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Resumo

Nesta tese nós estudamos sistemas quase bidimensionais carregados e confinados por paredes

infinitas eletrificadas. Primeiramente nós derivamos o método de Somas de Ewald em 3d e então

tomamos o limite para sistemas confinados sem neutralidade de carga. É mostrado que quando

os campos das placas são considerados como potenciais externos há um ganho computacional

considerável. Para confinamentos metálicos nós resolvemos a Equação de Poisson usando funções

de Green periódicas, que nos permite evitar métodos de minimização que calculam as cargas

induzidas nos contornos. Aplicando este formalismo para um modelo de rede de liquidos iônicos,

nós capturamos a transição de forma da curva de capacitância caracteŕıstica destes sistemas.

Finalmente, nós consideramos superf́ıcies polarizáveis com qualquer constante dielétrica, nova-

mente utilizando funções de Green. Neste algoritmo nós separamos a energia de interação iônica

da energia de polarização, o que nos permite adaptar nosso método a qualquer técnica de Somas

de Ewald 2d presente na literatura cient́ıfica. Para completude, nós executamos os cálculos para

duas placas com discontinuidades dielétricas diferentes.



Abstract

In this Thesis, we study quasi bi-dimensional charged systems confined by infinite electrified

walls. First we derive the usual 3d Ewald Summation technique and then take the limit for

confined non-neutral systems. It is shown that when the plate fields are considered as external

potentials, considerable computational gain is achieved. For metallic confined systems we solve

Poisson Equation using periodic Green functions, which allows us to avoid minimization proce-

dures to compute the induced charges at the boundaries. Applying this formalism to a lattice

model of ionic liquids we capture the capacitance shape transition characteristic of such systems.

Finally, we consider polarizable surfaces of any dielectric constant, again using periodic Green

functions. In this algorithm we can separate the energy of ionic interactions from polarization

energy, which allows the adaptation of our method to any other 2d Ewald Summation technique

already on scientific literature. For completeness, we perform calculations for walls with different

dielectric discontinuities.
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up(probably this is why I look up to them)]. Márcia Ilha is as important as Prof. Levin, since

without her I also would never become anything.

Since there is a little page left, I would like to mention my two scientific heroes: Nikolai

Tesla and Albert Einstein. I personally think that they showed what talent allied with absolute

dedication can achieve: they changed the world in many ways. Furthermore, we have yet to

understanding the reaches of their works, since black holes still a mystery (a consequence of

Einstein’s theories) and wireless electronics is not absolutely implemented (the dream of the

electricity wizard).

Finally, philosophical considerations were pivotal, since physics cannot access all life, and I

was supported mainly by Alan F. Chalmers, Friedrich W. Nietzsche and Raymond Smullyan.

Thanks very much to them.



Epigraph

• “Towards thee I roll, thou all-destroying but unconquering whale; to the last I grapple with

thee; from hell’s heart I stab at thee; for hate’s sake I spit my last breath at thee.” – Captain
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1 Introduction

The first simulations of physical systems date back to the beginning of the twentieth century [1,

2], before the invention of electronic computers. The main rudimentary idea was to arrange

macroscopic balls in a chamber and make them interact in a mechanical way that resembled the

atomic system of interest [3]. Unfortunately, these methods have intrinsic limitations streaming

from the fact that the analysis of the data was very time demanding and complex. Nevertheless,

some of these techniques yielded very realistic results.

Then electronic vaulted computers became unclassified, after Second World War, and one ma-

chine with research purposes was assembled at Los Alamos by Von Neumann et al [4]. Previously,

however, there were classified projects, which used fast computing machines for war purposes -

for example, calculating thermodynamical properties of nuclear bombs. The new powerful ma-

chinery was called MANIAC and attracted the interest of Metropolis, the Rosenbluth couple and

the Teller couple. In order to test and use the new tool, Metropolis et al. invented a revolutionary

algorithm, nowadays known as Metropolis Algorithm, to simulate a bi-dimensional system of hard

spheres, and compare it with theoretical predictions using virial expansions [5](The agreement

was obtained to a fairly good precision already at those times). This was the beginning of a

revolution in all fields of physics, but specially in chemical physics, that is still happening.

Following Metropolis et al., it is known today that Fermi, Pasta and Ulam performed nu-

merical analysis using methods similar to what is now modern molecular dynamics, investigating

non-linear systems [6]. The team concluded that a model of 64 atoms with varying harmonic

couplings between them does not obey equipartition of energy at equilibrium. Their conclusion,

unfortunately, was limited by the power of the machine used. Soon after, the previous reluctance

about the machinery that performed incredibly fast arithmetic was abandoned, and the first re-

alistic problems were attacked. One cornerstone of computer science applied to physics was the

watershed work of Rahman [7], which shed light in the properties of liquid argon. The world was

fated to not be the same anymore, and practically any branch of physics relies on sophisticated

computer techniques now.

The revolution on miniaturizing silicon-based transistors opened the doors for a broader use

of computer machines in academic media, and computers took a fundamental role in all science

- medicine, biology, chemistry etc. Nevertheless, all techniques rely pretty much on the ideas of

the pioneers of the field.

Particularly, the use of computers to simulate electric charged system is still an ongoing

challenge in technology. Nonetheless, since must of the building blocks of Nature has a Coulombic

charge, the efficient simulation of these systems are of paramount importance for modern industry
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and science. The difficulty, however, is due to the long-range nature of the electrostatic force,

which prevents the use of simple periodic boundary conditions in the main simulation box. For

potentials that are short-ranged, as the Yukawa potential, the main cell is replicated only a

few times, since the contributions of other replicas become negligible. However, Coulomb forces

extend to infinity. In mathematical terms, this means that the electrostatic potential has not a

integrable tail and there is no threshold distance beyond which the force is considered to vanishes.

Therefore, we must consider one main simulation box interacting with infinite replicas of itself,

in order to access the thermodynamical limit. In practice, we have to evaluate a infinite series

that is conditionally convergent – depends on the way the replicas are summed –, as long as the

overall system is neutral. For systems with a bare electric charge intrinsic divergences arises,

that must be renormalized away [8]. The success of computing these series for neutral systems

was first achieved by Ewald Summation methods [9], when calculating the bulk energy of ionic

crystals to obtain the Madelung constant. Then the technique was improved by a myriad of

extensions [3, 10–16]. The main idea behind the algorithm is to separate the potential of a point

charge into long and short-ranged contributions, and then compute the former in the reciprocal

lattice and the last in the real space.

Figure 1: Representation of a system with only one boundary. The Dirichlet and Neumann

conditions are easily satisfied by a simple single image construction.

Unfortunately, when there is a broken symmetry, such as finitude of the system in one di-

rection, Ewald Summation loses much of its power. The extra challenge comes from the fact

that in Ewald techniques part of the energy is computed in the Fourier space, and a two dimen-

sional transformation of the long range potential leads to the appearance of special functions

and to slow convergence of the series [17, 18]. This notwithstanding, many system of interest

present a quasi bi-dimensional geometry: ionic liquids at electrified interfaces [19–24], charged
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nanopores [25–27], nanoconfined electrolytes [28–30], to cite just a handful of examples. Besides,

these systems present new interesting phenomena, as like-charged attraction [29,31–35] and charge

reversal [36–38], which may be very hard to capture theoretically [39]. In order to numerically

attack these systems, techniques to overcome the difficulties have been developed [16,40–44]. The

common idea is to still perform a 3d Ewald Summation, retaining its rapid convergence, but to

sum infinitely faster in the infinite dimensions in comparison with the finite one. However, a vac-

uum between the replicas in the non-periodic direction must be artificially inserted on, then the

interaction with the replicas in this dimension becomes sufficiently small. Finally, to account cor-

rectly for the conditionally convergent summation, one most add a energetic term that depends

on the geometry of the main cell. Following this procedure, successful simulations have been

performed and the most usual technique is that of Yeh and Berkowitz(YB) [40]. Nonetheless, the

calculations presented in the seminal paper by YB are not clear and lack theoretical rigor in the

opinion of the author, though its practical efficiency is unquestionable. Pursuing a more efficient

simulation for charged systems confined by electrified planar boundaries, Levin et al. [8,45] were

able to straightforward and clearly derive a 3d Ewald Summation algorithm for bulk and slab

geometry. In addition, for reduced 2d+h geometries, Levin and coworkers gained substantial

computational time (up to one order of magnitude) considering the fields of the plates as external

potentials acting on the confined ions. In this thesis, we present a fully detailed explanation of

the algorithm with tricks of the trade for its implementation.

As above, the challenges may go a step further, if the charged liquid is confined by polarizable

planar surfaces, such as phospholipid membranes or charged carbon planar sheets. It is worth

noting, however, that if there is only one wall, see Fig. 1, it is straightforward to extend Ewald

Summation methods [46–52]. The simple idea is to consider the image charge of every ion to

satisfy the boundary conditions of dielectric discontinuity. Unfortunately, when the system is

confined by a pair of surfaces there is no easy extension of the known techniques. The difficulty

is due to the fact that the image charge technique requires an infinite number of fictional charges,

resulting in a infinite series for every ion of the system. Moreover, since the series is alternating,

the way the summation is performed is once again important. Noting that the thermodynamical

limit must be accessed, there will be infinite replicas of the ions, resulting in a cumbersome infinite

series over the replicas, each one containing an infinite series over the image charges. Despite

of the complexity of the problem, both for metal or dielectric confinements, methods to solve

it were proposed [20, 53–55]. Considering metal electrodes, the most common algorithms rely

on the calculation of induced charges using minimization procedures [20,56,57]. This method is

very expensive computationally, since every step of simulation the minimum of a complex energy

function must be found – more often using gradient methods. Besides, this sets restrictions on the

size of the simulated systems, preventing accurate enough investigations in strongly interacting
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fluids. Also, there are methods that use the condition of displacement vector discontinuity or sum

using brute force the series implied by image charge techniques [58–64]. dos Santos and Levin [28]

performed an efficient image charge summation for dielectric boundaries, though the convergence

rate deteriorates with the dielectric contrast γ. The efficiency of these methods are very poor

for dense and extremely interacting fluids, such as room temperature ionic liquids – thus the

simulations of such systems still an ongoing defiance for physicists and chemists alike. Nonetheless,

ionic liquids are promising materials [19, 65], with applications in distinct technologies, such as

supercapacitors [66–69], solar cells [70, 71] and others renewable energy devices [72, 73]. Thus, a

broad understanding of these liquids is essential for science and engineering.

Quite recently, however, Levin et al. [74, 75] developed and applied totally new approaches

that use periodic Green functions as solutions to the Poisson Equation. The main advantage is

that the calculation of the induced charge on the polarizable walls are trivial and performed on

the fly, requiring the solution of a linear equation only. In this thesis we present both methods,

pointing its advantages and drawbacks, as well as its applications to electrolytes and ionic liquids.

We show that these algorithms are very efficient and can be further used for tackling previous

computationally prohibitive systems.

This thesis is organized as follows: first we derive 3d Ewald Summation and then take the

limit for slab geometry and non-neutral systems with applied external electric fields. We see

that for the two-dimensional geometry with confining electrified plates, the approach may be 10

times faster than usual algorithms. Furthermore, this method yields exactly the same results of

other procedures. Second, we develop a new method for charged systems bounded by metallic

planar surfaces. In this framework we can calculate very rapidly the induced charges, also the

resulting potential of a point charge decays exponentially, allowing us to perform a fast convergent

summation in real space only. In addition, we applied this formalism to a lattice model of room

temperature ionic liquids, showing that our very simple model captures the shape transition

between camel to bell-shaped capacitance curve [19]. The simulations can be made more rapid by

precalculating the potentials in the lattice sites before the beginning of the Metropolis Algorithm.

Third, we consider a more general system, where any pair of planar confinements is solved.

Besides, we show that we can decouple the energy of polarization from the ionic interactions,

making our algorithm easily combined with any other in the market. Fourth, one last, definitive

step is taken, where two confining surfaces are considered with different dielectric constants, ǫ1

and ǫ2; the author is not aware of any other method in the chemical computer science that

accounts for this complicated configuration. Finally, conclusions are presented and future work

discussed.
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2 Ewald Summation for bulk and slab geometry

We first derive energy formulæ for a non-neutral charged system at the bulk. We consider

a system of N particles with charges qj located at random positions rrrj in a simulation box with

lengths Lx, Ly and Lz, see Fig. 2. In order to replicate the cell in all directions we define the

replication vector as rrrep = (mxLx,myLy,mzLz), where m’s spam the integers, (mx,my,mz) ∈ Z.

The electrostatic potential generated by the ions and all of its replicas at point P, also located at

random position rrr, can be generally written as

φ(rrr) =
∞
∑

mmm

N
∑

j=1

∫

ρj(sss)

ǫw|rrr − sss|d
3sss , (2.1)

where ρj(sss) = qjδ(sss − rrrj − rrrep) is the charge density of qj and its replicas. The summation

over mmm includes the central simulation box, corresponding to mmm = (0, 0, 0). To efficiently handle

this conditionally convergent series we use Ewald 3d Summation method. The main idea of

the algorithm is to split the Coulombic potential into short and long-ranged potentials, thus

computing the later in the Fourier space. To perform the separation we add and subtract a

Gaussian charge distribution centered at each particle, then we can write

φ(rrr) =

∞
∑

mmm

N
∑

j=1

∫

ρj(sss)− ρjG(sss)

ǫw|rrr − sss| d3sss+

∞
∑

mmm

N
∑

j=1

∫

ρjG(sss)

ǫw|rrr − sss|d
3sss , (2.2)

where ρjG(sss) = qj(κ3e/
√
π3) exp (−κ2e|sss− rrrj − rrrep|2) and κe is a damping parameter. Note that

ρjG(sss) integrates to qj. We can rewrite the potential using the Error Functions, resulting in

φ(rrr) =

∞
∑

mmm

N
∑

j=1

qj
erf(κe|rrr − rrrj − rrrep|)
ǫw|rrr − rrrj − rrrep|

+

∞
∑

mmm

N
∑

j=1

qj
erfc(κe|rrr − rrrj − rrrep|)
ǫw|rrr − rrrj − rrrep|

, (2.3)

where erf(x) is the Error Function and erfc(x) is the Complementary Error Function. The second

term on Eq. 2.3 is short-ranged and can be computed in the usual way for potentials with an

integrable tail. We can Fourier transform the first term and write

φ(rrr) =

∞
∑

kkk=000

N
∑

j=1

4πqj

ǫwV |kkk|2 exp [−
|kkk|2
4κ2e

+ ikkk · (rrr − rrrj)] +

N
∑

j=1

qj
erfc(κe|rrr − rrrj|)
ǫw|rrr − rrrj| , (2.4)

where kkk = ( 2π
Lx
mx,

2π
Ly
my,

2π
Lz
mz). In the second term of Eq. 2.4 we removed the summation over

replicas, considering only the main box,mmm =(0, 0, 0), with the usual periodic boundary condition.

This is justified when κe is sufficiently large, so that erfc(κe|rrr − rrrj |) decays rapidly, and the

minimum image convention can be used where just the first neighbor cells are considered [10].

Unfortunately, for kkk = (0, 0, 0), the first term on the right of Eq. 2.4 diverges. Large discussions

have been devoted to it in literature [3,10,16,44,76,77]. The more commonly accepted argument is

that the so-called tinfoil boundary must be considered, where induced charges would compensate

11



Figure 2: The simulation box with randomly positioned charges and one of its replicas. The point

C represents the center of the simulation box, where the origin is located, and P a random point.

In charged systems the cell is replicated infinitely.

for the infinities. However, a system that is infinite cannot have any boundary at all, since it

occupies all space. Furthermore, the introduction of an artificial boundary is inconsistent with the

infinitely periodic system implicit in Ewald Summation technique. Clearly the series evaluation

can be performed in the real space, and though is conditionally convergent, it has a well defined

value for a method of summation – spherical, planewise and others. Real and reciprocal space

summations have to agree, otherwise a blatant inconsistency arises – and this is the case if the

kkk = (0, 0, 0) is simply ignored. Nonetheless, its is taken for grant that charge neutrality and

tinfoil boundary conditions make the term vanishes, though there is no a priori reason for it.

Fortunately, this recklessness seems to not introduce large errors in bulk systems, so the measured

observables does not change. However, for systems with reduced geometry, such as slab geometry,

the neglecting of the kkk = 000 contribution can lead to significant errors [40]. Considering the term

in more detail, we write

lim
kkk→0

N
∑

j=1

4πqj

ǫwV |kkk|2 exp [−
|kkk|2
4κ2e

] exp [+ikkk · (rrr − rrrj)] , (2.5)

then we expand the exponentials and ignore the constant prefactors, leaving us with

lim
kkk→0

N
∑

j=1

qj
1

|kkk|2 −
N
∑

j=1

qj
1

4κ2e
+ lim
kkk→0

N
∑

j=1

qj
ikkk · (rrr − rrrj)

|kkk|2 − lim
kkk→0

N
∑

j=1

qj
[kkk · (rrr − rrrj)]2

2|kkk|2 +O(|kkk|) , (2.6)

and we point that the higher order terms are “dragged” to zero by the powers of |kkk|. The first

two terms can be renormalized away with a redefinition of the zero potential, since they tend

towards infinity and are position independent. Also, if the system is charge neutral,
∑

j q
j = 0,

12



both terms vanish. The renormalization process is akin to the one performed to calculate the

electrostatic potential of a infinite planar charged sheet. However, for the third and fourth terms

of Eq. 2.6 great caution is needed, and the correct limits must be taken properly. We use Dirac

delta functions to rewrite the terms and then control the divergences by the limits of integration

introduced. Then, considering the third term, we write

S3 =

N
∑

j=1

qj
∫ +∞

−∞
δ(kkk)

ikkk · (rrr − rrrj)

|kkk|2 dkkk , (2.7)

with the following representation of the delta function

δ(kkk) =
1

(2π)3

∫ HHH

−HHH
eikkk·pppd3p . (2.8)

The limits of integration, −H to H, where H = (H1,H2,H3), must be performed corresponding

to the way that the sum is computed in the real space. Note that this representation of delta

function encodes the behavior of the macroscopic aspect ratio, because of the dependence of the

limits on how the system is constructed. For example, if we replicate the cell in a spherically

symmetric fashion, then H1 = limm→∞mLx, H2 = limm→∞mLy, and H3 = limm→∞mLz, that

is, all sides diverge at the same rate. These limiting processes construct a macroscopic cubic

system if Lx = Ly = Lz. In another example, if Lz = 2Ly = 2Lx, we wind up with a macroscopic

rectangular system. However, for slab geometry H1 and H2 should go to infinity infinitely faster

than H3. This way we construct a system that is infinitely larger in x and y directions. In general

it is convenient to define H1 = α1Lc, H2 = α2Lc and H3 = α3Lc, where Lc is some characteristic

macroscopic length scale. The integrals over p1, p2 and p3 in Eq. 2.8 can be performed explicitly

yielding the following representation of the delta function,

δ(kkk) =
1

(2π)3

3
∏

i=1

∫ αi
Lc
2

−αi
Lc
2

eikipidpi =
1

π3

3
∏

i=1

sin(kiαiLc/2)

ki
. (2.9)

The above equation expresses the large distance feature of the lattice sum and is at the heart of

the singular behavior of the kkk → 0 limit. Eq. 2.7 can then be written as S3 =
∑N

j=1 qjDDD · (rrr−rrrj),
where the components of the DDD vector are

Dn =
i

π3

∫ +∞

−∞

kn
|kkk|2

3
∏

j=1

sin(kjαjLc/2)

kj
d3kkk , (2.10)

that vanish by symmetry, Dn = 0, thus S3 = 0. The fourth non-vanishing term of Eq. 2.6 is

S4 = −
N
∑

j=1

qj
∫ +∞

−∞
δ(kkk)

[kkk · (rrr − rrrj)]2

2|kkk|2 d3kkk , (2.11)

where we again use the delta function representation to rewrite the term,

S4 = −
N
∑

j=1

qj

2π3

3
∑

n=1

Bn(rn − rjn)
2 , (2.12)
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where rn’s are components of position vector and Bn can be written as

Bn =

∫ +∞

−∞
d3kkk

k2n
|kkk|2

3
∏

j=1

sin(kjαjLc/2)

kj
. (2.13)

Fortunately this integral can be reformulated in a convenient form, where first we use the identity

1

|kkk|2
=

∫ ∞

0
dt′ e−t

′|kkk|2 , (2.14)

and change variables so it is easier to handle the integrals in the limit of slab geometry, though

the equations are still quite general. The variable change is

1√
t
=
Lcα3

2
√
t′
, (2.15)

thus the coefficients Bn can be simplified to [78]

B1 =
π

5

2

2

∫ +∞

0

α13e
−α2

13

4t erf( α23

2
√
t
)erf( 1

2
√
t
)

t
3

2

dt , (2.16)

B2 =
π

5

2

2

∫ +∞

0

α23e
−α2

23

4t erf( α13

2
√
t
)erf( 1

2
√
t
)

t
3

2

dt , (2.17)

B3 =
π

5

2

2

∫ +∞

0

e−
1

4t erf( α13

2
√
t
)erf( α23

2
√
t
)

t
3

2

dt , (2.18)

where αij = αi/αj are the aspect ratios of the macroscopic system. The coefficients Bn’s can be

calculated using numerical integration. For instance, if a spherical summation is performed, we

have for the aspect ratios α13 = Lx/Lz and α23 = Ly/Lz, then we are at bulk regime. On the

other hand, for a slab planewise summation we have divergences, α13 = α23 = ∞. However, in

this limit, the integrals of BBB can be performed explicitly, yielding B1 = B2 = 0 and B3 = π3.

Note that in this way we avoid an explicit 2d Fourier transformation, first performing a general

calculation on the three-dimensional space and then taking a limit, choosing proper aspect ratios.

Separating the k = 0 term and putting it in evidence, we can write the renormalized potential as

∆φ(rrr) =
∞
∑

kkk 6=000

N
∑

j=1

4πqj

ǫwV |kkk|2 exp [−
|kkk|2
4κ2e

+ ikkk · (rrr − rrrj)]−
N
∑

j=1

3
∑

n=1

2qj

ǫwV π2
Bn(rn − rjn)

2 +

N
∑

j=1

qj
erfc(κe|rrr − rrrj |)
ǫw|rrr − rrrj | , (2.19)

where ∆ corresponds to the renormalization of the potential in Eq. 2.4 – subtraction of infinite

constant. Note that, even for charge neutral isotropic bulk systems, Eq. 2.19 is different from the

usual formula found in the literature [3, 10, 40]. The difference is the appearance of a term that
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depends on the way the infinite sum is performed, i.e, on the aspect ratios of the macroscopic

system. Fortunately, it seems that for such systems the contribution of the term from k → 0

limit seems to be small when calculating averages on the bulk [16,44]. This may account for the

prevalent use of tinfoil boundary conditions which are claimed to eliminate the correction term.

Nevertheless, there is no a priori reason to ignore the term and a systematical erasing of it may

lead to significant errors for systems with different macroscopic aspect ratios. Furthermore, in

order to properly describe an electrostatic system in the thermodynamic limit - in particular an

inhomogeneous one - using simulations based on the periodic replication of the cell, the singular

term is important and cannot in general be neglected.

As a test for the modified Ewald Summation formula, Eq. 2.19, we consider a non-neutral

system and calculate the potential difference from a random position r and the center 0 of the

simulation cell, φ(r)−φ(0). Note that though the electrostatic potential of a periodic non-neutral

system is divergent, the potential difference is well defined. We construct a simulation cell with

dimensions Lx = Ly = 1Å and Lz = 2Å. A spherical summation will result in a system with

aspect ratios α13 = α23 = 1/2, leading to B1 = B2 = 13.5158 and B3 = 3.9746. The cell

has two charges q1 = q2 = |e|, where |e| is the absolute value of electron charge, located at

random positions. Using Eq. 2.19 we find the potential difference, ∆φ = φ(r) − φ(0), using 250

kkk-vectors spherically summed, obtaining a precision of two decimal places. In order to find the

same accuracy using Eq. 2.1 we needed spherically sum ≈ 19500 mmm-vectors. Therefore, the sum

in real space has a much slower convergent rate.

In planar geometry we want to replicate the cell only in two out of three directions, x and

y. We can again use Eq. 2.19, but with proper limits for the aspect ratios, α13 = α23 = ∞.

Therefore, slab geometry requires that replications in x and y directions should be performed

infinitely faster than that in z direction. This condition leads to B1 = B2 = 0 and B3 = π3.

Eq. 2.19 now becomes

∆φ(rrr) =
∞
∑

kkk 6=000

N
∑

j=1

4πqj

ǫwV |kkk|2 exp [−
|kkk|2
4κ2e

+ ikkk · (rrr − rrrj)]−
N
∑

j=1

2πqj

ǫwV
(r3 − rj3)

2 +
N
∑

j=1

qj
erfc(κe|rrr − rrrj|)
ǫw|rrr − rrrj| . (2.20)

Unfortunately, we still replicate in z direction, then a vacuum in that direction must be artificially

inserted, this way preventing that the replicas in this dimension to add to the total electrostatic

potential, see Fig. 3. The empty space must be chosen sufficiently large so the extra addition of

vacuum does not alter the properties of the system anymore. Intending to test Eq. 2.20 we consider

the same two particle system than before. The introduction of the vacuum region is achieved by

limiting the initial random positions of the particles and of the vector r to −Lz/4 < z < Lz/4.

Using Eq. 2.1 we can explicitly calculate the potential difference ∆φ when the simulation cell

is replicated only in the x and y directions, using the replica-vectors m = (mx,my, 0). The

convergence is very slow requiring values of 2.5 × 106 replicas to get an accuracy of two decimal
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Figure 3: 3d replicated system. Note that inside the central simulation cell the electric fields

produced by the z-replication of charged walls cancel out.

places. The same accuracy is achieved with Eq. 2.20 using the vacuum region and only ≈ 650

kkk-vectors.

The renormalized electrostatic energy for a non-neutral slab system can now be calculated

with E =
1

2

∑N
i=1 q

i∆φ(rrri), resulting in

E =

∞
∑

kkk 6=000

2π

ǫwV |kkk|2 exp [−
|kkk|2
4κ2e

][A(kkk)2 +B(kkk)2] +
2π

ǫwV
[M2

z −QtGz] +
1

2

N
∑

i 6=j
qiqj

erfc(κe|rrri − rrrj|)
ǫw|rrri − rrrj| −

κe
ǫw

√
π

N
∑

i

q2i , (2.21)

where

A(kkk) =

N
∑

i=1

qicos(kkk · rrri) ,

B(kkk) = −
N
∑

i=1

qisin(kkk · rrri) ,

Mz =

N
∑

i=1

qiri3 ,

Qt =
N
∑

i=1

qi ,

Gz =

N
∑

i=1

qi(ri3)
2 . (2.22)

16



-30 -20 -10 0 10 20 30
z [Å]

0

0.01

0.02

0.03

0.04

In
te

gr
at

ed
 C

ha
rg

e 
[C

/m2 ]

Figure 4: Integrated charge between the plates. Symbols represent the calculation using the

modified (non-neutral) 3d Ewald approach, while line, the traditional method [40]. The difference

is imperceptible.

The last term on Eq. 2.21 arises when we carefully double sum the long range potential. For

a neutral system, Qt = 0, we recover the earlier expression for the electrostatic energy [40].

Now having the total renormalized electrostatic energy we can endow the plates with constant

superficial charge and treat the produced field as an external potential. This can be successfully

achieved because the electric fields of the transverse replicated plates are constant and therefore

cancel out, see Fig. 3. Usually, traditional simulations consider the electrified surfaces constructed

of point charges, which slows down the simulations, since they must have to be taken into account

at every algorithm step. The main idea of our method is to avoid such calculations, considering

the plates as external potentials that give rise to an energetic contribution of the form

Ep =
2π

ǫw

Nc
∑

i=1

(σ2 − σ1)r
i
3q
i , (2.23)

which must be added to Eq. 2.21. The price one must pay for this is to be able to consider a

non-neutral system.

Now we are at position to perform Metropolis algorithm for systems such as nanoconfined

ions in slab geometry. Usually such fluids consist of a salt dissolve in water, in a way that the ions

dissociate in the medium and each has a total electric charge, such as Na+ and Cl−. However, in

order to testify the correctness of the method, first we perform simulations in the NV T ensemble

using the traditional algorithm (the plates are charged by point particles) and our new method

(the plates are external potentials). For the former the surface charge is represented by 256 point

particles, thus the overall system is charge neutral, Qt = 0. Here the system has consisted just

of counterions, ionic particles that dissociated from the plates and are free to wander between

them in the solvent – plus the point charges of the plates for the common algorithm. We set the
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Figure 5: (a) Density profiles of 2 : 1 electrolyte confined by charged infinite walls. Circles are

anions and squares are cations. (b) The integrated charge.

dimensions of the system at Lx = Ly = 17, 9nm and Lz = 40nm, and the plates are separated

by d = 5nm. We consider the counterions as hard spheres with radius R = 2Å. To calculate the

Fourier contribution to the energy ≈ 500 kkk-vectors were used and the equilibrium was achieved

by 106 Monte Carlo steps. The profiles were calculated using 2× 104 uncorrelated samples after

relaxation and the plates have charge σ1 = 0.04C/m2 and σ2 = −0.01C/m2, see Fig. 3. In the

method of the present chapter we use the superficial charge densities to calculate the number

of the counterions, |σ|LxLy = Nc|e|, where Nc is the number of counterions. The results are

indistinguishable, see Fig. 4. The computational gain was of one order of magnitude in time in

comparison with the corrected 3d Ewald Summation method where the plates are embodied with

point charges. Next, we apply the new method for the case σ1 = σ2 = 0.04C/m2, which is of

practical importance when studying colloidal suspension using Derjaguin approximation [79]. In

this case we consider electrolyte between the boundaries at concentration of 500mM, both di-

valent and quadri-valent, 2 : 1 and 4 : 1, respectively. Note that there is no external electric field
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Figure 6: (a) Density profiles of 4 : 1 electrolyte confined by charged infinite walls. Circles are

anions and squares are cations. (b) The integrated charge.

in this configuration, since each plate cancels out the other surface field. The values of σ are used

only to calculate the number of counterions. The ionic profiles and integrated charge are shown

in Fig. 5 and Fig. 6. Observe that for 4 : 1 salt there is a significant charge inversion. This is

due to positional correlation between plates and counterions, so the counterions overcompensate

the surface charge, see Fig 6. This phenomenon can also occur with divalent counterions, but

is considerably weaker, see Fig. 5. A study of such strongly correlated inhomogeneous charged

systems is not very practical with other simulation methods.

19



3 Ionic liquids confined between metal electrodes

We start by calculating the electrostatic potential at position rrr = ρρ̂ρρ+ϕϕ̂ϕϕ+ zẑzz produced by a

single ion of charge q located at rrr0 = z0ẑzz, see Fig. 7, between two parallel grounded infinite metal

electrodes. The final solution will be easily generalized to an arbitrary potential difference between

the boundaries. We use cylindrical coordinates in order to explore the azimuthal symmetry of

the potential, eliminating the ϕ dependence of it. To obtain the electrostatic potential requires

us to solve the Poisson equation [80]

∇2φ(rrr,rrr0) = −4πq

ǫ
δ(rrr − rrr0) , (3.1)

with the Dirichlet boundary condition ψ0 = 0 at each surface. We start by expanding the delta

function in the eigenfunctions of the differential operator

d2ψn
dz2

+ k2nψn = 0 , (3.2)

satisfying the boundary conditions ψn(0) = ψn(L) = 0. The eigenfunctions are found to be

ψn(z) =
√

2/L sin(knz), with kn = nπ/L. The Dirac delta function can then be written as

δ(z − z0) =
2

L

∞
∑

n=1

sin(
nπz

L
) sin(

nπz0
L

) . (3.3)

The electrostatic potential can now be build as

φ(ρ, z; z0) =
2q

ǫL

∞
∑

n=1

sin(
nπz

L
) sin(

nπz0
L

)gn(ρ) . (3.4)

Substituting this expression into Eq. 3.1 we obtain an ordinary differential equation for gn(ρ),

1

ρ

d

dρ
(ρ

dgn
dρ

)− k2ngn = −2

ρ
δ(ρ) , (3.5)

which has modified Bessel functions of zeroth order as solutions, gn(ρ) = AI0(knρ) +BK0(knρ).

Since the potential must vanish as ρ → ∞, the coefficient A = 0, while the coefficient B is

determined by the singular part of the potential, and is found to be B = 2. The electrostatic

potential produced by an ion located at rrr0 = z0ẑzz between two grounded metal surfaces is then [80]

φ(ρ, z; z0) =
4q

ǫL

∞
∑

n=1

sin(knz) sin(knz0)K0(knρ) . (3.6)

We can now replicate a simulation box of dimensions Lx×Ly×L infinitely in x and y directions.

This is achieved by the superposition property of the electrostatic potential, then the potential

of the infinitely replicated ion is the sum of all potentials of each replica, resulting in

G(rrr;rrr0) =
4q

ǫL

∞
∑

mmm=−∞

∞
∑

n=1

sin(knz) sin(knz0)K0

(

kn

√

(x− x0 +mxLx)2 + (y − y0 +myLy)2
)

,

(3.7)
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Figure 7: Point charge q located at z0ẑzz between two infinite metal electrodes with constant

potential difference ψ0. The electrodes are at z = 0 and z = L. The electrostatic potential is

calculated at a point rrr indicated in cylindrical coordinates. The dashed lines show the first replica

of the simulation box in the x direction.

where m’s spam the integers, (mx,my) ∈ Z, ρ is now in Cartesian coordinates and rrr0 is the

position of the particle in the main cell. The potential decays very rapidly in the x and y

dimensions since the second-type Bessel function of order zero has an asymptotic behavior given

by

K0(x) ∝
√

π

2

e−x√
x
[1 +O(

1

x
)] as x→ ∞ . (3.8)

Therefore, in Monte Carlo simulations, we need only a few replicas to achieved any desired

accuracy. Unfortunately, we have a divergence when mmm = (0, 0), x = x0 and y = y0. This is due

the K0(x) logarithmic divergence as x→ 0. However, physically, as long as z 6= z0, the potential

must remain finite, therefore the problem is purely mathematical: it is difficult to perform the

limit correctly. Eq. 3.7 has a very low convergence rate for this specific condition. We, then, seek

an alternative form for the Green function in order to avoid long and computationally expensive

summations.

Once again we consider just one ion located at rrr0 between two grounded metallic surfaces.

However, now we begin by expanding the Dirac delta in the coordinate ρ, consequently writing

1

ρ
δ(ρ) =

∫ ∞

0
kJ0(kρ)dk , (3.9)

where J0 is the Bessel function of zeroth order. The electrostatic potential can now be written as

φ(ρ, z; z0) =
q

ǫ

∫ ∞

0
kJ0(kρ)gk(z, z0)dk . (3.10)
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Substituting Eq. 3.10 into Eq. 3.1, we obtain an ordinary differential equation for gk(z, z0):

d2gk
dz2

− k2gk = −2δ(z − z0) . (3.11)

Applying the boundary conditions, we finally obtain

φ(ρ, z; z0) =
q

ǫ

∫

dkJ0(kρ)
ek|z−z0|−2kL + e−k|z−z0| − e−k(z+z0) − ek(z+z0)−2kL

1− e−2kL
, (3.12)

which is well behaved when ρ→ 0, as long as z 6= z0. This expression is equivalent to Eq. 4.4 and

can be used to calculate the electrostatic potential produced by the ion inside the main simulation

cell, replacing the mx = my = 0 term of Eq. 3.7, since the integral will rapidly converge even if

the function is to be calculated at ρ = 0.

Suppose an ion is placed at z = z0 between two infinite grounded metal surfaces. How much

charge will be induced on each electrode? The surface charge density on the left electrode is

σ(ρ) = − ǫ

4π

∂φ

∂z

∣

∣

∣

∣

∣

z=0

= − q

2π

∫ ∞

0
dkJ0(kρ)k

sinh[k(L− z0)]

sinh(kL)
, (3.13)

where we used the Green representation of Eq. 3.12. Now we perform an integration over all plate

to obtain the total charge,

Q0
l = − q

2π

∫

dϕ

∫

ρdρ

∫

dkkJ0(kρ)
sinh[k(L− z0)]

sinh(kL)
. (3.14)

Eq. 3.14 is conditionally convergent. To conveniently perform the integral we introduce a conver-

gence factor e−αρ which allows us to change the order of integration. Performing the integration

first over ϕ and ρ,

Q0
l = −q

∫ ∞

0
dk

k

(1 + k2

α2 )
3

2α2

sinh[k(L− z0)]

sinh(kL)
, (3.15)

then changing variables k
α
= a and taking the limit α→ 0, we have

Q0
l = −q

∫ ∞

0
da

a

(1 + a2)
3

2

(1 − z0/L) , (3.16)

which integrates to

Q0
l = −q(1− z0

L
) . (3.17)

Similarly the surface charge on the right electrode is Q0
r = −qz0/L. So far our discussion has

been restricted to the grounded metal surfaces. Nonetheless, often the electrostatic potential

difference between the electrodes is controlled by an external battery. Thus we set the potential

of the electrode located at z = 0 fixing it at −ψ0/2 and of the electrode located at z = L is fixed

at +ψ0/2. Using the uniqueness property of the Poisson equation, it is simple to account for the

extra surface potential. The Uniqueness Theorem in electrostatics says that given a boundary
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Figure 8: Lattice model of ionic liquid confined by electrified electrodes. The compacity parameter

for this 2D example is γd =
5
6 .

condition, there is one and only one solution to the Laplace or Poisson equation. We observe that

if we add to Eq. 3.7 a potential

φs(z) =

(

z

L
− 1

2

)

ψ0 , (3.18)

the sum will satisfy Eq. 3.1 with the appropriate new Dirichlet conditions. In addition, in sim-

ulations we replicate a charge neutral system with N ions at positions {rrri} and the electrodes

are held at potentials ∓ψ0/2, respectively. Thus using Eq. 3.17, discontinuity of electric field

at the electrodes and superposition, the total charge on the left and right electrodes within the

simulation cell will then be

Ql,r = ∓ǫψ0A

4πL
±

N
∑

i=1

qi
zi
L
, (3.19)

where A = LxLy is the area of the electrode inside the simulation cell. Note that Ql = −Qr.
We are now in a position to perform simulations of N-body Coulomb systems confined by

two parallel metal electrodes.The object of particular interest for the room temperature ionic

liquids community is the differential capacitance, which can be obtained from the fluctuations

of the surface charge on the electrodes [57, 81]. The partition function in the fixed electrostatic

potential ensemble is

Zψ =

∫ N
∏

i=1

drrri

∫

dQe−β[E(rrr1,...,rrrN ,Q)−ψQ] , (3.20)

where β = 1/kBT and the surface charge on the left and right electrodes is ∓Q, respectively. Note

that in this ensemble the surface charge on the electrodes is allowed to fluctuate. The differential

capacitance of the system can then be calculated straightforwardly as

C =
1

A

∂ 〈Q〉
∂ψ

=
1

βA

(∂2 lnZψ
∂ψ2

)

=
β

A
[
〈

Q2
〉

− 〈Q〉2] . (3.21)

It is important to note that in order to perform a simulation at a fixed electrostatic potential,
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Figure 9: Cationic profile of ionic liquid between the electrodes. The parameters are: γd = 1
2 ,

λB = 38.4Å and ψ = 0.05V .

we need to know the total electrostatic energy E(Q) of a system with electrodes carrying a fixed

amount of surface charge −Q and +Q, respectively. Since the electrodes are metallic, they must

be equipotential. This means that the distribution of the surface charge will not be uniform and

will respond to ionic motion. For a given Q, the surface potential ψ0 will, therefore, fluctuate.

Instead, the external potential ψ is fixed in the simulations and determined by the source battery.

The two potentials differ in the sense that ψ0 is used to satisfy Neumann and Dirichlet conditions.

Note that if ψ = ψ0 the derivative on Eq. 3.21 would not calculate the differential capacitance.

Since the system is charge neutral, the surface potential for a given ionic distribution inside the

simulation cell can be easily calculated using Eq. 3.19,

ψ0 =
4πL

ǫA

(

Q+
N
∑

i=1

qi
zi
L

)

. (3.22)

The total electrostatic energy inside the simulation cell is then

E(Q) =
1

2

N
∑

i 6=j
qiG(rrri;rrrj) +

N
∑

i=1

[

Us(rrri) +
1

2
qiφs(zi)

]

+
1

2
ψ0Q, (3.23)

where the periodic Green function is given by Eq. 3.7 with mx = my = 0 term replaced by

Eq. 3.12, and the self energy of an ion at rrri is

Us(rrri) =
qi
2
lim
ρ→0

[

G(rrri;rrri)−
qi
ǫρ

]

. (3.24)

The self energy corresponds to the work necessary to bring an ion from the bulk to the confine-

ment. Alternatively, is the energy to bring the metal plates from the infinity to their distance L,

with the confined charge. Using the identity
∫ ∞

0
dkJ0(kρ) =

1

ρ
, (3.25)
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the limit in Eq. 3.24 can be performed explicitly [82], resulting in

Us(rrri) =
q2

2ǫ

∫

dk
2e−2kL − e−2kzi − e2kzi−2kL

1− e−2kL
+

2q2

ǫL

∞
∑

mmm 6=000

∞
∑

n=1

sin2(knzi)K0

(

kn

√

m2
xL

2
x +m2

yL
2
y

)

.

(3.26)

We reinforce that the rapid decay of modified Bessel function of second-type allows one to perform

the summation of just a few replicas to achieve an accuracy of double-precision variable in energy.

To demonstrate the utility of the present method we study a Coulomb lattice gas [24, 83–86]

confined between two electrodes held at potential ∓ψ/2, respectively. The system is depicted

in Fig. 8. The simulations are made fast by precalculating the potential at each site, thus this

technique might be used for studying more complicated configurations which are not accessible in

continuum simulations. Examples are: asymmetry in charge and in size of the ions, high coupling

parameters and large volume fractions. We use Metropolis algorithm [5] to sample in accordance

with Eq. 3.20. Movements are between charged ions and between charged ions and empty sites, in

which the electrode charge remains constant and the energy difference is calculated using Eq. 3.23.

Also, the electrode charge can change as a trial move, and each configuration is accessed with

probability proportional to the Boltzmann weight.

The simulations are performed in a cell of volume V = LxLyL, with Lx = Ly = 80Å and

L = 3Lx. The lattice gas is confined in the region −Lx/2 < x < Lx/2, −Ly/2 < y < Ly/2 and

0 < z < L. The negatively charged electrode is positioned at z = 0 and the positive one at z = L.

We define the Bjerrum length as λB = q2/kBTǫ, and consider two specific values λB = 7.2Å and

λB = 38.4Å. The first value is appropriate for room temperature electrolytes while the the second

is for room temperature ionic liquids [87–89], which have dielectric constant around ǫ = 15. The

concentration of ionic liquid is controlled by the compacity factor γd = (N++N−)/(N++N−+N0),

whereN+ is the number of cations, N− the number of anions, andN0 the number of voids. We will

set γd to
1
20 for electrolytes, and 1

2 for ionic liquids. The lattice spacing is set to 8Å, characteristic

of ionic diameter. For now we consider a symmetric case with charge of cation q and charge of

anions −q, where q is the charge of the proton. The model, however, can be easily extended to

asymmetric ionic liquids. In the simulations we have used around ≈ 104 mmm-vectors in the energy

computation. The averages were calculated with 5 × 104 uncorrelated samples after equilibrium

was achieved.

In Fig. 9 we show the oscillatory behavior of the counterion density profile near an electrode

[19], which is signature of such strongly correlated systems. Fig. 10 (a) shows the characteristic

minimum of differential capacitance at zero potential predicted by the Poisson-Boltzmann theory,

followed by a maximum for higher applied voltages. The behavior is characteristic of electrolyte

solutions [90] and is qualitatively measured in experiments. On the other hand, in the regime of

ionic liquids where steric and electrostatic correlations play the dominant role [39], the behavior is
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Figure 10: Differential capacitance calculated using Eq. 3.21. Panel (a) shows the electrolyte

regime with parameters γd =
1
20 and λB = 7.2Å; and (b) shows the typical bell-shaped differential

capacitance of ionic liquids, γd =
1
2 and λB = 38.4Å.

quite different [91,92]. Fig. 10 (b) shows that unlike electrolytes, ionic liquids have a maximum of

differential capacitance at ψ = 0V. It is gratifying to see that a simple lattice model captures this

complicated transition of differential capacitance between electrolyte and ionic liquid regimes.
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4 Ionic liquids confined by general polarizable surfaces

In this chapter we consider general polarizable surfaces confining charged fluids. We begin by

considering a point particle of charge qi at position ri = (xi, yi, zi) inside a simulation box with

sides of lengths Lx, Ly, and L; in x, y, and z directions, respectively. This system is replicated

Figure 11: Representation of the confined system. The walls are polarizable. Only the first two

replicas in x̂xx of the simulation cell are shown.

along the x and y axis, generating an infinite periodic charged system of finite width L in the z

direction. The dielectric constant in the region 0 < z < L is ǫw, while in the regions z < 0 and

z > L it is ǫc, see Fig. 11. Afterwards, the results will be generalized for three different dielectric

constants. The electrostatic potential at position r = (x, y, z) satisfies the Poisson equation

∇2G(r, ri) = −4πqi
ǫw

∞
∑

mx,my=−∞
δ(rrr − rrri +mxLxx̂xx+myLyŷyy) . (4.1)

The periodic delta function can be expressed using Fourier transform representation as

∞
∑

mx,my=−∞
δ(x− xi +mxLx)δ(y − yi +myLy) =

1

LxLy

∞
∑

mmm=−∞
e
i
[

2πmx
Lx

(x−xi)+ 2πmy

Ly
(y−yi)

]

, (4.2)

where mmm = (mx,my). We now write the Green function as

G(r, ri) =
1

LxLy

∞
∑

mmm=−∞
gmmm(zi, z)e

i
[

2πmx
Lx

(x−xi)+ 2πmy

Ly
(y−yi)

]

, (4.3)

which is periodic in x̂xx and ŷyy directions. Inserting Eq. 4.3 into Eq. 4.1 we obtain

∂2gmmm(zi, z)

∂z2
− k2gmmm(zi, z) = −4πqi

ǫw
δ(z − zi) , (4.4)
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where k = 2π
√

m2
x/L

2
x +m2

y/L
2
y. The general solution of Eq. 4.4 has the form Ae−kz+Bekz. The

electrostatic potential must vanish as z → ±∞, restricting its form in the outer regions, z < 0 and

z > L, to a decaying exponential. The others boundary conditions are the continuity of potential

and discontinuity of displacement vector at the walls. In order to account for the singularity of

the delta function, we use the symmetry property of Green function, gmmm(zi, z) = gmmm(z, zi). Thus,

we have the solution to the Neumann and Dirichlet boundary conditions problem written as

gmmm(zi, z) =
2πqi

ǫwk(1− γ2e−2kL)
×
[

e−k|z−zi| + γe−k(z+zi) + γe−2kLek(z+zi) + γ2e−2kLek|z−zi|
]

,

(4.5)

where γ = (ǫw − ǫc)/(ǫw + ǫc). As the surviving terms in the mmm summation are just the cosine

functions, the potential assumes the form

G(r, ri) =
1

LxLy

∑

mmm

gmmm(zi, z) cos

[

2πmx

Lx
(x− xi) +

2πmy

Ly
(y − yi)

]

. (4.6)

In the absence of dielectric contrast, γ → 0, Eq. 4.6 reduces to

G0(r, ri) =
2πqi

ǫwLxLy

∞
∑

mmm=−∞

e−k|z−zi|

k
cos

[

2πmx

Lx
(x− xi) +

2πmy

Ly
(y − yi)

]

, (4.7)

which is a representation of the electrostatic potential produced by a periodically replicated

point charge in the x and y directions. Eq. 4.7 diverges in the limit k → 0, when mx,my → 0.

Although this divergence can be renormalized, the remaining sum is still slowly convergent. We

note, however, that the electrostatic potential described by Eq. 4.7 can be efficiently calculated

using a modified 3d Ewald Summation technique [40, 45] or other other methods [17, 63]. The

details of the 3d Ewald Summation are presented in the first Chapter of this Thesis. With the

aid of Eq. 4.7 we can rewrite the total electrostatic potential as

G(r, ri) = [G(r, ri)−G0(r, ri)] +G0(r, ri) . (4.8)

We define G̃(r, ri) = G(r, ri) − G0(r, ri) as the polarization contribution to the total Green

function given by

G̃(r, ri) =
2πqi

ǫwLxLy

∞
∑

mmm=−∞

1

k(1− γ2e−2kL)

[

γe−k(z+zi) + γe−2kLek(z+zi) + 2γ2e−2kL cosh (k(z − zi))
]

×

cos

[

2πmx

Lx
(x− xi) +

2πmy

Ly
(y − yi)

]

.

(4.9)

The limit k → 0, mx = my = 0, requires additional care. Once again renormalization procedures

are necessary. We split the calculations for three cases: γ = +1, γ = −1 and γ ∈ (−1, 1). For

−1 < γ < 1 we find that the mx = my = 0 term diverges as

− 4πqi
ǫwLxLy

[
γ

k(γ − 1)
+

γL

(γ − 1)2
+O(k)] . (4.10)
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Since this is a constant, position independent, it will not contribute to the force and can be

renormalized away. For γ = −1, we find that mx = my = 0 term contains an infinite constant

and a finite function of z,

2πqi
ǫwLxLy

[

−1

k
+ (z + zi − 2

ziz

L
) +O(k)

]

. (4.11)

Once again neglecting the infinite constant, we write

G(−1)(r, ri) =
2πqi

ǫwLxLy
(z + zi − 2

ziz

L
) . (4.12)

For γ = 1 we find

2πqi
ǫwLxLy

[

2

Lk2
− 1

k
+

2L2 − 3L(z + zi) + 3(z2 + z2i )

3L
+O(k)

]

, (4.13)

so that

G(+1)(r, ri) =
2πqi

ǫwLxLy

[

−(z + zi) +
z2 + z2i
L

]

. (4.14)

Now we are able to properly write the potential in a fashion where it is evident the contribution

of the polarized walls. Furthermore, the polarization “portion” is decoupled of periodic ionic

contribution. The final expression for the total electrostatic potential can now be written as

G(r, ri) = G0(r, ri) +G(γ)(r, ri) +
2πqi

ǫwLxLy

∞
∑

mmm′=−∞

1

k(1− γ2e−2kL)
×

(

γe−k(z+zi) + γe−2kLek(z+zi) + 2γ2e−2kL cosh (k|z − zi|)
)

cos

[

2π(
mx

Lx
(x− xi) +

my

Ly
(y − yi))

]

,

(4.15)

where the function G(γ)(r, ri) is non-zero only for γ = +1 and −1 and the prime excludes

mx = my = 0 term in the summation.

The total energy for a system of N periodically replicated charged particles is then given by

U =
1

2

N
∑

i=1

N
∑

j=1

qjG(rj , ri) . (4.16)

We can split the total energy into the polarization and direct Coulomb contributions

U = UEw + Up , (4.17)

where UEw is the direct Coulomb contribution,

UEw =

N
∑

i=1

N
∑

j=1

qj
G0(rj , ri)

2
, (4.18)

which can be calculated using the modified 3d Ewald Summation method, see first Chapter.
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Figure 12: Density profile of trivalent counterions confined between charged dielectric surfaces,

γ = 0.95. The surfaces charge densities are −0.05 C/m2. The line is a guide to the eyes.

Here we point that this separation is seminal to the possible relevance of the algorithm. Taking

advantage of this property of the Green function, we can account for general polarizable walls

while using others already well-established methods for 2d+h geometry. The energy Up due to

surface polarizability can be rewritten as

Up =Uγ +
π

ǫwL
2
d

∑

mmm′

γ

k(1− γ2e−2kL)
×

{f1(mmm)2 + f2(mmm)2 + e−2kL
(

f3(mmm)2 + f4(mmm)2
)

+ 2γe−2kL[f3(mmm)f1(mmm) + f2(mmm)f4(mmm)]} ,
(4.19)

where without loss of generality we have set Lx = Ly = Ld. The number of integers, (mx,my),

necessary to obtain a converged energy will depend on the lateral size of the simulation box, Ld.

The contribution Uγ arises from the k → 0 limit, and is zero if γ ∈ (−1, 1). For γ = −1 we find

U(−1) = −2π

L2
d

[

M2
z

L
−QtMz

]

, (4.20)

where Qt =
∑N

i=1 qi and Mz =
∑N

i=1 qizi. For γ = +1 we obtain

U(+1) = −2πQt
L2
d

[

Mz −
Ωz
L

]

, (4.21)

where Ωz =
∑N

i=1 qiz
2
i . The fi(mmm) functions are defined as

f1(mmm) =

N
∑

i=1

qi cos

[

2π

Ld
(mxxi +myyi)

]

e−kzi , (4.22)
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Figure 13: Density profiles of cations and anions confined between grounded metal surfaces,

γ = −1. The 3 : 1 salt concentration is 0.35 M. The lines are guides to the eye.

f2(mmm) =

N
∑

i=1

qi sin

[

2π

Ld
(mxxi +myyi)

]

e−kzi , (4.23)

f3(mmm) =

N
∑

i=1

qi cos

[

2π

Ld
(mxxi +myyi)

]

ekzi , (4.24)

f4(mmm) =

N
∑

i=1

qi sin

[

2π

Ld
(mxxi +myyi)

]

ekzi . (4.25)

Note that k depends onmmm and the f functions must be updated for each particle move. There is,

however, no need to recalculate all the functions, but only the contribution to each function that

depends on the position of the particle that is being moved. This makes the energy update very

efficient in Monte Carlo simulations. Finally, if there is a surface charge present at the interfaces,

it can be included as an external potential, see Ref. [45],

Usur = −2π(σ1 − σ2)

ǫw

N
∑

i=1

qizi , (4.26)

where σ1 and σ2 are the surface charge densities at z = 0 and z = L, respectively.

To demonstrate the utility of the new simulation method, we perform Monte Carlo simulations

of an charged solution in the NV T ensemble using Metropolis algorithm [5]. To efficiently sample

the phase space we use both short and long displacement moves [3, 10]. The effective ionic radii

are set to rc = 2 Å. The Bjerrum length, defined as q2β/ǫw, where β is the inverse thermal energy

and q is the proton charge, is set to 7.2 Å, typical value for water at room temperature. The
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Figure 14: CPU time to perform 106 energy updates as a function of the number of particles in

the system. The distance between the polarizable plates is L = 10Å, with γ = 0.95. The Bjerrum

length was set to λB = 14.5Å, the superficial charge to σ = −0.12C/m2 and ionic radius to 2Å.

τ0 is the CPU time to perform 106 energy updates.

system relaxes to equilibrium in 1×106 Monte Carlo steps. The ionic density profiles are obtained

using 1× 105 uncorrelated samples.

In Fig. 12 we show the density profile of trivalent counterions confined between charged

dielectric surfaces of γ = 0.95. The confining surfaces are separated by a distance L = 40 Å.

The number of counterions is Nc = 100 and the surfaces are equally charged with charge density

−0.05 C/m2. We see a strong repulsion of ions from the interface produced by the induced surface

charge. This result is in agreement with an earlier image charge algorithm [28]. However, the

present method is an order of magnitude more efficient.

In Fig. 13 we show the density profiles of cations and anions of a dissolved 3:1 electrolyte

at concentration 0.35 M, confined by grounded metal electrodes, γ = −1, separated by distance

L = 30 Å.Now, instead of the repulsion of the previous case, we see the expected attraction of

charges to the metal electrodes. This effect can be understood considering the image charges of

opposite sign induced inside the electrodes.

Finally, in Fig. 14 we compare the characteristic central processing unit (CPU) times of our

simulation method with a standard implementation of Lekner Summation which does not account

for polarization [17]. We see that for reasonably large system sizes, Lekner Summation is at least

an order of magnitude slower than our method. Furthermore, for large Nc we see that even

for systems with polarization our method remains an order of magnitude faster than Lekner
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Figure 15: Representation of the confined system. The walls are polarizable. Only the first two

replicas in x̂xx direction of the simulation cell are shown.

Summation without polarization.

Seeking completeness, we write down the energy for a periodic system of N particles confined

between surfaces with different dielectric discontinuities. The system is depicted in Fig. 15. The

algorithm to obtain the equation is the same as described above and the polarization energy

is also decoupled from the ion-ion interaction. Nonetheless, there will be a position dependent

renormalization term for γ1, γ2 ∈ [−1, 1]. We note that if γ1 = γ2 = ∓1 the Uγ term is already

calculated. Finally we have

Up = Uγ +
π

L2
dǫw

∑

mmm6=0

1

k(1− γ1γ2e−2kL)
×

{γ1(f1(mmm)2 + f2(mmm)2) + e−2kLγ2
(

f3(mmm)2 + f4(mmm)2
)

+ 2γ1γ2e
−2kL[f3(mmm)f1(mmm) + f2(mmm)f4(mmm)]} ,

(4.27)

where Uγ arises from the term mmm = 000 and assumes the shape

Uγ =
2πQtMz

L2
dǫw

γ1 − γ2
1− γ1γ2

. (4.28)

As required, for γ1 = γ2 = γ all equations reduce to known results.
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5 Conclusions

In this Thesis we derived algorithms to computer simulate confined charged fluids in a quasi

bi-dimensional geometry. We first showed a care full deduction of 3d Ewald Summation for bulk

systems, with special attention to the kkk = 000 term. This term, though discussed in literature,

lacked a proper formal mathematical analyzes. We showed that, contrary to Yeh and Berkowitz,

there are geometry dependent terms even for bulk systems. However, on practice, this term

seems to have no effect on the averaging over the canonical function. Then we took the limit

of bulk to slab geometry and calculated the energy formulæ to perform simulations. We were

able to gain considerable computational time when we treated charged walls as external linear

potentials. This was possible because the transverse fields of the replicated plates cancel out in

the main simulation box, remaining just a simple linear term for the interaction ion-plates. Also,

our formalism can handle non-neutral systems. We point that our method can be made faster by

adopting Particle-Particle Particle-Mesh approaches [11,12,14,15].

We then have presented a new method to simulate charged systems confined by metal elec-

trodes. Our algorithm was constructed using periodic Green functions. Also, the potential in the

periodic dimensions was screened by the induced charges at the walls, allowing the use of just a

few replicas for Monte Carlo simulations. The main advantage of the method is that to calculate

the induced charges at boundaries a simple linear equation must be solved, in contrast with very

computationally expensive methods of energy minimizations. As a demonstration of the utility of

the recipe we applied it for electrolytes and room temperature ionic liquids, considering a Coulom-

bic lattice gas. Our simple model captured the complex transition of the capacitance shape that

is a signature of such systems. In future work we will apply this method with the support of

optimal sampling methods, like parallel-tempering [93] or generalized cluster algorithms [94], to

simulate ionic liquids in the continuum limit.

Finally, we have presented an efficient new method for simulating Coulomb systems confined

by general polarizable walls. We solved the Poisson Equation with the periodic eigenfunctions of

the Laplace operator. The result was a periodic Green function for the potential of the system.

We showed that we can split the energy into contributions due to direct Coulomb interactions

and due to polarization effects. The former can be computed using already developed methods,

specially the one shown in previous Chapter. The latter was written in a conventional shape so

each Monte Carlo trial movement is cheap computationally speaking. This way, a recalculation of

all the energetic contribution at each step is avoided, demonstrating the rapid characteristic of our

method. The results of the new simulation method was compared to previous approaches [28,74]

and lead to exactly same results. Finally, we noted that our calculations are easily extended for

34



systems with three dielectric media.
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