_ gb_	27 5 27 16 13 1 16 16 3		HE4 [ang: ; ai CO 0 CG1 CO CO CM2 CG1	HZ aj CA CO CO CO CG1 CG1 CG1 CM2	ak CB CA CG1 CA CM2 CM3 CM3 CE1	gromos type ga_27 ga_33 ga_27 ga_25 ga_25 ga_25 ga_27 ga_27 ga_27	
[bond CA CG1 CG1 CG1 CG2 CM2 CM2 CM2 CM3 CE1 CE1 CE2	is] CO O CM2 CM3 OM2 ME2 CE1 CE2 HE1 CM1 HE2	ap ap ap ap ap ap ap ap ap ap	27 5 27 16 13 1 16 16 3 16 3		HE4 [ang: ; ai CO 0 CG1 CO CM2 CG1 ME2 OM2	HZ aj CA CO CO CO CG1 CG1 CG1 CG1 CM2 OM2 CM2	ak CB CA CG1 CA CM2 CM3 CM3 CE1 CM2 CE1	gromos type ga_27 ga_33 ga_27 ga_25 ga_25 ga_25 ga_27 ga_27 ga_12 ga_12 ga_12	
[bond CA CO CG1 CG1 CG1 CG1 CM2 CM2 CM2 CM3 CE1 CE1 CE2 CE2 CE2	is] CO O CM2 CM3 OM2 ME2 CE1 CE2 HE1 CM1 HE2 CM1	ap" dp" dp" dp" dp" dp" dp" dp" dp" dp"	27 5 27 16 13 1 16 16 3 16 3 16		HE4 [ang: ; ai CO O CG1 CO CM2 CG1 ME2 OM2 OM2	HZ aj CA CO CO CO CG1 CG1 CG1 CG1 CM2 OM2 CM2 CM2	ak CB CA CG1 CA CM2 CM3 CM3 CE1 CM2 CE1 CG1	gromos type ga_27 ga_33 ga_27 ga_25 ga_25 ga_25 ga_27 ga_27 ga_27 ga_12 ga_12 ga_25 ga_25	
[bond CA CO CG1 CG1 CG1 CG1 CM2 CM2 CM2 CM3 CE1 CE1 CE2 CE2 CE2 CM1	is] CO O CM2 CM3 OM2 CE1 CE2 HE1 CM1 HE2 CM1 OM1 OM1	dp" dp" dp" dp" dp" dp" dp" dp" dp" dp"	27 5 27 16 13 1 16 16 3 16 3 16 3		HE4 [ang: ; ai CO 0 CG1 CO CO CM2 CG1 ME2 OM2 OM2 CG1	HZ aj CA CO CO CG1 CG1 CG1 CM2 CM2 CM2 CM2 CM2 CM2	ak CB CA CG1 CM2 CM3 CC1 CM2 CE1 CM2 CE1 CG1 CE2	gromos type ga_27 ga_33 ga_27 ga_25 ga_25 ga_27 ga_27 ga_27 ga_27 ga_22 ga_22 ga_25 ga_25 ga_25	
[bond CA CO CG1 CG1 CG1 CG1 CM2 CM2 CM2 CM3 CE1 CE1 CE2 CE2 CE2 CE2 CM1 OM1 CA	 is] CO O CO CM2 CM3 OM2 CE1 CE2 HE1 CM1 HE2 CM1 OM1 CE 	dp" dp" dp" dp" dp" dp" dp" dp" dp" dp"	27 5 27 16 13 1 16 3 16 3 16 3 16 3 16 3 13 13		HE4 [ang: ; ai CO O CG1 CO CO CM2 CG1 ME2 OM2 OM2 OM2 CG1 HD2 CG1 HD2	HZ aj CA CO CO CG1 CG1 CG1 CG1 CM2 CM2 CM2 CM2 CM3 CM3 CF1	ak CB CA CG1 CA CM2 CM3 CC1 CM2 CE1 CG1 CG2 CE2 CE2 CE2	gromos type ga_27 ga_33 ga_27 ga_25 ga_25 ga_27 ga_27 ga_27 ga_27 ga_225 ga_25 ga_25 ga_25 ga_25 ga_25 ga_25 ga_25 ga_25 ga_25	
[bond CA CO CG1 CG1 CG1 CM2 CM2 CM2 CM2 CM3 CE1 CE1 CE2 CE2 CE2 CM1 OM1 CA CB	 is] CO O CO CM2 CM3 OM2 CE1 CE1 CE2 HE1 CM1 ME1 CB CG2 	dp" dp" dp" dp" dp" dp" dp" dp" dp" dp"	27 5 27 16 13 1 16 3 16 3 16 3 16 13 13 13 13 27		HE4 [ang: ; ai CO O CG1 CO CO CM2 CG1 ME2 OM2 OM2 CG1 HD2 CM2 CM2 CM2	HZ aj CA CO CO CO CG1 CG1 CG1 CM2 CM2 CM2 CM2 CM2 CM3 CM3 CE1 CE1	ak CB CA CM2 CM3 CM3 CE1 CM2 CE1 CG1 CE2 CE2 HE1 CM1	gromos type ga_27 ga_33 ga_27 ga_25 ga_25 ga_27 ga_27 ga_27 ga_27 ga_225 ga_25 ga_25 ga_25 ga_25 ga_25 ga_25 ga_25 ga_25 ga_25 ga_27	
[bond CA CO CG1 CG1 CG1 CM2 CM2 CM2 CM2 CM3 CE1 CE1 CE2 CE2 CE2 CE2 CM1 OM1 CA CB CG2	is] CO O CM2 CM3 OM2 CE1 CE1 CE2 HE1 CM1 HE2 CM1 ME1 CB CG2 CP	dp" dp" dp" dp" dp" dp" dp" dp" dp" dp"	27 5 27 16 13 1 13 16 3 16 3 16 13 13 13 13 27 16		HE4 [ang: ; ai CO O CG1 CO CO CM2 CG1 ME2 OM2 CG1 HD2 CM2 CM2 CM2 CM2 HE1	HZ aj CA CO CO CG1 CG1 CG1 CG1 CM2 CM2 CM2 CM2 CM2 CM2 CM3 CM3 CE1 CE1 CE1	ak CB CA CM2 CM3 CM3 CE1 CM2 CE1 CG1 CE2 CE2 CE2 HE1 CM1 CM1	gromos type ga_27 ga_33 ga_27 ga_25 ga_25 ga_27 ga_27 ga_27 ga_225 ga_25 ga_25 ga_25 ga_25 ga_25 ga_25 ga_25 ga_25 ga_27 ga_25 ga_27 ga_25	
[bond CA CO CG1 CG1 CG1 CM2 OM2 CM2 CM3 CE1 CE1 CE2 CE2 CE2 CE2 CM1 OM1 CA CB CG2 CG2 CG2	 is] CO O CO CM2 CM3 OM2 CE1 CE1 CE1 CE1 CM1 HE2 CM1 ME1 CB CG2 CP CD1 	<pre>gp_ gp_ gp_ gp_ gp_ gp_ gp_ gp_ gp_ gp_</pre>	27 5 27 16 13 1 16 13 16 13 13 13 13 13 13 27 16 16		HE4 [ang: ; ai CO O CG1 CO CM2 CG1 ME2 OM2 CG1 HD2 CM2 CM2 HD2 CM2 HE1 CM3	HZ aj CA CO CO CG1 CG1 CG1 CG1 CG1 CM2 CM2 CM2 CM2 CM3 CM3 CC1 CE1 CE1 CE1 CE1	ak CB CA CG1 CA CM2 CM3 CE1 CM2 CE1 CM2 CE2 LE2 CE2 HE1 CM1 CM1 HE22 CM1	gromos type ga_27 ga_33 ga_27 ga_25 ga_25 ga_27 ga_27 ga_27 ga_12 ga_225 ga_25 ga_25 ga_25 ga_25 ga_25 ga_25 ga_25 ga_25 ga_25 ga_25 ga_25	
[bond CA CO CG1 CG1 CG1 CM2 OM2 CM2 CM2 CM2 CM2 CM2 CM2 CM2 CM2 CM2 C	 is] CO O CO CO CO CO CM2 CM3 OM2 CE1 CE1 CE2 HE1 CM1 HE2 CM1 OM1 ME1 CB CG2 CP CD1 OP HP 	<pre>dp_ dp_ dp_ dp_ dp_ dp_ dp_ dp_ dp_ dp_</pre>	27 5 27 16 13 1 16 13 16 13 16 13 13 13 13 27 16 13 13		HE4 [ang: ; ai CO O CG1 CO CM2 CG1 ME2 OM2 CG1 HD2 CM2 CM2 HE1 CM3 HE2	HZ aj CA CO CO CG1 CG1 CG1 CG1 CG1 CM2 CM2 CM2 CM2 CM2 CM3 CM3 CE1 CE1 CE1 CE1 CE2 CE2	ak CB CA CG1 CA CM2 CM3 CE1 CM3 CE1 CM2 CE1 CG1 CE2 CE2 HE1 CM1 HE2 CM1 CM1	gromos type ga_27 ga_33 ga_33 ga_27 ga_25 ga_25 ga_27 ga_27 ga_12 ga_25 ga_25 ga_25 ga_25 ga_25 ga_25 ga_25 ga_25 ga_25 ga_25 ga_25 ga_27 ga_25 ga_25 ga_27 ga_25 ga_27	
[bond CA CO CG1 CG1 CG1 CG2 CM2 CM2 CM3 CE1 CE2 CE2 CE2 CM1 OM1 CA CB CG2 CG2 CG2 CG2 CG2 CP OP CP	 is] CO O CO CO CO CO CM3 OM2 CE1 CE2 HE1 CM1 HE2 CM1 ME1 CB CG2 CP CD1 OP HP CE3 	<pre>dp_ dp_ dp_ dp_ dp_ dp_ dp_ dp_ dp_ dp_</pre>	27 5 27 16 13 1 16 13 16 3 16 13 13 13 27 16 13 1 1 1 1 1 1 1 1 1 1		HE4 [ang: ; ai CO O CG1 CO CM2 CG1 ME2 OM2 CG1 HD2 CM2 CM2 CM2 CM2 HE1 CM3 CM3 HE2 CE1	HZ aj CA CO CO CG1 CG1 CG1 CG1 CG1 CM2 CM2 CM2 CM2 CM3 CM3 CE1 CE1 CE1 CE1 CE2 CE2 CE2 CM1	ak CB CA CG1 CA CM2 CM3 CC1 CM3 CC1 CM2 CC1 CC2 CC2 HE1 CM1 CM1 HE2 CM1 CM1 CC1 CC2	gromos type ga_27 ga_33 ga_33 ga_27 ga_25 ga_25 ga_27 ga_27 ga_27 ga_25 ga_25 ga_27 ga_25 ga_25 ga_27 ga_25 ga_25 ga_27 ga_25 ga_25 ga_27 ga_25 ga_27 ga_25 ga_27 ga_25 ga_27	
[bond CA CO CG1 CG1 CG1 CG2 CM2 CM2 CM2 CM3 CE1 CE1 CE2 CE2 CE2 CM1 OM1 CA CB CG2 CG2 CG2 CG2 CP OP CP CD1	 is] CO O CO CM2 CM3 OM2 CE1 CE2 HE1 CM1 HE2 CM1 ME1 CB CG2 CP CD1 OP HP CE3 HD1 	dp" dp" dp" dp" dp" dp" dp" dp" dp" dp"	27 5 27 16 16 13 1 16 3 16 3 16 13 13 13 13 13 13 13 13 13 13 14 16 13 11 16 3		HE4 [ang: ; ai CO O CG1 CO CM2 CG1 ME2 OM2 OM2 CG1 HD2 CM2 CM2 CM2 CM2 CM2 CM2 CM2 CM3 HE1 CM3	HZ aj CA CO CO CG1 CG1 CG1 CG1 CG1 CG1 CM2 CM2 CM2 CM3 CM3 CE1 CE1 CE1 CE1 CE1 CE1 CE1 CE2 CE2 CE2 CE2 CM1 OM1	ak CB CA CG1 CA CM2 CM3 CM3 CE1 CM1 CE2 CE2 HE1 CM1 CM1 HE2 CM1 CM1 CE2 CM1 CE2 CM1	gromos type ga_27 ga_33 ga_33 ga_27 ga_25 ga_25 ga_27 ga_27 ga_12 ga_25 ga_25 ga_25 ga_25 ga_25 ga_25 ga_25 ga_25 ga_25 ga_25 ga_25 ga_25 ga_25 ga_25 ga_27 ga_25 ga_27 ga_25 ga_27 ga_25 ga_27 ga_25 ga_27 ga_25 ga_27	
[bond CA CO CG1 CG1 CG1 CG2 CM2 CM2 CM3 CE1 CE2 CE2 CE2 CE2 CM1 OM1 CA CB CG2 CG2 CG2 CG2 CG2 CP OP CP CD1 CD1	 is] CO O CO CM2 CM3 OM2 CE1 CE2 HE1 CM1 HE2 CM1 OM1 ME1 CB CG2 CP CD1 OP HP CE3 HD1 CE4 	<pre>gp_ gp_ gp_ gp_ gp_ gp_ gp_ gp_ gp_ gp_</pre>	27 5 27 16 16 13 1 16 3 16 3 13 13 13 13 13 13 13 13 14 16 13 11 16 13 1 16 13 11 27		HE4 [ang ; ai CO O CG1 CO CM2 CG1 ME2 OM2 OM2 CG1 HD2 CM2 CM2 CM2 CM2 CM2 CM2 CM2 CM2 CM2 CM	HZ les] aj CA CO CO CG1 CG1 CG1 CG1 CM2 CM2 CM2 CM2 CM2 CM3 CM3 CC1 CE1 CE1 CE1 CE1 CE2 CE2 CE2 CE2 CE2 CM1 OM1 CM1	ak CB CA CG1 CA CM2 CM3 CM3 CE1 CM2 CE1 CG1 CE2 CE2 HE1 CM1 CM1 CM1 CE2 CM1 CE2 CM1 CE2 CM1 CE2 CM1 CE2 CM1 CE2 CM2 CM2 CM2 CM3 CM3 CM3 CM3 CM3 CM3 CM3 CM3 CM3 CM3	gromos type ga_27 ga_33 ga_33 ga_27 ga_25 ga_25 ga_27 ga_27 ga_225 ga_27 ga_25 ga_25 ga_25 ga_27 ga_25 ga_25 ga_27 ga_25 ga_25 ga_27 ga_25 ga_27 ga_25 ga_27 ga_25 ga_27 ga_25 ga_27 ga_25 ga_27 ga_25 ga_27	
[bond CA CO CG1 CG1 CG1 CG2 CM2 CM2 CM3 CE1 CE2 CE2 CE2 CE2 CE2 CE2 CE2 CE2 CE2 CE2	 is] CO O CO CM2 CM3 OM2 CE1 CE2 HE1 CM1 HE2 CM1 OM1 CB CG2 CP CD1 OP HP CE3 HD1 CE4 HE3 CZ 	<pre>dp</pre>	27 5 27 16 13 1 16 3 16 3 16 3 13 13 13 13 27 16 13 13 13 13 13 13 13 13 13 13 13 13 13		HE4 [ang: ; ai CO O CG1 CO CO CM2 CG1 ME2 OM2 OM2 OM2 CG1 HD2 CM2 CM2 CM2 HE1 CM3 CM3 HE2 CE1 ME1 OM1 OM1 OM1 CA	HZ aj CA CO CO CG1 CG1 CG1 CG1 CM2 CM2 CM2 CM2 CM2 CM2 CM2 CM2	ak CB CA CM2 CM3 CM3 CE1 CM2 CE1 CM2 CE1 CM2 CE2 HE1 CM1 CM1 HE2 CM1 CM1 CM1 CM1 CM1 CE2 CM1 CM2 CM2 CM3 CM3 CM3 CM3 CM3 CM3 CM3 CM3 CM3 CM3	gromos type ga_27 ga_33 ga_27 ga_25 ga_25 ga_27 ga_27 ga_27 ga_27 ga_225 ga_25 ga_25 ga_25 ga_25 ga_25 ga_25 ga_27 ga_25 ga_25 ga_27 ga_25 ga_27 ga_25 ga_27 ga_25 ga_27 ga_25 ga_27 ga_25 ga_27 ga_25 ga_27 ga_25 ga_27 ga_25 ga_27 ga_25 ga_27 ga_25 ga_27 ga_25	
[bond CA CO CG1 CG1 CG1 CM2 CM2 CM2 CM2 CM3 CE1 CE2 CE2 CE2 CE2 CM1 OM1 CA CB CG2 CG2 CG2 CG2 CP OP CP CD1 CD1 CE3 CE3 CE4	 is] CO O CO CM2 CM3 OM2 CE1 CE1 CE2 HE1 CM1 HE2 CM1 OM1 CB CG2 CP CD1 OP HP CE3 HD1 CE4 HE3 CZ HE4 	<pre>dp_ dp_ dp_ dp_ dp_ dp_ dp_ dp_ dp_ dp_</pre>	27 5 27 16 13 1 16 13 16 3 16 13 13 13 13 13 13 13 13 13 13 13 13 13		HE4 [ang: ; ai CO O CG1 CO CO CM2 CG1 ME2 OM2 CG1 HD2 CM2 CM2 CM2 HE1 CM3 CM3 HE2 CM3 HE2 CM3 HE2 CM3 HE2 CM3 HE2 CM3 HE2 CM3 HE2 CM3 CM3 HE2 CM3 CM3 HE2 CM3 CM3 CM3 CM3 CM3 CM3 CM3 CM3 CM3 CM3	HZ aj CA CO CO CG1 CG1 CG1 CG1 CM2 CM2 CM2 CM2 CM2 CM2 CM3 CE1 CE1 CE1 CE1 CE1 CE2 CE2 CE2 CE2 CE2 CM1 OM1 CM1 CM1 CM1 CM2 CM2 CM2 CM2 CM2 CM2 CM2 CM2 CM2 CM2	ak CB CA CM2 CM3 CM3 CE1 CM2 CE1 CG2 CE2 HE1 CM1 CM1 HE2 CM1 CM1 CE2 CM1 CM1 CE2 CM1 CE1 CC2 CM2 CM2 CM2 CM3 CM3 CM3 CM3 CM3 CM3 CM3 CM3 CM3 CM3	gromos type ga_27 ga_33 ga_33 ga_27 ga_25 ga_25 ga_27 ga_27 ga_225 ga_225 ga_225 ga_225 ga_225 ga_225 ga_225 ga_25 ga_225 ga_225 ga_225 ga_27 ga_25 ga_225 ga_27 ga_25 ga_25 ga_27 ga_25 ga_27 ga_25 ga_25 ga_27 ga_25 ga_25 ga_27 ga_25 ga_27 ga_25 ga_25 ga_27 ga_25 ga_25 ga_27 ga_225 ga_27 ga_27 ga_25 ga_27 ga_27 ga_225 ga_27	
[bond CA CO CG1 CG1 CG1 CM2 OM2 CM2 CM3 CE1 CE2 CE2 CE2 CE2 CE2 CM1 OM1 CA CB CG2 CG2 CG2 CG2 CG2 CP OP CP CD1 CD1 CE3 CE3 CE4 CE4 CE4	 is] CO CO CO CO CO CO CM2 CM3 OM2 CE1 CE2 HE1 CM1 HE2 CM1 ME1 CB CG2 CP CD1 OP HP CE3 HD1 CE4 HE3 CZ HE4 CZ HE4 CZ 	<pre>dp_ dp_ dp_ dp_ dp_ dp_ dp_ dp_ dp_ dp_</pre>	27 5 27 16 13 1 16 13 16 13 16 13 13 13 13 13 13 13 13 13 14 16 3 16 3		HE4 [ang: ; ai CO O CG1 CO CO CM2 CG1 ME2 OM2 CG1 HD2 CM2 CM2 HD2 CM2 HE1 CM3 CM3 HE2 CE1 ME1 OM1 OM1 CA CB CB	HZ aj CA CO CO CG1 CG1 CG1 CG1 CM2 CM2 CM2 CM2 CM2 CM2 CM3 CM3 CE1 CE1 CE1 CE1 CE2 CE2 CE2 CE2 CE2 CE2 CE2 CE2 CE2 CE2	ak CB CA CM2 CM3 CM3 CE1 CM2 CE1 CG2 CE2 HE1 CM1 CM1 HE2 CM1 CM1 HE2 CM1 CM1 CM1 CM1 CM1 CM1 CM2 CM2 CM2 CM3 CM3 CM3 CM3 CM3 CM3 CM3 CM3 CM3 CM3	gromos type ga_27 ga_33 ga_33 ga_27 ga_25 ga_25 ga_27 ga_27 ga_225 ga_25 ga_25 ga_25 ga_25 ga_25 ga_25 ga_25 ga_27 ga_25 ga_25 ga_27 ga_27	
[bond CA CO CG1 CG1 CG1 CM2 OM2 CM2 CM3 CE1 CE2 CE2 CE2 CE2 CM1 OM1 CA CB CG2 CG2 CG2 CG2 CG2 CG2 CG2 CG2 CG2 CG2	<pre>is] CO CO CO CM2 CM3 OM2 CE1 CE1 CE2 HE1 CM1 HE2 CM1 ME1 CB CG2 CP CD1 OP HP CE3 HD1 CE4 HE3 CZ HE4 USiOPS</pre>	<pre>gp_ gp_ gp_ gp_ gp_ gp_ gp_ gp_ gp_ gp_</pre>	27 5 27 16 13 1 16 13 16 13 13 13 13 13 13 13 13 14 13 11 16 3 16 3		HE4 [ang: ; ai CO O CG1 CO CM2 CG1 ME2 OM2 CG1 HD2 CM2 CM2 CM2 HE1 CM3 CM3 HE2 CE1 ME1 OM1 OM1 CA CB CB CP CC2	HZ aj CA CO CO CG1 CG1 CG1 CG1 CM2 CM2 CM2 CM2 CM2 CM3 CC1 CE1 CE1 CE1 CE1 CE1 CE2 CE2 CE2 CE2 CE2 CE2 CE2 CE2 CE2 CE2	ak CB CA CG1 CA CM2 CM3 CE1 CM2 CE1 CE2 CE2 HE1 CM1 CM1 HE2 CM1 CM1 HE2 CM1 CM1 CE1 CE2 CM1 CE1 CE2 CM1 CE1 CE2 CM2 CM2 CM3 CM3 CM3 CM3 CM3 CM3 CM3 CM3 CM3 CM3	gromos type ga_27 ga_33 ga_33 ga_27 ga_25 ga_25 ga_27 ga_27 ga_225 ga_25 ga_25 ga_25 ga_25 ga_25 ga_25 ga_25 ga_25 ga_25 ga_27 ga_25 ga_27 ga_25 ga_27 ga_25 ga_27 ga_25 ga_27 ga_25 ga_27 ga_25 ga_27	
[bond CA CO CG1 CG1 CG1 CM2 OM2 CM2 CM3 CE1 CE2 CE2 CE2 CE2 CE2 CM1 OM1 CA CB CG2 CG2 CG2 CG2 CG2 CG2 CG2 CG2 CG2 CG2	<pre>is] CO CO CO CM2 CM3 OM2 CE1 CE2 HE1 CM1 HE2 CM1 ME1 CB CG2 CP CD1 OM1 ME1 CB CG2 CP CD1 OM1 CB CG2 CP CD1 CE4 CZ CE</pre>	<pre>dp_ dp_ dp_ dp_ dp_ dp_ dp_ dp_ dp_ dp_</pre>	27 5 27 16 13 1 16 13 16 3 16 13 13 13 13 16 13 11 16 3 16 3 16 3 16 3 16 3 16 3 16 3		HE4 [ang: ; ai CO O CG1 CO CM2 CG1 ME2 OM2 OM2 CG1 HD2 CM2 CM2 CM2 HE1 CM3 HE2 CE1 ME1 OM1 OM1 CA CB CB CP CG2 CG2	HZ aj CA CO CO CG1 CG1 CG1 CG2 CM2 CM2 CM2 CM2 CM2 CM2 CM3 CE1 CE1 CE1 CE2 CE2 CE2 CM1 CM1 CM1 CM1 CM1 CM1 CM1 CM1	ak CB CA CG1 CA CM2 CM3 CE1 CM2 CE1 CG2 CE2 HE1 CM1 CM1 HE2 CM1 CM1 CM1 CE2 CM1 CE2 CM1 CE2 CG2 CP CD1 CD1 CD1 CP CE3	gromos type ga_27 ga_33 ga_33 ga_27 ga_25 ga_25 ga_27 ga_27 ga_25 ga_25 ga_27 ga_25 ga_25 ga_27 ga_25 ga_25 ga_27 ga_25 ga_27 ga_25 ga_27 ga_25 ga_27 ga_25 ga_27 ga_25 ga_27 ga_25 ga_27 ga_25 ga_27 ga_25 ga_27 ga_25 ga_27	
[bond CA CO CG1 CG1 CG1 CM2 OM2 CM2 CM3 CE1 CE2 CE2 CE2 CE2 CM1 OM1 CA CB CG2 CG2 CG2 CG2 CG2 CP OP CP CD1 CD1 CE3 CE3 CE4 CE4 CZ [excl ; ai CM2	<pre>is] CO CO CO CM2 CM3 OM2 CE1 CE2 HE1 CE1 CE2 HE1 CM1 HE2 CM1 OM1 ME1 CB CG2 CP CD1 OP HP CE3 HD1 CE4 HE3 CZ HE4 CZ HE4 CZ HZ iusions aj O</pre>	<pre>dp_ dp_ dp_ dp_ dp_ dp_ dp_ dp_ dp_ dp_</pre>	27 5 27 16 13 1 16 13 16 3 16 13 13 13 13 16 13 11 16 3 16 3 16 3 16 3 16 3 16 3		HE4 [ang: ; ai CO O CG1 CO CM2 CG1 ME2 OM2 OM2 CG1 HD2 CM2 CM2 CM2 CM2 HE1 CM3 HE2 CE1 ME1 OM1 OM1 CA CB CB CP CG2 CG2 CG2 CG2 CG2 OP	HZ aj CA CO CO CG1 CG1 CG1 CG1 CG2 CM2 CM2 CM2 CM2 CM2 CM2 CM2 CM	ak CB CA CG1 CA CM2 CM3 CE1 CM2 CE1 CG2 CE2 HE1 CM1 CM1 HE2 CM1 CM1 CM1 CM1 CM1 CE2 CM1 CE2 CM1 CE2 CM1 CE2 CM2 CM2 CM3 CM3 CM3 CM3 CM3 CM3 CM3 CM3 CM3 CM3	gromos type ga_27 ga_33 ga_33 ga_27 ga_25 ga_25 ga_27 ga_27 ga_25 ga_25 ga_25 ga_25 ga_25 ga_25 ga_25 ga_27 ga_27 ga_25 ga_27	
[bond CA CO CG1 CG1 CG1 CM2 OM2 CM2 CM3 CE1 CE2 CE2 CE2 CE2 CM1 OM1 CA CB CG2 CG2 CG2 CG2 CG2 CP OP CP CD1 CD1 CE3 CE3 CE4 CE4 CZ [excl ; ai CM2 CM3	<pre>is] CO CO CO CM2 CM3 OM2 CE1 CE2 HE1 CE1 CE2 HE1 CM1 HE2 CM1 OM1 ME1 CB CG2 CP CD1 OP HP CE3 HD1 CE4 HE3 CZ HE2 Lusions aj O</pre>	<pre>dp_ dp_ dp_ dp_ dp_ dp_ dp_ dp_ dp_ dp_</pre>	27 5 27 16 16 13 1 16 3 16 3 16 13 13 13 16 13 1 16 3 16 3 16 3 16 3 16 3 16 3 16 3		HE4 [ang: ; ai CO O CG1 CO CM2 CG1 ME2 OM2 OM2 CG1 HD2 CM2 CM2 CM2 CM2 CM2 CM2 CM2 CM2 CM2 CM	HZ aj cA CO CO CG1 CG1 CG1 CG1 CG2 CM2 CM2 CM2 CM2 CM3 CM3 CE1 CE1 CE1 CE2 CE2 CE2 CE2 CM1 OM1 CM1 CM1 CM1 CM1 CM1 CM1 CM1 C	ak CA CA CA CM2 CM3 CM3 CE1 CM2 CE1 CG1 CE2 CE2 HE1 CM1 CM1 HE2 CM1 CM1 CM1 CM1 CE2 CM1 CE2 CM1 CE2 CM1 CE1 CE2 CM3 CM3 CE1 CM3 CE1 CA CM3 CM3 CE1 CM3 CM3 CE1 CM3 CM3 CE1 CM3 CM3 CE1 CM3 CM3 CE1 CM3 CM3 CE1 CM3 CM3 CE1 CM3 CM3 CE1 CM3 CE1 CM3 CM3 CE1 CM3 CM3 CE1 CM3 CM3 CE1 CM3 CM3 CE1 CM3 CE1 CM3 CE1 CM3 CE1 CM3 CE1 CM3 CE1 CM3 CE1 CM3 CE1 CM3 CE1 CM3 CE1 CM3 CE1 CM3 CE1 CM3 CE1 CM3 CE1 CM3 CE1 CM3 CE1 CM3 CE1 CM3 CE1 CM1 CE2 CE2 CE2 HE1 CM1 CM1 CM1 CM1 CM1 CM1 CM1 CM1 CM1 CM	gromos type ga_27 ga_33 ga_33 ga_27 ga_25 ga_25 ga_27 ga_25 ga_27 ga_25 ga_25 ga_25 ga_27 ga_27 ga_25 ga_27	
[bond CA CO CG1 CG1 CG1 CG1 CG2 CM2 CM3 CE1 CE2 CE2 CE2 CE2 CE2 CE2 CE2 CE2 CE2 CE2	<pre>is] CO CO CO CM2 CM3 OM2 CE1 CE2 HE1 CM1 HE2 CM1 OM1 CB CG2 CP CD1 OP HP CE3 HD1 CE4 HE3 CZ HE4 CZ HZ lusions aj O OM2 CE1</pre>	<pre>gp_ dp_ dp_ dp_ dp_ dp_ dp_ dp_ dp_ dp_ d</pre>	27 5 27 16 16 13 1 16 3 16 3 16 3 13 13 13 13 13 16 3 16 3 16 3 16 3 16 3 16 3 16 3 16 3		HE4 [ang: ; ai CO O CG1 CO CM2 CG1 ME2 OM2 OM2 CG1 HD2 CM2 CM2 CM2 CM2 CM2 CM2 CM2 CM2 CM2 CM	HZ aj CA CO CO CG1 CG1 CG1 CG1 CG1 CG1 CG2 CM2 CM2 CM2 CM3 CM3 CE1 CE1 CE1 CE2 CE2 CE2 CM1 OM1 CM1 CM1 CM1 CM1 CM1 CM1 CM1 C	ak CB CA CG1 CA CM2 CM3 CM3 CE1 CM1 CC2 CE2 HE1 CM1 CM1 CM1 CM1 CM1 CE2 CM1 CC1 CC2 CM1 CE2 CM1 CC1 CC2 CM3 CM3 CE1 CM3 CC1 CM3 CC1 CM3 CM3 CC1 CM3 CM3 CC1 CM3 CM3 CC1 CM3 CM3 CC1 CM3 CC1 CM3 CM3 CC1 CM3 CC1 CM3 CC1 CM3 CC1 CM3 CC1 CM3 CC1 CM3 CC1 CM3 CC1 CM3 CC1 CM3 CC1 CM3 CC1 CM3 CC1 CM3 CC1 CM3 CC1 CM3 CC1 CM3 CC1 CC2 CC2 CC2 CC2 HE1 CM1 CC2 CC2 CC2 HE1 CM1 CM1 CC2 CC2 CC2 HE1 CM1 CM1 CC2 CC2 HE1 CM1 CM1 CC1 CM1 CC2 CC2 CC2 HE1 CM1 CM1 CC1 CC1 CC1 CC2 CC2 HE1 CM1 CM1 CC1 CC1 CC1 CC2 CC2 HE1 CM1 CM1 CC2 CC1 CM1 CM1 CC1 CC2 CC1 CM1 CM1 CC1 CC1 CC1 CC2 CC2 HE1 CM1 CC2 CC1 CC2 CC1 CC2 CC2 HE1 CM1 CC2 CC1 CC2 CC2 CC1 CC2 CC2 CC1 CC2 CC2	gromos type ga_27 ga_33 ga_33 ga_27 ga_25 ga_25 ga_27 ga_25 ga_27 ga_25 ga_25 ga_27 ga_27 ga_25 ga_27 ga_27 ga_27 ga_25 ga_27 ga_27 ga_27 ga_25 ga_25 ga_27 ga_25 ga_27 ga_25 ga_27 ga_25 ga_27 ga_27 ga_27 ga_27 ga_27 ga_27 ga_27 ga_27 ga_27 ga_27 ga_27 ga_27 ga_27 ga_27 ga_27 ga_27 ga_27 ga_27 ga_27	
[bond CA CO CG1 CG1 CG1 CG1 CG2 CM2 CM3 CE1 CE2 CE2 CE2 CE2 CM1 OM1 CA CB CG2 CG2 CG2 CG2 CP OP CP CD1 CD1 CD1 CE3 CE3 CE4 CE4 CZ (excl ; ai CM3 CO CO CO CO CO CO CO CO CO CO CO CO CO	<pre>is] CO CO CO CM2 CM3 OM2 CE1 CE2 HE1 CM1 HE2 CM1 OM1 ME1 CB CG2 CP CD1 OP HP CE3 HD1 CE4 HE3 CZ HE4 CZ HZ lusions aj O OM2 CE1 CE2</pre>	<pre>dp_ dp_ dp_ dp_ dp_ dp_ dp_ dp_ dp_ dp_</pre>	27 5 27 16 16 13 1 16 3 16 3 16 3 16 13 11 16 3 16 3 16 3 16 3 16 3 16 3 16 3		HE4 [ang ; ai CO O CG1 CO CM2 CG1 ME2 OM2 OM2 CG1 HD2 CM2 CM2 CM2 CM2 CM2 CM2 CM2 CM2 CM2 CM	HZ aj CA CO CO CG1 CG1 CG1 CG1 CG1 CG2 CM2 CM2 CM2 CM3 CM3 CE1 CE1 CE1 CE2 CE2 CE2 CE2 CE2 CE2 CE2 CE2	ak CB CA CG1 CA CM2 CM3 CM3 CE1 CM2 CE2 CE2 HE1 CM1 CM1 CM1 CE2 CM1 CE1 CE2 CM1 CE1 CE2 CM1 CE1 CE2 CM1 CE1 CE2 CM1 CE1 CE2 CM1 CE1 CE2 CM3 CM3 CE1 CE2 CE2 HE1 CM3 CE1 CE2 CE2 HE1 CM3 CE1 CE2 CE2 HE1 CM3 CE1 CE2 CE2 HE1 CM3 CE1 CE2 CE2 HE1 CM3 CE1 CE2 CE2 HE1 CM3 CE1 CE2 CE2 HE1 CM3 CE1 CE2 CE2 HE1 CM3 CE1 CE2 CE2 HE1 CM3 CE1 CE2 CE2 HE1 CM3 CE1 CE2 CE2 HE1 CM3 CE1 CE2 CE2 HE1 CM3 CE1 CE2 CE2 HE1 CM1 CE2 CE3 CE1 CM1 CE2 CE2 CE2 HE1 CE2 CE2 HE1 CE2 CE1 CM1 CE2 CE2 HE1 CE2 CE2 CE2 HE1 CE2 CE2 CE2 HE1 CE2 CE2 CE2 HE1 CE2 CE2 CE1 CE2 CE2 CE2 HE1 CE2 CE2 CE2 CE2 CE1 CE2 CE2 CE2 CE2 CE2 CE2 CE2 CE2 CE2 CE2	gromos type ga_27 ga_33 ga_33 ga_27 ga_25 ga_25 ga_27 ga_27 ga_25 ga_27 ga_27 ga_25 ga_27 ga_27 ga_25 ga_27 ga_25 ga_27 ga_27 ga_25 ga_27 ga_25 ga_27 ga_25 ga_27 ga_25 ga_27 ga_25 ga_27 ga_25 ga_27 ga_25 ga_27 ga_25 ga_27 ga_25 ga_27 ga_25 ga_27 ga_25 ga_27 ga_25 ga_27 ga_25 ga_27	

CP	CE3	CZ	ga_	_27		[bon	ds]				
HE3	CE3	CZ	ga_	_25			C4	04	dp [–]	20		
CD1	CE4	HE4	ga_	_25			04	HO4	gp_	1		
CDI	CE4	CZ	ga_	_27			C4	C3	gp_	26		
HE4	CE4	CZ	ga_	_25			C4	03	_ap	26		
CE3	CZ	CE4	ga_	_2 /			C3	03	_ap	20		
CE3	CZ CZ	HZ 117	ga_	_25			03	UO3	_db_	20 1		
[im	nroners	1	ya_	_23			C2	02	gb_ ab	1 20		
; ai	ai	ak	al	aromos	tvpe		C2	C1	ap ap	26		
, co	0	CA	CG1	ai 3	-11		02	HO2	ap	1		
CO	CM3	CM2	CG1	gi 3			C6	06	dp	20		
CG1	CM2	CE1	CM1	gi_3			C6	C5	gb_	26		
CG1	CM3	CE2	CM1	gi_3			06	HO6	gb_	1		
CM2	CG1	CM3	CE2	gi_3			C5	05	gb_	20		
CM2	CG1	CE1	OM2	gi_3			05	C1	gb_	20		
CM2	CE1	CM1	CE2	gi_3			C1	01	dp [–]	20		
CM3	CG1	CM2	CE1	gi_3			01	+CM3	gp_	13		
CM3	CE2	CM1	CE1	gi_3		l	ang	les]				
HEI	CM2	CMI	CEI	gi_3		;	aı	aj	ak	gromo	s type	
CM1	CM3 CF1	CM1 CF2	CEZ OM1	g1_3			HO4	04 C4	C4	ga_	1Z 0	
CG2	CEI	CEZ CD1	CB	gr_J di 3			04	C4	C5	ya_ ra	9	
CG2	CP	CE3	CZ	g±_3			C3	C4	C5	ga_ da	8	
CG2	CD1	CE4	CZ	gi_3			C4	C3	03	ga_ ga	9	
CP	CG2	CD1	CE4	gi_3			C4	C3	C2	ga_	8	
CP	CG2	CE3	OP	gi_3			03	C3	C2	ga_	9	
CP	CE3	CZ	CE4	gi_3			C3	03	HO3	ga_	12	
CD1	CG2	CP	CE3	gi_3			C3	C2	02	ga_	9	
CD1	CG2	CE4	HD1	gi_3			C3	C2	C1	ga_	8	
CD1	CE4	CZ	CE3	gi_3			02	C2	C1	ga_	9	
HE3	CP CP1	CZ	CE3	gi_3			C2	02	HO2	ga_	12	
HE4 C7	CDI CE3	CE4	U7	gi_3			06	06	ЦО 1406	ga_	9 1 2	
СМЗ	CE2	CG1	-01	gr_J di 3			C4	C5	CG	ga_ da	8	
[di	hedrals	1	01	92_0			C4	C5	05	g∝_ da	9	
; ai	aj	ak	al	gromos	type		C6	C5	05	ga_	9	
0	CŌ	CG1	CM3	gd_48			C5	05	C1	ga_	10	
0	CO	CG1	CM3	gd_49			C2	C1	05	ga_	9	
CB	CA	CO	0	gd_52			C2	C1	01	ga_	9	
CB	CA	CO	0	gd_53			05	C1	01	ga_	9	
CD1	CG2	CB	CA	gd_50			CI	01	+CM3	ga_	10	
CDI	CGZ	CB	CC2	ga_51 ad 14	·Double-		01	+CM3	+CEZ	ga_	20 25	
co	bond	CB	CGZ	ga_14	,Double-	ſ	imp	ropers	+CG1 1	ya_	20	
СО	CA	СВ	CG2	qd 14	;Double-	;	ai	aj	ak	al	gromos	tvpe
	bond			5 -			C4	C6	05	С5	gi_2	21
HP	OP	CP	CG2	gd_46			C3	03	C2	C4	gi_2	
HP	OP	CP	CG2	gd_47			C5	04	C3	C4	gi_2	
ME1	OM1	CM1	CE1	gd_44			C1	C3	02	C2	gi_2	
ME1	OM1	CM1	CE1	gd_45			C2	, 05	, 01	C1	gi_2	
ME2	OM2	CM2 CM2	CGI CC1	ga_46 ad 47			ain	edrais	J	- 1	aromoa	+
MEZ	OMZ	CMZ	CGI	ga_47		'	a⊥ H∩4	a j 04	C4	C3	d 30	u v v pe
:Gluc	ose com	pound 1	5				04	C4	C3	03	gd_30	}
[BGD	3]	<u>r</u>	-				04	C4	C3	C2	gd 54	
[at	oms]						04	C4	C3	C2	gd_55	5
C4	CH1	0.2	23200	0			C5	C4	C3	03	gd_54	
04	OA	-0.6	54200	0			C5	C4	C3	03	gd_55)
HO4	Н	0.4	1000	0			C5	C4	C3	C2	gd_34	
C3	CH1	0.2	23200	1			04	C4	C5	C6	gd_54	
03	OA	-0.6	4200	1			04	C4	C5	C6	gd_55	
HO3	CU1	0.4	11000	1			C3	C4	C5	05	ga_34	
02		-0.6	54200	2			C3	C4	C5	05	ad 55	
HO2	H	0.4	1000	2			C2	C3	03	HO3	ad 30	,)
C6	CH2	0.2	23200	3			C4	C3	C2	02	ad 54	
06	OA	-0.6	54200	3			C4	C3	C2	02	gd_55	,
HOG	Н	0.4	1000	3			C4	C3	C2	C1	gd_34	
С5	CH1	0.3	37600	4			03	C3	C2	02	gd_18	3
05	OA	-0.4	18000	4			03	C3	C2	C1	gd_54	
C1	CH1	0.2	23200	4			03	C3	C2	C1	gd_55)
01	OA	-0.3	56000	4			C1	C2	02	HO2	gd_30)

C3	C2	C1	05	gd_54	06	C6	C5	05	gd_37
C3	C2	C1	05	gd_55	C4	С5	05	C1	gd_29
C3	C2	C1	01	gd_54	C5	05	C1	C2	gd_29
C3	C2	C1	01	gd_55	05	C1	01	+CM3	gd_2
02	C2	C1	01	gd_18	05	C1	01	+CM3	gd_32
С5	C6	06	HOG	gd_30	C1	01	+CM3	+CE2	gd_29
06	C6	C5	05	gd_5					

CURRICULUM VITÆ

Curriculum Vitæ

I. Dados Pessoais

Nome:

Elisa Beatriz de Oliveira John

Endereço profissional:

Grupo de Bioinformática Estrutural Laboratório 202 - Centro de Biotecnologia Universidade Federal do Estado do Rio Grande do Sul Avenida Bento Gonçalves, 9500 - Porto Alegre, RS, Brasil CEP 91500 970 +55 51 33087770

E-mail:

elisajohn@live.com elisa.john@ufrgs.br

II. Formação Acadêmica

Graduação em Biomedicina, pela Universidade Federal do Rio Grande do Sul, de 2010/1 a 2014/2. *Biologia Estrutural de Prolil-4-hidroxilases*. Orientador: Hugo Verli.

III. Trabalhos científicos apresentados em congressos (durante o período do mestrado)

a. Nacionais

John, E. O.; Arantes, P. R.; Verli, H. 2015. GROMOS 53A6 Force Field Parameters for Chalcones. *Rev. Inform. Teor. Apl. (Online).* 1^a Escola Gaúcha de Bioinformática, 27 a 31 de julho de 2015, Porto Alegre, RS, Brasil.

John, E. O.; Arantes, P. R.; Verli, H. 2016. GROMOS 53A6 Force Field Parameters for Chalcones and Flavonoids. *Abstract Book of the* 45th *Annual Meeting of SBBq.* 45th Annual Meeting of SBBq, 18 a 21 de junho de 2016, Natal, RN, Brasil.

b. Internacionais

John, E. O.; Arantes, P. R.; Verli, H. 2015.

GROMOS 53A6 Force Field Parameters for Chalcones. Abstract Book of the 23rd IUBMB Congress and 44th Annual Meeting of SBBq. 23rd

IUBMB Congress and $44^{\rm th}$ Annual Meeting of SBBq, 24 a 28 de agosto de 2015, Foz do Iguaçu, PR, Brasil.

IV. Bolsa recebida

Bolsista CAPES do Programa de Pós-Graduação em Biologia Celular e Molecular pelo Centro de Biotecnologia da UFRGS, a partir de março de 2015.