
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

LEONARDO RICHTER BAYS

Virtual Network Embedding in
Software-Defined Networks

Thesis presented in partial fulfillment
of the requirements for the degree of
Doctor of Computer Science

Advisor: Prof. Dr. Luciano Paschoal Gaspary

Porto Alegre
April 2018

CIP — CATALOGING-IN-PUBLICATION

Bays, Leonardo Richter

Virtual Network Embedding in
Software-Defined Networks / Leonardo Richter Bays. –
Porto Alegre: PPGC da UFRGS, 2018.

111 f.: il.

Thesis (Ph.D.) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2018. Advisor: Luciano Paschoal Gaspary.

1. Network Virtualization. 2. Virtual Network Embedding.
3. Software-Defined Networking. 4. Privacy. I. Gaspary, Luciano
Paschoal. II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Rui Vicente Oppermann
Vice-Reitor: Profa. Jane Fraga Tutikian
Pró-Reitor de Pós-Graduação: Prof. Celso Giannetti Loureiro Chaves
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do PPGC: Prof. João Luiz Dihl Comba
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“But someday you will notice

on those shoulders of yours

there are wings to guide you

to the far-off future.”

— NEKO OIKAWA

AGRADECIMENTOS / ACKNOWLEDGMENTS

Due to the need to thank people from all sorts of different places, I will be mixing

English and Portuguese here. English sections, such as this one, are written in italics.

Agradeço primeiramente à minha família, por toda a ajuda e todo o apoio que

recebi ao longo da minha vida. Agradeço, também, aos amigos que, de uma forma ou de

outra, me deram forças para continuar seguindo meu caminho.

Agradeço aos colegas e amigos de graduação, mestrado e doutorado, em especial

aos colegas de laboratório ao longo de todos esses anos. Nossa convivência tornou essa

jornada muito mais agradável, e a troca de experiências foi fundamental para o desen-

volvimento desse trabalho.

Agradeço aos professores da UFRGS e do Unilasalle Canoas com quem tive o

privilégio de trabalhar – em especial aos professores Luciano Gaspary, Marinho Barcellos,

Luciana Buriol, Lisandro Granville, Mozart Siqueira, Gaspare Bruno e Marcos Barreto.

A orientação e o apoio que recebi foram imprescindíveis para o meu crescimento pessoal,

minha formação como pesquisador e, além disso, para garantir a qualidade desse trabalho.

Agradeço, ainda, à equipe de técnicos administrativos do Instituto de Informática

da UFRGS, que desempenham papeis fundamentais para garantir a excelência do mesmo

em diversos aspectos.

I would also like to thank Prof. Raouf Boutaba, who provided me with an amazing

and unique opportunity for personal and professional growth, as well as my colleagues

and friends from UWaterloo, who not only welcomed me but also provided invaluable

insights on my research.

Last, but not least, I would like to thank my distant friends – some of whom I’ve

had the privilege to meet in person within the last few years. You have become a big part

of my life, and I’m not sure where I would be right now without you. Thank you for your

friendship, your support, and the many laughs we’ve had over the years, and I hope we

stay in touch for many more to come – both remotely and in person whenever possible.

ABSTRACT

Research on network virtualization has been active for a number of years, during which

a number of virtual network embedding (VNE) approaches have been proposed. These

approaches, however, neglect important operational requirements imposed by the underly-

ing virtualization platforms. In the case of SDN/OpenFlow-based virtualization, a crucial

example of an operational requirement is the availability of enough memory space for

storing flow rules in OpenFlow devices. Due to these circumstances, we advocate that

VNE must be performed with some degree of knowledge of the underlying physical net-

works, otherwise the deployment may suffer from unpredictable or even unsatisfactory

performance. Considering SDN/OpenFlow-based physical networks as an important vir-

tualization scenario, we propose a framework based on VNE and OpenFlow coordination

for proper deployment of virtual networks (VNs). The proposed approach unfolds in the

following main contributions:

• a virtual infrastructure abstraction that allows a service provider to represent the

details of his/her VN requirements in a comprehensive manner;

• a privacy-aware compiler that is able to preprocess this detailed VN request in order

to obfuscate sensitive information and derive computable operational requirements;

• a model for embedding requested VNs that aims at maximizing their feasibility at

the physical level.

Results obtained through an evaluation of our framework demonstrate that taking such op-

erational requirements into account, as well as accurately assessing them, is of paramount

importance to ensure the “health” of VNs hosted on top of the virtualization platform.

Keywords: Network Virtualization. Virtual Network Embedding. Software-Defined Net-

working. Privacy.

Alocação de Redes Virtuais em Redes Definidas por Software

RESUMO

Pesquisas acadêmicas em virtualização de redes vêm sendo realizadas durante diversos

anos, nos quais diferentes abordagens de alocação de redes virtuais foram propostas. Tais

abordagens, no entanto, negligenciam requisitos operacionais importantes impostos por

plataformas de virtualização. No caso de virtualização baseada em SDN/OpenFlow, um

exemplo fundamental de tais requisitos operacionais é a disponibilidade de espaço de

memória para armazenar regras em dispositivos OpenFlow. Diante dessas circunstân-

cias, argumentamos que a alocação de redes virtuais deve ser realizada com certo grau de

conhecimento sobre infraestruturas físicas; caso contrário, após instanciadas, tais redes

podem sofrer instabilidade ou desempenho insatisfatório. Considerando redes físicas ba-

seadas em SDN/OpenFlow como um cenário importante de virtualização, propõe-se um

arcabouço baseado na coordenação entre a alocação de redes virtuais e redes OpenFlow

para realizar a instanciação de redes virtuais de forma adequada. A abordagem proposta

desdobra-se nas seguintes contribuições principais:

• uma abstração de infraestruturas virtuais que permite que um requisitante represente

os detalhes de seus requerimentos de rede de maneira aprofundada;

• um compilador ciente de privacidade que é capaz de pré-processar requisições com

tal grau de detalhamento, ofuscando informações sensíveis e derivando requisitos

operacionais computáveis;

• um modelo para a alocação de redes virtuais que visa a maximizar a viabilidade no

nível físico.

Resultados obtidos por meio de uma avaliação da nossa abordagem evidenciam que con-

siderar tais requisitos operacionais, bem como computá-los de forma precisa, é imprescin-

dível para garantir a “saúde” das redes virtuais hospedadas na plataforma de virtualização

considerada.

Palavras-chave: Virtualização de Redes, Alocação de Redes Virtuais, Redes Definidas

por Software, Privacidade.

LIST OF ABBREVIATIONS AND ACRONYMS

CAPEX Capital Expenditure

OPEX Operating Expense

SDN Software-Defined Network

VN Virtual Network

VNE Virtual Network Embedding

CPU Central Processing Unit

SLA Service-Level Agreement

InP Infrastructure Provider

QoS Quality of Service

ONF Open Networking Foundation

TCAM Ternary Content-Addressable Memory

RAM Random-Access Memory

MAC Media Access Control

UDP User Datagram Protocol

IP Internet Protocol

VLAN Virtual Local Area Network

VPN Virtual Private Network

LLDP Link Layer Discovery Protocol

OS3E Internet2 Open Science, Scholarship and Services Exchange network

TIG Tenant Infrastructure Graph

PAC Privacy-Aware Compiler

DSCP Differentiated Services Code Point

ILP Integer Linear Programming

MIP Mixed Integer Programming

LIST OF FIGURES

Figure 1.1 Example of mappings generated by a standard VNE approach that ex-
ceed the flow table capacity of physical devices...13

Figure 2.1 Overview of the OpenFlow architecture..19
Figure 2.2 Main components of an OpenFlow switch. ...21
Figure 2.3 Network virtualization model, denoting a scenario with multiple physi-

cal substrates and virtual networks. ..25

Figure 4.1 Multi-tenant OpenFlow/SDN-based network virtualization model con-
sidered in our approach...36

Figure 4.2 Overview of our proposed approach, depicting its main elements and
the information flow between them. ...37

Figure 4.3 Tenant Infrastructure Graph representing elements connected to a VN
and the communication patterns among them. ...38

Figure 4.4 Possible outputs of the Privacy-aware Compiler for a given TIG.40
Figure 4.5 Overall acceptance rate in all experiments. ...48
Figure 4.6 Acceptance rate of requests per TIG type in all experiments.49
Figure 4.7 Number of flow rules exceeding the capacity of physical routers.51

Figure 5.1 Multi-tenant OpenFlow/SDN-based network virtualization model con-
sidered in this thesis. Routers are represented as circles, while virtual con-
trollers and physical machines (which may host hypervisors or virtual con-
trollers) are represented as squares. ..53

Figure 5.2 Overview of our architecture, depicting its main elements and the infor-
mation flow between them. ...63

Figure 5.3 Example of a Tenant Infrastructure Graph, depicting all elements in-
cluded in it prior to preprocessing by the PAC. ..64

Figure 5.4 VN request generated by the PAC after processing a given TIG...................67
Figure 5.5 Acceptance rate of VN requests in each evaluation scenario.71
Figure 5.6 Level of constraint flexibilization effectively achieved in each experiment..72

LIST OF TABLES

Table 2.1 OpenFlow matching fields...22
Table 2.2 OpenFlow actions..23
Table 2.3 Example of flow table entries that may be installed on an OpenFlow device. 24
Table 2.4 Virtualization techniques...26
Table 2.5 SDN-based network virtualization platforms and the features they support...28

Table 3.1 Summary of traditional VNE approaches. ..31
Table 3.2 Summary of SDN-oriented VNE approaches. ..33

Table 4.1 Symbols used in this model...42

Table 5.1 Symbols used in this model...57
Table 5.2 Variable VN requirements in “lower cost” experiments.70
Table 5.3 Variable VN requirements in “higher cost” experiments.70
Table 5.4 Time to reach the optimal solution in each scenario (in seconds)...................72

CONTENTS

1 INTRODUCTION...11
1.1 Problem Statement..12
1.2 Hypothesis..15
1.3 Goals and Contributions ..15
1.4 Organization..16
2 BACKGROUND..18
2.1 Software-Defined Networking and OpenFlow ...18
2.2 Network Virtualization...24
3 STATE OF THE ART...29
3.1 Traditional VNE Approaches...29
3.2 SDN-Oriented VNE Approaches ...32
3.3 Discussion ..34
4 VIRTUAL NETWORK EMBEDDING WITH FLOW-RELATED OPERA-

TIONAL CONSTRAINTS..35
4.1 Multi-tenant Infrastructure Model and Network Virtualization Paradigm

Considered ..35
4.2 Overview of our Proposed VNE and SDN Coordination Approach36
4.3 Specification of Infrastructure Resources...37
4.3.1 Tenant Infrastructure Graph (TIG) – A Detailed Abstraction of a Virtual Net-

work and its Communication Patterns ...37
4.3.2 Privacy-aware Compiler...39
4.4 SDN/OpenFlow-aware Embedder ...41
4.5 Evaluation..45
4.5.1 Workloads ..46
4.5.2 Results..47
5 VIRTUAL NETWORK EMBEDDING WITH A RICH SET OF OPERA-

TIONAL CONSTRAINTS..52
5.1 SDN/OpenFlow-related Operational Constraints..52
5.2 Mitigating Solution Space Reduction..55
5.3 SDN/OpenFlow-aware Embedder ...56
5.4 Overarching Framework..63
5.5 Evaluation..69
5.5.1 Workloads ..69
5.5.2 Results..70
6 FINAL CONSIDERATIONS ...74
6.1 Conclusions..74
6.2 Future Work ..77
REFERENCES...79
APPENDIX A – PUBLISHED PAPER – JISA, 2015 ...82
APPENDIX B – PUBLISHED PAPER – NOMS, 2016 ..102

11

1 INTRODUCTION

Network virtualization has emerged in recent years as a promising technique for

dealing with the complexity and dynamic requirements of today’s networks. It enables

the instantiation of virtual networks with arbitrary topologies, policies, and capacities as

well as the dynamic scaling of these networks in order to cope with high variability of

demand. This, in turn, allows network providers to make better use of their physical

resources, potentially reducing their CAPEX/OPEX expenditures. The provisioning of

network virtualization as a service is expected to be implemented in over 50% of networks

between 2021 and 2023, primarily driven by data center networks and large enterprise

business networks. (COMMISSION, 2017)

The need for higher adaptability and scalability in network environments has also

given rise to the concept of network programmability. Software-Defined Networking

(SDN) enables such programmability by decoupling the data and control planes of the

network and logically centralizing the control plane. This centralized control enables

the creation of algorithmic solutions for dynamic network management and provides a

favorable environment for the instantiation of virtual networks.

Research on network virtualization has been active for a number of years. During

this period, several approaches for embedding VNs on top of physical infrastructures1

have been proposed. However, with few exceptions, these approaches tend to limit their

scope to generic VN requirements, such as CPU, memory, and bandwidth guarantees, as

well as location constraints. Some approaches consider additional aspects such as virtual

router image transfer and instantiation overheads, network survivability, or communica-

tion security. In contrast, relevant operational requirements related to the instantiation

of VNs on different virtualization platforms are typically neglected (either fully or par-

tially – in most cases, the former). This simplification enables the streamlining of the

optimization models and heuristics used in these approaches. Moreover, it renders them

generic enough to be applied to a number of different scenarios. However, by not tak-

ing into account operational requirements of the underlying virtualization platforms, the

mappings produced by these VNE approaches may (a) not be feasible in practice, (b) be

unable to properly fulfill SLA (Service Level Agreement) requirements, or (c) fail to use

infrastructure resources in an efficient manner. In this work, we focus on maximizing

the feasibility of VNE mappings on a multi-tenant, SDN/OpenFlow-based network en-

1Throughout this work, the expressions physical infrastructure, physical network, and physical substrate
are used interchangeably.

12

vironment so as not to put at risk satisfactory performance and/or network predictability

of embedded VNs. Although we focus mainly on OpenFlow-based SDN networks, we

consider that many of the proposed concepts and mechanisms could be extended to other

implementations of SDN.

1.1 Problem Statement

Software-Defined Networking (SDN) offers a promising platform for network vir-

tualization. In addition to slicing physical resources among customers (SHERWOOD et

al., 2009; BOZAKOV; PAPADIMITRIOU, 2012; CORIN et al., 2012; SALVADORI et

al., 2011; DRUTSKOY; KELLER; REXFORD, 2013; AL-SHABIBI et al., 2014), SDN-

based environments provide abstractions that allow different virtualization functional-

ity, including the instantiation of arbitrary virtual topologies (BOZAKOV; PAPADIM-

ITRIOU, 2012; CORIN et al., 2012; SALVADORI et al., 2011; DRUTSKOY; KELLER;

REXFORD, 2013; AL-SHABIBI et al., 2014) and the use of overlapping address spaces

(SALVADORI et al., 2011; DRUTSKOY; KELLER; REXFORD, 2013; AL-SHABIBI et

al., 2014).

In the case of SDN-based virtualization, there are a number of operational re-

quirements that may render VNE-provided mappings inadequate in real environments.

In the following paragraphs, we provide an overview of what we consider operational

constraints in such environments.

Flow table overflow. A crucial example of an operational requirement that may

render VNE-provided mappings inadequate in real SDN environments is the unavailabil-

ity of enough memory space for storing flow rules in OpenFlow devices. If this critical

issue is not handled by the VNE algorithm, OpenFlow devices may not be able to accom-

modate all flow rules required by the virtual routers assigned to them. As a consequence,

these devices would need to frequently contact the controller in order to handle incoming

packets. High rates of controller intervention, in turn, could hinder network performance

predictability and potentially render the multi-tenant environment unstable.

Figure 1.1 depicts an example of mappings that would be considered valid by a

standard VNE approach but could ultimately lead to performance issues in practice. In

this example, three VN requests (VN1–3) are embedded on top of a physical network. In

this example, physical routers support up to 4,000 flow rules each, while routers in each

VN request require either 2,000 or 3,000 flow rules to be installed on the physical routers

13

hosting them. Moreover, a number of flow rules must also be installed on “auxiliary

routers” – i.e., routers that are not part of the VN request directly, but are necessary in

order to create physical paths to host virtual links between such routers. As one can

observe, the computed mappings exceed the capacity of some of the physical routers –

namely, PR2 (which is hosting virtual routers B and D), PR4 (hosting virtual router F and

an auxiliary router in the path between virtual routers B and C), and PR5 (hosting virtual

routers E and H).

Figure 1.1: Example of mappings generated by a standard VNE approach that exceed the
flow table capacity of physical devices.

VN1 VN2 VN3

Physical Network

2000

3000 3000

2000

2000 3000

2000

3000 2000

2000 2000

3000

3000

2000
3000

2000

2000
3000
3000

A

B C

D

E F

G

H I

A B

C F

D

E H

I

G

PR1 PR2

PR3 PR4

PR6

PR7
PR5

The example illustrated above not only underscores that VNE must be performed

with some knowledge of the underlying physical networks but also sheds light to the

importance of going further in terms of expressing what a VN needs from the physical

network. Applications running on top of VNs have distinct traffic patterns and are often

subject to different policies or network functions (e.g., load balancing, access control, or

deep packet inspection). We advocate that the specification of the expected behavior of a

VN, translated into an estimate of flow table usage and communicated to the infrastruc-

ture provider (InP), would potentially lead to both a more accurate orchestration of VN

embeddings and, ultimately, an overall better quality of service.

Meter table overflow. Meter tables provide QoS-related operations such as rate

limiting, which is crucial in a multi-tenant environment. If the meter table of a physical

device runs out of space, some flows may be temporarily forwarded while there are no

14

specific rules to determine at which rate they should be forwarded. The consequences

of this range from overloading physical links to breaking SLA requirements regarding

QoS. Much like flow tables, the available space in meter tables of physical devices must

be taken into account during the process of virtual network embedding, ensuring enough

space is reserved for necessary table entries.

Virtual controller allocation. Each OpenFlow network requires at least one con-

troller, which – as previously explained – centralizes all control plane operations. The

controller manages all forwarding devices in the network, e.g., instructing devices to add

or remove entries from their flow and meter tables. As such, this entity must be accounted

for in the mapping process. Moreover, reserving sufficient resources to the controller

software is crucial for ensuring the network will accurately follow its intended behavior

as well as to prevent performance degradation.

Channel allocation for in-band switch–controller communication. In order to

ensure all virtual routers of a VN are reachable by its virtual controller, it is necessary to

establish dedicated communication channels between these entities. Failing to properly

consider this communication may lead to saturation of physical links as controllers may

periodically need to perform bandwidth-heavy operations. Moreover, one cannot assume

these communication channels are allocated in an out of band manner, as this would not

be feasible in real physical networks.

Physical hypervisor positioning. In order to manage the virtual routers of a given

VN, the virtual controller must send and receive data through a physical hypervisor. In

other words, the communication channels between a virtual controller and the routers

it manages must always pass through a hypervisor. By not considering the position of

physical hypervisors in the topology, virtual controllers may be placed near the virtual

routers they need to manage but far from a hypervisor. This, in turn, would make switch–

controller communication channels exceedingly long, consuming a significantly higher

amount of bandwidth than necessary. Therefore, taking into account the position of phys-

ical hypervisors in the infrastructure is of paramount importance in order to efficiently

establish these paths.

Taking into account all aforementioned issues at the same time, however, intro-

duces a large set of constraints to the VNE strategy. This, by itself, constitutes another

problem, as the large number of constraints significantly reduces the solution space. In

other words, the number of feasible mappings the VNE model can produce is severely

limited. This, in turn, would likely lead to a significant increase in rejection rates of VN

15

requests, further exacerbated by other known issues in the field of VNE such as resource

fragmentation (LUIZELLI et al., 2016). As such, one must be aware of this additional,

important challenge when devising a solution that encompasses the aforementioned oper-

ational constraints.

1.2 Hypothesis

The hypothesis we formulate as the fundamental research issue to guide this Ph.D.

research work is the following: In order to provide network predictability, efficient re-

source usage, and quality of service, it is necessary to coordinate virtual network embed-

ding and operational constraints found in SDN-based networks. Traditional VNE propos-

als disregard such operational constraints subjecting SDN environments to unnecessary

resource depletion, potentially threatening the proper operation of VNs hosted on top of

it. The objective of this research is to confirm this hypothesis and answer the research

questions presented below.

Research Question 1. When performing virtual network embedding while disre-

garding operational constraints, how significant is the negative impact on predictability

and quality of service (e.g., performance degradation due to controller intervention)?

Research Question 2. Once coordination between virtual network embedding

and software-defined networks is achieved, what are the quantifiable gains that can be

attained?

Research Question 3. Is the cost to be paid for VNE/SDN coordination accept-

able in terms of solution space reduction, computing power, and timeliness?

1.3 Goals and Contributions

Our approach consists of a VNE framework that is aware of operational require-

ments related to the instantiation of VNs on top of an SDN/OpenFlow environment. The

central idea of the proposed approach is the specification, by VN requesters, of VN re-

quests enriched with information about how (to be) provisioned networks will be used

(e.g., important application flows, network functions/policies to which packets will be

subjected to, etc.). These VN specifications are then used to derive operational require-

ments, still at the customer’s end. The resulting specifications – reflecting requesters

16

willingness (or not) to disclose information about the VNs – are sent to the InP, which

will ultimately correctly embed the requested VNs favoring incoming requests with well

defined operational requirements. We consider a number of pieces of information that, if

known in advance by the InP, can lead to improved allocation of network resources and, in

turn, to improved network utilization. The main contributions of the thesis are therefore

as follows.

• A deep understanding of the influence of SDN operational constraints on the pro-

cess of virtual network embedding and the “health” of hosted VNs and the multi-

tenant environment as a whole.

• An abstraction model for expressing requirements related to internal VN policies

and traffic patterns.

• A strategy for accurately deriving the operational requirements associated with each

particular VN based on the aforementioned abstraction model.

• A VNE method that leverages this computed information in order to properly and

efficiently allocate resources in an SDN-based virtualization environment.

• A strategy for mitigating VN rejection based on customer-controlled flexibilization

of VN requirements.

1.4 Organization

The remainder of this thesis is organized as follows.

• Chapter 2 presents background information that we consider a prerequisite for fully

comprehending our proposal. This background review covers the topics of Sotware-

Defined Networking and its main implementation, OpenFlow, as well as network

virtualization.

• Chapter 3 discusses state-of-the-art VNE proposals, including general purpose VNE

approaches and SDN-oriented ones.

• Chapter 4 describes our first step towards tackling the issue of virtual network em-

bedding on top of software-defined networks, focusing on one of the most cru-

cial operational constraints of SDN substrates – flow table overflow. Moreover, it

presents an evaluation centered around issues pertaining this particular operational

constraint.

17

• Chapter 5 presents our fully realized architecture taking into account all research

problems previously explained in this chapter. Additionally, it discusses the results

of a second round of experiments, focusing on the ability of our solution to handle

a rich set of operational constraints simultaneously.

• Chapter 6, in turn, concludes this thesis with our final considerations and directions

for future work.

18

2 BACKGROUND

In this chapter, we provide a detailed background of the area of Software-Defined

Networking and the OpenFlow protocol. Afterwards, we review the main concepts related

to network virtualization. The structure of this chapter is inspired by that of a journal

paper published early during the Ph.D. course (BAYS et al., 2015).

2.1 Software-Defined Networking and OpenFlow

Although the SDN paradigm was conceived relatively recently, the idea of pro-

grammable networks was envisioned much longer ago, in the mid-1990s (CALVERT,

2006). The growing prevalence of the Internet as well as the development of an increas-

ingly diverse array of applications led to the necessity of developing and testing new pro-

tocols in realistic network scenarios. Driven by this need, researchers started to explore

ways to open up network control and make networks more easily programmable.

Active networking was the first major novel approach to network programmabil-

ity. The core concept behind it was the presence of a network programming interface.

This interface allowed developers to access resources on individual network nodes and

program specific functions to be applied to certain traffic passing through them. Through

this programmability, active networking aimed at keeping the network core simple and

lowering the barrier to innovation.

Ultimately, active networking failed to achieve widespread adoption. Feamster et

al. (FEAMSTER; REXFORD; ZEGURA, 2014) argue that this failure may have been

due to “the lack of an immediately compelling problem or a clear path to deployment”. In

spite of this, active networking paved the way for subsequent efforts on achieving network

programmability as well as related concepts such as network virtualization.

Fundamentals of SDN and OpenFlow. Software-Defined Networking follows

the foundation laid out by active networking, albeit focusing on a narrower, more stream-

lined set of problems to solve. SDN employs the concept of plane separation in order

to address the issues of routing and configuration management. The control plane – re-

sponsible for making routing decisions based on network policies – is decoupled from

the data plane – which simply forwards traffic according to decisions made by the con-

trol plane. Through this decoupling, SDN enables network intelligence and state to be

logically centralized, while abstracting low level network infrastructure information.

19

The OpenFlow protocol is the most prominent and widely adopted implementa-

tion of the SDN paradigm. It specifies an open, well defined protocol for communication

between network devices and the logically centralized control plane, ensuring interoper-

ability with network devices manufactured by different vendors. Moreover, it formalizes

requisites that network devices must be able to fulfill, such as the set of operations they

must be able to perform on incoming traffic.

OpenFlow was conceived (and initially released) as an academic initiative from

the Stanford University (MCKEOWN et al., 2008) in 2008. Over time, interest in this

project grew beyond academia and reached big players in the areas of networking and

telecommunications. Thus, in 2011, the Open Networking Foundation1 (ONF) – an or-

ganization aimed at improving, standardizing, and promoting SDN and OpenFlow – was

formed. Development of the OpenFlow protocol has continued steadily since the creation

of the ONF, with at least four major versions released since then. Currently, the ONF

encompasses 140 member companies, including 28 startups.

Figure 2.1 presents an overview of the entities that comprise the OpenFlow archi-

tecture. This figure depicts a network of four OpenFlow-enabled devices (i.e., switches)

managed by a single OpenFlow controller. The OpenFlow switches represent the data

plane of this software-defined network, while the controller acts as the centralized con-

trol plane. The controller sends and receives information to/from each network device

through secure communication channels. OpenFlow networks may optionally employ

multiple controllers simultaneously (e.g., in order to improve performance and/or redun-

dancy). In this case, while the control plane remains logically centralized, it is physically

distributed among a number of controllers.

Figure 2.1: Overview of the OpenFlow architecture.

H

OF

OF

OF

OF

Secure
Communication

Channels

COpenFlow
Controller

OpenFlow
Switches

OpenFlow controllers. The controller provides a global view of the network

(including information regarding its topology, statistics, and events) as well as interfaces

that abstract low level network information. These features allow network administrators
1Open Networking Foundation: https://www.opennetworking.org/

20

to create high level algorithmic solutions for network management, enabling dynamic,

automated network control applications. To be more precise, these applications interface

directly with the controller, leveraging the high level information provided by it in order

to algorithmically make network management decisions. The controller itself is, in turn,

responsible for programming network devices in order to ensure they behave as intended

by the application.

Switch–controller communication follows a strict, well defined protocol. Through

this protocol, the controller is able to send messages requesting the addition, removal, or

modification of flow rules on specific OpenFlow switches. Moreover, it may periodically

request network statistics, which may be crucial for decision-making.

Channel allocation for switch–controller communication may be done in two dif-

ferent manners – “in-band” or “out of band”. In-band communication consists in using

preexisting links in the infrastructure for carrying data between switch–controller pairs.

Out of band communication assumes the presence of dedicated channels between these

pairs (as illustrated in Figure 2.1). In the stages of modeling and prototyping OpenFlow-

based solutions, it is common to assume switch–controller communication is performed

in an out of band manner and without bandwidth constraints. Such assumptions can be ob-

served in mathematical models as well as OpenFlow emulators such as Mininet (LANTZ;

HELLER; MCKEOWN, 2010). As will be explained later, these assumptions are not in

line with real network virtualization environments.

Due to the presence of a standardized switch–controller communication protocol,

multiple implementations of OpenFlow controllers exist. These typically differ in terms

of the programming language they allow controller applications to be built in – such as

Python (e.g., POX2 and Ryu 3) or Java (e.g., Beacon4 and Floodlight5) – and/or their fea-

ture sets – such as enabling the federation of multiple controllers (e.g., Flowvisor (SHER-

WOOD et al., 2009)) or providing capabilities for network virtualization (e.g., RouteFlow

(NASCIMENTO et al., 2011) and OpenVirteX (AL-SHABIBI et al., 2014)).

OpenFlow switches. In contrast with traditional network paradigms and as just

mentioned, SDN-enabled network devices are limited to simple data processing and for-

warding operations. The operations to be applied to an incoming packet depend on how

a particular device is programmed by the controller. OpenFlow employs the concept of

2POX OpenFlow Controller: https://openflow.stanford.edu/display/ONL/POX+Wiki
3Ryu SDN Framework: https://osrg.github.io/ryu/
4Beacon OpenFlow Controller: https://openflow.stanford.edu/display/Beacon/Home
5Floodlight OpenFlow Controller: http://www.projectfloodlight.org/floodlight/

21

“traffic flows” in order to classify and treat network packets, allowing varying degrees of

granularity. A flow is composed of a number of matching fields and one or more actions.

Matching fields are used to distinguish among different network flows and typically rep-

resent packet header fields, such as source, destination, and port. Actions, in turn, define

the operations to be performed on packets that match the described flow. In addition to

forwarding packets through specific network interfaces on a switch, these actions also al-

low the manipulation of packet header fields (e.g., changing the source or destination IP

or MAC address). Tables 2.1 and 2.2 list all matching fields and actions available in the

latest publicly available version of the OpenFlow protocol (1.5.1)6.

Figure 2.2 depicts the main elements within each OpenFlow device. Switches

store information regarding flow matching fields and actions into flow tables. Whenever a

packet is received, the device attempts to find a flow table entry that matches its character-

istics. If a match is found, the device applies the operations defined in the “actions” field

of the matching entry. If there are no matches, the switch may contact the controller in

order to determine which action(s) should be taken. Actions specified in flow tables may

direct packets for further processing in a different flow table or to group actions (which

are stored in the group table). OpenFlow devices also keep track of both individual and

aggregate statistics regarding traffic that passes through them. The meter table is used to

measure packet rates and implement QoS-related operations such as rate limiting.

Figure 2.2: Main components of an OpenFlow switch.
OpenFlow Switch

TCAM

RAM

Flow
Table

Flow
Table

Flow
Table

Meter
Table

Group
Table

Flow tables are often distributed between two different types of memory – namely,

TCAM (Ternary Content-Addressable Memory) and RAM (Random-Access Memory).

TCAMs are highly suited for flow table operations, as they allow parallel lookups with

6As of the writing of this thesis, a more recent version, OpenFlow 1.6, is available – however, its
specifications are only available to members of the ONF and not to the general public.

22

Table 2.1: OpenFlow matching fields.
Field Description Introduced in

IN_PORT Switch input port. v0.8
IN_PHY_PORT Switch physical input port. v1.2
METADATA Metadata passed between tables. v1.1
ETH_DST Ethernet destination address. v0.8
ETH_SRC Ethernet source address. v0.8
ETH_TYPE Ethernet frame type. v0.8
VLAN_VID VLAN id. v0.8
VLAN_PCP VLAN priority. v0.9
IP_DSCP IP DSCP (6 bits in ToS field). v1.0
IP_ECN IP ECN (2 bits in ToS field). v1.2
IP_PROTO IP protocol. v0.8
IPV4_SRC IPv4 source address. v0.8
IPV4_DST IPv4 destination address. v0.8
TCP_SRC TCP source port. v0.8 (v1.2)7

TCP_DST TCP destination port. v0.8 (v1.2)7

UDP_SRC UDP source port. v0.8 (v1.2)7

UDP_DST UDP destination port. v0.8 (v1.2)7

SCTP_SRC SCTP source port. v1.1 (v1.2)7

SCTP_DST SCTP destination port. v1.1 (v1.2)7

ICMPV4_TYPE ICMP type. v1.2
ICMPV4_CODE ICMP code. v1.2
ARP_OP ARP opcode. v1.2
ARP_SPA ARP source IPv4 address. v1.2
ARP_TPA ARP target IPv4 address. v1.2
ARP_SHA ARP source hardware address. v1.2
ARP_THA ARP target hardware address. v1.2
IPV6_SRC IPv6 source address. v1.2
IPV6_DST IPv6 destination address. v1.2
IPV6_FLABEL IPv6 Flow Label. v1.2
ICMPV6_TYPE ICMPv6 type. v1.2
ICMPV6_CODE ICMPv6 code. v1.2
IPV6_ND_TARGET Target address for ND. v1.2
IPV6_ND_SLL Source link-layer for ND. v1.2
IPV6_ND_TLL Target link-layer for ND. v1.2
MPLS_LABEL MPLS label. v1.1
MPLS_TC MPLS TC. v1.1
MPLS_BOS MPLS BoS bit. v1.3
PBB_ISID PBB I-SID. v1.3
TUNNEL_ID Logical Port Metadata. v1.3
IPV6_EXTHDR IPv6 Extension Header pseudo-field. v1.3
PBB_UCA PBB UCA header field. v1.4
TCP_FLAGS TCP flags. v1.5
ACTSET_OUTPUT Output port from action set metadata. v1.5
PACKET_TYPE Packet type value. v1.5

very high performance. Traditional RAM memory, in turn, offers limited performance

as lookups must be performed in a sequential manner. In spite of their performance ad-

vantage, TCAMs are 400x more expensive (LIAO, 2012) and consume 100x more power

(SPITZNAGEL; TAYLOR; TURNER, 2003) per megabit than RAM. Therefore, TCAM

space tends to be extremely limited in OpenFlow devices, adding to the necessity of prop-

erly managing flow tables and keeping track of table occupation.

Due to the magnitude and importance of the issue of properly managing flow ta-

bles, research in this area is currently highly active. Neves et al. (NEVES et al., 2016)

provide a detailed look at these strategies, which the authors classify as “spatial” and

“temporal”. Spatial strategies employ techniques such as aggregating multiple flow rules

7Originally, these matching fields were grouped together as TP_SRC and TP_DST, which matched

23

Table 2.2: OpenFlow actions.
Action Description Introduced in

OUTPUT Output to switch port. v0.8
SET_VLAN_VID Set the 802.1q VLAN id. v0.8
SET_VLAN_PCP Set the 802.1q priority. v0.8
STRIP_VLAN Strip the 802.1q header. v0.8
SET_DL_SRC Ethernet source address. v0.8
SET_DL_DST Ethernet destination address. v0.8
SET_NW_SRC IP source address. v0.8
SET_NW_DST IP destination address. v0.8
SET_TP_SRC TCP/UDP source port. v0.8
SET_TP_DST TCP/UDP destination port. v0.8
COPY_TTL_OUT Copy TTL "outwards" – from next-to-outermost to outermost v1.1
COPY_TTL_IN Copy TTL "inwards" – from outermost to next-to-outermost v1.1
SET_MPLS_TTL MPLS TTL v1.1
DEC_MPLS_TTL Decrement MPLS TTL v1.1
PUSH_VLAN Push a new VLAN tag v1.1
POP_VLAN Pop the outer VLAN tag v1.1
PUSH_MPLS Push a new MPLS tag v1.1
POP_MPLS Pop the outer MPLS tag v1.1
SET_QUEUE Set queue id when outputting to a port v1.1
GROUP Apply group. v1.1
SET_NW_TTL IP TTL. v1.1
DEC_NW_TTL Decrement IP TTL. v1.1
SET_FIELD Set a header field using OXM TLV format. v1.2
PUSH_PBB Push a new PBB service tag (I-TAG) v1.3
POP_PBB Pop the outer PBB service tag (I-TAG) v1.3
COPY_FIELD Copy value between header and register. v1.5
METER Apply meter (rate limiter) v1.5

into a smaller subset that covers a wider range of flows or distributing rules that would

be stored in a single network device among multiple ones. Temporal strategies, in con-

trast, attempt to minimize the number of rules installed in each device at any one time by

dynamically adding and removing rules as flows become active or inactive. While suc-

cessful in reducing flow table usage to an extent, both classes of strategies are based on

tradeoffs. Spatial strategies may force the use of flow rules with low granularity or hinder

network predictability, while temporal strategies may have a substantial negative impact

on network performance due to a significant increase in controller intervention.

A more detailed view of entries that may be added to a flow table is shown in Table

2.3. As previously explained, the matching fields of a flow rule are used to discriminate

network flows. In this example, rule 0 matches packets with a source MAC address that

starts with “4C:80:93”, while rule 1 matches packets with a destination IP address that

starts with “192.168”. Rule 2 matches all UDP packets (represented by the IP protocol

number 0x11). The actions associated with rules 0 and 1 forward packets through specific

physical network interfaces. As the “actions” field of rule 2 is empty, packets matching

this rule will not be forwarded (i.e., all UDP traffic will be dropped). The priority field

of the flow table is used to establish matching precedence. If a packet matches more than

source and destination ports, respectively, regardless of protocol. In version 1.2, specific matching fields
for TCP, UDP, and SCTP source and destination ports were created, deprecating the original fields.

24

one rule at the same time (e.g., rules 0 and 2), only the rule with the highest priority will

be used to treat it (in this case, rule 2).

Each rule may also have an idle timeout and/or a hard timeout. As rule 0 has an idle

timeout of 120, the switch will automatically remove this rule if no traffic belonging to

this flow is received during 120 consecutive seconds. Rule 1, in turn, has a hard timeout of

600. Therefore, it will be automatically removed 600 seconds after its creation, regardless

of the activity or inactivity of this flow. Setting both of these fields to 0 allows the creation

of permanent rules, which will only be removed if the switch is instructed to do so by the

controller (as is the case of rule 2). Managing these timeouts is a crucial part of temporal

strategies for flow rule management. Last, counter fields allow the device to keep track of

how much traffic (in terms of packets and bytes) pertaining to each flow has been received

and treated by each rule.

Table 2.3: Example of flow table entries that may be installed on an OpenFlow device.
Entry Matching Fields Actions Priority Timeouts Counter
0 ETH_SRC=4C:80:93:* OUTPUT:1 16384 idle_timeout=120 4925
1 IPV4_DST=192.168.*.* OUTPUT:2 16384 hard_timeout=600 6030
2 IP_PROTO=0x11 ∅ 32768 ∅ 1377

After presenting an overview of Software-Defined Networking, we now proceed

to a review of the area of network virtualization. This review includes a discussion on the

employment of SDN as a platform for instantiating virtual networks.

2.2 Network Virtualization

Network virtualization consists of sharing resources from physical network de-

vices (routers, switches, etc.) among different virtual networks. It allows the coexistence

of multiple, possibly heterogeneous networks, on top of a single physical infrastructure.

The basic elements of a network virtualization environment are shown in Figure 2.3. At

the physical network level, a number of autonomous systems are represented by inter-

connected network substrates (i.e., substrates A, B, and C). Physical network devices are

represented by nodes supporting virtualization technologies. Virtual network topologies

(VN1–3), in turn, are mapped to a subset of nodes from one or more substrates. These

topologies are composed of virtual routers, which use a portion of the resources avail-

able in physical ones, and virtual links, which are mapped to physical paths composed of

one or more physical links and their respective intermediate routers (also referred to as

25

auxiliary routers).

From the point of view of a virtual network, virtual routers and links are seen

as dedicated physical devices. However, in practice, they share physical resources with

routers and links from other virtual networks. For this reason, the virtualization technol-

ogy used to create this environment must provide an adequate level of resource isolation

in order to enable the use of network virtualization in real, large scale environments.

Figure 2.3: Network virtualization model, denoting a scenario with multiple physical
substrates and virtual networks.

VN1 VN2 VN3

Physical Network

Substrate B Substrate CSubstrate A

Over the years, different methods for instantiating virtual networks have been

used. Typical approaches include VLANs (Virtual Local Area Networks) and VPNs (Vir-

tual Private Networks). Recently, Virtual Machine Monitors and Software-Defined Net-

works have also been employed to create virtual routers and links over physical devices

and communication channels. These approaches are briefly revisited next.

Protocol-based approaches. These approaches consist of implementing a net-

work protocol that enables the distinction of virtual networks through techniques such

as tagging or tunneling. The only requirement of this kind of approach is that physical

devices (or a subset of them) support the selected protocol.

One example of protocol-based network virtualization are VLANs. VLANs con-

sist of logical partitions of a single underlying network. Devices in a VLAN communicate

with each other as if they were on the same Local Area Network, regardless of physical

location or connectivity. All frames sent through a network are tagged with their cor-

responding VLAN ID, processed by VLAN-enabled routers and forwarded as necessary

26

Table 2.4: Virtualization techniques.
Technique Description Examples
Full Virtualization The Virtual Machine Monitor em-

ulates a complete machine, based
on the underlying hardware architec-
ture. The guest Operating System
runs without any modification.

VMware Workstation, Vir-
tualBox, QEMU

Paravirtualization The Virtual Machine monitor emu-
lates a machine which is similar to
the underlying hardware, with the
addition of a hypervisor. The hy-
pervisor allows the guest Operating
System to run complex tasks directly
on non-virtualized hardware. The
guest OS must be modified in order
to take advantage of this feature.

VMware ESXi, Xen, KVM,
Hyper-V

Container-based
Virtualization

Instead of running a full Virtual Ma-
chine, this technique provides Oper-
ating System-level containers, based
on separate userspaces. In each con-
tainer, the hardware, as well as the
Operating System and its kernel, are
identical to the underlying ones.

OpenVZ, Linux VServer,
VMware ThinApp, Docker

(LAN/MAN STANDARDS COMMITTEE, 2006). As this technique is typically based

only on packet tagging, it does not provide any guarantees regarding data or resource

isolation.

Another commonly used approach is the creation of Virtual Private Networks.

VPNs are typically used to provide a secure communication channel between geograph-

ically distributed nodes. VPNs can be provided in the physical, data link, or network

layers according to the tunneling protocols being employed (ROSEN et al., 2006). As

these protocols commonly make use of cryptography to establish tunnels, most VPNs

natively provide data isolation (but not resource isolation).

Machine virtualization-based approaches. These approaches consist of creating

virtual networks by means of groups of interconnected virtual machines. Virtual Machine

Monitors are used to instantiate virtual routers, and virtual links are established between

them, regardless of physical network topology. Table 2.4 summarizes different machine

virtualization-based techniques that can be used to create virtual networks, as well as a

brief explanation and an example of each.

This alternative is remarkably flexible and relatively cheap, as it allows the use

of customized software and does not require the use of specific hardware8. Additionally,

8Machine virtualization is available for personal computers, in commonly used operating systems (e.g.,

27

machine virtualization-based approaches are typically capable of ensuring both data and

resource isolation. However, they are more demanding in terms of resource usage in

comparison to previously described protocol-based approaches.

Software-Defined Networks. As previously mentioned, SDN-based network en-

vironments may be used as platforms for the instantiation of virtual networks. Network

virtualization may be achieved at the hardware level – directly slicing the physical re-

sources of each device – or at the flow level – in which a network hypervisor manages

physical flow tables on behalf of virtual controllers. Next, we explain the specifics of

each level of virtualization, what may be achieved through them, and the tradeoffs be-

tween them.

In hardware-level virtualization, physical flow tables are sliced among a number

of tenants, who are able to directly install, remove, and modify rules. As there is no layer

between controllers and switches, this type of virtualization is very lightweight. However,

it does not offer much flexibility or isolation. Each tenant has access to all traffic being

routed through the devices it controls. Moreover, conflicts may occur if tenants attempt

to, for example, use overlapping address spaces. FlowVisor (SHERWOOD et al., 2009)

is an example of a platform that employs this type of virtualization.

In flow-level virtualization, virtual network controllers manage flow tables indi-

rectly by communicating with a network hypervisor. When a hypervisor receives a mes-

sage from a controller, it must first translate the flow rule and only then install it on the

physical device. While this translation adds some overhead to the process of adding, re-

moving, or modifying rules, it enables a number of features that cannot be achieved in

hardware-level virtualization (such as topology and address space virtualization, which

will be explained next). Moreover, it allows control over the number of flow rules each

tenant is allowed to install and provides isolation among different tenants.

Topology virtualization enables an SDN network virtualization platform to create

arbitrary topologies on top of physical ones. Such topologies may include, for exam-

ple, virtual links comprised of paths that traverse multiple physical links – which would

not be possible with hardware-level virtualization as the tenant would have access to the

physical routers within this path. This may be achieved through a number of different

techniques, such as VLAN encapsulation or on-the-fly manipulation of level 2 packet

header fields or Link Layer Discovery Protocol (LLDP) messages. Topology virtual-

ization is offered by a number of SDN-based virtualization technologies, such as Au-

Windows, Linux, and macOS).

28

toSlice (BOZAKOV; PAPADIMITRIOU, 2012), VeRTIGO (CORIN et al., 2012), FlowN

(DRUTSKOY; KELLER; REXFORD, 2013), ADVisor (SALVADORI et al., 2011), and

OpenVirteX (AL-SHABIBI et al., 2014).

Address space virtualization consists in allowing multiple virtual networks to use

overlapping address spaces. This may be achieved through VLAN encapsulation or by

dynamically translating overlapping virtual addresses to unique ones at the physical level.

With regards to the latter, this may be done by assigning a unique prefix to each virtual net-

work, and modifying rules and packets from each virtual network to use addresses within

its own prefix. Three of the platforms mentioned above – namely, FlowN, ADVisor, and

OpenVirteX – provide address space virtualization in addition to topology virtualization.

Table 2.5 summarizes information regarding which of the previously discussed platforms

support each of these features.

Table 2.5: SDN-based network virtualization platforms and the features they support.
Platform Topology Virtualization Address Space Virtualization
FlowVisor Not supported Not supported
AutoSlice Supported Not supported
VeRTIGO Supported Not supported
FlowN Supported Supported
ADVisor Supported Supported
OpenVirteX Supported Supported

Taking into account the network virtualization model considered in this thesis,

both topology and address space virtualization would be necessary to support the instan-

tiation of virtual networks mapped by our VNE approach. Therefore, platforms such

as FlowN, ADVisor, and OpenVirteX are more closely aligned with our work. We now

proceed to an analysis of the state of the art regarding VNE approaches in Chapter 3,

culminating in a discussion of the shortcomings of current approaches and how we intend

to address them.

29

3 STATE OF THE ART

In this chapter, we first revisit the most prominent approaches to the virtual net-

work embedding problem, highlighting the particularities of each one. We explore both

“traditional” (i.e., platform-agnostic) VNE approaches and SDN-oriented ones. After-

wards, we provide a brief discussion on the shortcomings of these approaches when con-

sidering the full deployment of VNs on an SDN substrate and how we intend to tackle

these issues.

3.1 Traditional VNE Approaches

Virtual network embedding has been a highly active area of research for a number

of years. The earliest efforts to tackle this problem were published circa 2008 and, to

this day, this extensive body of work continues to grow. Over the years, researchers

have focused on different objectives, such as improved efficiency, higher coverage of

constraints, or particular demands such as security or energy efficiency.

One of the earliest major efforts towards tackling the VNE problem was devised

by Yu et al. (YU et al., 2008). The heuristic-based VNE approach presented by the au-

thors embeds virtual routers and links in separate phases, and prioritizes VNs with largest

revenue. This approach takes into account CPU and location constraints for routers, and

bandwidth constraints for links.

Chowdhury et al. (CHOWDHURY; RAHMAN; BOUTABA, 2012) propose two

optimization models, one being a relaxed version of the other. Routers and links are em-

bedded in distinct phases; however, the authors improve upon previous work by enhancing

coordination between these two phases. This is achieved by preselecting router mappings

taking into account their location constraints in order to facilitate link mapping. Similarly

to the work of Yu et al., CPU, location, and bandwidth requirements are considered by

the proposed optimization models. Moreover, link delay is used to determine how far a

virtual router may be embedded from its preferred location.

Cheng et al. (CHENG et al., 2011) introduce the concept of “node ranking”,

in which virtual and physical nodes are ranked according to their own capacity and the

capacities of their neighbors. Two embedding algorithms are proposed, one mapping

routers and links in distinct stages while the other performs both simultaneously. The

algorithms take into account CPU and bandwidth constraints but do not include location

30

constraints.

Alkmim et al. (ALKMIM; BATISTA; FONSECA, 2013) present two VNE ap-

proaches based on optimization models. One employs a traditional Integer Linear Pro-

gramming (ILP) model, while the other employs a relaxation technique in order to reduce

running times. The authors focus on constraints related to overheads incurred when trans-

ferring and instantiating virtual router software images. As such, in addition to CPU,

location, bandwidth, and link delay, the size of virtual router images (and the memory

needed to support them), the locations in which they are stored, and the time needed to

transfer and instantiate them are also taken into account.

Bays et al. (BAYS et al., 2014) propose both an optimization model and a heuris-

tic algorithm for virtual network embedding focusing on privacy. Both approaches take

into account throughput capacity and location requirements of routers as well as link

bandwidth. Additionally, a number of security related constraints are considered, namely

which physical routers are capable of supporting the necessary security protocols, over-

heads associated with cryptographic operations, and which VNs may not share physical

resources.

Guan et al. (GUAN; CHOI; SONG, 2015) propose a VNE approach aimed at

tackling the issue of energy efficiency in data center networks. To this end, they formulate

an optimization model as well as a heuristic algorithm. The authors take into account

the energy costs of operation and migration of routers and links, in addition to CPU and

bandwidth requirements. Moreover, the proposed algorithm accounts for varying resource

demands throughout the lifecycle of each VN.

Zhang et al. (ZHANG et al., 2015) propose both an optimization model and a

heuristic approach which, similarly to the work of Guan et al., take into account en-

ergy efficiency. In addition to CPU and bandwidth requirements, these approaches also

consider location constraints. The optimization model is a multi-objective one, simulta-

neously aiming at minimizing energy consumption and maximizing profit. The heuristic

algorithm, in turn, is based on artificial immune systems.

Esposito et al. (ESPOSITO; PAOLA; MATTA, 2016) formulate a VNE algorithm

based on an auction system. Physical routers “bid” on virtual ones from incoming VN

requests, prioritizing those with highest capacity in order to maximize revenue. After a

consensus is reached regarding which virtual router is the “winner” of each auctioned

virtual node, a separate link embedding phase is carried out. No additional constraints

other than CPU and bandwidth are considered.

31

Last, Jarray et al. (JARRAY; KARMOUCH, 2015) propose an optimization model

which is also based on an auction system; however, this auction system follows a different

method of operation. In this approach, each VN requester offers a bid, which represents

how much it is willing to pay for the embedding of its VN. Additionally, in contrast to

the work of Esposito et al., router and link embedding is performed simultaneously. In

order to tackle scalability issues, the authors employ relaxation and rounding techniques

to their model. Only CPU and bandwidth requirements are taken into account.

Table 3.1: Summary of traditional VNE approaches.
Authors Objective Specific Constraints Optimization

Method
Evaluated
Topologies

Deployment
Coordination

Yu et al. Maximize
revenue

None Heuristic 100 routers, ran-
dom (GT-ITM)

No

Chowdhury
et al.

Minimize
cost, bal-
ance load

None Optimal with
relaxations

50 routers, ran-
dom (GT-ITM)

No

Cheng et al. Balance
load
(through
NodeRank)

None Heuristic 100 routers, ran-
dom (GT-ITM)

No

Alkmim et
al.

Minimize
cost

Link delay; loca-
tion, size, and time
to instantiate virtual
router images

Optimal with
relaxations

10 to 50 routers,
BA-2 model
(BRITE)

No

Bays et al. Minimize
cost

Security support and
related overheads,
non-overlapping
VNs

Optimal and
heuristic

100 and 500
routers, BA-2
model (BRITE)

No

Guan et al. Minimize
energy con-
sumption

Energy costs of op-
eration and migra-
tion of routers and
links

Optimal and
heuristic

Random num-
ber of routers,
datacenter-like
(NetworkX)

No

Zhang et al. Maximize
revenue,
minimize
energy con-
sumption

Energy costs of
operation of routers
and links

Optimal and
heuristic

50 routers, ran-
dom (GT-ITM)

No

Esposito et
al.

Maximize
revenue

None Heuristic 50 routers, BA-2
model (BRITE)

No

Jarray et al. Maximize
revenue

None Optimal 20 and 50 routers,
generated based
on geographical
data

No

Information presented thus far is summarized in Table 3.1. As one can observe,

researchers have employed a number of different objective functions to guide their ap-

proaches – although all are related in one way or another to embedding costs. Five of the

approaches presented in this subsection only take into account basic VNE-related con-

straints (CPU, bandwidth, and location), while the remaining four consider additional

32

constraints with varying degrees of specificity. Due to scalability concerns, most authors

propose heuristic methods or relaxations to their optimal approaches. Most proposals are

evaluated on physical networks with size ranging from 20 to 100, generated using tools

such as GT-ITM and BRITE. As the only exception, Jarray et al. employ topologies based

on geographical data from the United States and Europe. Last, as all VNE approaches pre-

sented thus far are platform-agnostic, none of them take into account SDN deployment

coordination.

3.2 SDN-Oriented VNE Approaches

Recently, there have been efforts towards adapting the VNE problem to cover

different aspects related to SDN/OpenFlow networks. We now proceed to a review of the

most prominent efforts in this scope.

Demirci et al. (DEMIRCI; AMMAR, 2014) focus on the issue of controller place-

ment in addition to virtual router and link mapping. The authors devise two different

embedding strategies. The first one aims at balancing the load on physical elements,

while the other aims at minimizing communication delay between virtual routers and

controllers. The authors consider bandwidth capacity constraints, in addition to controller

location requirements. Embedding is performed in an offline manner, assuming all re-

quests are known in advance.

Blenk et al. (BLENK et al., 2016) devise strategies for dealing with multiple

SDN network hypervisors. The authors propose an optimization model with four different

variations which aim at minimizing control plane latency in four different manners (i.e.,

maximum latency, average latency, average maximum latency, and maximum average

latency). Capacity constraints are not considered.

Huang et al. (HUANG et al., 2017) focus on the issue of flow table capacity. In

their case, this constraint must be explicitly specified by the customer when requesting

a VN. The authors devise both an optimization model and a heuristic algorithm that, in

addition to flow table occupation, considers bandwidth capacities of physical links. The

optimization model directly aims at minimizing embedding costs, while the heuristic al-

gorithm favors the selection of physical nodes with greater amounts of residual resources.

Tegueu et al. (TEGUEU et al., 2017) introduce an embedding algorithm focused

on minimizing resource fragmentation and migration costs. This is achieved by maxi-

mizing resource distribution in addition to minimizing embedding costs. Similarly to the

33

approach of Huang et al., the authors take into account flow table occupation, with the

addition of group table occupation. The proposed strategy is composed of a heuristic al-

gorithm that employs an optimization model as one of the steps of its search for feasible

mappings.

Last, Zhong et al. (ZHONG et al., 2016) propose an embedding approach that

takes into account both controller placement and flow table capacities. The authors rep-

resent their solution as an optimization model and, additionally, propose a heuristic and a

meta-heuristic algorithm. The proposed approaches aim at minimizing embedding costs,

including link bandwidth and flow table occupation. The meta-heuristic algorithm devised

by the authors is based on particle swarm optimization.

Table 3.2: Summary of SDN-oriented VNE approaches.
Authors Objective Specific Constraints Optimization

Method
Evaluated
Topologies

Deployment
Coordination

Demirci
et al.

Balance
load or
minimize
controller
delay

Controller positioning Heuristic 10 topologies from
the Internet Topol-
ogy Zoo (sizes not
reported)

Partial

Blenk
et al.

Minimize
control
plane
latency

Multiple hypervisor
placement

Optimal 34 routers (OS3E
network), other
topologies from the
Internet Topology
Zoo

Partial

Huang
et al.

Minimize
cost

Flow table occupation Optimal and
heuristic

24 routers, random
(GT-ITM)

Partial

Tegueu
et al.

Minimize
cost, max-
imize
distribution

Flow and group table
occupation

Optimal and
heuristic

41 routers (GEANT
network – Europe)

Partial

Zhong
et al.

Minimize
cost

Controller placement,
flow table occupation

Optimal and
heuristic

65 routers (TA2
network – Austria)

Partial

Table 3.2 summarizes information regarding the SDN-oriented VNE approaches

just discussed. Trends similar to those present in traditional VNE approaches can also be

observed here. More specifically, most approaches follow the objective of minimizing em-

bedding costs and, additionally, a number of authors propose heuristic (or meta-heuristic)

algorithms in order to improve scalability. In contrast to previously analyzed traditional

approaches, most papers studied in this sub-area employ topologies based on real net-

works – e.g., the Internet2 Open Science, Scholarship and Services Exchange network

(OS3E) and topologies based on the Internet Topology Zoo1. Most importantly, how-

ever, the studied approaches only take into account a very limited subset of SDN-specific

constraints (namely, controller/hypervisor placement and/or flow/group table occupation),
1The Internet Topology Zoo: http://topology-zoo.org/

34

sometimes to the detriment of basic VNE constraints such as router and link capacities.

3.3 Discussion

The traditional VNE algorithms presented in this chapter can be seen as a first step

towards the actual deployment of VNs on physical networks. Mappings computed by a

VNE algorithm can be integrated with a platform such as the ones discussed in Section

2.2 (and summarized in Table 2.5). Traditional VNE algorithms, however, are platform-

agnostic – i.e., they do not consider any particularities of the virtualization environment

other than fundamental aspects such as basic capacity constraints. Therefore, they are

unable to ensure the viability of the mappings they generate when deployed on a real

substrate network.

The SDN-oriented approaches discussed in Section 3.2 are more closely aligned

to our proposal when compared to the traditional VNE approaches presented earlier in

Section 3.1. These efforts take into account certain relevant SDN-related operational con-

straints, such as virtual controller placement and flow table limitations. However, the op-

erational requirements explored by these authors is still restricted to a very limited subset

of crucial constraints observed on real SDN/OpenFlow networks. For this reason, map-

pings generated through these strategies may still be ultimately impossible to instantiate

in practice.

Aware of the shortcomings of VNE strategies proposed thus far, our objective is

to provide a full framework for the instantiation of virtual networks on top of SDN sub-

strates. Through this approach, we aim at encompassing a rich set of aspects deemed

essential to mapping and deploying virtual networks on this type of environment – flow

and meter table constraints, virtual controller allocation, channel allocation for in-band

switch–controller communication, and physical hypervisor positioning. By taking these

operational requirements into account, we are able to ensure with a high level of confi-

dence that all generated VNE mappings are valid while simultaneously preventing per-

formance degradation. It is worth noting that, although we propose an entirely new VNE

model as part of our framework, other VNE algorithms could be used in its place in a

“plug-and-play” manner. Alternatively, this model could be partially modified in order to

incorporate different strategies (e.g., different objective functions) if one is demonstrated

to be more effective than the current one.

35

4 VIRTUAL NETWORK EMBEDDING WITH FLOW-RELATED OPERATIONAL

CONSTRAINTS

Next, we present our first step towards coordinating VNE and SDN infrastruc-

tures. First, we briefly explain the characteristics of SDN environments considered in

this work and provide an overview of our initial approach. Right after, we detail each of

its main components. Last, we present an evaluation centered around issues pertaining

flow-related operational constraints.

4.1 Multi-tenant Infrastructure Model and Network Virtualization Paradigm Con-

sidered

Our proposed approach targets an SDN/OpenFlow-based network environment in

which a number of customers (service providers) request and, if possible, are granted

virtual infrastructures. More specifically, we focus on correctly provisioning the VNs that

interconnect the elements of these infrastructures.

An example of a multi-tenant network virtualization environment is depicted in

Figure 4.1. VN requests are received by the infrastructure provider and processed by a

VN embedder. Accepted VN requests are ultimately instantiated on top of the physical

infrastructure through a network hypervisor, following the mappings produced by the VN

embedder. The controller associated with each VN (represented as black boxes with the

letter C in the figure), in turn, is hosted within a virtual machine, and communication

channels are established between it and the network hypervisor. The hypervisor interme-

diates flow rule instantiation and monitoring actions sent by VN controllers in order to

enforce properties such as isolation at the physical level.

In this work, we consider an SDN virtualization platform capable of providing the

aforementioned features, such as OpenVirteX (introduced in Section 2.2). However, it is

worth mentioning that our VNE/SDN coordination approach may be adapted to interface

with other virtualization platforms, even ones that do not follow the flow-level virtualiza-

tion model. Moreover, we focus on VN embedding (i.e., not including host embedding),

assuming end hosts are located on the premises of the customer.

36

Figure 4.1: Multi-tenant OpenFlow/SDN-based network virtualization model considered
in our approach.

Network HypervisorVN Embedder

Physical Network

VN Requests
C C C

VN1 VN2 VN3

4.2 Overview of our Proposed VNE and SDN Coordination Approach

As previously explained, VN mappings generated by standard VNE algorithms

may violate operational requirements when an infrastructure provider attempts to instan-

tiate the requested VNs on a real physical substrate. In order for the VNE algorithm to

take such requirements into account, they would have to be part of the VN request pro-

vided by the customer. However, we believe it is unreasonable to expect customers to be

aware of operational requirements that affect the environment on a physical level. More-

over, customers may be averse to disclosing too much information regarding the internal

behavior of their network. Therefore, the main goals of our approach are to: (i) allow

the customer to represent the needs of his/her VN in a detailed manner; (ii) preprocess

this detailed representation, removing sensitive information and deriving data regarding

the operational requirements associated with this particular request; and (iii) embed the

requested VNs ensuring both feasibility and adequate performance by making use of this

“distilled” information.

Figure 5.2 depicts the components of our proposed approach. The customer first

creates a Tenant Infrastructure Graph (TIG), which represents not only virtual routers and

links (and their capacity requirements) but also elements (such as hosts and end users)

connected to the network, the traffic patterns among them, and the network functions

that will be applied to each traffic flow. As some of this information may be considered

sensitive by the customer, the TIG is preprocessed by a Privacy-aware Compiler (PAC)

running on the customer’s premises. This Privacy-aware Compiler allows customers to

only reveal as much information about their networks as they want, while still generating

37

an enhanced VN request that aids the VNE process in order to provide feasible, high-

quality VN deployments. The preprocessed request is then sent to the InP, which makes

use of our SDN/OpenFlow-aware Embedder in order to properly embed and deploy (al-

though the latter is out of the scope of our work) the customer’s network. The main

elements of our proposal – Tenant Infrastructure Graphs, the Privacy-aware Compiler,

and the SDN/OpenFlow-aware Embedder – will be further explained in the following

sections.

Figure 4.2: Overview of our proposed approach, depicting its main elements and the
information flow between them.

4.3 Specification of Infrastructure Resources

We now proceed to a detailed explanation of the process that is carried out on the

customer’s end in order to request a VN.

4.3.1 Tenant Infrastructure Graph (TIG) – A Detailed Abstraction of a Virtual Net-

work and its Communication Patterns

The TIG enables customers to represent the needs of their requested VNs with a

high level of detail. In addition to the information contained in a standard VN request

(e.g., network topology and capacity and location requirements), a TIG also represents:

(i) elements such as end hosts (represented as network prefixes or individual addresses)

connected to the network; (ii) the communication patterns among such elements; and (iii)

network functions/policies each communication pattern must be subjected to.

Figure 5.3 depicts an example of a TIG. Each cloud represents a group of appli-

cation servers executing a common task (e.g., within the same tier). Globes represent

groups of external users (e.g., network administrators or end users accessing applications

running on the customer’s premises through the to be deployed VN). Each of these ele-

ments has some information associated to it – namely, the number of instances of each

group of application instances and the number of network prefixes of each group of exter-

38

nal users. Last, circles in the graph represent virtual routers, and colored edges represent

communication patterns (i.e., traffic flows) among network elements.

Figure 4.3: Tenant Infrastructure Graph representing elements connected to a VN and the
communication patterns among them.

instances

instances # instances

instances

hosts
or netmasks

hosts
or netmasks

LB

10 Gbps
10

 G
bp

s

10 Gbps

5 Gbps
10 Gbps

5 Gbps10 Gbps

10 Gbps 5 Gbps

15 Gbps
Location B

20 Gbps
Location A

15 Gbps
Location C

LB, QoS(3)

AC

AC

LB, QoS(3)

AC

AC

Each group of edges represented with the same color and style in Figure 5.3 de-

notes a distinct traffic flow. As an example, the solid edges represented in blue intercon-

nect end users to externally accessible applications running on the customer’s premises

(e.g., the front-end of a two-tier web application), while the dotted green edges intercon-

nect the front-end to the application database back-end. Dashed red edges interconnect

databases running in different locations for synchronization/replication purposes, while

the dashed and dotted yellow pattern provides an administrator access to all applications.

In addition to forwarding packets, routers may need to perform other functions

specific to each traffic flow. Some of these functions – Load Balancing (LB), Quality

of Service (QoS), and Access Control (AC) – are represented in Figure 5.3. In order to

discriminate between different network flows and apply the appropriate functions to each,

routers use a number of packet header fields (or combinations of fields1). In order to apply

load balancing, for example, both the source and destination of a packet should be taken

into account. For the purpose of QoS, in turn, the Differentiated Services Code Point

(DSCP) header field may be used. The TIG represents these (combinations of) fields as

sets of Traffic Discriminators (TDs). Moreover, each TD contains a number of entries –

i.e., the number of different values a given (combination of) header field(s) may be set to.

In the aforementioned QoS example, the DSCP field may be set to a value between 0 and

1The source or destination of a packet, for example, may be composed of a combination of the IP
address, MAC address, network protocol, and port fields.

39

63. Therefore, the number of entries in a traffic discriminator that uses this field may be

anywhere between 2 (if only two different QoS classes are used) and 64 (if all possible

classes are used).

Through the information represented in this graph, it is possible to accurately de-

rive the number of flow rules each router in a VN will need in order to ensure its correct

and optimal operation. Moreover, as shown in Figure 5.3, standard VNE constraints

(router throughput, link bandwidth, and location requirements) are also represented in a

TIG.

We emphasize that the TIG has been enhanced with additional elements since this

first iteration of our work was completed. The full definition of the TIG, as well as a

formal specification of it, are presented in Chapter 5.

4.3.2 Privacy-aware Compiler

While a TIG enables the representation of operational constraints associated with

the instantiation of each VN on the physical infrastructure of an InP, it also exposes in-

formation that the customer may consider sensitive. As an example, the TIG exposes

the location of entities within the network and interactions between different applications

with a high level of detail, which could be used to infer the business model of the VN re-

quester or potentially as an attack vector. Therefore, TIGs are expected to be preprocessed

by a Privacy-aware Compiler on the customer’s end before being sent to an InP.

As previously mentioned, the TIG represents distinct communication patterns within

elements of the requested VN. A number of flow rules will ultimately need to be installed

on each router in order to ensure the correct operation of each traffic flow. The num-

ber of necessary flow rules depends on a number of pieces of information, namely: (i)

the number of network applications and/or network prefixes of external users associated

with each flow; (ii) the number of traffic discriminators associated with each router for

handling each network flow; and (iii) the number of entries of each traffic discriminator.

The left side of Figure 4.4 shows an example TIG populated with numerical values.

The communication pattern represented in solid blue interconnects a number of users

(comprising 100 network masks) to a number of applications through the customer’s VN

hosted on the physical infrastructure of the InP (10 app instances connected to virtual

router b and 10 connected to router c). The dotted green patterns interconnect each group

of 10 application instances to a group of 5 database servers. The dashed red pattern,

40

in turn, interconnects both groups of database (server) instances. Last, the dashed and

dotted yellow pattern interconnects all network services to a specific external network

mask (used by a network administrator to manage all network services).

Figure 4.4: Possible outputs of the Privacy-aware Compiler for a given TIG.

6210

62104060

Type 2 VN Request

Type 1 VN Request

Tenant Infrastructure Graph (TIG)
10 5

10

5

100

1 Src, Dst, 3

Src, Dst

Src, Dst

Src, Dst, 3

Src, Dst

Src, Dst

Src, Dst

a c

b

Src, DstSrc, Dst

Src, Dst

If no network functions need to be applied to a particular communication pat-

tern, its flow table requirements are calculated by adding up the total number of source-

destination pairs (including all applications and network masks) that are part of this traffic.

The pattern represented in dashed and dotted yellow on the TIG shown in Figure 5.4 inter-

connects a single external user (or network mask) to all (30) applications running within

the network, adding up to a total of 60 source-destination pairs (considering both direc-

tions of each possible communication flow). Therefore, this flow requires a total of 60

rules on each router it traverses (a, b, and c). This is also the case for the flow represented

in solid blue when traversing router a. This flow interconnects 100 external network pre-

fixes to 20 network applications, which – accounting for all possible combinations in both

directions – adds up to a total of 4,000 source-destination pairs (and, therefore, 4,000 rules

to be installed in a). If additional traffic discriminators are used, they enter the calculation

as multiplying factors – the number of flow rules is multiplied by the number of entries

in each discriminator. As an example, if the DSCP field is used as a discriminator with

3 possible QoS values (i.e., 3 different traffic classes), the number of flow rules is mul-

tiplied by 3. In the example shown in Figure 5.4, packets that belong to the solid blue

communication pattern traversing routers b and c are subjected to this traffic discrimina-

tor. Therefore, the total number of source-destination pairs (2,000) connected (directly or

indirectly) to each of these routers is multiplied by the number of entries in the respective

traffic discriminator (3), adding up to a total of 6,000 flow rules to be installed on routers

41

b and c.

After being processed, the TIG is compiled into a VN request which will be shared

with the InP. This request may contain more or less information according to what the

customer is willing to reveal. The right side of Figure 5.4 shows the two different types

of requests we consider. A “type 1” request is equivalent to a standard VN request. A

“type 2” request, in contrast, includes the accurate number of flow rules required by each

router. While not represented in this figure, standard VN requirements – namely, the

throughput capacity of routers, bandwidth capacity of links, and location constraints – are

also considered for both types. We envision that a larger gradient of VN request types

could be considered. As an example, an intermediate level between our “type 1” and

“type 2” requests could contain estimates for flow table requirements rather than exact

values. We intend to further explore this aspect in future work.

Similarly to the TIG, the PAC has also been enhanced to cope with new elements

after the completion of this phase. A description of these enhancements can be found in

Chapter 5.

4.4 SDN/OpenFlow-aware Embedder

The SDN/OpenFlow-aware Embedder is run by the InP, receiving VN requests

that have been preprocessed by the Privacy-aware Compiler and embedding them on a

physical substrate. It has been modeled as an Integer Linear Program (ILP), and its for-

mulation is presented next. Before presenting our model, we introduce the syntax for our

formulation. Capital letters represent sets or variables, and superscripts denote whether a

given set or variable refers to physical (P) or virtual (V) entities, or to routers (R) or links

(L). Moreover, subscript letters represent indices associated to variables or paths. For ease

of reference, the full list of symbols used in this model is summarized in Table 4.1.

Topologies. The topology of each VN request, as well as that of the physical net-

work, are represented as a directed graph N = (R,L). Bidirectional links are represented

by pairs of edges in opposite directions. Each virtual router is mapped to a single physical

router, while virtual links may be mapped to either a physical link or a substrate path.

Physical and Virtual Capacities. The capacity of physical routers is measured in

terms of throughput. The capacity of a physical router i is expressed as T P
i . Likewise, T V

r,i

denotes the throughput required by virtual router i from VN r. Likewise, the bandwidth

capacity of a physical link (i, j) is represented as BP
i,j , and the bandwidth requirement of

42

Table 4.1: Symbols used in this model.
Decision Variables

AR
i,r,j ∈ {0, 1} Router allocation.

AL
i,j,r,k,l ∈ {0, 1} Link allocation.

Input Sets
RP Physical routers.
RV Virtual routers.
LP Physical links.
LV Virtual links.
T P Throughput of physical routers.
T V Throughput of virtual routers.
BP Bandwidth of physical links.
BV Bandwidth of virtual links.
SP Location of physical routers.
SV Location requirement of virtual routers.
F P Flow table capacity of physical routers reserved for type 2 requests.
F V Flow table requirement of virtual routers in type 2 requests.
FP Flow table capacity of physical routers reserved for type 1 requests.
FV Flow table requirement of virtual routers in type 1 requests.
ER Previously mapped routers.
EL Previously mapped links.

a virtual link (k, l) from VN r is represented as BV
r,k,l.

Locations. All physical routers are associated with a location identifier – an in-

teger number stored in set SP . This enables customers to demand some of their virtual

routers to be instantiated in specific geographic locations. If a virtual router has a location

requirement, it is stored in set SV .

Flow Table Usage. As previously explained, the flow table requirements of VN

requests are calculated by the Privacy-aware Compiler based on a given TIG and added

to the generated request. The flow table capacity of a physical router is divided in two

– one part (the majority of the available flow table space) will be used for requests with

specific flow table requirements (type 2), while the remaining capacity will be used for

type 1 requests. The flow table capacity of a physical router i reserved for type 2 requests

is represented as F P
i , while the remaining capacity reserved for type 1 requests is repre-

sented as FP
i . As for virtual routers, those that belong to type 2 VN requests have their

flow table requirement represented as F V
r,j , while the estimated flow table requirement for

type 1 requests is represented as FV
r,j .

Previous Mappings. As VN requests are handled in an online manner, the map-

pings of previously embedded VNs must be taken into account and preserved while pro-

cessing new incoming requests. Mappings of previously embedded routers and links are

43

stored in sets ER
i,r,j and EL

i,j,r,k,l, respectively.

Variables. The variables of the ILP model indicate the optimal placement of

routers and links on the substrate.

• AR
i,r,j ∈ {0, 1} – Router allocation, indicates whether virtual router j from VN r is

embedded on physical router i.

• AL
i,j,r,k,l ∈ {0, 1} – Link allocation, indicates whether virtual link (k, l) from VN r

is embedded on physical link (i, j).

Next, we present the objective function of our SDN/OpenFlow-aware Embedder

and its constraint sets (C1–C9). The objective function aims at minimizing overall flow

table occupation – i.e., the aggregated number of flow table entries needed to instantiate

incoming VN requests. The calculation of flow table usage will be presented in further

detail after all constraint sets are listed and explained.

Objective

Minimize
∑

(i,j)∈LP ,r∈NV ,(k,l)∈LV

(min(FV
r,k,F

V
r,l)

+min(FV
r,k,F

V
r,l)

)AL
i,j,r,k,l(1−AR

i,r,k)

2

+
∑

i∈RP ,r∈NV ,k∈RV

(F V
r,k + FV

r,k)A
R
i,r,k

Subject to

∑
j∈RP ,r∈NV ,(k,l)∈LV

min(TV
r,k,T

V
r,l)

AL
i,j,r,k,l(1−AR

i,r,k)

2
+

∑
r∈NV ,k∈RV

T V
r,kA

R
i,r,k ≤TP

i

∀i ∈ RP (C1)

∑
r∈NV ,(k,l)∈LV

BV
r,k,lA

L
i,j,r,k,l ≤ BP

i,j ∀(i, j) ∈ LP (C2)

44

∑
j∈RV

AR
i,r,j ≤ 1 ∀i ∈ RP , r ∈ NV (C3)

∑
j∈RP ,r∈NV ,(k,l)∈LV

min(FV
r,k,F

V
r,l)

AL
i,j,r,k,l(1−AR

i,r,k)

2
+

∑
r∈NV ,k∈RV

F V
r,kA

R
i,r,k ≤FP

i

∀i ∈ RP (C4)

∑
j∈RP ,r∈NV ,(k,l)∈LV

min(FV
r,k,F

V
r,l)

AL
i,j,r,k,l(1−AR

i,r,k)

2
+

∑
r∈NV ,k∈RV

FV
r,kA

R
i,r,k ≤FP

i

∀i ∈ RP (C5)

∑
i∈RP

AR
i,r,j = 1 ∀r ∈ NV , j ∈ RV (C6)

∑
j∈RP

AL
i,j,r,k,l −

∑
j∈RP

AL
j,i,r,k,l = AR

i,r,k −AR
i,r,l ∀r ∈ NV , (k, l) ∈ LV , i ∈ RP (C7)

jAR
i,r,k = lAR

i,r,k ∀(i, j) ∈ SP , r ∈ NV , (k, l) ∈ SV (C8)

AR
i,r,j = ER

i,r,j ∀(i, r, j) ∈ ER (C9)

AL
i,j,r,k,l = EL

i,j,r,k,l ∀(i, j, r, k, l) ∈ EL (C10)

Constraint sets C1 and C2 ensure, respectively, that the throughput capacity of

physical routers and that the bandwidth capacity of physical links is not exceeded. C3

prevents multiple virtual routers from a single VN request from being mapped to the same

physical router. C4 and C5 ensure that the flow table capacity of physical routers is not

exceeded. Constraint set C4 deals with type 2 requests, while C5 handles type 1 requests.

C6 guarantees that all routers in an incoming VN request are mapped to physical routers.

C7 ensures that each virtual link is mapped to a physical path whose end-points match

the physical routers hosting the end-points of this link. C8 ensures all virtual routers

with location requirements are mapped to physical routers in the correct location. Last,

45

constraint sets C9 and C10 preserve the mappings of previously embedded VNs.

For the sake of clarity, our objective function, as well as constraint sets C1, C4, and

C5, are shown in non-linear form. However, in practice, they are linearized by replacing

the multiplication AL
i,j,r,k,l(1 − AR

i,r,k) with an auxiliary variable Zi,j,r,k,l ∈ {0, 1} and

adding constraint sets C11, C12, and C13 – shown below – to the model. Moreover,

function min (a, b) returns the lowest number between a and b and can be defined as
1
2
(a+ b− |a− b|)).

Zi,j,r,k,l <= AL
i,j,r,k,l ∀(i, j) ∈ LP , r ∈ NV , (k, l) ∈ LV (C11)

Zi,j,r,k,l <= (1−AR
i,r,k) ∀(i, j) ∈ LP , r ∈ NV , (k, l) ∈ LV (C12)

Zi,j,r,k,l >= (1−AR
i,r,k) +AL

i,j,r,k,l − 1 ∀(i, j) ∈ LP , r ∈ NV , (k, l) ∈ LV (C13)

In order to properly account for flow table usage, the objective function must not only

consider explicit flow table requirements of virtual routers, but also the flow rules that

must be installed on auxiliary routers through which virtual links traverse. The number of

rules that must be installed on the auxiliary routers used by a virtual link (k, l) corresponds

to the lowest number between the flow table requirements of virtual routers k and l. In

the objective function, the first summation refers to the flow table constraints of auxiliary

routers, while the second one refers to that of physical routers hosting virtual routers

of each network. Constraint sets C1, C4, and C5 employ the same strategy in order to

compute the throughput and flow table usage of auxiliary routers.

4.5 Evaluation

We now proceed to a performance evaluation of our proposed VNE and SDN

coordination approach. Experiments were performed on a machine with an Intel Core i5

4278U CPU, 8 GB of RAM and Operating System Mac OS X 10.10.5. The previously

introduced ILP model was implemented and run using the IBM ILOG CPLEX Interactive

Optimizer 12.4.

46

4.5.1 Workloads

In order to evaluate our proposal, we developed a simulator that creates virtual

topologies according to a series of parameters. Each virtual topology is then converted

to a VN request in the format required by our ILP model. The simulator is run for 500

rounds, generating a new request on each one2. If accepted, VNs remain embedded for

25 rounds before being removed.

Fixed parameters. In all experiments, physical and virtual topologies are gener-

ated with BRITE using the Barabási-Albert model (ALBERT; BARABÁSI, 2000). Gen-

erated physical networks contain 100 routers. Physical routers have a throughput capacity

of 150 Gbps, while physical links have a bandwidth capacity of 30 Gbps. The flow table

of each device is capable of storing up to 16,000 rules. Physical routers are uniformly

distributed among 16 geographic locations.

Each generated VN request contains 5 routers. Virtual router throughput and link

bandwidth requirements are, respectively, 50 Gbps and 10 Gbps. Each VN has two edge

routers with randomly generated location requirements. 50% of the generated VNs are

type 1 requests, while the remaining 50% are type 2 requests. Flow table requirements of

type 2 requests are set to 3,000 rules per router, while those of type 1 requests (which are

not known) are treated in different ways according to the experiment being performed.

Variable parameters. We performed a number of different experiments with

variations regarding flow table space reserved for type 2 requests as well as how flow

table requirements are considered. The first three experiments – henceforth referred to as

“Flow-70/30”, “Flow-80/20”, and “Flow-90/10” – reserve 70%, 80%, and 90% of each

physical router flow table space for type 2 requests. The remaining flow table space is

reserved to accommodate type 1 requests. As we do not know their requirements, a mini-

mal set of 1,500 rules is reserved for each router from these networks. The idea here is to

deliberately allocate little table space to these virtual routers3.

In the fourth experiment, all flow table space is used to embed type 2 requests,

while accepted type 1 requests are supported on a “best effort” manner. More specifically,

type 1 requests are embedded as long as their other capacity requirements (throughput

and bandwidth) can be fulfilled, with no flow table space guarantees. This experiment

is referred to as “Flow-100/0”. In the last experiment, no flow table requirements are

2On average, each request was optimally mapped in less than 5 seconds.
3The amount of flow table space reserved for each router in type 1 requests may be fine-tuned as desired

by the InP.

47

considered by the embedding model. This experiment behaves similarly to an environ-

ment running a traditional VNE algorithm and is carried out to assess the impact of our

proposed approach. This experiment is referred to as “NoFlow”.

4.5.2 Results

We first analyze the overall acceptance rate in all experiments, shown in Figure

5.5. Each point in this graph represents the average acceptance rate from the beginning

of the experiment up until the round depicted in the horizontal axis. The acceptance

rates achieved throughout experiments Flow-70/30, Flow-80/20, and Flow-90/10 were,

respectively, 70.2%, 64.2%, and 55.8%. As the residual flow table space for type 1 re-

quests decreases, more VNs of this type (which require less resources and represent half

of all generated requests) are rejected, leading to lower acceptance rates. Although the

overall acceptance rate is lower, this, in turn, favors the acceptance of a higher amount

of type 2 requests. This is a desirable outcome for the InP in order to prevent under-

or overestimation of resources (as type 2 requests contain precise flow table occupation

requirements), potentially leading to improved resource usage (in the case of overestima-

tion) and/or lower rates of controller intervention (if flow table requirements are underes-

timated). The acceptance rates of individual types of requests and their effect on the rate

of controller interventions will be further analyzed in the remainder of this section.

The acceptance rates observed in experiments Flow-100/0 and NoFlow were higher

than those of other experiments – 72.6% and 73%, respectively. This is due to the former

not reserving any flow table space for type 1 requests and the latter disregarding flow ta-

ble requirements entirely. While seemingly a positive result at first glance, this is likely to

result in severe underestimation of resources needed to adequately support the embedded

VNs, potentially leading to high rates of controller intervention. We emphasize that both

Flow-100/0 and NoFlow are used as baseline scenarios, i.e., the best results one would

achieve in terms of accepted requests at the cost of compromising network predictability

and, in extreme cases, its technical feasibility.

Next, Figure 4.6 depicts the acceptance rate of each type of request in all eval-

uation scenarios. In experiments Flow-70/30, Flow-80/20, and Flow-90/10, the accep-

tance rates of type 1 requests were, respectively, 73.7%, 57.7%, and 30.83%. Acceptance

rates of type 2 requests observed for the same experiments were of 67.18%, 69.77%, and

82.04%, respectively. These increasing acceptance rates of type 2 requests are a desirable

48

Figure 4.5: Overall acceptance rate in all experiments.

0%

20%

40%

60%

80%

100%

 50 100 150 200 250 300 350 400 450 500

P
er

ce
n

ta
g

e
o

f
A

cc
ep

te
d

 R
eq

u
es

ts

Rounds

Flow−70/30
Flow−80/20

Flow−90/10
Flow−100/0

NoFlow

outcome for InPs, as they would likely desire to prioritize the embedding of this type of

request. This happens as a result of the fine-tuning of the amount of flow entries reserved

for each type of request, leading to an acceptance rate of over 80% for type 2 requests in

the most extreme scenario (Flow-90/10). InPs may fine-tune these reservations as desired

in order to allow more or less of each type of request to be embedded and potentially

minimize issues caused by type 1 requests (as a result of under- or overestimation of

operational requirements). Moreover, all scenarios exhibit variations in acceptance rates

within the first 250 rounds. In scenario Flow-70/30, the acceptance rate of type 1 requests

is initially higher than that of type 2 requests. In scenarios Flow-80/20 and Flow-90/10, in

turn, acceptance rates for both types of requests either increase or decrease during the first

250 rounds. This can be attributed to two factors. First, the substrate is completely empty

at the beginning of the experiment, requiring some time for acceptance rates to stabilize.

Second, when the average acceptance rate is calculated considering a lower number of

rounds (as is the case in the early stages of the experiment), each acceptance or rejection

has a higher impact on the calculated average. In all cases, acceptance rates become stable

towards the last 250 rounds.

In the remaining experiments (Flow-100/0 and NoFlow), acceptance rates of type

1 requests were, respectively, 73.4% and 70.4%. Acceptance rates of type 2 requests, in

turn, were of 72.1% and 75.49%, respectively. As previously explained, the former does

not reserve any flow table space for type 1 requests while the latter completely disregards

flow table requirements. Therefore, the main causes of rejection are likely related to topo-

logical factors or throughput/bandwidth resource scarcity, leading to similar acceptance

49

rates for both types of requests on both experiments.

Figure 4.6: Acceptance rate of requests per TIG type in all experiments.

0%

20%

40%

60%

80%

100%

 50 100 150 200 250 300 350 400 450 500

P
er

ce
n

ta
g

e
o

f
A

cc
ep

te
d

 R
eq

u
es

ts

Rounds

Type 1 Type 2

(a) Flow-70/30

0%

20%

40%

60%

80%

100%

 50 100 150 200 250 300 350 400 450 500

P
er

ce
n

ta
g

e
o

f
A

cc
ep

te
d

 R
eq

u
es

ts

Rounds

Type 1 Type 2

(b) Flow-80/20

0%

20%

40%

60%

80%

100%

 50 100 150 200 250 300 350 400 450 500

P
er

ce
n

ta
g

e
o

f
A

cc
ep

te
d

 R
eq

u
es

ts

Rounds

Type 1 Type 2

(c) Flow-90/10

0%

20%

40%

60%

80%

100%

 50 100 150 200 250 300 350 400 450 500

P
er

ce
n

ta
g

e
o

f
A

cc
ep

te
d

 R
eq

u
es

ts

Rounds

Type 1 Type 2

(d) Flow-100/0

0%

20%

40%

60%

80%

100%

 50 100 150 200 250 300 350 400 450 500

P
er

ce
n

ta
g

e
o

f
A

cc
ep

te
d

 R
eq

u
es

ts

Rounds

Type 1 Type 2

(e) NoFlow

Last, we analyze the potential impacts of accurately or inaccurately estimating

operational requirements. To this end, we consider that VN requests in each scenario

have been embedded and deployed, and we calculate the number of flow rules each router

would need to have installed in order to support the embedded VNs. We first assume

the 1,500 rules reserved for each router of type 1 requests were sufficient. Afterwards,

we assume this lower bound was not adequate and that type 1 requests would actually

50

require 3,000 flow rules per router. These scenarios represent extreme cases – assuming

either that a minimal set of flow rules was sufficient or that actual requirements exceed

this lower bound by a factor of 2. Our goal is to determine in which cases the number

of necessary flow rules would exceed the capacity of physical routers. As previously

mentioned, if physical devices are not able to accommodate all necessary flow rules, they

would need to frequently contact the controller in order to handle incoming packets. This,

in turn, would likely degrade the performance of physical devices, hindering the quality

of service experienced by customers.

Figure 4.7 depicts the average number of flow rules that would exceed the capacity

of physical routers in each experiment, considering the scenarios just described. Assum-

ing the flow table usage of type 1 requests fits within the minimal provided flow table

space, no exceeding rules were observed in scenarios Flow-70/30, Flow-80/20, and Flow-

90/10. The ILP model used in these experiments takes into account flow table constraints

for both types of requests, ensuring that the capacity of physical devices will not be ex-

ceeded as long as the reserved flow table space is sufficient. In experiment Flow-100/0, in

turn, the average number of exceeding flow rules was 10,732, all belonging to type 1 re-

quests. This is due to this experiment disregarding flow table requirements for this type of

request, embedding them in a “best effort” manner. In experiment NoFlow, which mirrors

the behavior of a standard VNE algorithm without flow-related constraints, the average

number of exceeding flow rules was significantly higher, with both types of VN requests

contributing to flow table saturation. More specifically, an average of 27,593 exceeding

rules were observed (2,331 incurred by type 1 requests and 25,262 incurred by type 2

requests). The substantial numbers of exceeding flow rules observed in scenarios Flow-

100/0 and NoFlow highlight the importance of considering this operational constraint in

the embedding process.

Last, assuming the flow table usage of type 1 requests exceeds the minimal pro-

vided flow table space (a likely scenario in practice), all experiments exhibit flow table

saturation. In experiments Flow-70/30, Flow-80/20, and Flow-90/10, the average num-

bers of exceeding flow rules were, respectively, 2,731, 19,783, and 18,130. Although

these experiments took into account flow-related constraints, assuming flow table usage

exceeds the established lower bounds led to significant saturation – particularly in sce-

narios Flow-80/20 and Flow-90/10, in which less resources were reserved for this type

of request. The highest numbers of exceeding flow rules were observed in experiments

Flow-100/0 and NoFlow – which, as previously explained, either do not reserve flow table

51

Figure 4.7: Number of flow rules exceeding the capacity of physical routers.

 0

 10000

 20000

 30000

 40000

 50000

 60000

Flow
−70/30

Flow
−80/20

Flow
−90/10

Flow
−100/0

N
oFlow

E
x

ce
ed

in
g

 F
lo

w
 R

u
le

s

Type 1
Type 2

(a) Assuming flow table space allocated for type 1
requests was sufficient.

 0

 10000

 20000

 30000

 40000

 50000

 60000

Flow
−70/30

Flow
−80/20

Flow
−90/10

Flow
−100/0

N
oFlow

E
x

ce
ed

in
g

 F
lo

w
 R

u
le

s

Type 1
Type 2

(b) Assuming flow table space allocated for type 1
requests was insufficient.

space for type 1 requests or disregard flow constraints entirely. The average amount of

exceeding flow rules observed in experiment Flow-100/0 was of 57,970 – all incurred by

type 1 requests. In experiment NoFlow, an average of 22,886 exceeding flow rules were

incurred by type 1 requests and 25,262 by type 2 requests, adding up to a total of 48,148.

These results evidence that, in addition to the aforementioned importance of considering

operational constraints, accurately determining flow table requirements plays a crucial

role in ensuring the feasibility of supporting the embedded VNs. Regarding the former,

it is important to note that, with the exception of scenario NoFlow, all rules of type 2

requests were properly installed in physical routers. Therefore, these VNs will be able

to operate with minimal controller interventions, minimizing potential negative impacts

on quality of service (as controller intervention may increase latency by up to twice the

round-trip time between the switch and the controller (CURTIS et al., 2011)).

In summary, through the evaluation conducted thus far, we demonstrated that

taking operational constraints into account is of paramount importance to maintain the

“health” of the environment. Neglecting such constraints may render the environment

unable to cope with a substantial number of flow rules and, therefore, susceptible to per-

formance degradation or instability. With this knowledge, we now proceed to the imple-

mentation of the full architecture we envisioned, detailed in Chapter 5.

52

5 VIRTUAL NETWORK EMBEDDING WITH A RICH SET OF OPERATIONAL

CONSTRAINTS

In this section, we present our fully realized architecture, encompassing all op-

erational constraints included in the scope of this thesis. We first reiterate and explain

in further detail each operational constraint and how they affect virtual network embed-

ding. Next, we explain our approach to mitigate the issue of solution space reduction – a

byproduct of considering a large number of constraints. We then present the formalization

of our VN Embedder as an MIP (Mixed Integer Program) model, as well as its overarch-

ing framework. Last, we discuss the results of a second round of experiments, focusing on

the ability of our solution to handle a rich set of operational constraints simultaneously.

5.1 SDN/OpenFlow-related Operational Constraints

In this work, we consider an SDN/OpenFlow-based network infrastructure capa-

ble of hosting virtual networks on top of it. Each VN is controlled by an individual entity

independent from the Infrastructure Provider and is created or removed on-demand. Each

incoming VN request is processed by a VN embedder, which attempts to map the ele-

ments within the VN request (i.e., virtual routers, links, and controller) to their physical

counterparts. If sufficient resources are available, the VN is ultimately instantiated on top

of the physical infrastructure.

An example of an SDN-based multi-tenant network virtualization environment is

depicted in Figure 5.1. Two VN requests, VN1 and VN2, each composed of 3 routers

(represented as circles), one controller (C1 and C2, respectively), and a number of links

between the routers and controllers in each VN (represented as solid and dashed lines),

are received by the InP. Once processed by the VN embedder, both VNs are instantiated

on top of the physical network. Each virtual router is mapped to a physical router, while

each virtual controller is hosted on a Virtual Machine (VM) running on a physical server.

Moreover, a virtual link between any two virtual nodes is established on a path between

the physical nodes hosting each one.

Due to the intricacies of mapping VNs on top of an SDN environment, taking into

account only traditional, platform-agnostic constraints is not sufficient. These platform-

agnostic constraints include router throughput capacity and location requirements, as well

53

Figure 5.1: Multi-tenant OpenFlow/SDN-based network virtualization model considered
in this thesis. Routers are represented as circles, while virtual controllers and physical
machines (which may host hypervisors or virtual controllers) are represented as squares.

C1 C2

VN1 VN2

Physical Network

C1 C2

H

VN Embedder

as link bandwidth and delay. In addition to these, we consider a richer set of SDN-related

constraints in order to ensure the proper mapping and operation of VNs. Each of these

additional SDN-related constraints is described next.

Flow table capacity. The OpenFlow protocol employs the concept of flow rules in

order to define the behavior of physical forwarding devices. Each flow rule contains one

or more matching fields (e.g., source and destination IP) as well as a number of actions

(e.g., drop the packet or forward it through a specific port). Whenever a device receives an

incoming packet, it attempts to find a match between the packet and the matching fields

in its flow rules. If a match is found, the actions defined in the appropriate flow rule are

applied to the packet. If not, the controller must be contacted in order to install the proper

flow rule on the forwarding device. Flow rules commonly need to combine a number of

different matching fields in order to properly route packets as well as to enforce network

policies, potentially leading to very large sets of flow rules to be stored in each device. As

storage space is limited, it is crucial to ensure the flow table capacity of each device is not

exceeded.

SDN controllers. Each embedded virtual network must have its own virtual con-

troller, which will communicate with a physical hypervisor in order to manage virtual

devices. The communication between OpenFlow devices and controllers should be kept

as fast as possible in order to ensure virtual networks do not suffer significant degradation

when controller intervention is necessary. Therefore, virtual controller placement must be

54

performed as close to optimality as possible.

Switch–controller communication channels. In order to ensure the controller

of a VN is able to reach the forwarding devices hosting the virtual routers of this VN,

communication channels must be established between those entities. These communica-

tion channels are not considered in traditional VNE models. Moreover, SDN/OpenFlow

network emulators such as Mininet assume this communication is performed in an “out

of band” manner (i.e., through separate communication channels that interconnect each

device directly to the controller). This assumption is not realistic, and would either be ex-

tremely costly or impossible depending on the topology of the physical network. There-

fore, the embedding model should explicitly establish these channels, including well de-

fined bandwidth allocations. In the example shown in Figure 5.1, the communication

channels between controllers C1 and C2 and the virtual devices managed by them are

represented as dashed lines.

SDN hypervisors. With regards to allocating switch–controller communication

channels on the physical side, another operational constraint must be considered. In order

to manage the flow table of a virtual router (e.g., to add or remove flow rules), a virtual

controller must first send the appropriate command to a physical hypervisor. The physical

hypervisor, in turn, checks the validity of the received command (and may apply changes,

if necessary) before forwarding it to the physical device hosting the appropriate virtual

router. Therefore, the distance between the suggested location of the virtual controller

and the physical hypervisor – as well as the distance between the hypervisor and each

virtual router – must be considered by the embedding algorithm. Whether there is a

single or multiple hypervisors, we assume this to be a hard constraint on the side of

the Infrastructure Provider. Therefore, in order to properly place virtual controllers and

establish the appropriate communication channels, the embedding method must be aware

of the location of hypervisors on the physical substrate. This issue is depicted in Figure

5.1, as virtual controllers C1 and C2 are placed near a hypervisor H which is, in turn, in

near proximity of the virtual devices they manage. Moreover, communication channels

between these entities are established on a path that passes through hypervisor H.

Meter table capacity. Meter tables were added to OpenFlow in version 1.3 and

enable a number of QoS-related operations. One such operation is rate limiting, which

is crucial in a multi-tenant environment in order to restrict the bandwidth of each virtual

link to the allocated limit. The maximum number of entries that can be added to the

meter table of each device must be accounted for, ensuring enough space is reserved for

55

necessary entries.

5.2 Mitigating Solution Space Reduction

While the necessity of considering underlying operational constraints in VNE is

clear, doing so may also lead to unintended side effects. Each constraint added to an

optimization model limits the solution space to a varying degree. As we consider a sig-

nificantly wider set of constraints in comparison to a standard VNE model, this reduction

can be drastic. In the context of VNE, this could lead to a number of issues, such as less

efficient resource usage, fragmentation, and a significant increase in the rejection of VN

requests. Balancing the need to ensure VNE mappings are valid in real environments and

the issue of solution space reduction is a challenge in and of itself.

To mitigate this issue, we propose a different approach towards handling VN re-

quirements. We allow the flexibilization of specific traditional VNE constraints – namely,

router throughput, link bandwidth, and delay. This is achieved by allowing customers to

express their requirements as a range, which stretches from a minimal requisite to a de-

sired level of fulfillment. By allowing customers to be in control of this range, we ensure

their minimal requirements will be met – even though the amount of resources allocated

to their VN may not achieve their desirable level.

On the InP’s side, the VNE model leverages the concept of soft constraints in

mathematical optimization to materialize the proposed flexibilization. It is important to

note, however, that VN requisites are only flexibilized when it would be otherwise impos-

sible to embed a VN, which would normally lead to the outright rejection of the request.

In other words, the VNE model always attempts to fulfill VN requirements as much as

possible. Moreover, the minimal level of each requirement is always guaranteed, and

SDN-related operational requirements are still satisfied to their full extent.

The main objective of this flexibilization is to turn an unconditional rejection into

a one-step negotiation between customer and InP. We envision this will lead to a more

favorable outcome for both parties. The InP will be able to host a higher number of VNs,

potentially leading to an increase in revenue. Customers, in turn, will be granted a VN that

meets their minimal requirements without having to wait for more resources to become

available. Moreover, if additional resources are made available in the future, the customer

may be able to augment their VN through further negotiation with the InP (although this

supplementary, post-embedding negotiation step – which would include issues such as

56

resource expansion and, potentially, migration – is out of the scope of this thesis).

5.3 SDN/OpenFlow-aware Embedder

The SDN/OpenFlow-aware Embedder handles VN requests received by the InP,

embedding them on a physical substrate. It is modeled as a Mixed Integer Program (MIP).

We first introduce the inputs to our model, followed by its variables, objective function,

and constraints. For ease of reference, the full list of symbols used in this model is sum-

marized in Table 5.1.

Physical and virtual router capacities. RP represents the set of physical routers,

while RV , the set of virtual routers. Each physical router is associated with inputs that

represent its residual capacity, while virtual routers are associated with capacity require-

ments. The residual throughput capacity of a physical router i is represented as T P
i . The

required throughput of a virtual router is modeled as a flexible requirement. The desired

throughput capacity of virtual router j from VN r is represented as T V
r,j , while the min-

imum throughput for the same router is represented as T V
r,j . Similarly, the residual flow

table and meter table capacities of physical routers are represented as F P
i and MP

i , re-

spectively. The flow and meter table requirements of virtual routers, modeled as hard

constraints, are represented as F V
r,j and MV

r,j , respectively. Each physical router is also

associated with a location, stored in set SP . Virtual routers may optionally have location

requirements, which are stored in set SV .

Physical and virtual link capacities. Physical and virtual links are represented as

edges between pairs of physical or virtual nodes. Physical links between routers are stored

in set EP , while virtual ones are stored in EV . Likewise, physical and virtual links be-

tween routers and other elements (physical machines, hypervisors, or virtual controllers)

are stored in EP and EV , respectively. Each link is associated with bandwidth capacity

and delay – both modeled as flexible constraints. The residual bandwidth capacity and

delay of a physical link (i, j) are represented as BP
i,j and DP

i,j , respectively. The desired

bandwidth capacity of a virtual link (k, l) from VN r is represented as BV
r,k,l, while the

minimum acceptable bandwidth is represented as BV
r,k,l. Analogously, the desired delay

of a virtual link is represented as DV
r,k,l, while the maximum tolerated delay is represented

as DV
r,k,l.

Controllers and hypervisors. Virtual controllers are stored in setCV , while phys-

ical machines that host them are stored in CP . Each controller j from VN r is associated

57

Table 5.1: Symbols used in this model.
Decision Variables

AR
i,r,j ∈ {0, 1} Router allocation.

AC
i,r,j ∈ {0, 1} Controller allocation.

AL
i,j,r,k,l ∈ {0, 1} Link allocation.

Auxiliary Variables
XT

r,j ∈ R Fulfillment of throughput capacity.
XB

r,k,l ∈ R Fulfillment of bandwidth capacity.
XD

r,k,l ∈ R Fulfillment of delay constraint.

Input Sets
RP Physical routers.
RV Virtual routers.
TP Throughput of physical routers.
TV Desired throughput of virtual routers.
T V Minimum throughput of virtual routers.
FP Flow table capacity of physical routers.
FV Flow table requirement of virtual routers.
MP Meter table capacity of physical routers.
MV Meter table requirement of virtual routers.
SP Location of physical routers.
SV Location requirement of virtual routers.
LP All physical links.
LV All virtual links.
EP Links between physical routers.
EV Links between virtual routers.
EP Links between physical routers and other elements.
EV Links between virtual routers and other elements.
BP Bandwidth of physical links.
BV Desired bandwidth of virtual links.
BV Minimum bandwidth of virtual links.
DP Delay of physical links.
DV Desired delay of virtual links.
DV Maximum delay of virtual links.
CP Physical machines.
CV Virtual controllers.
H Physical hypervisors.
FH Flow table capacity of physical hypervisors.
CP CPU capacity of physical machines.
CV CPU capacity of virtual controllers.
MP Memory capacity of physical machines.
MV Memory capacity of virtual controllers.
K Auxiliary input, set to 1 if a physical device is a hypervisor.

with CPU and memory requirements, represented as CVr,j and MV
r,j , respectively. Like-

wise, the residual CPU and memory capacity of each physical machine is represented as

CPi andMP
i . Physical hypervisors, in turn, are stored in set H . For the sake of simplicity,

the capacity of a physical hypervisor is expressed as the number of flow rules it is able to

manage at any one time. It is stored in set FH
i .

Decision variables. The decision variables indicate the placement of all virtual

elements on the substrate.

58

• AR
i,r,j ∈ {0, 1} – Router allocation, indicates whether virtual router j from VN r is

embedded on physical router i.

• AC
i,r,j ∈ {0, 1} – Controller allocation, indicates whether controller j from VN r is

embedded on physical machine i.

• AL
i,j,r,k,l ∈ {0, 1} – Link allocation, indicates whether virtual link (k, l) from VN r

is embedded on physical link (i, j).

Auxiliary variables. The auxiliary variables define the extent to which a flexible

capacity constraint is fulfilled. As an example, if the throughput capacity of router j from

VN r was only 80% fulfilled, XT
r,j is set to 0.8. In the case of link delay, as it varies

between a desired value and a maximum (rather than a minimum), XD
r,k,l will be greater

than 1.0 if this requirement is partially unfilfilled.

• XT
r,j ∈ R – Defines the throughput capacity fulfillment of router j in VN r.

• XB
r,k,l ∈ R – Defines the bandwidth capacity fulfillment of link (k, l) in VN r.

• XD
r,k,l ∈ R – Defines the delay fulfillment of link (k, l) in VN r.

Objective function. Our objective is to minimize the cost of embedding each

VN while also maximizing the fulfillment of flexible VN requirements. The latter is

achieved by applying penalties to the calculation of each partially fulfilled requirement.

These penalties are proportional to the degree of unfulfillment of each requirement (e.g.,

a penalty of 20% if the requirement is 20% unfilfilled). Additionally, a weight (ω) is ap-

plied to each factor in the objective function – delay (α), throughput (β), bandwidth (γ),

and flow table capacities (δ) – , allowing the prioritization of specific factors.

Objective:

Minimize ωDα + ωTβ + ωBγ + ωF δ

Where:

α =
∑

(i,j)∈LP ,r∈NV ,(k,l)∈LV

AL
i,j,r,k,lD

V
r,k,lX

D
r,k,l

59

β =
∑

(i,j)∈LP ,r∈NV ,(k,l)∈LV

min(TV
r,k,T

V
r,l)
AL

i,j,r,k,l(1− AR
i,r,k)

2

+
∑

i∈RP ,r∈NV ,k∈RV

T V
r,kA

R
i,r,k(2−XT

r,k)

γ =
∑

(i,j)∈LP ,r∈NV ,(k,l)∈LV

AL
i,j,r,k,lB

V
r,k,l(2−XB

r,k,l)

δ =
∑

(i,j)∈LP ,r∈NV ,(k,l)∈LV

min(FV
r,k,F

V
r,l)
AL

i,j,r,k,l(1− AR
i,r,k)

2

+
∑

i∈RP ,r∈NV ,k∈RV

F V
r,kA

R
i,r,k

Factors α, β, and γ refer to the flexible constraints in our model. In the case

of delay (α), the penalty for partial unfulfillment of this requirement is calculated by

multiplying the desired delay DV by XD (which, for example, will be equal to 1.2 if

the delay of a given link is 20% higher than the desirable level). For throughput (β) and

bandwidth (γ), this penalty is calculated by (2 − XT) and (2 − XB), respectively. As

such, if one of these requirements is 20% unfulfilled (leading to an XT or XB of 0.8),

this subtraction sets the penalty to 1.2. Last, δ is the sum of flow table usage of physical

devices. The calculation for both β and γ include throughput and flow table occupation

of auxiliary routers through which virtual links traverse (equal to the minimum value

between the requirements of the end points of such links). Inputs LP and LV represent

sets including all physical and virtual links, respectively (i.e., LP = EP ∪ EP and LV =

EV ∪ EV).

Constraints. Next, we formalize and explain the constraint sets of our model. For

ease of comprehension, constraints are organized into groups according to the function

they serve.

60

∑
j∈RP ,r∈NV ,(k,l)∈LV

min(XT
r,kT

V
r,k,X

T
r,kT

V
r,l)
AL

i,j,r,k,l(1− AR
i,r,k)

2

+
∑

r∈NV ,k∈RV

XT
r,kT

V
r,kA

R
i,r,k ≤ T P

i

∀i ∈ RP (C1)

∑
j∈RP ,r∈NV ,(k,l)∈LV

min(FV
r,k,F

V
r,l)
AL

i,j,r,k,l(1− AR
i,r,k)

2

+
∑

r∈NV ,k∈RV

F V
r,kA

R
i,r,k ≤ F P

i

∀i ∈ RP (C2)

∑
r∈NV ,k∈RV

MV
r,kA

R
i,r,k ≤MP

i ∀i ∈ RP (C3)

Constraint C1 ensures the throughput capacity of each physical router will not

be exceeded, while constraint C2 performs the same function regarding flow tables of

physical routers. Both C1 and C2 take into account resource consumption in “auxiliary

arouters” – i.e., physical routers that are not explicitly hosting virtual routers of a certain

VN but through which their links traverse. C3, in turn, handles meter table occupation in

a similar manner.

∑
r∈NV ,k∈CV

CVr,kAC
i,r,k ≤ CPi ∀i ∈ CP (C4)

∑
r∈NV ,k∈CV

MV
r,kA

C
i,r,k ≤MP

i ∀i ∈ CP (C5)

∑
r∈NV ,(k,l)∈LV

AL
i,j,r,k,lF

V
r,l ≤ FH

i ∀i ∈ H, j ∈ RP (C6)

Constraints C4 and C5 ensure the CPU and memory capacity of VMs hosting

61

virtual controllers is not exceeded. C6, in turn, deals with physical hypervisor occupation

by ensuring the sum of the number of flow rules in virtual routers being managed by a

physical hypervisor does not exceed its capacity.

∑
r∈NV ,(k,l)∈LV

XB
r,k,lB

V
r,k,lA

L
i,j,r,k,l ≤ BP

i,j ∀(i, j) ∈ LP (C7)

∑
(i,j)∈LP

DP
i,jA

L
i,j,r,k,l ≤ XD

r,k,lD
V
r,k,l ∀r ∈ NV , (k, l) ∈ LV (C8)

Constraint C7 ensures the bandwidth requirement of all virtual links traversing a

physical link does not exceed its capacity. Similarly, Constraint C8 ensures the delay

requirement of a virtual link is lower than the total delay of the physical path it traverses.

∑
i∈CP

AC
i,r,j = 1 ∀r ∈ NV , j ∈ CV (C9)

∑
i∈RP

AR
i,r,j = 1 ∀r ∈ NV , j ∈ RV (C10)

∑
j∈RV

AR
i,r,j ≤ 1 ∀i ∈ RP , r ∈ NV (C11)

jAR
i,r,k = lAR

i,r,k ∀(i, j) ∈ SP , r ∈ NV , (k, l) ∈ SV (C12)

Constraints C9 and C10 ensure all virtual controllers and routers are mapped to

physical controllers and routers, respectively. Additionally, C11 prevents multiple virtual

routers from the same VN from being mapped to the same physical router. The purpose

of this constraint is to ensure costs associated with virtual links between routers are prop-

erly accounted for. Constraint C12, in turn, guarantees all virtual routers with a location

requirement are mapped to physical routers within the requested locations.

62

∑
j∈RP

AL
i,j,r,k,l −

∑
j∈RP

AL
j,i,r,k,l = AR

i,r,k − AR
i,r,l

∀r ∈ NV , (k, l) ∈ LV , i ∈ RP (C13)

∑
(i,j)∈EP

(Ki +Kj)A
L
i,j,r,k,l > 0 ∀r ∈ NV , (k, l) ∈ EV (C14)

Constraint C13 ensures any virtual link (a, b) is correctly mapped to a path be-

tween the physical routers hosting a and b. Moreover, Constraint C14 forces links between

virtual controllers and routers to pass through a physical hypervisor. In this case, K is an

auxiliary input which is set to 1 if a physical node is a hypervisor (and 0 otherwise).

T V
r,k

T V
r,k

≤ XT
r,k ≤ 1.0 ∀r ∈ NV , k ∈ RV (C15)

BV
r,k,l

BV
r,k,l

≤ XB
r,k,l ≤ 1.0 ∀r ∈ NV , (k, l) ∈ LV (C16)

1.0 ≤ XD
r,k,l ≤

DV
r,k,l

DV
r,k,l

∀r ∈ NV , (k, l) ∈ LV (C17)

Constraints C15, C16, and C17 define the range of auxiliary variables XT , XB,

and XD, respectively. These variables determine the degree of flexibilization of through-

put, bandwidth, and delay constraints for each virtual router or link. In the case of

throughput and bandwidth, the lower limit of this range is defined as the ratio between the

minimum acceptable capacity and the desired capacity (which is a value between 0 and

1.0) , while the upper limit is set to 1.0 (representing the desirable capacity). In the case

of delay, the lower limit is set to 1.0 while the upper limit is a ratio between the maximum

tolerated delay and the desirable delay (which is a value greater than 1.0).

63

5.4 Overarching Framework

The main elements of the overarching framework of our architecture were initially

introduced in Chapter 4. However, as previously explained, these elements have been

reformulated in order to properly handle the full scope of our proposed solution. Next, we

explain our overarching framework in further detail and, afterwards, each of its elements

– highlighting the changes that have been made since the previous phase of development.

Figure 5.2 depicts the main elements of our complete framework, as well as the

information flow between them. To request a VN, the customer first creates a Tenant

Infrastructure Graph (TIG). This graph is similar to the standard representation of a VN

request – however, it is augmented with a wide number of additional elements that al-

low for a more precise calculation of SDN-related operational requirements. The TIG

may be sent directly to the InP or preprocessed by the Privacy-aware Compiler (PAC).

The purpose of the PAC is to leverage the augmented information present in the TIG to

precalculate operational constraints at the customer’s end and remove this augmented in-

formation (as the customer may deem it sensitive) before submitting the VN request to

the InP. On the InP’s end, the VN request is received and handled by the SDN/OpenFlow-

aware Embedder. The request is then embedded on top of the physical network, as long

as there are enough resources to fulfill the minimal requirements set by the customer.

Figure 5.2: Overview of our architecture, depicting its main elements and the information
flow between them.

Privacy-aware
Compiler

Customer Infrastructure Provider

Tenant Infr.
Graph

Physical
Network

Embedder

Optional

VN
Request

Tenant Infrastructure Graph. The TIG is an enhanced version of what is tra-

ditionally considered a VN request in VNE algorithms. A “traditional” VN request is

a graph composed of routers and links (and potentially VMs) and attributes associated

with each of these entities (e.g., link bandwidth and delay). The TIG expands upon this

model, encompassing a number of elements that help to compute SDN-related opera-

tional requirements with a higher level of precision. It includes VN requirements tra-

ditionally considered in state of the art VNE approaches – i.e., router throughput and

64

location constraints, as well as link bandwidth and delay. Moreover, it takes into account

SDN/OpenFlow controllers as part of the topology, as well as requirements associated

with these entities as well – i.e., CPU and memory requirements. Most importantly, it

enables customers to represent external end hosts, traffic flows among these hosts, and

network functions that routers need to perform on each traffic flow.

An example of a Tenant Infrastructure Graph is presented in Figure 5.3. The

example in this figure depicts a network that handles two groups of user-facing servers

(S1 and S2) and internal database servers (DB1 and DB2). The solid blue lines represent

the traffic flow of external users (E1, adding up to 100 netmasks) accessing a user-facing

server. Router R1 performs load balancing (LB) in order to redirect traffic from specific

clients to a server in either S1 or S2, while routers R2 and R3 additionally differentiate

traffic through different QoS levels. Similarly, the other flows depicted in this example

represent other traffic patterns within the VN, each with their own network functions that

need to be handled by specific routers. The dotted green lines represent communication

between groups of user-facing servers and their respective database servers. The dashed

red lines represent communication between different groups of database servers for the

purpose of synchronization. Last, the dashed and dotted yellow line grants a single entity

(a system administrator) access to all servers.

Figure 5.3: Example of a Tenant Infrastructure Graph, depicting all elements included in
it prior to preprocessing by the PAC.

10 instances

10 instances 5 instances

5 instances

100
netmasks

1 user
LB

10
 (8

) G
bp

s

50
 (7

5)
ms

5 (3) Gbps

100 (110) ms

10 (8) Gbps
50 (75) ms

15 (12) Gbps
Location B

20 (18) Gbps
Location A

15 (12) Gbps
Location C

LB, QoS(3)

AC

AC

LB, QoS(3)

AC

AC

R1

R2

R3

S1 DB1

S2

DB2

E1E1

E2E2

C1 10% CPU
4 GB RAM

1 Gbps
50 ms 1 G

bp
s

50
 m

s

1 G
bps

50 m
s

As previously explained, we allow the flexibilization of certain requirements –

represented as the numbers in parenthesis in Figure 5.3. As an example, the link between

65

R1 and R2 has a desired bandwidth capacity of 10 Gbps and a minimal capacity of 8

Gbps, as well as a desired delay of 50 ms and a maximum tolerated delay of 75 ms.

In contrast to the description presented in Chapter 4, a number of new elements

have been added to the TIG. First, we now consider an explicit representation of SDN/OpenFlow

controllers, the communication channels between controllers and routers within each VN,

and CPU and memory requirements associated with them. This enables our model to

properly take into account controller-related requirements and leverage this knowledge to

efficiently embed these elements on the physical network. Second, the TIG now includes

link delay as an additional constraint. Last, it now allows customers to represent router

throughput, link bandwidth, and delay as flexible constraints.

We now present an example of the formal representation of a TIG. For clarity,

this representation is divided into Algorithms 1 and 2 – although, in practice, all elements

within a TIG are represented as a single file. This example is based on the same TIG repre-

sented in Figure 5.3. Algorithm 1 encompasses elements related to network topology and

services – e.g., routers, links, and controllers. Each entity is defined as a (unique) name

(e.g., R1, R2, and R3) followed by a declaration of its type (router, compute1, controller,

link, or flow) and, finally, by a list of attributes associated with it. As an example, the

attributes associated with a router are throughput, throughput_min, and location (where

throughput represents the desired capacity and throughput_min represents the minimum

acceptable capacity).

Algorithm 2 demonstrates the representation of network flows. Compared to other

elements, flows are represented in a slightly more complex manner in order to fully cap-

ture the potential intricacies they may exhibit. However, they still follow the same stan-

dard syntax. The path of a flow is composed of any number of links (which must have

been previously defined). Groups of links within the path of a flow can be represented in

a nested manner, in order to represent branching paths (as is the case of the blue flow).

Moreover, each flow is associated with a number of functions – and each function, in

turn, associated with a specific virtual router. This representation is necessary in order to

properly determine traffic patterns between external entities and how network functions

will be applied to each flow when being processed by specific routers.

Privacy-Aware Compiler. Before being handled by the Embedder, the TIG is

preprocessed in order to compute SDN/OpenFlow-related requirements. This can be per-

formed by the Privacy-aware Compiler (PAC) at the customer’s end or directly at the InP’s

1For the sake of simplicity, any entities external to the VN (e.g., end users/netmasks and servers) are
defined as compute instances.

66

Algorithm 1 Formal representation of a TIG – network and service representation
1: /* routers */
2: R1={type=router,throughput=20,throughput_min=18,
3: location=1};
4: R2={type=router,throughput=15,throughput_min=12,
5: location=2};
6: R3={type=router,throughput=15,throughput_min=12,
7: location=3};
8: /* compute instances */
9: E1={type=compute,instances=100};
10: E2={type=compute,instances=1};
11: S1={type=compute,instances=10};
12: DB1={type=compute,instances=5};
13: S2={type=compute,instances=10};
14: DB2={type=compute,instances=5};
15: /* controllers */
16: C1={type=controller,cpu=10,memory=4};
17: /* internal links between routers */
18: R1_R2={type=link,path={R1,R2},bandwidth=10,
19: bandwidth_min=8,delay=50,delay_max=75};
20: R1_R3={type=link,path={R1,R3},bandwidth=10,
21: bandwidth_min=8,delay=50,delay_max=75};
22: R2_R3={type=link,path={R2,R3},bandwidth=5,
23: bandwidth_min=3,delay=100,delay_max=110};
24: /* internal links between controller and routers */
25: C1_R1={type=link,path={C1,R1},bandwidth=1,delay=50};
26: C1_R2={type=link,path={C1,R2},bandwidth=1,delay=50};
27: C1_R3={type=link,path={C1,R3},bandwidth=1,delay=50};
28: /* external links */
29: E1_R1={type=link,path={E1,R1}};
30: E2_R1={type=link,path={E2,R1}};
31: S1_R2={type=link,path={S1,R2}};
32: DB1_R2={type=link,path={DB1,R2}};
33: S2_R3={type=link,path={S2,R3}};
34: DB2_R3={type=link,path={DB2,R3}};

end. The PAC leverages augmented high-level network information in the TIG in order

to calculate these requirements in a precise manner. At the same time, it removes this

augmented information from its output, generating a “sanitized” VN request.

As the TIG is considerably dense in terms of the amount of information it carries,

the PAC must be equipped to process all the different pieces of information within a TIG.

This includes newly added elements such as controllers and their respective communica-

tion channels, capacity requirements such as controller CPU and memory as well as link

delay, and the representation of capacity constraints as flexible ranges. Additionally, as

the Embedder now takes into account meter table occupation, the VN request generated

by the PAC also includes the number of meter table entries required by each router in

order to properly enforce bandwidth constraints.

Figure 5.4 depicts an example of how this process is carried out on the same TIG

67

Algorithm 2 Formal representation of a TIG – flow representation
1: /* flows */
2: yellow={type=flow,path={E2_R1,R1_R2,S1_R2,
3: DB1_R2,R1_R3,S2_R3,DB2_R3,R2_R3}};
4: blue={type=flow,path={{E1_R1},{{R1_R2,S1_R2},
5: {R1_R3,S2_R3}}},functions={
6: R1_blue_LB={entity=R1,purpose=load_balancing},
7: R2_blue_LB={entity=R2,purpose=load_balancing},
8: R2_blue_QoS={entity=R2,purpose=qos,levels=3},
9: R3_blue_LB={entity=R3,purpose=load_balancing},
10: R3_blue_QoS={entity=R3,purpose=qos,levels=3}
11: }};
12: green={type=flow,path={S1_R2,DB1_R2},functions={
13: R2_green_AC={entity=R2,purpose=access_control},
14: R3_green_AC={entity=R3,purpose=access_control}
15: }};
16: red={type=flow,path={DB1_R2,DB2_R3,R2_R3},
17: functions={
18: R2_red_AC={entity=R2,purpose=access_control},
19: R3_red_AC={entity=R3,purpose=access_control}
20: }};
21: magenta={type=flow,path={C1_R1,C1_R2,C1_R3}};

shown previously in Figure 5.3. The input TIG includes information regarding external

network instances, the traffic flows among them, and functions performed by each router

on each flow. This information is converted into simple, numerical capacity requirements

while the source information is removed from the generated VN request. As a result, the

output of the PAC is similar to a traditional VN request, with all the information within

a TIG being “distilled” and converted into a format that is simple for the Embedder to

parse.

Figure 5.4: VN request generated by the PAC after processing a given TIG.

10
 (8

) G
bp

s

50
 (7

5)
ms

5 (3) Gbps

100 (110) ms

10 (8) Gbps
50 (75) ms

15 (12) Gbps
Location B
6210 Flows

3 Meters

20 (18) Gbps
Location A
4060 Flows

3 Meters

15 (12) Gbps
Location C
6210 Flows

3 Meters

R1

R2

R3

C1 10% CPU
4 GB RAM

1 Gbps
50 ms 1 G

bp
s

50
 m

s

1 G
bps

50 m
s

With regards to the computation of flow table requirements, depending on the

functions to be performed on a given flow, the initial number of flow rules required by

68

a router that carries this flow may be either based on the number of end points intercon-

nected by this flow or the total number of source-destination pairs communicating through

it. Moreover, this initial number may be further multiplied depending on the functions –

or a combination of functions – performed on it.

As an example of the calculation performed to determine flow table requirements

performed by the PAC, consider router R2 and its requirements shown in Figure 5.4. As

previously shown (in Figure 5.3 and Algorithms 1 and 2), four flows – yellow, red, green,

and blue – traverse this router. The flow represented in yellow interconnects an external

entity to all (30) compute instances within the network, adding up to a total of 60 source-

destination pairs. As no additional functions are performed on this flow, this is the total

number of flow rules it requires. Similarly, the red flow interconnects 5 compute instances

within DB1 and 5 compute instances within DB2, adding up to 50 source-destination

pairs, while the green flow connects 10 instances in S1 to 5 instances in DB1, comprising

a total of 100 source-destination pairs. While both the red and green flows require access

control, this does not directly translate into an increase in flow table requirements, as the

router only needs to keep track of packet sources and destinations in order to perform this

function. Last, the blue flow connects 100 external netmasks to 10 compute instances

within S1. This leads to an initial number of 2,000 source-destination pairs. Additionally,

this flow requires both load balancing and QoS with 3 distinct levels, the latter of which

leads to a 3x multiplication in the initial computed number, adding up to 6,000 flow rules.

The total amount of flow entries required by this router is, thus, the combination of the

number of entries required by each flow that traverses it, adding up to 6,210 entries (60 +

50 + 100 + 6,000).

In addition to flow table requirements, the PAC also computes meter table require-

ments. Meter table entries are employed by the InP at the substrate level to ensure virtual

routers do not exceed the maximum bandwidth capacity assigned to them. In this case,

as bandwidth capacity is handled on a per-link basis, the necessary number of meter table

entries is equal to the number of links traversing a router. Analogously, the PAC may be

extended to handle other cases in which certain VN features may introduce operational

requirements at the physical level that the customer is not – and should not be – aware of.

69

5.5 Evaluation

We now discuss the experiments used to evaluate our proposed framework and the

results obtained through this evaluation. Experiments were performed on a machine with

an Intel Xeon E5-2420 CPU, 32 GB of RAM and Operating System Ubuntu GNU/Linux

16.04. The SDN/OpenFlow-aware Embedder was implemented and run using the IBM

ILOG CPLEX Interactive Optimizer 12.4.

5.5.1 Workloads

For this evaluation, we algorithmically generate a series of VN requests according

to a series of parameters. The algorithm is run for a total of 250 rounds, generating a new

VN request per round. If a request is accepted, the VN remains embedded for 25 rounds

and is subsequently removed.

Fixed parameters. In all experiments, physical and virtual topologies are gen-

erated through BRITE2 using the Barabási-Albert model (ALBERT; BARABÁSI, 2000).

Physical networks used in this evaluation contain 100 routers, 4 hypervisors, and 8 phys-

ical machines for hosting virtual controllers. Physical routers have a throughput capacity

of 150 Gbps and are uniformly distributed among 16 geographic locations. The flow ta-

ble of each device is capable of storing up to 16,000 rules, while the meter table has a

capacity of 4,000 rules. The total CPU and memory capacity of each physical machine

are set to 100% and 64 GB, respectively. Physical hypervisors are capable or handling up

to 32,000 flow rules each. Physical links have a bandwidth capacity of 30 Gbps while the

delay of each link is uniformly distributed between 20 and 40 ms.

Each VN request contains 1 controller and 5 routers. Within each VN, two “edge”

routers contain randomly generated location requirements. The capacity requirements

of virtual routers, links, and controllers differ depending on the experiment, and will be

explained next.

Variable parameters. We performed experiments with two variations regarding

VN requirements – one set of experiments was carried out with lower VN requirements,

while another set had higher requirements. In “lower cost” (LC) experiments, router

throughput, flow table entries, link bandwidth, and controller CPU and memory require-

ments were set to 25% of the total capacity of physical devices, while link delay require-
2BRITE: Boston university Representative Internet Topology gEnerator – https://www.cs.bu.edu/brite/

70

ments were set to 100 ms. “Higher cost” (HC), in turn, refers to experiments in which

the aforementioned capacity requirements were set to 50% of physical device capacities,

while link delay constraints were set to 50 ms. Additionally, five variations of each of

these experiments were carried out by adjusting the amount of flexibilization allowed

in router throughput, link bandwidth, and delay requirements of each VN. Different ex-

periments were performed in which the tolerance for sub-optimal requirements was set

to 0%3, 5%, 10%, 15%, and 20% of the optimal required capacity. Tables 5.2 and 5.3

summarize all the aforementioned variable parameters used in our experiments.

Table 5.2: Variable VN requirements in “lower cost” experiments.

Parameter Desired
Minimal (per experiment)

0% 5% 10% 15% 20%
Router Throughput 37.5 Gbps 37.5 35.62 33.75 31.87 30
Link Bandwidth 7.5 Gbps 7.5 7.12 6.75 6.37 6
Link Delay 100 ms 100 105 110 115 120
Flow Table Entries 4,000 N/A
Controller CPU 25% N/A
Controller Memory 16 GB N/A

Table 5.3: Variable VN requirements in “higher cost” experiments.

Parameter Desired
Minimal (per experiment)

0% 5% 10% 15% 20%
Router Throughput 75 Gbps 75 71.25 67.5 63.75 60
Link Bandwidth 15 Gbps 15 14.25 13.5 12.75 12
Link Delay 50 ms 50 52.5 55 57.5 60
Flow Table Entries 8,000 N/A
Controller CPU 50% N/A
Controller Memory 32 GB N/A

5.5.2 Results

First, we analyze the acceptance rate observed in each experiment. This data is

represented in Figure 5.5. In higher cost experiments with no constraint flexibilization,

the achieved acceptance rate was of 52.3%. In lower cost experiments, in turn, the accep-

tance rate was 63.5%. These two experiments in particular can be considered “baseline”
3I.e., both the optimal and minimum/maximum tolerated capacity were set to the same value, not allow-

ing any flexibilization.

71

cases when compared to their variations – in which different degrees of constraint flex-

ibilization are considered. Increasing amounts of flexibilization led to an approximately

linear gain in both cases, with acceptance rates reaching 77.7% and 91.9% for lower and

higher cost variants, respectively. Compared to baseline experiments with no flexibiliza-

tion, these rates represent growths of 25.4% and 28.4% in VN acceptance, respectively

– exceeding the degree of flexibilization of 20% for a subset of VN constraints. These

results highlight the potential advantages of employing flexible constraints in order to

maximize the number of VNs hosted on a given physical infrastructure while maintain-

ing a “hard” limit on minimum requirements set by customers – which should not be

violated. Moreover, as expected, the difference in terms of capacity constraints between

higher and lower cost scenarios is reflected in this graph. The acceptance rate observed

in higher cost scenarios remains between 11.2% and 14.2% lower than that of their lower

cost counterparts – considering the same amount of flexibilization.

Figure 5.5: Acceptance rate of VN requests in each evaluation scenario.

0%

20%

40%

60%

80%

100%

0% 5% 10% 15% 20%

P
er

ce
n

ta
g

e
o

f
A

cc
ep

te
d

 R
eq

u
es

ts

Allowed Requirement Flexibilization

Highest Cost Lowest Cost

Next, the graphs in Figure 5.6 depict the level of flexibilization achieved in each

experiment. While throughput, bandwidth, and delay requirements may allow flexibiliza-

tion up to a certain limit, this metric expresses the extent to which this potential flexibiliza-

tion was actually used by the Embedder. In these graphs, the solid black line represents

the theoretical maximum that could be achieved given the level of flexibilization allowed

in each scenario. In experiments where minimal requirements are limited to 5% below

or above the desired ones, the achieved flexibilization of all requirements was similar,

remaining between 4.2 and 4.5%. At 20%, the achieved flexibilization of throughput and

bandwidth requirements remained between 16.9 and 17.5%, while that of delay require-

72

ments was of 13.7 in higher capacity experiments and 14.4% in lower capacity experi-

ments. As evidenced by these results, the achieved levels of flexibilization remain close to

the theoretical maximum in each experiment. However, the values observed for delay re-

quirements exhibit a slightly lower growth when compared to throughput and bandwidth.

This is likely due to topological features of the physical network making it impossible to

establish longer paths with a delay that remains within the tolerated limit (as the delay

of a path is defined as the sum of all links that form this path). Moreover, a correlation

can be seen between the achieved level of flexibilization and the acceptance rate of each

experiment. As more VN requests are accepted over time and physical network resources

become increasingly scarce, higher degrees of flexibilization are effectively used by the

Embedder in order to accommodate incoming requests – resulting in higher acceptance

rates.

Figure 5.6: Level of constraint flexibilization effectively achieved in each experiment.

0%

5%

10%

15%

20%

0% 5% 10% 15% 20%

A
ch

ie
v

ed
 F

le
x

ib
il

iz
at

io
n

Allowed Requirement Flexibilization

Delay − LC
Throughput − LC

Bandwidth − LC
Theoretical Maximum

0%

5%

10%

15%

20%

0% 5% 10% 15% 20%

A
ch

ie
v

ed
 F

le
x

ib
il

iz
at

io
n

Allowed Requirement Flexibilization

Delay − HC
Throughput − HC

Bandwidth − HC
Theoretical Maximum

Table 5.4: Time to reach the optimal solution in each scenario (in seconds).
Allowed Requirement Solution Time

Flexibilization LC HC
0% 8.8 9.1
5% 37.3 34.2

10% 35.2 34.3
15% 36.7 36.7
20% 35.9 35.2

Last, we analyze the time needed to reach the optimal solution in each experiment.

This data is summarized in Table 5.4. In experiments where no constraint flexibilization

was allowed (represented as 0%), the average solution time was of 8.8 seconds in exper-

iments with lower capacity requirements. In experiments with higher requirements, in

turn, the average observed time was of 9.1 seconds. In remaining experiments, in which

73

constraint flexibilization is allowed in varying degrees, solution times remained between

34.2 and 37.3 seconds. As evidenced by these observed values, solution times suffer

an increase when the Embedder has to take into account flexible resource requirements.

However, in spite of this increase, solution times remained shorter than 40 seconds in all

experiments – well within the acceptable limits for this type of environment. Moreover,

greater amounts of flexibilization did not result in further increases to solution times. The

observed values remain highly similar in all experiments that allow resource flexibiliza-

tion, regardless of the extent to which this feature is allowed.

In summary, these experiments demonstrate the feasibility of simultaneously tak-

ing into account a large number of operational constraints during the VN embedding pro-

cess. Potential negative impacts on acceptance rates are mitigated by the flexibilization of

resource demands – which was utilized nearly to its full extent in order to maximize re-

quest acceptance. Moreover, the impact caused by the employment of this flexibilization

on the time needed to compute VN mappings was limited to the order of seconds. The

impact of the evaluation results obtained throughout the development of this work on our

hypothesis and research questions is further discussed in Chapter 6.

74

6 FINAL CONSIDERATIONS

Network virtualization and Software-Defined Networking have been playing in-

creasingly prominent roles in today’s networks. The provisioning of network virtualiza-

tion as a service is expected to experience continuous growth, reaching a majority of

production networks within the next three to five years. However, although a substantial

body of work exists in the area of virtual network embedding, existing approaches do

not take into account relevant operational constraints related to the instantiation of VNs

on different embedding platforms. At the same time, demanding information regarding

such operational constraints from customers may be unrealistic as they may be either not

aware of how their VN affects the InP’s substrate at the physical level or unwilling to

share detailed information about the inner working of their VNs.

Based on this reasoning, we proposed an abstraction model for expressing require-

ments related to internal VN policies and traffic patterns. This model – the Tenant Infras-

tructure Graph – is built in a way that is familiar to customers in a network virtualization

environment. Moreover, it may be preprocessed on the customer’s end by a Privacy-aware

Compiler in order to derive information that is valuable to the InP and, at the same time,

remove sensitive data that the customer may not be willing to disclose. The output of

this compiler is then forwarded to the InP, which can employ the SDN/OpenFlow-aware

Embedder to ensure embedded VNs do not break any crucial operational constraints of

its network virtualization platform.

We also proposed a strategy for mitigating the solution space reduction that results

from taking into account a large set of operational constraints simultaneously. As doing

so severely reduces the number of feasible mappings the VNE model can produce, this

could likely lead to a significant increase in rejection rates of VN requests. Our frame-

work enables customers to represent their needs – in terms of capacity constraints – as a

range which extends from their minimum acceptable requirements to the maximum de-

sired capacity. Our strategy leverages this added flexibility to minimize the impact of

increased restrictions imposed by SDN/OpenFlow-related operational constraints.

6.1 Conclusions

Through a comprehensive evaluation, we first demonstrated that taking flow-related

operational constraints into account is of paramount importance to maintain a desired

75

level of quality of service. Neglecting such constraints may render the environment un-

able to cope with a substantial number of flow rules that are crucial to ensure proper VN

behavior. As physical devices become unable to store all necessary flow rules internally,

they need to frequently contact the controller in order to route incoming packets, which,

in turn, may lead to significant performance degradation for VNs hosted on such devices.

In our experiments, assuming the flow table space reserved for requests with un-

known requirements was sufficient, the proposed approach was able to eliminate con-

troller intervention due to flow table saturation. Additionally, assuming the actual re-

quirements of such requests exceeded the allocated space by a factor of 2, the number of

exceeding flow rules was still reduced by 40.8% on average (compared to a traditional

VNE approach). Moreover, the reduction of acceptance rates due to the added constraints

was limited to, on average, 9.6%. Our proposed approach enables InPs to accurately

assess operational constraints and correctly embed incoming requests without violating

these constraints. Further, by adjusting the ratio of flow table space dedicated to different

types of incoming requests, the InP may choose to which degree requests that include

all the necessary information are favored in detriment of requests that do not (and that,

therefore, rely on estimation of necessary resources in order to be embedded).

Subsequently, we demonstrated the feasibility of taking into account a rich set of

SDN/OpenFlow-related operational constraints at the same time during the VN embed-

ding process. In a second set of experiments, we demonstrated that the proposed VNE

approach is able to optimally embed incoming requests in a time frame limited to a few

seconds. While enabling requirement flexibilization has an impact on the time needed to

compute the optimal mapping of each request, the total time to embed incoming VNs was

still limited to the order of seconds. Namely, solution times were lower than 10 seconds

in scenarios with no constraint flexibilization and lower than 40 seconds in scenarios with

different degrees of tolerance. Additionally, the obtained results evidence that the level

of flexibilization achieved in each experiment remains near the theoretical maximum for

that scenario and promotes significant increases in acceptance rates. By allowing up to

20% flexibilization of some constraints, we were able to observe growths of up to 28.4%

in terms of VN acceptance.

As a result of the work carried out throughout the course of this Ph.D. research, we

were able to confirm our previously formulated hypothesis – “In order to provide network

predictability, efficient resource usage, and quality of service, it is necessary to coordinate

virtual network embedding and operational constraints found in SDN-based networks.”.

76

Moreover, we were able to successfully answer the research questions we initially posed.

More specifically, we quantified the negative impact of neglecting operational constraints

in terms of predictability and quality of service (Research Question 1) as well as the gains

achieved through VNE/SDN coordination (Research Question 2). Further, we demon-

strated that the cost to be paid for this coordination – in terms of solution space reduction,

computing power, and timeliness – are acceptable using the proposed strategy (Research

Question 3). Next, we list the main outcomes of this thesis in terms of peer-reviewed

publications.

Main publications:

• Virtual network security: threats, countermeasures, and challenges

Leonardo Richter Bays, Rodrigo Ruas Oliveira, Marinho Barcellos, Luciano Paschoal

Gaspary, Edmundo Roberto Mauro Madeira.

Journal of Internet Services and Applications, 2015.

(Included as Appendix A of this document)

• Virtual Network Embedding in Software-Defined Networks

Leonardo Richter Bays, Luciano Paschoal Gaspary, Reaz Ahmed, Raouf Boutaba.

IEEE/IFIP Network Operations and Management Symposium, 2016.

(Included as Appendix B of this document)

Related publications:

• A toolset for efficient privacy-oriented virtual network embedding and its in-

stantiation on SDN/OpenFlow-based substrates

Leonardo Richter Bays, Rodrigo Ruas Oliveira, Luciana Buriol, Marinho Barcel-

los, Luciano Paschoal Gaspary.

Computer Communications, 2016.

• How physical network topologies affect virtual network embedding quality: A

characterization study based on ISP and datacenter networks

Marcelo Caggiani Luizelli, Leonardo Richter Bays, Luciana Buriol, Marinho Bar-

cellos, Luciano Paschoal Gaspary.

Journal of Network and Computer Applications, 2016.

77

6.2 Future Work

Based on the experience acquired throughout the Ph.D. research presented in this

thesis, we envision two main possibilities for future work, which are discussed next.

Routing orchestration. In a multi-tenant virtualization environment such as the

one we consider in this work, customers may make use of routing policies that conflict

with those of other VNs. This can cause unnecessary strain on the substrate, hindering

the performance of VNs hosted on top of it or preventing the InP from hosting a higher

number of networks. Moreover, as each VN is controlled by a different entity, they cannot

directly coordinate with each other in order to choose strategies that may favor them

mutually in the long term. For this reason, a strategy for analyzing the behavior of VNs,

suggesting improved strategies, and offering benefits to VNs that adopt these strategies

could potentially benefit the environment as a whole.

Iterative requirement negotiation. Currently, we consider customer demands as

a range that stretches from minimum acceptable to maximum desirable resources. The

VN Embedder takes this range into account in order to flexibilize demands during the

embedding process. A further refinement could be made to this process, enabling iterative,

back-and-forth negotiation of demands between customers and InPs prior to the actual

embedding of the requested VN. Through this strategy, if the Embedder is unable to fully

accommodate a certain request on the substrate, it first analyzes what adjustments (if any)

would allow it to be embedded. A modified request – with lower requirements – is then

forwarded to the customer, who may accept it or not. If the customer accepts the proposed

changes, the modified VN is then embedded on the substrate. Otherwise, both entities

may attempt to iteratively reach an agreement, with the customer proposing his/her own

modifications. If an agreement cannot be reached within a reasonable amount of time, the

VN request may be eventually discarded.

Dynamic reoptimization of allocated resources. Presently, the VN Embedder

takes into account the amount of resources available in the infrastructure at the moment

in which a request is received in order to determine the level of flexibilization that will

be necessary in order to embed the requested VN. However, the amount of available

resources may increase at a later time, e.g., if a previously embedded VN is removed

from the substrate. Therefore, this process could potentially be refined by reconsidering

the amount of resources allocated to remaining VNs whenever further resources become

available. This process of reoptimization could be leveraged to fulfill VN requests to a

78

level that increasingly approaches the maximum desirable capacity of each request. On

the other hand, this process would conversely result in a lower amount of resources being

made available for future incoming requests. Therefore, a more comprehensive study on

both the positive and negative impacts of such a strategy would need to be carried out in

order to determine whether its potential gains outweigh any inherent drawbacks.

79

REFERENCES

AL-SHABIBI, A. et al. Openvirtex: make your virtual sdns programmable. In: ACM
WORKSHOP ON HOT TOPICS IN SOFTWARE DEFINED NETWORKING,
2014... Proceedings. New York, NY, USA: ACM, 2014. p. 25–30. Disponível em:
<http://doi.acm.org/10.1145/2620728.2620741>.

ALBERT, R.; BARABÁSI, A.-L. Topology of evolving networks: Local events and
universality. Physical Review Letters, American Physical Society, v. 85, p. 5234–5237,
Dec 2000.

ALKMIM, G. P.; BATISTA, D. M.; FONSECA, N. L. S. Mapping virtual networks onto
substrate networks. Journal of Internet Services and Applications, v. 3, n. 4, p. 1–15,
2013. ISSN 1869-0238.

BAYS, L. R. et al. Virtual network security: threats, countermeasures, and challenges.
Journal of Internet Services and Applications, Springer London, v. 6, n. 1, p. 1, 2015.

BAYS, L. R. et al. A heuristic-based algorithm for privacy-oriented virtual
network embedding. In: IEEE NETWORK OPERATIONS AND MANAGEMENT
SYMPOSIUM, 2014... Proceedings. Krakow, Poland: IEEE, 2014. p. 1–8. Disponível
em: <http://doi.org/10.1109/NOMS.2014.6838360>.

BLENK, A. et al. Control plane latency with sdn network hypervisors: The cost of
virtualization. IEEE Transactions on Network and Service Management, IEEE, v. 13,
n. 3, p. 366–380, 2016.

BOZAKOV, Z.; PAPADIMITRIOU, P. Autoslice: automated and scalable slicing for
software-defined networks. In: ACM CONFERENCE ON EMERGING NETWORKING
EXPERIMENTS AND TECHNOLOGIES, 2012...Proceedings. Nice, France: IEEE,
2012. p. 3–4. Disponível em: <https://dl.acm.org/citation.cfm?id=2413251>.

CALVERT, K. Reflections on network architecture: an active networking perspective.
ACM SIGCOMM Computer Communication Review, ACM, v. 36, n. 2, p. 27–30,
2006.

CHENG, X. et al. Virtual network embedding through topology-aware node ranking.
SIGCOMM Computer Communication Review, ACM, New York, NY, USA, v. 41,
n. 2, p. 38–47, abr. 2011. ISSN 0146-4833.

CHOWDHURY, M.; RAHMAN, M. R.; BOUTABA, R. Vineyard: Virtual network
embedding algorithms with coordinated node and link mapping. IEEE/ACM
Transactions on Networking, IEEE Press, Piscataway, NJ, USA, v. 20, n. 1, p. 206–219,
fev. 2012. ISSN 1063-6692.

COMMISSION, E. Implications of the emerging technologies Software-Defined
Networking and Network Function Virtualisation on the future Telecommunications
Landscape. 2017. Disponível em: <http://sdn.wik-consult.com/index.php?id=762>.

CORIN, R. D. et al. Vertigo: network virtualization and beyond. In: EUROPEAN
WORKSHOP ON SOFTWARE DEFINED NETWORKING, 2012...Proceedings.
Darmstadt, Germany: IEEE, 2012. p. 24–29. Disponível em: <https://ieeexplore.ieee.
org/abstract/document/6385043/>.

http://doi.acm.org/10.1145/2620728.2620741
http://doi.org/10.1109/NOMS.2014.6838360
https://dl.acm.org/citation.cfm?id=2413251
http://sdn.wik-consult.com/index.php?id=762
https://ieeexplore.ieee.org/abstract/document/6385043/
https://ieeexplore.ieee.org/abstract/document/6385043/

80

CURTIS, A. R. et al. Devoflow: Scaling flow management for high-performance
networks. SIGCOMM Computer Communication Review, ACM, New York, NY,
USA, v. 41, p. 254–265, 2011. ISSN 0146-4833.

DEMIRCI, M.; AMMAR, M. Design and analysis of techniques for mapping virtual
networks to software-defined network substrates. Computer Communications, v. 45, p.
1 – 10, 2014. ISSN 0140-3664.

DRUTSKOY, D.; KELLER, E.; REXFORD, J. Scalable network virtualization in
software-defined networks. IEEE Internet Computing, IEEE, v. 17, n. 2, p. 20–27,
2013.

ESPOSITO, F.; PAOLA, D. D.; MATTA, I. On distributed virtual network embedding
with guarantees. IEEE/ACM Transactions on Networking, IEEE, v. 24, n. 1, p.
569–582, 2016.

FEAMSTER, N.; REXFORD, J.; ZEGURA, E. The road to sdn: an intellectual history
of programmable networks. ACM SIGCOMM Computer Communication Review,
ACM, v. 44, n. 2, p. 87–98, 2014.

GUAN, X.; CHOI, B.-Y.; SONG, S. Energy efficient virtual network embedding
for green data centers using data center topology and future migration. Computer
Communications, Elsevier, v. 69, p. 50–59, 2015.

HUANG, H. et al. Embedding virtual software-defined networks over distributed
hypervisors for vdc formulation. In: INTERNATIONAL CONFERENCE ON
COMMUNICATIONS, 2017...Proceedings. Paris, France: IEEE, 2017. p. 1–6.
Disponível em: <https://ieeexplore.ieee.org/abstract/document/7996721/>.

JARRAY, A.; KARMOUCH, A. Decomposition approaches for virtual network
embedding with one-shot node and link mapping. IEEE/ACM Transactions on
Networking (TON), IEEE Press, v. 23, n. 3, p. 1012–1025, 2015.

LAN/MAN STANDARDS COMMITTEE. IEEE Standard for Local and metropolitan
area networks – Virtual Bridged Local Area Networks. 2006. IEEE Std 802.1Q-2005
(incorpora IEEE Std 802.1Q1998, IEEE Std 802.1u-2001, IEEE Std 802.1v-2001, e
IEEE Std 802.1s-2002).

LANTZ, B.; HELLER, B.; MCKEOWN, N. A network in a laptop: rapid prototyping
for software-defined networks. In: ACM SIGCOMM WORKSHOP ON HOT TOPICS
IN NETWORKS, 2010...Proceedings. Monterey, California: ACM, 2010. p. 19:1–19:6.
Disponível em: <http://doi.acm.org/10.1145/1868447.1868466>.

LIAO, J. SDN System Performance. 2012. Disponível em: <http://www.pica8.com/
pica8-deep-dive/sdn-system-performance/>.

LUIZELLI, M. C. et al. How physical network topologies affect virtual network
embedding quality: A characterization study based on isp and datacenter networks.
Journal of Network and Computer Applications, Elsevier, v. 70, p. 1–16, 2016.

MCKEOWN, N. et al. Openflow: enabling innovation in campus networks. SIGCOMM
Computer Communication Review, ACM, New York, USA, v. 38, p. 69–74, March
2008. ISSN 0146-4833.

https://ieeexplore.ieee.org/abstract/document/7996721/
http://doi.acm.org/10.1145/1868447.1868466
http://www.pica8.com/pica8-deep-dive/sdn-system-performance/
http://www.pica8.com/pica8-deep-dive/sdn-system-performance/

81

NASCIMENTO, M. R. et al. Virtual routers as a service: the routeflow approach
leveraging software-defined networks. In: INTERNATIONAL CONFERENCE ON
FUTURE INTERNET TECHNOLOGIES, 2011...Proceedings. Seoul, Korea: ACM,
2011. p. 34–37. Disponível em: <http://doi.acm.org/10.1145/2002396.2002405>.

NEVES, M. et al. Contando os segundos: avaliação de estratégias de domínio temporal
para a gerência de regras em redes sdn. In: SIMPÓSIO BRASILEIRO DE REDES DE
COMPUTADORES E SISTEMAS DISTRIBUÍDOS - SBRC, Salvador, 2016... Anais.
[S.l.: s.n.], 2016. p. 542–555.

ROSEN, E. et al. RFC 4364: BGP/MPLS IP Virtual Private Networks (VPNs). 2006.
2006. Disponível em: <<http://www.ietf.org/rfc/rfc4364.txt>>. Acesso em: 30 apr. 2013.

SALVADORI, E. et al. Generalizing virtual network topologies in openflow-based
networks. In: IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE,
2011...Proceedings. Kathmandu, Nepal: IEEE, 2011. p. 1–6. Disponível em:
<https://ieeexplore.ieee.org/abstract/document/6134525/>.

SHERWOOD, R. et al. Flowvisor: A network virtualization layer. OpenFlow Switch
Consortium, Technical Report, 2009.

SPITZNAGEL, E.; TAYLOR, D.; TURNER, J. Packet classification using extended
tcams. In: IEEE INTERNATIONAL CONFERENCE ON NETWORK PROTOCOLS,
2003...Proceedings. Atlanta, Georgia: IEEE, 2003. p. 120–131. Disponível em:
<https://ieeexplore.ieee.org/abstract/document/1249762/>.

TEGUEU, A. S. et al. A reactive resource defragmentation method for virtual
links mapping in software-defined networks. In: IEEE INTERNATIONAL
SYMPOSIUM ON LOCAL AND METROPOLITAN AREA NETWORKS,
2017...Proceedings. Osaka, Japan: IEEE, 2017. p. 1–6. Disponível em: <https:
//ieeexplore.ieee.org/abstract/document/7972143/>.

YU, M. et al. Rethinking virtual network embedding: substrate support for path splitting
and migration. SIGCOMM Computer Communication Review, ACM, New York,
USA, v. 38, n. 2, p. 17–29, mar. 2008. ISSN 0146-4833.

ZHANG, Z. et al. Adaptive multi-objective artificial immune system based virtual
network embedding. Journal of Network and Computer Applications, Elsevier, v. 53,
p. 140–155, 2015.

ZHONG, X. et al. Flowvisor-based cost-aware vn embedding in openflow networks.
International Journal of Network Management, Wiley Online Library, v. 26, n. 5, p.
373–395, 2016.

http://doi.acm.org/10.1145/2002396.2002405
http://www.ietf.org/rfc/rfc4364.txt
https://ieeexplore.ieee.org/abstract/document/6134525/
https://ieeexplore.ieee.org/abstract/document/1249762/
https://ieeexplore.ieee.org/abstract/document/7972143/
https://ieeexplore.ieee.org/abstract/document/7972143/

82

APPENDIX A – PUBLISHED PAPER – JISA, 2015

• Title: Virtual network security: threats, countermeasures, and challenges

• Journal: Journal of Internet Services and Applications

• Date: January, 2015

• DOI: <https://doi.org/10.1186/s13174-014-0015-z>

https://doi.org/10.1186/s13174-014-0015-z

Bays et al. Journal of Internet Services and Applications (2015) 6:1
DOI 10.1186/s13174-014-0015-z

RESEARCH Open Access

Virtual network security: threats,
countermeasures, and challenges
Leonardo Richter Bays1, Rodrigo Ruas Oliveira1, Marinho Pilla Barcellos1, Luciano Paschoal Gaspary1*

and Edmundo Roberto Mauro Madeira2

Abstract

Network virtualization has become increasingly prominent in recent years. It enables the creation of network
infrastructures that are specifically tailored to the needs of distinct network applications and supports the instantiation
of favorable environments for the development and evaluation of new architectures and protocols. Despite the wide
applicability of network virtualization, the shared use of routing devices and communication channels leads to a series
of security-related concerns. It is necessary to provide protection to virtual network infrastructures in order to enable
their use in real, large scale environments. In this paper, we present an overview of the state of the art concerning
virtual network security. We discuss the main challenges related to this kind of environment, some of the major
threats, as well as solutions proposed in the literature that aim to deal with different security aspects.

Keywords: Network virtualization; Security; Threats; Countermeasures

1 Introduction
Virtualization is a well established concept, with applica-
tions spanning several areas of computing. This technique
enables the creation of multiple virtual platforms over
a single physical infrastructure, allowing heterogeneous
architectures to run on the same hardware. Additionally,
it may be used to optimize the usage of physical resources,
as an administrator is able to dynamically instantiate and
remove virtual nodes in order to satisfy varying levels of
demand.
In recent years, there has been a growing demand

for adaptive network services with increasingly distinct
requirements. Driven by such demands, and stimulated
by the successful employment of virtualization for hosting
custom-built servers, researchers have started to explore
the use of this technique in network infrastructures. Net-
work virtualization allows the creation of multiple inde-
pendent virtual network instances on top of a single
physical substrate [1]. This is made possible by instanti-
ating one or more virtual routers on physical devices and
establishing virtual links between these routers, forming

*Correspondence: paschoal@inf.ufrgs.br
1Institute of Informatics, Federal University of Rio Grande do Sul, Porto Alegre,
Brazil
Full list of author information is available at the end of the article

topologies that are not limited by the structure of the
physical network.
In addition to the ability to create different topological

structures, virtual networks are also not bound by
other characteristics of the physical network, such as its
protocol stack. Thus, it is possible to instantiate virtual
network infrastructures that are specifically tailored to
the needs of different network applications [2]. These
features also enable the creation of virtual testbeds that
are similar to real infrastructures, a valuable asset for
evaluating newly developed architectures and protocols
without interfering with production traffic. [3] For these
reasons, network virtualization has attracted the interest
of a number of researchers worldwide, especially in the
context of Future Internet research. Network virtualiza-
tion has been embraced by the Industry as well. Major
Industry players – such as Cisco and Juniper – nowa-
days offer devices that support virtualization, and this new
functionality allowed infrastructure providers to offer new
services.
In contrast to the benefits brought by network virtu-

alization, the shared use of routing devices and commu-
nication channels introduces a series of security-related
concerns. Without adequate protection, users from a vir-
tual network might be able to access or even interfere with
traffic that belongs to other virtual networks, violating

© 2015 Bays et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited.

83

Bays et al. Journal of Internet Services and Applications (2015) 6:1 Page 2 of 19

security properties such as confidentiality and integrity
[4,5]. Additionally, the infrastructure could be a target for
denial of service attacks, causing availability issues for vir-
tual networks instantiated on top of it [6,7]. Therefore, it
is of great importance that network virtualization archi-
tectures offer protection against these and other types of
threats that might compromise security.
Recently, attention has been drawn to security concerns

in network infrastructures due to the discovery of per-
vasive electronic surveillance around the globe. Although
all kinds of networks are potentially affected, the shared
use of physical resources in virtual network environments
exacerbates these concerns. As such, these recent circum-
stances highlight the need for a comprehensive analysis
of current developments in the area of virtual network
security.
In this paper, we characterize the current state of the art

regarding security in network virtualization. We identify
the main threats to network virtualization environments,
as well as efforts aiming to secure such environments.
For this study, an extensive literature search has been
conducted. Major publications from the literature have
been studied and grouped according to well known clas-
sifications in the area of network security, as well as
subcategories proposed by the authors of this paper. This
organization allows the analysis and discussion of multiple
aspects of virtual network security.
The remainder of this paper is organized as follows.

Section 2 presents a brief background on the area of
network virtualization as well as a review of related liter-
ature. Section 3 introduces the taxonomy used to classify
the selected publications. Section 4 exposes the security
vulnerabilities and threats found in the literature, while
Section 5 presents the security countermeasures provided
by solutions found in previous proposals. In Section 6, we
discuss the results of this study, and in Section 7 we sum-
marize the main current research challenges in the area of
virtual network security. Last, in Section 8 we present our
conclusions.

2 Background and literature review
In this section, we first provide a brief background on the
area of network virtualization, highlighting its most rel-
evant concepts. Next, we present a review of literature
closely related to virtual network security.

2.1 Background
Network virtualization consists of sharing resources from
physical network devices (routers, switches, etc.) among
different virtual networks. It allows the coexistence of
multiple, possibly heterogeneous networks, on top of a
single physical infrastructure. The basic elements of a net-
work virtualization environment are shown in Figure 1.
At the physical network level, a number of autonomous

systems are represented by interconnected network sub-
strates (e.g., substrates A, B, and C). Physical network
devices are represented by nodes supporting virtualiza-
tion technologies. Virtual network topologies (e.g., virtual
networks 1 and 2), in turn, are mapped to a subset of
nodes from one or more substrates. These topologies are
composed of virtual routers, which use a portion of the
resources available in physical ones, and virtual links,
which are mapped to physical paths composed of one
or more physical links and their respective intermediate
routers.
From the point of view of a virtual network, virtual

routers and links are seen as dedicated physical devices.
However, in practice, they share physical resources with
routers and links from other virtual networks. For this
reason, the virtualization technology used to create this
environment must provide an adequate level of isolation
in order to enable the use of network virtualization in real,
large scale environments.
Over the years, different methods for instantiating vir-

tual networks have been used. Typical approaches include
VLANs (Virtual Local Area Networks) and VPNs (Virtual
Private Networks). Recently, Virtual Machine Monitors
and programmable networks have been employed to cre-
ate virtual routers and links over physical devices and
communication channels. These approaches are briefly
revisited next.

2.1.1 Protocol-based approaches
Protocol-based approaches consist of implementing a net-
work protocol that enables the distinction of virtual net-
works through techniques such as tagging or tunneling.
The only requirement of this kind of approach is that
physical devices (or a subset of them) support the selected
protocol.
One example of protocol-based network virtualization

are VLANs. VLANs consist of logical partitions of a sin-
gle underlying network. Devices in a VLAN communicate
with each other as if they were on the same Local Area
Network, regardless of physical location or connectivity.
All frames sent through a network are tagged with their
corresponding VLAN ID, processed by VLAN-enabled
routers and forwarded as necessary [8]. Since isolation is
typically based only on packet tagging, this approach is
susceptible to eavesdropping attacks.
Another commonly used approach is the creation of

Virtual Private Networks. VPNs are typically used to
provide a secure communication channel between geo-
graphically distributed nodes. Cryptographic tunneling
protocols enable data confidentiality and user authentica-
tion, providing a higher level of security in comparison
with VLANs. VPNs can be provided in the physical, data
link, or network layers according to the protocols being
employed [9].

84

Bays et al. Journal of Internet Services and Applications (2015) 6:1 Page 3 of 19

Figure 1 Network virtualizationmodel, denoting a scenario with multiple physical substrates (Substrate A, B, and C) and virtual networks
(Virtual Network 1 and 2).

2.1.2 Machine virtualization-based approaches
Machine virtualization-based approaches consist of creat-
ing virtual networks bymeans of groups of interconnected
virtual machines. Virtual Machine Monitors are used to
instantiate virtual routers, and virtual links are established
between them, regardless of physical network topol-
ogy. Table 1 shows different machine virtualization-based
techniques that can be used to create virtual networks, as
well as a brief explanation and an example of each.
This alternative is remarkably flexible and relatively

cheap, as it allows the use of customized software and does
not require the use of specific hardware1. However, it is
more demanding in terms of resource usage in compar-
ison to previously described protocol-based approaches.
Additionally, it may introduce security concerns associ-
ated with server virtualization, some of which are men-
tioned in Sections 4 and 5. A general study on the security
issues that arise from the use of machine virtualization
was performed by van Cleeff et al. [10].

2.1.3 Programmable networks
Programmable routers have been used to enable the cre-
ation of virtual networks. Although this is not a new

concept, research in this area has been recently stimulated
by the inception of Software-Defined Networking (SDN).
This paradigm consists of decoupling the data plane and
the control plane in network devices. More specifically,
devices such as routers and links retain only the data
plane, and a separated control planemanages such devices
based on an overview of the entire network.
OpenFlow [11], one of the most promising techniques

for implementing this paradigm, defines a protocol that
allows a centralized controller to act as the control
plane, managing the behavior of network devices in
a dynamic manner. The controller communicates with
network devices through a secure connection, creating
and managing flow rules. Flow rules instruct network
devices on how to properly process and route network
traffics with distinct characteristics. Through the estab-
lishment of specific flow rules, it is possible to logically
partition physical networks and achieve data plane iso-
lation. This isolation enables the creation of virtual net-
works on top of an SDN environment. OpenFlow gave rise
to the Open Networking Foundation, an organization ran
bymajor companies within the area of computer networks
that aims to disseminate this type of technology.

Table 1 Virtualization techniques

Technique Description Examples

Full virtualization The Virtual Machine Monitor emulates a complete machine, based on the underlying
hardware architecture. The guest Operating System runs without any modification.

VMware Workstation,
VirtualBox

Paravirtualization The Virtual Machine monitor emulates a machine which is similar to the underlying
hardware, with the addition of a hypervisor. The hypervisor allows the guest Operating
System to run complex tasks directly on non-virtualized hardware. The guest OS must be
modified in order to take advantage of this feature.

VMware ESX, Xen

Container-based
virtualization

Instead of running a full Virtual Machine, this technique provides Operating System-level
containers, based on separate userspaces. In each container, the hardware, as well as the
Operating System and its kernel, are identical to the underlying ones.

OpenVZ, Linux VServer

85

Bays et al. Journal of Internet Services and Applications (2015) 6:1 Page 4 of 19

2.2 Literature review
To the best of our knowledge, there have been no previous
attempts at characterizing the state of the art regarding
security in network virtualization. However, there have
been a number of similar studies in other, closely related
fields of research. We now proceed to a review of some of
the main such studies.
Chowdhury et al. [1] provide a general survey in the

area of network virtualization. The authors analyze the
main projects in this area (both past projects and, at the
time of publication, current ones) and discuss a num-
ber of key directions for future research. The authors
touch upon the issues of security and privacy both while
reviewing projects and discussing open challenges; how-
ever, as this is not the main focus of this survey, there
is no in-depth analysis of security issues found in the
literature.
Bari et al. [12] present a survey that focuses on

data center network virtualization. Similarly to the
aforementioned study, the authors survey a number
of key projects and discuss potential directions for
future work. When analyzing such projects, the authors
provide insights on the fault-tolerance capabilities of
each one, in addition to a brief discussion on security
issues as one of the potential opportunities for future
research.
In addition to the general studies on network vir-

tualization presented so far, a number of surveys on
cloud computing security have also been carried out.
Cloud computing environments tend to make use of both
machine and network virtualization, making this a highly
relevant related topic for our study. However, while there
is some overlap between cloud computing security and
virtual network security, we emphasize that cloud com-
puting represents a very specific use case of network
virtualization and, therefore, poses a significantly dis-
tinct set of security challenges. Zhou et al. [13] provide
an investigation on security and privacy issues of cloud
computing system providers. Additionally, the authors
highlight a number of government acts that originally
intended to uphold privacy rights but fail to do so in light
of advances in technology. Hashizume et al. [14], in turn,
focus on security vulnerabilities, threats, and countermea-
sures found in the literature and the relationships among
them.
Last, Scott-Hayward et al. [15] conducted a study

on SDN security. As explained in Section 2.1.3, this
is one of the technologies on top of which network
virtualization environments can be instantiated. The
authors first analyze security issues associated with the
SDN paradigm and, afterwards, investigate approaches
aiming at enhancing SDN security. Last, the authors
discuss security challenges associated with the SDN
model.

3 Taxonomy
The first step towards a comprehensive analysis of the
literature was the selection of a number of publications
from quality conferences and journals. To this end, we
performed extensive searches in the ACM and IEEE dig-
ital libraries using a number of keywords related to net-
work virtualization and security. We then ranked the
literature found through this process according to the
average ratio of citations per publication of the con-
ferences or journals in which these papers were pub-
lished. All publications from top tier conferences or
journals with a consistent number of citations per publi-
cation were considered relevant and, therefore, selected.
The remaining papers were analyzed and generally
discarded.
Following the aforementioned process, a taxonomy was

created in order to aid the organization and discussion
of the selected publications. For this purpose, two well
known classifications in the area of network security were
chosen. Papers are organized according to the security
threats they aim to mitigate, and afterwards, according
to the security countermeasures they provide. As different
authors have different definitions for each of these con-
cepts, these classifications are briefly explained in the fol-
lowing subsections. The direct connection between them
and the area of virtual network security is explained in
sections 4 and 5, respectively.
In addition to these broad classifications, subcategories

were created in order better organize this body of work.
Figure 2 presents the full hierarchical organization that
will be used in sections 4 and 5. Dark gray boxes repre-
sent broad categories used in the literature [16,17], while
white boxes denote subdivisions proposed and created by
the authors of this paper.

3.1 Security vulnerabilities and threats
There are a number of potential malicious actions, or
threats, that may violate security constraints of compu-
tational systems. Shirey [16] describes and divides the
consequences of these threats into four categories, namely
disclosure, deception, disruption, and usurpation.
Unauthorized disclosure is defined as gaining unau-

thorized access to protected information. Sensitive data
may be erroneously exposed to unauthorized entities, or
acquired by an attacker that circumvents the system’s
security provisions.
Deception is characterized by intentionally attempting

to mislead other entities. For example, a malicious entity
may send false or incorrect information to others, leading
them to believe that this information is correct. Fake iden-
tities may be used in order to incriminate others or gain
illegitimate access.
Disruption means causing failure or degradation of

systems, negatively affecting the services they provide.

86

Bays et al. Journal of Internet Services and Applications (2015) 6:1 Page 5 of 19

Figure 2 Taxonomy used to classify publications in the area of virtual network security.

This may be done by directly incapacitating a system
component or the channel through which information is
delivered, or by inducing the system to deliver corrupted
information.
Last, through usurpation, an attacker may gain unau-

thorized control over a system. This unauthorized control
may allow the attacker to illegitimately access protected
data or services, or tamper with the system itself in order
to cause incorrect or malicious behavior.
These threat categories, as well as the previously men-

tioned subcategories we have created, also cover vul-
nerabilities and attacks. For ease of comprehension,
vulnerabilities and threats are discussed collectively in
Section 4. Table 2 presents the relationships between vul-
nerabilities and threats in network virtualization environ-
ments. This table is organized according to the previously
described taxonomy and lists all vulnerabilities found in
the literature and the threats associated with each one.

Additionally, the terms threat and attack are used inter-
changeably throughout the paper, as a threat may be
understood as a potential attack (while an attack is the
proper action that takes advantage of a vulnerability to
violate a security policy).

3.2 Security countermeasures
Due to the existence of the previously described threats,
computational systems must provide a series of coun-
termeasures in order to maintain a desirable level of
security. Stallings [17] categorizes these essential counter-
measures into six subdivisions (referred to by Stallings as
“security services”), namely access control, authentication,
data confidentiality, data integrity, nonrepudiation, and
availability.
Access control allows a system to administer which enti-

ties will be able to access its functions, and what permis-
sions each of these entities will have. In order to grant

87

Bays et al. Journal of Internet Services and Applications (2015) 6:1 Page 6 of 19

Table 2 Relationships between vulnerabilities and threats in network virtualization environments

Threat categories Vulnerabilities Threats

Disclosure

Information Leakage
Lack of ARP table protection ARP table poisoning

Placement of firewall rules inside virtual nodes Subversion of firewall rules

Information Interception

Lack of ARP table protection ARP table poisoning

Transmission of data in predictable patterns Traffic Analysis attacks

Uncontrolled handling of multiple, sequential virtual
network requests from a single entity

Inference and disclosure of sensitive topological
information

Unprotected exchange of routing information
among virtual routers

Disclosure of sensitive routing information

Introspection Exploitation Uncontrolled Introspection Data theft

Deception

Improper handling of identities: Injection of malicious messages with forged
Identity Fraud - within individual networks; sources

- among federated networks; Privilege escalation

- during migration procedures. Abuse of node removal and re-addition
in order to obtain new (clean) identities

Loss of registry entries Uncontrolled rollback operations Loss of registry entries

Replay attacks Lack of unique message identifiers Replay attacks

Disruption

Physical Resource

Uncontrolled resource allocation
Performance degradation

Overloading

Abusive resource consumption

Uncontrolled handling of virtual network Exhaustion of resources in specific parts
requests of the infrastructure

Lack of proactive or reactive recovery
Denial of Service attacksstrategies

Physical Resource Failure
Lack of proactive or reactive recovery

Failure of virtual routers/networksstrategies

Uncontrolled resource reallocation after Overloading of remaining virtual routers
failures after failures

Usurpation
Identity Fraud Improper handling of identities and associated

privileges
Privilege escalation

Software Vulnerability Privilege escalation in Virtual Machine Unauthorized control of physical routers
Exploitation Monitors

individual access rights and permissions, entities must be
properly authenticated in the system.
The purpose of authentication is to ensure that entities

communicating with each other are, in fact, the entities
they claim to be. The receiver of a message must be able
to correctly identify its sender, and an entity must not be
able to impersonate another.
Providing adequate data confidentialitymeans ensuring

that third parties do not have access to confidential infor-
mation being transmitted between two entities. Addition-
ally, the system should inhibit attackers from deriving
information by analyzing traffic flow characteristics.
Data integrity has the purpose of assuring that data

stored by entities or transmitted through a network
are not corrupted, adulterated or destroyed. Attacks
such as duplication, modification, reordering, and replay
of messages must be prevented. Furthermore, mecha-
nisms for recovering from data corruption may also be
provided.

In communications between peers, nonrepudiation pro-
vides a way to settle disputes when an entity denies having
performed a certain action. The goal of this service is to
prevent entities from falsely denying participation in any
(possibly malicious) network-related activity.
The last security countermeasure is availability. System

resourcesmust be available upon request by an authorized
entity, and the system must also conform to its perfor-
mance specifications. In order to maintain availability,
countermeasures against attacks such as denial of service
must be provided.

4 Security vulnerabilities and threats
In this section, we present a comprehensive list of vulner-
abilities and threats found in network virtualization envi-
ronments. The interested reader should refer to Table 2
for a systematic review of such vulnerabilities and threats.
While some of the threats listed in this section are

a result of accidental actions, we emphasize that all

88

Bays et al. Journal of Internet Services and Applications (2015) 6:1 Page 7 of 19

threats – intentional or accidental – have an effect on
security. As an example of an accidental attack, it is com-
mon for virtual routers to attempt to use all available
resources (as virtualization tends to be transparent and
virtual routers are typically not aware that they are not
running on dedicated physical hardware). If the network
virtualization environment does not adequately limit the
resource usage of each virtual router, even this unin-
tentional abuse may cause disruption on other networks
hosted on the same substrate or cause the degradation or
failure of critical services provided by the virtualization
environment.

4.1 Disclosure
In an environment where physical resources are shared
between a number of virtual networks, there is a series
of behaviors that may result in undesired disclosure of
information. Threats related to disclosure of private or
sensitive information are explained next.

4.1.1 Information leakage
Cavalcanti et al. [18] mention the possibility of messages
being leaked from one virtual network to another. In this
type of attack, an entity may disclose private or sensitive
information to members of other virtual networks, who
should not have access to such information. The authors
state that this may be achieved through ARP table poi-
soning. For example, a malicious user may spoof the IP
address of a node that is able to send messages to the
virtual network with which it intends to communicate.
Wolinsky et al. [19] describe a similar attack, in which vir-
tual nodes send messages to outside the boundaries of a
network virtualization environment. This would make it
possible formessages to reach physical nodes that not only
do not belong to any virtual network, but are hosted out-
side of the virtualized network infrastructure. According
to the authors, if data isolation is achieved by means of
firewall rules, malicious users may be able to subvert such
rules by escalating privileges and gaining root access on a
virtual node.

4.1.2 Information interception
Attackers in a virtual network environment may capture
messages being exchanged between two entities in order
to access their content. This type of attack, often referred
to as “eavesdropping” or “sniffing”, may lead to theft of
confidential information [4,5,20]. Wu et al. [20], specifi-
cally, mention ARP table poisoning as a means of achiev-
ing this. In contrast to the ARP poisoning attack described
by Cavalcanti et al. [18] (explained in Section 4.1.1), in
this case the attack would be used in order to mislead
physical routers into forwarding packets meant to one
entity to another one, allowing a malicious entity to sniff
such packets. This is a common threat in any networking

environment, but the use of shared physical resources by
multiple virtual networks further exacerbates this prob-
lem. According to these and other authors, such as Cui
et al. [21], networking solutions provided by virtual
machinemonitorsmay not properly isolate data belonging
to different virtual networks. This means that members
of one virtual network may be able to access data being
transferred by other virtual networks sharing the same
substrate.
Even if data inside network packets is protected (e.g.

through the use of cryptography), entities may be able
to derive sensitive information by analyzing them. In
traffic analysis attacks, described by Huang et al. [22],
entities acquire such information by analyzing charac-
teristics of traffic flows between communicating entities
in virtual networks. These characteristics include which
entities communicate with which other entities, frequency
of communication, and packet sizes, among others. For
example, an entity that is involved in frequent, short com-
munications with a high number of other entities may be
a central point of control in the network. Knowing this,
a malicious user could launch an attack directed at that
entity, aiming to cause a considerable amount of disrup-
tion with limited effort. As previously mentioned, this
attack is effective even if traffic is encrypted, making any
type of virtual networking environment a potential target.
In addition to the previously detailed forms of informa-

tion interception, which may also affect traditional net-
work environments, other forms are specific to network
virtualization. One such form is the use of multiple virtual
network requests to disclose the topology of the physical
infrastructure, explored by Pignolet et al. [23]. This con-
stitutes a security threat, as infrastructure providers typi-
cally do not wish to disclose this information. The authors
demonstrate that by sequentially requesting a number
of virtual networks with varying topological characteris-
tics and analyzing the response given by the infrastruc-
ture provider (i.e., whether the request can be embedded
or not), they are able to gradually obtain information
about the physical topology. Moreover, the authors deter-
mine the number of requests needed to fully disclose the
physical topology on networks with different topological
structures (tree, cactus, and arbitrary graphs). Conversely,
Fukushima et al. [24] state that the entity controlling a
physical network may obtain confidential routing infor-
mation from virtual networks hosted on top of it. As
current routing algorithms require routing information
to be sent and received through virtual routers, sensitive
information may be disclosed to the underlying network.

4.1.3 Introspection exploitation
Introspection is a feature present in virtual machinemoni-
tors that allows system administrators to verify the current
state of virtual machines in real time. It enables external

89

Bays et al. Journal of Internet Services and Applications (2015) 6:1 Page 8 of 19

observers to inspect data stored in different parts of the
virtual machine (including processor registers, disk, and
memory) without interfering with it. While this feature
has valuable, legitimate uses (e.g., enabling administrators
to verify that a virtual machine is operating correctly),
it may be misused or exploited by attackers in order to
access (and potentially disclose) sensitive data inside vir-
tual machines [10]. This problem is aggravated by the fact
that virtual nodes may be moved or copied between mul-
tiple virtual machine monitors, as sensitive data may be
compromised through the exploitation of this feature on
any virtual machine monitor permanently or temporarily
hosting such virtual nodes.

4.2 Deception
We have identified three subcategories of threats that
may lead to deception in virtual network environments.
These subdivisions – namely identity fraud, loss of reg-
istry entries and replay attacks – are explained next.

4.2.1 Identity fraud
In addition to dealing with unauthorized disclosure,
Cabuk et al. [5] and Wu et al. [20] also describe threats
related to deception in virtual network environments.
Specifically, virtual entities may inject malicious messages
into a virtual network, and deceive others into believing
that such messages came from another entity.
Certain characteristics of virtualized network environ-

ments increase the difficulty of handling identity fraud.
The aggregation of different virtual networks into one
compound network, known as federation, is indicated by
Chowdhury et al. [25] as one of such characteristics. Fed-
eration raises issues such as the presence of separate roles
and possible incompatibility between security provisions
or policies from aggregated networks. Another compli-
cating factor mentioned by the authors is the dynamic
addition and removal of entities. An attacker may force a
malicious node to be removed and re-added in order to
obtain a new identity.
Other characteristics that complicate the handling of

identity fraud involve operations such as migration and
duplication of virtual nodes, as mentioned by van Cleeff
et al. [10]. The study presented by the authors refers to
virtualization environments in general. Therefore, in the
context of this study, a virtual node may refer to either a
virtual router or a virtual workstation. If a virtual node is
migrated from one physical point to another, the identity
of the machine that contains this virtual nodemay change.
Moreover, virtual nodes may be copied to one or more
physical points in order to provide redundancy, which
may lead tomultiple entities sharing a single identity. Both
of these issues may cause inconsistencies in the process
of properly identifying the origin of network messages,
which may be exploited in identity fraud attacks.

4.2.2 Loss of registry entries
Van Cleeff et al. [10] also mention issues related to log-
ging of operations in virtualization environments. If infor-
mation regarding which entity was responsible for each
operation in the network is stored in logs inside virtual
machines, entries may be lost during rollback procedures.
Likewise, logs of malicious activities performed by attack-
ers may also be lost.

4.2.3 Replay attacks
Fernandes and Duarte [26] mention replay attacks as
another form of deception in virtual networks. In this
type of attack, a malicious entity captures legitimate pack-
ets being transfered through the network and retransmits
them, leading other entities to believe that a message
was sent multiple times. The authors explain that virtual
routers may launch attacks in which they repeat old con-
trol messages with the intention of corrupting the data
plane of the attacked domain.

4.3 Disruption
In a network virtualization environment, proper manage-
ment of resources is crucial to avoid disruption. The main
sources of disruption in such environments are related
to the abuse of physical resources (either intentional or
unintentional) and the failure of physical devices.

4.3.1 Physical resource overloading
Physical resource overloading may lead to failure of vir-
tual nodes, or cause the network performance to degrade
below its minimum requirements. This degradation may
cause congestion and packet loss in virtual networks, as
stated by Zhang et al. [27]. In addition to causing disrup-
tion in already established networks, overloading may also
hinder the deployment of new ones.
Resource requirements themselves can be a point of

conflict in virtual network environments. As explained
by Marquezan et al. [28], multiple virtual networks may
require an excessive amount of resources in the same area
of the substrate network. While such prohibitive demands
may be unintentional, they may also be due to a coordi-
nated attack. This may not only happen during deploy-
ment operations, but also during the lifetime of virtual
networks.
It is also possible for one virtual network to disrupt

another by using more than its fair share of resources.
This concern is explored by a number of authors in their
respective publications [26,29-31]. Isolation and fair dis-
tribution of physical resources among virtual networks are
essential to maintain the network virtualization environ-
ment operating properly. This includes assuring that the
minimum requirements of each network will be fulfilled,
as well as prohibiting networks from consuming more
resources than they are allowed to.

90

Bays et al. Journal of Internet Services and Applications (2015) 6:1 Page 9 of 19

Overloading may also be caused by attacks aimed at
the physical network infrastructure. Attacks may originate
from within a virtual network hosted in the same environ-
ment, or from outside sources. The most common threats
are Denial of Service (DoS) attacks, as presented by Yu
et al. [6] and Oliveira et al. [7]. A single physical router or
link compromised by a DoS attack may cause disruption
on several virtual networks currently using its resources.

4.3.2 Physical resource failure
As previously stated, the failure of physical devices is
one of the sources of disruption in virtual infrastructures
[32-34]. Possible causes range from the failure of single
devices (a physical router, for example, may become inop-
erative if one of its components malfunctions) to natural
disasters that damage several routers or links in one or
more locations [35]. Additionally, further complications
may arise as the remainder of the network may be over-
loaded during attempts to relocate lost virtual resources.
In addition to being valuable from the point of view of
fault tolerance, countermeasures for mitigating the effect
of failures may also be applied in the event of attacks such
as DoS, as in both cases there is a need for redirecting
network resources away from compromised routers or links.

4.4 Usurpation
In virtual network environments, usurpation attacks may
allow an attacker to gain access to privileged information
on virtual routers, or to sensitive data stored in them.
Such attacks may be a consequence of identity fraud or
exploited vulnerabilities, which are explained next.

4.4.1 Identity fraud
As previously mentioned in Section 4.2, identity fraud
attacks can be used to impersonate other entities within a
virtual network. By impersonating entities with high levels
of privilege in the network, attackers may be able to per-
form usurpation attacks. As an example, the injection of
messages with fake sources mentioned by Cabuk et al. [5]
is used for this purpose. By sending amessage that appears
to have been originated from a privileged entity, attackers
may perform actions restricted to such entities, including
elevating their own privilege level.

4.4.2 Software vulnerability exploitation
Roschke et al. [36] mention that virtual machine mon-
itors are susceptible to the exploit of vulnerabilities in
their implementation. According to the authors, by gain-
ing control over a virtual machine monitor, attackers can
break out of the virtual machine, obtaining access to the
hardware layer. In an environment that uses full virtual-
ization or paravirtualization to instantiate virtual routers,
exploiting such vulnerabilities may enable an attacker to
have full control over physical routers. By gaining access

to physical devices, attackers could easily compromise any
virtual networks provided by the infrastructure. As exam-
ples of such threats in practice, the Common Vulnerabili-
ties and Exposures system lists a number of vulnerabilities
in different versions of VMware products that allow guest
Operating System users to potentially execute arbitrary
code on the host Operating System [37-40].

5 Security countermeasures
In this section, we explore solutions published in the
literature that aim to provide security and protect the
environment from the aforementioned security threats.

5.1 Access control
Access control makes use of authentication and authoriza-
tion mechanisms in order to verify the identity of network
entities and enforce distinct privilege levels for each. This
countermeasure is approached in two different manners
in the literature, namely Trusted Virtual Domains and
sandboxes. While these approaches are closely related to
the notion of controlled execution domains, note that
access control is performed in order to ensure that entities
are granted the appropriate privilege levels.

5.1.1 Trusted virtual domains
Cabuk et al. [5] devised a framework to provide secure
networking between groups of virtual machines. Their
security goals include providing isolation, confidential-
ity, integrity, and information flow control in these
networks. The framework provides the aforementioned
security countermeasures through the use of Trusted Vir-
tual Domains (TVDs). Each TVD represents an isolated
domain, composed of “virtualization elements” and com-
munication channels between such elements. In Cabuk’s
proposal, the virtualization elements are virtual worksta-
tions. However, the concept of TVDs may be applied to
any device supporting virtualization.
Figure 3 depicts a virtual network infrastructure with

three TVDs (A, B, and C). Gray routers represent gate-
ways between these domains. While the gateway between
TVDs B and C is simultaneously within both domains, the
gateways between A and B are isolated – making use of an
auxiliary TVD (AB) in order to communicate.

Figure 3 Example of a virtual infrastructure with three Trusted
Virtual Domains, as described by Cabuk et al. [5].

91

Bays et al. Journal of Internet Services and Applications (2015) 6:1 Page 10 of 19

Access control is performed when virtual machines join
a TVD, ensuring that only machines that satisfy a given
set of conditions are able to join. This admission control
may be applied continuously in case prerequisites to join
a TVD are changed. Additionally, TVDs leverage access
policies to prevent unauthorized access.

5.1.2 Sandboxes
Wolinsky et al. [19] use virtual machine sandboxes in
order to provide security in large scale collaborative envi-
ronments. Although this work focuses on networked vir-
tual machines hosting virtual workstations, this concept
can be extended to virtual networks. Sandboxes are used
to limit virtual machine access to physical resources, pre-
venting malicious virtual machines from accessing data
within other virtual machines. Moreover, each virtual
machine supports IPSec, enabling the creation of secure
communication channels, and X.509, providing virtual
machine authentication. The authentication process is
detailed in Section 5.2.

5.2 Authentication
Authentication aims to ensure that entities in a network
environment are who they claim to be. In virtual network
environments, providing proper authentication is com-
plicated by factors such as the federation of virtual net-
works or mobility of virtual routers and links. Approaches
that aim to deal with such difficulties are explained
next.

5.2.1 Interoperability between federated virtual networks
Although isolation is one of the main security require-
ments in virtual networking, there are cases in which
distinct virtual networks must be able to cooperate. The
federation of virtual networks can, for example, enable
end-to-end connectivity – through virtual devices of distinct
virtual networks – or allow access to distinct services.
However, it may not be possible to provide interoperabil-
ity due to the heterogeneous nature of virtual networks
(which may implement different, incompatible protocols).
Chowdhury et al. [25] partially tackle this issue with a
framework that manages identities in this kind of environ-
ment. Themain objective of the work is to provide a global
identification system. To this end, the authors employ a
decentralized approach in which controllers and adapters
are placed in each virtual network. Controllers provide
functionalities such as address allocation and name reso-
lution, while adapters act as gateways between virtual net-
works, performing address and protocol translations. The
proposed global identification system does not restrict the
internal identification mechanisms used locally by virtual
networks, allowing each virtual network to keep its own
internal naming scheme. Additionally, global identifiers
used by this framework are unique, immutable, and not

associated with physical location, in order to not hinder
the security or mobility of virtual devices.

5.2.2 Certificate-based
As previously mentioned, the framework presented by
Cabuk et al. [5] makes use of Trusted Virtual Domains
(TVDs) to provide access control and network isolation.
The authentication necessary to support access control
is provided by means of digital certificates. These certifi-
cates ensure the identity of entities joining the network.
Additionally, the system makes use of Virtual Private Net-
works (VPNs) to authenticate entities in network commu-
nications.
Analogously, Wolinsky et al. [19] use IPSec with X.509-

based authentication for the purpose of access control
in their system. In order to access the system, joining
machines must request a certificate to the Certification
Authority (CA). The CA responds by sending back a
signed certificate to the node. The IP address of the
requesting node is embedded into the certificate in order
to prevent other nodes from reusing it.

5.2.3 Key-based
Fernandes and Duarte [26,31] present an architecture
that aims to provide efficient routing, proper resource
isolation and a secure communication channel between
routers and the Virtual Machine Monitor (VMM) in
a physical router. In order to ensure efficiency, virtual
routers copy routing-related information to the VMM –
in this case, the hypervisor. This process is performed
by a plane separation module, which separates the data
plane (which contains routing rules) and the control plane
(responsible for creating routing rules). As a result, pack-
ets matching rules in the hypervisor routing table do not
need to be redirected to virtual routers, resulting in a sig-
nificant performance speedup. However, the process of
copying routing information needs to be authenticated
such that a malicious router is not able to compromise the
data plane of another router.
In order to prevent identity fraud, the system requires

mutual authentication between virtual routers and the
VMM. Figure 4 depicts a simplified representation of
the proposed architecture. The authors consider a Xen
(paravirtualization)-based environment, in which virtual
routers reside in unprivileged domains (DomUs) while
the hypervisor resides within the privileged domain
(Dom0). Each virtual router, upon instantiation, connects
to the hypervisor following the client–server paradigm
and performs an initial exchange of session keys using
asymmetrical cryptography. The use of unique keys allows
the hypervisor to verify the identity of distinct virtual
routers in different unprivileged domains (in this exam-
ple, DomU1, DomU2, and DomU3) and to isolate traffic
between them. After this initial key exchange, the secure

92

Bays et al. Journal of Internet Services and Applications (2015) 6:1 Page 11 of 19

Figure 4 Simplified version of the architecture presented by
Fernandes et al. [26,31], showing the secure communication
modules.

communication module is used by other system mod-
ules in order to securely exchange messages with the
hypervisor.

5.3 Data confidentiality
As network virtualization promotes the sharing of net-
work devices and links among multiple entities, data
confidentiality is a major security-related concern. Next,
we explore approaches that leverage different protocols
and techniques in order to provide secure communication
within virtual networks.

5.3.1 VLANs and VPNs
The security goals approached by Cabuk et al. [5] include
integrity, data isolation, confidentiality, and information
flow control. Other than integrity, the remaining three
goals, are directly related, and are tackled by a data confi-
dentiality mechanism. The framework uses TVDs to con-
trol data access. However, virtual machines that belong
to different TVDs may be hosted in the same physical
machine. Therefore, it is necessary to ensure proper isola-
tion, preventing a TVD from accessing data that belongs
to another TVD.
The proposed solution for this challenge employs a

combination of VLANs and VPNs. VLANs are used to
identify packets belonging to different networks, allowing
VLAN-enabled devices to route packets to the appropriate

network interfaces, thus providing adequate isolation.
Untrusted physical channels, however, may require a
higher level of security. Therefore, if necessary, VPNs are
used to provide data confidentiality by means of end-to-
end cryptography.

5.3.2 Tunneling and cryptography
Wolinsky et al. [19] make use of tunneling in order to
isolate network traffic between virtual machines (in this
case, virtual workstations). Two tunneling approaches are
employed. In the first approach, the host system runs a
tunneling software that captures packets incoming from
physical interfaces and forwards them to virtual machines.
In the second approach, the tunneling software runs inside
virtual machines, and traffic is restricted within virtual
networks through the use of firewall rules. According to
the authors, while the second approach is easier to deploy,
malicious users may be able to subvert this firewall, com-
promising the system. Although the focus of Wolinsky
et al. is isolation between virtual workstations, we believe
that the techniques used to achieve such isolation could
be extended to virtual routers in network virtualization
environments.
Fernandes and Duarte [26,31] deal with data confiden-

tiality in communications between a virtual router and
the Virtual Machine Monitor (VMM) hosting it. After the
authentication process, described in Section 5.2, virtual
routers use symmetrical cryptography in order to securely
communicate with the VMM.
Huang et al. [22] present a framework that provides

secure routing. In the environment presented by the
authors, routing information that is propagated through a
virtual network is confidential and needs to be kept secret
from unauthorized network entities. Routing information
is categorized in groups, and group keys are assigned
to virtual routers. Therefore, routing information can be
encrypted, ensuring that only routers with the correct key
are able to decrypt this information. Thus, routing infor-
mation relative to a given group is protected against unau-
thorized access from other groups, other virtual networks
or the physical network itself.
Similarly to the previously described approach,

Fukushima et al. [24] aim to protect sensitive routing
information in virtual networks from being disclosed to
entities controlling the physical network. To achieve this
goal, the authors make use of a strategy based on Secure
Multi-party Computation (SMC). SMC allows multiple
entities to perform joint computations on sensitive data
they hold without disclosing such data. Each entity has
access to the result of the global computation, but not to
any data held by other entities. This is achieved through
the use of one-way functions, which are easy to evalu-
ate but hard to invert. In the context of virtual network
routing, SMC allows a virtual router to compute optimal

93

Bays et al. Journal of Internet Services and Applications (2015) 6:1 Page 12 of 19

routes without needing to share the information that it
holds. As SMC requires full-mesh connectivity between
computing nodes, the authors decompose the virtual
network into locally connected subsets of routers, called
cliques. The SMC-based distributed routing algorithm
is run locally in each clique, and the results of local
computations are then shared between cliques.
As the employment of cryptographic techniques

requires physical devices that are capable of support-
ing protocols that enable them and generates process-
ing and bandwidth overheads, Bays et al. [4] devise an
optimization model and a heuristic algorithm for online,
privacy-oriented virtual network embedding. Clients may
require end-to-end or point-to-point cryptography for
their networks, as well as requiring that none of their
resources overlap with other specific virtual networks.
Both the optimal and heuristic approaches take into
account whether physical routers are capable of sup-
porting cryptographic algorithms in order to ensure the
desired level of confidentiality and guarantee the non-
overlapping of resources (if requested). Additionally, both
methods feature precise modeling of overhead costs of
security mechanisms in order to not underestimate the
capacity requirements of virtual network requests. This
proposal is in line with research performed in the area of
virtual network embedding, such as the work of Alkmim
et al. [41].

5.3.3 Firewalling and subnetting
As previously mentioned in Section 5.3.2, Wolinsky et al.
[19] make use of firewall rules (in addition to tunneling
techniques) in order to prevent communications between
different virtual networks. In addition to using firewalls
for this purpose, Wu et al. [20] also employ subnetting
(i.e., each virtual network is bound to a unique subnet)
in order to provide an additional layer of security against
unauthorized information disclosure.

5.3.4 Path splitting
In addition to encryption of routing information, Huang
et al. [22] use variable paths in virtual networks to prop-
agate data flows. Figure 5 illustrates the employment of
path splitting in order to hinder an information inter-
ception attack. Communication between a virtual router
hosted on Physical Router (PR) 1 and another one hosted
on PR 7 is split among two different paths – one passing
through PR 3 and 6, and the other, through PR 2 and 4
(represented by dashed lines). Even if traffic between these
two virtual routers is not encrypted, the threat is partially
mitigated as the attacker only has access to part of the
information being exchanged (packets passing through
the link between PR 3 and 6). Moreover, when used in
combination with encryption (as in the work of Huang
et al.), this approach helps mitigate traffic analysis attacks.

Figure 5 Example of path splitting used to mitigate an
information interception attack.

It is worth noting that while in this example the attacker is
only eavesdropping on one physical path, in reality, mul-
tiple devices may be compromised. In this case, splitting
traffic among an increasing number of paths would lead
to progressively higher levels of security (or, conversely, to
increasingly higher costs for an attacker to capture the full
traffic).

5.3.5 Limiting introspection
Finally, van Cleeff et al. [10] present recommendations
for safer use of virtualization. One of these recommenda-
tions is to limit, or even disable, the introspection feature,
which allows virtual machine monitors to access data
inside virtual machines. While useful, this functionality
may be exploited by attackers, as previously explained on
Subsection 4.1.3.

5.4 Data integrity
Similarly to confidentiality, data integrity is a major con-
cern as a result of shared network devices and commu-
nication channels. Next, we describe approaches that aim
to establish a desired level of integrity in virtual network
environments.

5.4.1 Cryptography
In addition to authentication (i.e., source integrity) and
confidentiality, the framework developed by Cabuk et al.
[5] makes use of VPNs to provide data integrity to virtual
networks. The use of cryptographic tunneling protocols
prevents malicious entities from manipulating messages
going through the network. As previously discussed, the
authors use IPSec as the tunneling protocol.

5.4.2 Timestamping
As previously discussed, replay attacks are one of the
threats to data integrity that may be present in net-
work virtualization environments. The addition of unique
identifiers inside encrypted messages makes it possi-
ble to detect duplicated messages, and therefore, replay
attacks. For this purpose, the architecture proposed by
Fernandes and Duarte [26,31] inserts timestamps inside
encrypted messages in order to ensure that messages are
non-reproducible.

94

Bays et al. Journal of Internet Services and Applications (2015) 6:1 Page 13 of 19

5.4.3 Limiting introspection
Besides mitigating information theft, disabling or limit-
ing introspection also prevents data tampering. Accord-
ing to van Cleeff et al. [10], this functionality allows
the VMM to modify applications running inside it,
which may cause inconsistencies. Another recommenda-
tion consists of specifically designing applications that
facilitate batch processing and checkpointing. According
to the authors, this minimizes security issues associated
with rollback and restore operations that may otherwise
threaten integrity.

5.5 Nonrepudiation
Nonrepudiation provides evidences regarding which
(potentially malicious) actions have been performed by
which entities. This security countermeasure is highly
valuable in the context of network virtualization environ-
ments, in which a number of physical devices are shared
by different users. Nevertheless, we are not aware of any
publication that targets this countermeasure specifically.

5.6 Availability
Last, we present proposals that aim to maintain the avail-
ability of network virtualization environments. The key
concerns in this area of security are providing proper
resource isolation andmitigating attacks that target physi-
cal or virtual devices. Approaches aiming to deal with such
concerns are explained in the following subsections.

5.6.1 Physical resource isolation
One of the main concerns regarding availability is the
abuse of physical resources by virtual networks. Virtual
networks may attempt to use as much resources as pos-
sible in order to maximize their performance. If the envi-
ronment is not adequately protected, this behavior may
lead to the exhaustion of physical resources, compromis-
ing the availability of other virtual networks hosted on
the same substrate. Therefore, physical resources must be
shared in a fair manner, and actions performed by a virtual
network must not negatively impact others.
According to Wu et al. [29], the sharing of physical

resources by packet processors is usually only performed
at a granularity of entire processor cores. The authors
claim that finer-grained processor sharing is required
in order to provide scalability for network virtualization
environments. Thus, the authors propose a system that
allows multiple threads to share processor cores con-
currently while maintaining isolation and fair resource
sharing. However, typical multithreading approaches con-
sider a cooperative environment, which is not the case in
network virtualization. The authors devise a fair multi-
threading mechanism that allows the assignment of differ-
ent priorities to each thread. Additionally, this mechanism
takes into account the history of howmuch processing has

been performed by each thread. Inactivity times are also
considered in order to guarantee that threads will not stay
idle for too long. The evaluation performed by the authors
shows that the proposed mechanism is able to properly
distribute processing resources according to the defined
priorities. Furthermore, while it requires more processing
power, it is able to provide better resource utilization in
comparison to coarse-grained approaches.
Kokku et al. [30] propose a network virtualization

scheme that provides resource isolation while aiming to
maximize substrate utilization. It allows virtual networks
to have either resource-based reservations (i.e., reserva-
tions calculated as a percentage of available resources
in the substrate) or bandwidth-based reservations (i.e.,
reservations based on the aggregate throughput of the vir-
tual network). Virtual networks are divided in two groups
according to the type of reservation required, and treated
independently by a scheduler. This scheduler treats flows
that belong to different virtual networks with distinct pri-
orities, based on the reservations and average resource
usage rate of each network. The authors present an eval-
uation performed on an implemented prototype, showing
that the proposed scheme was capable of ensuring that
each virtual network met its reservations.
Fernandes and Duarte [26] present a network monitor

that employs plane separation in order to provide resource
isolation in network virtualization environments. The sys-
tem is able to allocate resources based on fixed reserva-
tions, as well as to redistribute idle resources between
virtual networks that have a higher demand. Additionally,
an administrator is able to control the amount of resources
to be used by each virtual network, as well as set priorities
for using idle resources. The system continuously moni-
tors the consumption of physical resources by each virtual
router. If any virtual router exceeds its allowed use of
bandwidth, processing power, or memory, it is adequately
punished by having packets dropped, or a percentage of
its stored routes erased. Harsher punishments are insti-
tuted if there are no idle resources available. Conversely,
given punishments are gradually reduced if the router
stops using more than its allocated resources. This sys-
tem is capable of adequately preventing physical resources
from being overloaded, and packet drops employed by the
punishment mechanism do not cause a major impact on
network traffic.
In another publication [31], the same authors extend

the previously described network monitor. This new sys-
tem introduces the idea of short term and long term
requirements, based on the time frame in which they
must be met. Short term requirements may be allocated
in an exclusive or non-exclusive manner, while long term
requirements are always non-exclusive. In this context,
exclusive requirements are always allocated (even if part
of the allocated resources is idle), while non-exclusive

95

Bays et al. Journal of Internet Services and Applications (2015) 6:1 Page 14 of 19

requirements are only allocated when necessary. The sys-
tem prioritizes virtual networks that have used the lowest
portion of their requirements, and an adaptive control
scheme is used in order to improve the probability that
long term requirements, if needed, will be met. The pre-
sented evaluation shows the improvement of this system
over the original [26] in terms of guaranteeing that the
demands of each virtual network will be met, as well as
reducing resource load on the physical substrate.

5.6.2 Virtual network resilience
Even with proper physical resource isolation, maintaining
availability remains a challenge in virtualized networks.
The virtualization layer must be resilient, maintaining its
performance and mitigating attacks in order to sustain
its availability. Some of the publications described next
approach the issue of virtual network resilience from the
point of view of fault tolerance. Nonetheless, we empha-
size that the solutions described in these publications may
also be used as a response to attacks that cause the failure
or degradation of physical devices or links.
The solution presented by Yeow et al. [32] aims to pro-

vide network infrastructures that are resilient to physical
router failures. This objective is achieved through the use
of backups (i.e., redundant routers and links). However,
redundant resources remain idle, reducing the utilization
of the physical substrate. To minimize this problem, the
authors propose a scheme that dynamically creates and
manages shared backup resources. This mechanism min-
imizes the number of necessary backup instances needed
to achieve a certain level of reliability. While backup
resources are shared, each physical router is restricted to
hosting a maximum number of backup instances in order
not to sacrifice reliability. The connectivity between each
virtual router and its neighbors is preserved in all of its
backups, both in terms of number of links and bandwidth
reservations.

The illustration on the left side of Figure 6 shows a
simple representation of how backup nodes (represented
as circles) may be shared among different virtual net-
works. For example, the two backup nodes at the right
side of this figure are shared between Virtual Network 1
and Virtual Network 3, regardless of whether they belong
to one or the other. The right side of Figure 6, in turn,
depicts in greater detail how backups are allocated to vir-
tual routers. A virtual router C1 has virtual routers B1 and
B2 as its backups. Since C1 has a virtual link connect-
ing it to another router, N1, a virtual link with the same
bandwidth reservation (depicted as 1 in the figure) is also
established between each backup node and N1 in order to
preserve the connectivity of the original router.
Meixner et al. [35] devise a probabilistic model for

providing virtual networks that are resilient to physical
disasters. Disasters are characterized by the occurrence of
multiple failures in the physical network, as well as the
possibility of correlated cascading failures during attempts
to recover network resources. The virtual link mapping
strategy guarantees that the failure of a single physical
link will not disconnect any virtual network, and aims
at minimizing virtual network disconnection in the event
of a disaster (i.e., simultaneous failure of multiple links).
Additionally, excess processing capacity in the physical
network is used to create a backup router for each vir-
tual network, which reduces disconnection in the event of
disasters and provides additional processing capacity for
the recovery phase. When attempting to recover virtual
network resources, the model analyzes all possible virtual
router replacements in an effort to replace affected vir-
tual routers in a way that ensures the virtual network will
not be disconnected by any post-disaster failures.
The system presented by Zhang et al. [27] uses redun-

dant virtual networks in order to provide reliable live
streaming services. It is able to detect path failures and
traffic congestion, dynamically redirecting data flows.

Figure 6 Examples of sharing andmapping of backup instances, used by Yeow et al. [32] to provide resilient virtual networks.

96

Bays et al. Journal of Internet Services and Applications (2015) 6:1 Page 15 of 19

Initially, the data flow is distributed equally through avail-
able virtual networks. Figure 7 depicts the distribution of
a data flow through virtual networks, using multiple paths
between a server and a client. Gradually, the number of
packets routed through each virtual network is adapted
according to its relative bandwidth capacity. Additionally,
an active probing mechanism is used to detect failures
in the physical network or routing problems (changes in
routing tables, for example, may have a significant impact
in live streaming applications). If an issue is detected, the
system is able to redirect data flows away from problem-
atic networks and redistribute it among the remaining
ones. Experiments performed by the authors demonstrate
advantages in using multiple networks instead of a single
one, with increasing gains when using up to four vir-
tual networks. Additionally, the authors claim that the
bandwidth cost of the probing mechanism is negligible.
Chen et al. [33] propose a virtual network embedding

strategy that aims at ensuring survivability. Load balanc-
ing is employed in the embedding process in order to
balance the bandwidth consumption of substrate links.
Moreover, backup links are reserved for each accepted
virtual network, but not activated until a failure occurs.
Backup links are allocated in physical paths that do not
overlap with the path hosting the original link, guarantee-
ing that a single physical link failure will not simultane-
ously affect the original virtual link and one or more of its
backups. These backup resources may be shared by multi-
ple virtual networks or reconfigured over time in order to
improve efficiency.
Zhang et al. [34] devise a strategy for computing the

availability of Virtual Data Centers (VDCs), as well as an
algorithm for reliable VDC embedding. In order to deter-
mine VDC availability, the authors consider the availabil-
ity of individual, heterogeneous components, as well as

dependencies among them. The embedding mechanism
aims at meeting minimum availability criteria while opti-
mizing resource usage. Virtual devices are divided into
replication groups (groups in which any virtual devicemay
serve as a backup if another fails). In order to minimize
resource consumption, VDCs are embedded on physical
devices with the lowest level of availability that still meets
the desired level. In a similar way, a minimum number of
backups is assigned to each replication group in order to
meet availability requirements.
Unlike the previously described approaches in the area

of virtual network resilience, Oliveira et al. [7] present a
strategy based on “opportunistic resilience”, which does
not employ backup resources. The bandwidth demand of
each virtual link is split over multiple physical paths. As a
consequence, physical link failures are less likely to cause
a virtual link disconnection (an affected virtual link will
remain operational, albeit with less capacity). Addition-
ally, when link failures occur, a reactive strategy is used in
order to reallocate the lost capacity over unaffected paths,
attempting to fully restore the bandwidth of degraded
virtual links.
Distributed Denial of Service (DDoS) attacks are a com-

mon threat to the availability of network services. The
system proposed by Yu and Zhou [6] aims to detect
such attacks on community networks (federated vir-
tual networks that belong to cooperating entities). The
devised solution leverages communication between vir-
tual routers that belong to different entities in this collab-
orative environment to detect possible attacks at an early
stage. Virtual routers located on the edges of the commu-
nity network monitor traffic passing through them and
calculate the entropy of its flows. Traffic surges in any of
these flows will cause the entropy to drop, indicating a
possible attack. If this occurs, other routers are notified

Figure 7 A live streaming data flow is distributed among different virtual networks, a mechanism used by Zhang et al. [27].

97

Bays et al. Journal of Internet Services and Applications (2015) 6:1 Page 16 of 19

and instructed to calculate the entropy rate of this sus-
pected flow. Calculated values are compared, and if they
are similar, a DDoS attack is confirmed.

6 Discussion
A number of insights can be obtained from the extensive
investigation of the state of the art reported in this paper.
First, it is possible to observe that the publications in the
area are not equally distributed between the main security
categories. Tables 3 and 4 show, respectively, the secu-
rity threats and security countermeasures approached in
these publications. In both tables, publications have been
grouped together according to the security elements they
approach, whenever possible. It is noticeable that disrup-
tion and availability – a security threat and a counter-
measure that are directly correlated – are approached in
the majority of these publications. This is likely due to
the high prevalence of attacks aiming at causing disrup-
tion. These attacks are relatively simple but can be highly

Table 3 Security threats mentioned in publications in the
area of virtual network security

Publication
Threats

DI DE DR US

[4] ×
[19] ×
[21] ×
[22] ×
[23] ×
[24] ×
[10] × ×
[20] × ×
[5] × × ×
[25] ×
[26] × ×
[36] ×
[6] ×
[7] ×
[27] ×
[28] ×
[29] ×
[30] ×
[31] ×
[32] ×
[33] ×
[34] ×
[35] ×
From left to right: Disclosure, Deception, Disruption, Usurpation.

Table 4 Security countermeasures provided by
publications in the area of virtual network security

Publication
Countermeasures

AC AU CO IN NR AV

[4] ×
[20] ×
[22] ×
[24] ×
[19] × × ×
[5] × × × ×
[26] × × × ×
[31] × × × ×
[10] × ×
[25] ×
[6] ×
[7] ×
[27] ×
[29] ×
[30] ×
[32] ×
[33] ×
[34] ×
[35] ×
From left to right: Access Control, Authentication, Confidentiality, Integrity,
Nonrepudiation, Availability.

devastating, especially in an environment that makes
heavy use of shared resources (as a single physical fail-
ure may disrupt several virtual networks). Disclosure and
confidentiality follow closely behind, being present in a
similar number of publications as disruption/availability.
Once again, this is linked to physical resource sharing.
Similarly to disruption attacks, such sharing means that
a single well-placed sniffer may be able to acquire sensi-
tive information from multiple virtual networks at once.
Moreover, there are also privacy concerns between infras-
tructure providers and virtual network requesters (as the
former may have access to data that the latter considers
confidential).
Second, only a small number of publications approach

more than one threat or countermeasure simultaneously.
No single publication has dealt with threats in more
than two of the four categories, or presented solutions
that provide more than four security countermeasures,
out of a total of six. Additionally, one security coun-
termeasure in particular – nonrepudiation – was not
approached by any of the publications. The combination
of authentication and integrity, which exists in some pub-
lications, can be considered as the basis for the provision

98

Bays et al. Journal of Internet Services and Applications (2015) 6:1 Page 17 of 19

of nonrepudiation, but this specific countermeasure is
not targeted. Nonrepudiation is a highly valuable (albeit
challenging) security countermeasure for network virtu-
alization environments, and will be further discussed in
Section 7.
Third, we were able to conclude that many of the threats

that affect network virtualization environments also affect
traditional networks. However, we emphasize that these
threats affect traditional and virtual network environ-
ments in different ways. In most cases, the effects of these
threats are greatly exacerbated by certain characteristics
of virtual network environments. Information intercep-
tion, physical resource overloading, physical resource fail-
ure, and software vulnerability exploitation are aggravated
by the fact that a number of virtual routers may share
a physical router. Therefore, as previously explained, an
attack of any of these types targeting a single physical
router may affect several virtual networks. Further, it is
more difficult to recognize (and, therefore, to perform
countermeasures against) identity fraud and replay attacks
due to the dynamicity of network virtualization environ-
ments, as virtual routers may be freely moved among
physical routers and assume different identities. Loss of
registry entries and information leakage, as described in
the studied literature, are limited to virtual network envi-
ronments. Moreover, threats related to introspection are
also inherent to these types of environments, as this is a
(potentially exploitable) feature of virtual machine moni-
tors.
Last, we can observe the employment of different vir-

tualization techniques in some publications. For exam-
ple, Cabuk et al. [5] implemented a prototype of their
framework based on a paravirtualization platform, while
Huang et al. [22] consider an underlying network based
on programmable routers. Further, Fernandes and Duarte
[26,31] build a hybrid solution that combines par-
avirtualization with plane separation, a core idea of
programmable networks. Although the majority of pub-
lications do not target specific network virtualization
techniques, we emphasize that different types of plat-
forms have their own sets of benefits, as well as security
concerns, which need to be taken into account.

7 Challenges
Despite the existence of a sizable body of work in virtual
network security, some challenges remain open. In this
section, we summarize some of the main research chal-
lenges in this area. We emphasize, however, that these
challenges should not be considered exhaustive, but rather
as a starting point for further discussions in the area.
One clear opportunity for research in virtual net-

work security is the provisioning of nonrepudiation –
which, to the best of our knowledge, has not yet been
approached. Nonrepudiation requires providing proof of

actions performed by entities on a network, which can
be used for holding entities accountable for malicious
activity. We deem nonrepudiation an essential security
countermeasure for virtual networking environments in
order to accurately backtrace attacks – not only to ensure
that punitive actions will be taken against the attackers
but also to properly contain the attacks themselves. In the
event of a DDoS attack, for example, this countermeasure
could enable administrators to pinpoint the origins of the
attack with a high level of precision – which otherwise
tends to be a very difficult task. Moreover, nonrepudia-
tion may even prevent attacks, in the sense that malicious
users who are aware that such a mechanism is in use
may refrain from carrying out attacks in order to avoid
exposing themselves. Provisioning nonrepudiation can be
challenging for a number of reasons, such as the complex-
ity of securely storing and handling digital certificates –
used for proving that an action was, indeed, performed by
a given entity – and the negative impact this has on net-
work performance. Moreover, it is necessary to maintain
a desired level of privacy for virtual network requesters
as well as end users. Nevertheless, we envision that the
importance of this countermeasure will grow steadily as
network virtualization becomes increasingly prominent in
production environments.
In addition to privacy issues related to nonrepudia-

tion, there are also concerns regarding the privacy of
general data stored in virtual routers or sent through
virtual networks. Although such data may be protected
from being intercepted by other entities, infrastructure
providers have physical access to all data stored in virtual
networks they are hosting. Although this issue has been
approached by some authors, their proposed strategies are
often based on strong assumptions, such as the ability to
choose which physical entity (out of a number of enti-
ties controlling the physical substrate) will host each of its
routers – a feature that may not commonly be available in
practice.
Another opportunity stems from the multiple levels of

heterogeneity present in network infrastructures. As pre-
viouslymentioned, in addition to the use of heterogeneous
hardware devices, it is common for network substrates
to be composed of a number of physical networks that
belong to different entities. As such, there is a need for
uniform methods for requesting, negotiating, and enforc-
ing security requirements across devices that may have
incompatible interfaces and entities with potentially con-
flicting policies.
Last, software platforms used to instantiate virtual

networks may not always offer adequate protection
against security threats. Moreover, although virtualiza-
tion technologies are gradually evolving and becoming
more mature, both hardware and software are suscepti-
ble to vulnerabilities that may be exploited by attackers.

99

Bays et al. Journal of Internet Services and Applications (2015) 6:1 Page 18 of 19

Consequently, research efforts that build on top of net-
work virtualization need to consider these security issues
and, most importantly, overhead costs of additional secu-
rity mechanisms that may be necessary, in order to ensure
that they will be suitable for real world environments.
We emphasize, once again, that this is not an exhaustive

list of challenges in the area. The essence of network vir-
tualization is based on layers upon layers with increasing
levels of abstraction (e.g., the physical substrate, the virtu-
alization layer, virtual networks, and services running on
top of them). Consequently, we envision that a number of
other challenges may be present in all of these layers –
much like the ones listed in this section.

8 Conclusions
Network virtualization enables the subdivision of a single
network infrastructure into multiple virtual architectures.
The benefits of this technique apply to a wide range of
applications, including the creation of virtual testbeds,
community networks, and cloud computing infrastruc-
tures. Furthermore, network virtualization has been pro-
posed by researchers as the basis for the creation of a new
architecture for the Internet, allowing pluralist network
environments that support a number of different network
protocols simultaneously.
In spite of the benefits provided by network virtualiza-

tion, there is a series of security issues that need to be con-
sidered. Our study revealed a number of security threats,
covering the four categories defined by Shirey [16]. The
very act of sharing a physical infrastructure among mul-
tiple parties is shown to be the source of several of these
threats.
This study shows that there have been several efforts

to provide security in virtual networks. However, these
efforts were not organized in a comprehensible manner.
This study provides a systematic overview of the avail-
able research results in the field, categorizing work that
represents the state of the art and highlighting different
approaches for providing security. Additionally, it also evi-
dences imbalances between different sub-areas of security
research in network virtualization, which can be used as
guidance for future work in this area. Usurpation and
access control, for example, are significantly underrep-
resented in relation to other security countermeasures,
and nonrepudiation is not targeted by any publication.
Additionally, while a significant body of work exists in
the sub-area of availability, only one publication deals
with detection and prevention of attacks. Such gaps may
represent valuable opportunities for future work.
To summarize, the categorization of security threats

and countermeasures presented in this paper simplifies
the analysis of which security aspects have not yet been
approached and which types of threats need to be miti-
gated. Furthermore, it makes it easier to identify a number

of existing solutions that aim to provide security in virtual
networks.

Endnotes
1Machine virtualization is available for personal

computers, in commonly used operating systems (e.g.,
Windows, Linux, and Mac OS X).

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors read and approved the final manuscript.

Acknowledgements
The authors would like to thank the anonymous reviewers for their valuable
comments and suggestions. This work has been partially supported by
FP7/CNPq (Project SecFuNet, FP7-ICT-2011-EU-Brazil), RNP-CTIC (Project ReVir),
as well as PRONEM/FAPERGS/CNPq (Project NPRV).

Author details
1Institute of Informatics, Federal University of Rio Grande do Sul, Porto Alegre,
Brazil. 2Institute of Computing, University of Campinas, Campinas, Brazil.

Received: 29 August 2014 Accepted: 8 December 2014

References
1. Chowdhury NMMK, Boutaba R (2010) A survey of network virtualization.

Comput Netw 54(5):862–876
2. Fernandes N, Moreira MD, Moraes I, Ferraz L, Couto R, Carvalho HT,

Campista M, Costa LK, Duarte OB (2011) Virtual networks: isolation,
performance, and trends. Ann Telecommun 66(5–6):339–355

3. Anderson T, Peterson L, Shenker S, Turner J (2005) Overcoming the
internet impasse through virtualization. Computer 38(4):34–41

4. Bays LR, Oliveira RR, Buriol LS, Barcellos MP, Gaspary LP (2014) A
heuristic-based algorithm for privacy-oriented virtual network
embedding. In: IEEE/IFIP Network Operations and Management
Symposium (NOMS). IEEE, Krakow, Poland

5. Cabuk S, Dalton CI, Ramasamy H, Schunter M (2007) Towards automated
provisioning of secure virtualized networks. In: ACM Conference on
Computer and Communications Security. New York, USA

6. Yu S, Zhou W (2008) Entropy-based collaborative detection of ddos
attacks on community networks. In: IEEE International Conference on
Pervasive Computing and Communications. IEEE Computer Society,
Washington, DC, USA

7. Oliveira RR, Marcon DS, Bays LR, Neves MC, Buriol LS, Gaspary LP, Barcellos
MP (2013) No more backups: Toward efficient embedding of survivable
virtual networks. In: IEEE International Conference on Communications.
IEEE, Budapest, Hungary

8. LAN/MAN Standards Committee (2006) IEEE Standard for Local and
metropolitan area networks – Virtual Bridged Local Area Networks. IEEE
Std 802.1Q-2005 (incorporates IEEE Std 802.1Q1998, IEEE Std 802.1u-2001,
IEEE Std 802.1v-2001, and IEEE Std 802.1s-2002). http://www.ieee802.org/
1/pages/802.1Q-2005.html

9. Rosen E, Cisco Systems I, Rekhter Y, Juniper Networks I (2006) RFC 4364:
BGP/MPLS IP Virtual Private Networks (VPNs). http://www.ietf.org/rfc/
rfc4364.txt

10. van Cleeff A, Pieters W, Wieringa RJ (2009) Security implications of
virtualization: A literature study. In: International Conference on
Computational Science and Engineering. IEEE Computer Society,
Washington, DC, USA

11. McKeown N, Anderson T, Balakrishnan H, Parulkar G, Peterson L, Rexford J,
Shenker S, Turner J (2008) Openflow: enabling innovation in campus
networks. SIGCOMM Comput Commun Rev 38:69–74

12. Bari MF, Boutaba R, Esteves R, Granville LZ, Podlesny M, Rabbani MG,
Zhang Q, Zhani MF (2013) Data center network virtualization: A survey.
Communications Surveys Tutorials, IEEE 15:909–928

100

Bays et al. Journal of Internet Services and Applications (2015) 6:1 Page 19 of 19

13. Zhou M, Zhang R, Xie W, Qian W, Zhou A (2010) Security and privacy in
cloud computing: A survey. In: Semantics Knowledge and Grid (SKG),
2010 Sixth International Conference On. IEEE, Beijing, China

14. Hashizume K, Rosado DG, Fernández-Medina E, Fernandez EB (2013) An
analysis of security issues for cloud computing. J Internet Serv Appl
4:1–13

15. Scott-Hayward S, O’Callaghan G, Sezer S (2013) Sdn security: A survey. In:
Future Networks and Services (SDN4FNS), 2013 IEEE SDN For. IEEE, Trento,
Italy

16. Shirey R (2000) RFC 2828: Internet Security Glossary. http://www.ietf.org/
rfc/rfc2828.txt

17. Stallings W (2006) Cryptography and Network Security: Principles and
Practice. Pearson/Prentice Hall, Upper Saddle River, New Jersey, USA

18. Cavalcanti E, Assis L, Gaudencio M, Cirne W, Brasileiro F (2006)
Sandboxing for a free-to-join grid with support for secure site-wide
storage area. In: International Workshop on Virtualization Technology in
Distributed Computing. IEEE Computer Society, Washington, USA

19. Wolinsky DI, Agrawal A, Boykin PO, Davis JR, Ganguly A, Paramygin V,
Sheng YP, Figueiredo RJ (2006) On the design of virtual machine
sandboxes for distributed computing in wide-area overlays of virtual
workstations. In: International Workshop on Virtualization Technology in
Distributed Computing. IEEE Computer Society, Washington, DC, USA

20. Wu H, Ding Y, Winer C, Yao L (2010) Network security for virtual machine
in cloud computing. In: Computer Sciences and Convergence
Information Technology (ICCIT), 2010 5th International Conference On.
IEEE, Seoul, South Korea

21. Cui Q, Shi W, Wang Y (2009) Design and implementation of a network
supporting environment for virtual experimental platforms. In: WRI
International Conference on Communications and Mobile Computing.
IEEE Computer Society, Washington, DC, USA

22. Huang D, Ata S, Medhi D (2010) Establishing secure virtual trust routing
and provisioning domains for future internet. In: IEEE Conference on
Global Telecommunications, Miami, USA

23. Pignolet Y-A, Schmid S, Tredan G (2013) Adversarial vnet embeddings: A
threat for isps?. In: IEEE INFOCOM. IEEE, Turin, Italy

24. Fukushima M, Sugiyama K, Hasegawa T, Hasegawa T, Nakao A (2013)
Minimum disclosure routing for network virtualization and its
experimental evaluation. IEEE/ACM Trans Netw PP(99):1839–1851

25. Chowdhury NMMK, Zaheer F-E, Boutaba R (2009) imark: an identity
management framework for network virtualization environment. In:
IFIP/IEEE International Symposium on Integrated Network Management.
IEEE Press, Piscataway, USA

26. Fernandes NC, Duarte OCMB (2011) Xnetmon: A network monitor for
securing virtual networks. In: IEEE International Conference on
Communications. IEEE, Kyoto, Japan

27. Zhang Y, Gao L, Wang C (2009) Multinet: multiple virtual networks for a
reliable live streaming service. In: IEEE Conference on Global
Telecommunications. IEEE Press, Piscataway, USA

28. Marquezan CC, Granville LZ, Nunzi G, Brunner M (2010) Distributed
autonomic resource management for network virtualization. In: IEEE/IFIP
Network Operations and Management Symposium, Osaka, Japan

29. Wu Q, Shanbhag S, Wolf T (2010) Fair multithreading on packet
processors for scalable network virtualization. In: ACM/IEEE Symposium
on Architectures for Networking and Communications Systems. ACM,
New York, USA

30. Kokku R, Mahindra R, Zhang H, Rangarajan S (2010) Nvs: a virtualization
substrate for wimax networks. In: International Conference on Mobile
Computing and Networking. ACM, New York, USA

31. Fernandes NC, Duarte OCMB (2011) Provendo isolamento e qualidade de
serviço em redes virtuais. In: Simpósio Brasileiro de Redes de
Computadores e Sistemas Distribuídos, Campo Grande, Brazil.
(in Portuguese)

32. Yeow W-L, Westphal C, Kozat UC (2011) Designing and embedding
reliable virtual infrastructures. SIGCOMM Comput Commun Rev
41(2):57–64

33. Chen Q, Wan Y, Qiu X, Li W, Xiao A (2014) A survivable virtual network
embedding scheme based on load balancing and reconfiguration. In:
IEEE Network Operations and Management Symposium. IEEE, Krakow,
Poland

34. Zhang Q, Zhani MF, Jabri M, Boutaba R (2014) Venice: Reliable virtual data
center embedding in clouds. In: IEEE INFOCOM. IEEE, Toronto, Canada

35. Meixner CC, Dikbiyik F, Tornatore M, Chuah C, Mukherjee B (2013) Disaster-
resilient virtual-network mapping and adaptation in optical networks. In:
International Conference on Optical Network Design and Modeling

36. Roschke S, Cheng F, Meinel C (2009) Intrusion detection in the cloud. In:
IEEE International Conference on Dependable, Autonomic and Secure
Computing. IEEE Computer Society, Washington, DC, USA

37. Common Vulnerabilities and Exposures (2012) CVE-2012-1516.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-1516

38. Common Vulnerabilities and Exposures (2012) CVE-2012-1517.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-1517

39. Common Vulnerabilities and Exposures (2012) CVE-2012-2449.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-2449

40. Common Vulnerabilities and Exposures (2012) CVE-2012-2450.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-2450

41. Alkmim GP, Batista DM, Fonseca NLS (2013) Mapping virtual networks
onto substrate networks. J Internet Serv Appl 3(4):1–15

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

101

102

APPENDIX B – PUBLISHED PAPER – NOMS, 2016

• Title: Virtual Network Embedding in Software-Defined Networks

• Conference: IEEE/IFIP Network Operations and Management Symposium

• Date: April, 2016

• DOI: <https://doi.org/10.1109/NOMS.2016.7502791>

https://doi.org/10.1109/NOMS.2016.7502791

Virtual Network Embedding in
Software-Defined Networks

Leonardo Richter Bays, Luciano Paschoal Gaspary
Institute of Informatics – Federal University of Rio Grande do Sul (UFRGS)

{lrbays,paschoal}@inf.ufrgs.br
Reaz Ahmed, Raouf Boutaba

David R. Cheriton School of Computer Science – University of Waterloo
{r5ahmed,rboutaba}@uwaterloo.ca

Abstract—Research on network virtualization has been active
for a number of years, during which a number of virtual net-
work embedding (VNE) approaches have been proposed. These
approaches, however, neglect important operational requirements
imposed by the underlying virtualization platforms. In the case
of SDN/OpenFlow-based virtualization, a crucial example of an
operational requirement is the availability of enough memory
space for storing flow rules in OpenFlow devices. In this paper, we
advocate that VNE must be performed with some knowledge of
the underlying physical networks, otherwise the deployment may
suffer from unpredictable or even unsatisfactory performance.
Considering SDN/OpenFlow-based physical networks as an im-
portant virtualization scenario, we propose an approach based
on VNE and OpenFlow coordination for proper deployment
of virtual networks (VNs). The proposed approach unfolds in
the following main contributions: (i) a virtual infrastructure
abstraction that allows a service provider to represent the details
of his/her VN requirements in a comprehensive manner; (ii) a
privacy-aware compiler that is able to preprocess this detailed
VN request in order to obfuscate sensitive information and derive
computable operational requirements; and (iii) a model for em-
bedding requested VNs ensuring their feasibility at the physical
level. The results obtained through our evaluation demonstrate
that taking such operational requirements into account, as well as
accurately assessing them, is of paramount importance to ensure
the correct behavior of VNs hosted on top of the virtualization
platform.

I. INTRODUCTION

Research on network virtualization has been active for a
number of years. During this period, several approaches for
embedding VNs on top of physical infrastructures have been
proposed [1]–[6]. Most approaches consider a similar set of
VN requirements, such as CPU, memory, and bandwidth guar-
antees, as well as location constraints. Some approaches take
into account additional aspects such as virtual router image
transfer and instantiation overheads, network survivability, or
communication security. In contrast, relevant operational re-
quirements related to the instantiation of VNs on different vir-
tualization platforms are neglected. This simplification enables
the streamlining of the optimization models and heuristics used
in these approaches. Moreover, it renders them generic enough
to be applied to a number of different scenarios. However,
by not taking into account operational requirements of the
underlying virtualization platforms, the mappings produced by
these VNE approaches may (a) not be feasible in practice,
(b) be unable to properly fulfill SLA requirements, or (c) fail
to use infrastructure resources in an efficient manner. In this
work, we focus on ensuring the feasibility of VNE mappings
on a multi-tenant, SDN/OpenFlow-based network environment
so as not to put at risk satisfactory performance and/or network
predictability of embedded VNs.

Software-Defined Networking (SDN) offers a promising
platform for network virtualization. In addition to slicing phys-
ical resources among customers [7]–[12], SDN-based environ-
ments provide abstractions that allow different virtualization

functionality, including the instantiation of arbitrary virtual
topologies [8]–[12] and the use of overlapping address spaces
[10]–[12]. In the case of SDN/OpenFlow-based virtualization,
a crucial example of an operational requirement that may ren-
der VNE-provided mappings inadequate in real environments
is the unavailability of enough memory space for storing flow
rules in OpenFlow devices. If this critical issue is not taken
into account by the VNE algorithm, OpenFlow devices may
not be able to accommodate all flow rules required by the vir-
tual routers assigned to them. As a consequence, these devices
would need to frequently contact the controller in order to
handle incoming packets. High rates of controller intervention,
in turn, could hinder network performance predictability and
potentially render the multi-tenant environment unstable.

Figure 1 depicts an example of mappings that would be
considered valid by a standard VNE approach but could
ultimately lead to performance issues in practice. In this
example, three VN requests (VN1–3) are embedded on top of
a physical network. In this example, physical routers support
up to 4,000 flow rules each, while routers in each VN request
require either 2,000 or 3,000 flow rules to be installed on the
physical routers hosting them. Moreover, a number of flow
rules must also be installed on “auxiliary routers” – i.e., routers
that are not part of the VN request directly, but are necessary
in order to create physical paths to host virtual links between
such routers. As one can observe, the computed mappings
exceed the capacity of some of the physical routers – namely,
PR2 (which is hosting virtual routers B and D), PR4 (hosting
virtual router F and an auxiliary router in the path between
virtual routers B and C), and PR5 (hosting virtual routers E
and H).

Fig. 1. Example of mappings generated by a standard VNE approach that
exceed the flow table capacity of physical devices.

The example illustrated above not only underscores that
VNE must be performed with some knowledge of the under-
lying physical networks but also sheds light to the importance978-1 /$31.00 201 IEEE

2016 IEEE/IFIP Network Operations and Management Symposium (NOMS 2016)10

103

of going further in terms of expressing what a VN needs from
the physical network. Applications running on top of VNs
have distinct traffic patterns and are often subject to different
policies or network functions (e.g., load balancing, access
control, or deep packet inspection). The specification of the
expected behavior of a VN, translated into an estimate of flow
table usage and communicated to the infrastructure provider,
would potentially lead to both a more accurate orchestration
of VN embeddings and, ultimately, an overall better quality
of service.

In this paper, we propose a VNE approach that is aware of
operational requirements related to the instantiation of VNs
on top of an SDN/OpenFlow environment. The central idea of
the proposed approach is the specification, by VN requesters,
of VN requests enriched with information about how (to be)
provisioned networks will be used (e.g., important application
flows, network functions/policies to which packets will be
subjected to, etc.). These VN specifications are then used to
derive operational requirements, still at the customer’s end.
The resulting specifications – reflecting requesters willingness
(or not) to disclose information about the VNs – are sent to
the InP, which will ultimately correctly embed the requested
VNs favoring incoming requests with well defined operational
requirements. We consider a number of pieces of information
that, if known in advance by the InP, can lead to improved allo-
cation of network resources and, in turn, to improved network
utilization. The main contributions of this paper are threefold:
(i) an abstraction model for expressing requirements related
to internal VN policies and traffic patterns; (ii) a strategy
for accurately deriving the number of flow rules needed to
instantiate VNs based on the aforementioned requirements;
and (iii) a VNE method that leverages this information in
order to correctly and efficiently allocate resources in an
SDN/OpenFlow-based virtualization environment.

The remainder of this paper is organized as follows. In
Section II we discuss existing VNE approaches. In Section
III we introduce our proposed solution and describe its main
elements. In Section IV we describe the evaluation we carried
out and present and discuss the obtained results. Last, in
Section V we present final remarks and perspectives for future
work.

II. RELATED WORK

In this section, we discuss previous work in the area
of virtual network embedding, focusing on the constraints
considered in each approach.

Yu et al. [1] present a heuristic-based VNE approach. The
algorithm embeds virtual routers and links in separate phases,
and prioritizes VNs with largest revenue. This approach takes
into account CPU and location constraints for routers, and
bandwidth constraints for links.

Chowdhury et al. [2] propose two optimization models, one
being a relaxed version of the other. Routers and links are
embedded in distinct phases; however, improved coordination
between these phases is achieved by preselecting router map-
pings taking into account their location constraints in order to
facilitate link mapping. Similarly to the work of Yu et al.,
CPU, location, and bandwidth requirements are considered
by the proposed optimization models. Moreover, link delay is
used to determine how far a virtual router may be embedded
from its preferred location.

Cheng et al. [3] introduce the concept of “node ranking”,
in which virtual and physical nodes are ranked according
to their own capacity and the capacities of their neighbors.
Two embedding algorithms are proposed, one mapping routers
and links in distinct stages while the other performs both
simultaneously. The algorithms take into account CPU and
bandwidth constraints but do not include location constraints.

Alkmim et al. [4] present two VNE approaches based
on optimization models. One employs a traditional Integer
Linear Programming (ILP) model, while the other employs
a relaxation technique in order to reduce running times. The
authors focus on constraints related to overheads incurred
when transferring and instantiating virtual router software
images. As such, in addition to CPU, location, bandwidth, and
link delay, the size of virtual router images (and the memory
needed to support them), the locations in which they are stored,
and the time needed to transfer and instantiate them are also
taken into account.

Bays et al. [5] propose both an optimization model and a
heuristic algorithm for virtual network embedding focusing
on privacy. Both approaches take into account throughput
capacity and location requirements of routers as well as
link bandwidth. Additionally, a number of security related
constraints are considered, namely which physical routers
are capable of supporting the necessary security protocols,
overheads associated with cryptographic operations, and which
VNs may not share physical resources.

Last, Demirci et al. [6] focus on embedding VNs on
top of an SDN substrate. More specifically, the issue of
controller placement is tackled in addition to virtual router
and link mapping. The authors devise two different embedding
strategies. The first one aims at balancing the load on physical
elements, while the other aims at minimizing communication
delay between virtual routers and controllers. The authors con-
sider bandwidth capacity constraints, in addition to controller
location requirements. Embedding is performed in an offline
manner, assuming all requests are known in advance.

As highlighted in this section, previous work in the area
of VNE does not take into account operational requirements
related to the instantiation of VNs on top of SDN/OpenFlow
substrates. Although the work of Demirci et al. [6] is more
closely aligned to the approach proposed in this paper, the
authors do not take into account hard capacity constraints of
SDN routers, only attempting to minimize overall resource
usage. As previously explained, this may lead these approaches
to generate mappings that are ultimately impossible to in-
stantiate in practice. Moreover, we are not aware of previous
attempts to enable customers to represent the needs of their
VNs in a level of detail they are comfortable with while
simultaneously allowing infrastructure providers to leverage a
“distilled” version of this information to ensure no operational
constraints are broken.

III. PROPOSED SOLUTION

Next, we present our proposed solution for coordinating
VNE and SDN infrastructures. First, we briefly explain the
characteristics of SDN environments considered in this paper
and provide an overview of our proposal. Right after, we detail
each of its main components.

A. Multi-tenant Infrastructure Model and Network Virtualiza-
tion Paradigm Considered

The approach proposed in this paper targets an
SDN/OpenFlow-based network environment in which a
number of customers (service providers) request and, if
possible, are granted virtual infrastructures. More specifically,
we focus on correctly provisioning the VNs that interconnect
the elements of these infrastructures.

An example of a multi-tenant network virtualization envi-
ronment is depicted in Figure 2. VN requests are received
by the infrastructure provider and processed by a VN embed-
der. Accepted VN requests are ultimately instantiated on top
of the physical infrastructure through a network hypervisor,
following the mappings produced by the VN embedder. The
controller associated with each VN (represented as black boxes

2016 IEEE/IFIP Network Operations and Management Symposium (NOMS 2016) 11

104

with the letter C in the figure), in turn, is hosted within a virtual
machine, and communication channels are established between
it and the network hypervisor. The hypervisor intermediates
flow rule instantiation and monitoring actions sent by VN
controllers in order to enforce properties such as isolation at
the physical level.

Fig. 2. Multi-tenant OpenFlow/SDN-based network virtualization model
considered in this paper.

In recent years, a number of architectures for enabling
network virtualization on top of OpenFlow-based SDNs have
been proposed. These architectures have evolved from simpler
hardware-based flow table slicing to more complex flow level
virtualization. While the former achieves better performance,
the latter allows a significantly higher degree of flexibility.
As an example of such flexibility, recent flow level virtualiza-
tion approaches [10]–[12] enable tenants to request arbitrary
topologies that are not restricted to a subset of the physical
network (topology virtualization) as well as to use overlapping
address spaces (address space virtualization).

In this work, we consider an SDN virtualization platform
capable of providing the aforementioned features, such as
OpenVirteX [12]. However, it is worth mentioning that our
VNE/SDN coordination approach may be adapted to interface
with other virtualization platforms, even ones that do not fol-
low the flow-level virtualization model. Moreover, we focus on
VN embedding (i.e., not including host embedding), assuming
end hosts are located on the premises of the customer.

B. Overview of our Proposed VNE and SDN Coordination
Approach

As previously explained, VN mappings generated by stan-
dard VNE algorithms may violate operational requirements
when an infrastructure provider attempts to instantiate the
requested VNs on a real physical substrate. In order for the
VNE algorithm to take such requirements into account, they
would have to be part of the VN request provided by the
customer. However, we believe it is unreasonable to expect
customers to be aware of operational requirements that affect
the environment on a physical level. Moreover, customers may
be averse to disclosing too much information regarding the
internal behavior of their network. Therefore, the main goals
of our approach are to: (i) allow the customer to represent the
needs of his/her VN in a detailed manner; (ii) preprocess this
detailed representation, removing sensitive information and de-
riving data regarding the operational requirements associated
with this particular request; and (iii) embed the requested VNs
ensuring both feasibility and adequate performance by making
use of this “distilled” information.

Figure 3 depicts the components of our proposed approach.
The customer first creates a Tenant Infrastructure Graph (TIG),
which represents not only virtual routers and links (and their
capacity requirements) but also elements (such as hosts and
end users) connected to the network, the traffic patterns among
them, and the network functions that will be applied to each

traffic flow. As some of this information may be considered
sensitive by the customer, the TIG is preprocessed by a
Privacy-aware Compiler running on the customer’s premises.
This Privacy-aware Compiler allows customers to only reveal
as much information about their networks as they want,
while still generating an enhanced VN request that aids the
VNE process in order to ensure feasible, high-quality VN
deployments. The preprocessed request is then sent to the
InP, which makes use of our SDN/OpenFlow-aware Embedder
in order to properly embed and deploy (although the latter
is out of the scope of this paper) the customer’s network.
The main elements of our proposal – Tenant Infrastructure
Graphs, the Privacy-aware Compiler, and the SDN/OpenFlow-
aware Embedder – will be further explained in the following
subsections.

Fig. 3. Overview of our proposed approach, depicting its main elements and
the information flow between them.

C. Specification of Infrastructure Resources
We now proceed to a detailed explanation of the process

that is carried out on the customer’s end in order to request a
VN.

1) Tenant Infrastructure Graph (TIG) – A Detailed Abstrac-
tion of a Virtual Network and its Communication Patterns:
The TIG enables customers to represent the needs of their
requested VNs with a high level of detail. In addition to the
information contained in a standard VN request (e.g., network
topology and capacity and location requirements), a TIG
also represents: (i) elements such as end hosts (represented
as network prefixes or individual addresses) connected to
the network; (ii) the communication patterns among such
elements; and (iii) network functions/policies each commu-
nication pattern must be subjected to.

Figure 4 depicts an example of a TIG. Each cloud represents
a group of application servers executing a common task (e.g.,
within the same tier). Globes represent groups of external users
(e.g., network administrators or end users accessing applica-
tions running on the customer’s premises through the to be
deployed VN). Each of these elements has some information
associated to it – namely, the number of instances of each
group of application instances and the number of network
prefixes of each group of external users. Last, circles in the
graph represent virtual routers, and colored edges represent
communication patterns (i.e., traffic flows) among network
elements.

Each group of edges represented with the same color
and style in Figure 4 denotes a distinct traffic flow. As an
example, the solid edges represented in blue interconnect
end users to externally accessible applications running on the
customer’s premises (e.g., the front-end of a two-tier web
application), while the dotted green edges interconnect the
front-end to the application database back-end. Dashed red
edges interconnect databases running in different locations
for synchronization/replication purposes, while the dashed and
dotted yellow pattern provides an administrator access to all
applications.

In addition to forwarding packets, routers may need to
perform other functions specific to each traffic flow. Some
of these functions – Load Balancing (LB), Quality of Service
(QoS), and Access Control (AC) – are represented in Figure
4. In order to discriminate between different network flows

2016 IEEE/IFIP Network Operations and Management Symposium (NOMS 2016)12

105

instances

instances # instances

instances

hosts
or netmasks

hosts
or netmasks

LB

10 Gbps
10

 G
bp

s

10 Gbps

5 Gbps
10 Gbps

5 Gbps10 Gbps

10 Gbps 5 Gbps

15 Gbps
Location B

20 Gbps
Location A

15 Gbps
Location C

LB, QoS(3)

AC

AC

LB, QoS(3)

AC

AC

Fig. 4. Tenant Infrastructure Graph representing elements connected to a VN
and the communication patterns among them.

and apply the appropriate functions to each, routers use a
number of packet header fields (or combinations of fields1).
In order to apply load balancing, for example, both the source
and destination of a packet should be taken into account. For
the purpose of QoS, in turn, the Differentiated Services Code
Point (DSCP) header field may be used. The TIG represents
these (combinations of) fields as sets of Traffic Discriminators
(TDs). Moreover, each TD contains a number of entries – i.e.,
the number of different values a given (combination of) header
field(s) may be set to. In the aforementioned QoS example, the
DSCP field may be set to a value between 0 and 63. Therefore,
the number of entries in a traffic discriminator that uses this
field may be anywhere between 2 (if only two different QoS
classes are used) and 64 (if all possible classes are used).

Through the information represented in this graph, it is pos-
sible to accurately derive the number of flow rules each router
in a VN will need in order to ensure its correct and optimal
operation. Moreover, as shown in Figure 4, standard VNE
constraints (router throughput, link bandwidth, and location
requirements) are also represented in a TIG.

2) Privacy-aware Compiler: While a TIG enables the
representation of operational constraints associated with the
instantiation of each VN on the physical infrastructure of an
InP, it also exposes information that the customer may consider
sensitive. Therefore, TIGs are expected to be preprocessed by
a Privacy-aware Compiler on the customer’s end before being
sent to an InP.

As previously mentioned, the TIG represents distinct com-
munication patterns within elements of the requested VN. A
number of flow rules will ultimately need to be installed on
each router in order to ensure the correct operation of each
traffic flow. The number of necessary flow rules depends on
a number of pieces of information, namely: (i) the number
of network applications and/or network prefixes of external
users associated with each flow; (ii) the number of traffic
discriminators associated with each router for handling each
network flow; and (iii) the number of entries of each traffic
discriminator.

The left side of Figure 5 shows an example TIG populated
with numerical values. The communication pattern represented
in solid blue interconnects a number of users (comprising 100
network masks) to a number of applications through the cus-
tomer’s VN hosted on the physical infrastructure of the InP (10
app instances connected to virtual router b and 10 connected
to router c). The dotted green patterns interconnect each group

1The source or destination of a packet, for example, may be composed of
a combination of the IP address, MAC address, network protocol, and port
fields.

of 10 application instances to a group of 5 database servers.
The dashed red pattern, in turn, interconnects both groups of
database (server) instances. Last, the dashed and dotted yellow
pattern interconnects all network services to a specific external
network mask (used by a network administrator to manage all
network services).

6210

62104060

Type 2 VN Request

Type 1 VN Request

Tenant Infrastructure Graph (TIG)
10 5

10

5

100

1 Src, Dst, 3

Src, Dst

Src, Dst

Src, Dst, 3

Src, Dst

Src, Dst

Src, Dst

a c

b

Src, DstSrc, Dst

Src, Dst

Fig. 5. Possible outputs of the Privacy-aware Compiler for a given TIG.

If no network functions need to be applied to a particular
communication pattern, its flow table requirements are cal-
culated by adding up the total number of source-destination
pairs (including all applications and network masks) that are
part of this traffic. The pattern represented in dashed and
dotted yellow on the TIG shown in Figure 5 interconnects a
single external user (or network mask) to all (30) applications
running within the network, adding up to a total of 60 source-
destination pairs (considering both directions of each possible
communication flow). Therefore, this flow requires a total of
60 rules on each router it traverses (a, b, and c). This is also
the case for the flow represented in solid blue when traversing
router a. This flow interconnects 100 external network prefixes
to 20 network applications, which – accounting for all possible
combinations in both directions – adds up to a total of 4,000
source-destination pairs (and, therefore, 4,000 rules to be
installed in a). If additional traffic discriminators are used,
they enter the calculation as multiplying factors – the number
of flow rules is multiplied by the number of entries in each
discriminator. As an example, if the DSCP field is used as
a discriminator with 3 possible QoS values (i.e., 3 different
traffic classes), the number of flow rules is multiplied by 3.
In the example shown in Figure 5, packets that belong to the
solid blue communication pattern traversing routers b and c
are subjected to this traffic discriminator. Therefore, the total
number of source-destination pairs (2,000) connected (directly
or indirectly) to each of these routers is multiplied by the
number of entries in the respective traffic discriminator (3),
adding up to a total of 6,000 flow rules to be installed on
routers b and c.

After being processed, the TIG is compiled into a VN
request which will be shared with the InP. This request
may contain more or less information according to what the
customer is willing to reveal. The right side of Figure 5 shows
the two different types of requests we consider. A “type 1”
request is equivalent to a standard VN request. A “type 2”
request, in contrast, includes the accurate number of flow
rules required by each router. While not represented in this
figure, standard VN requirements – namely, the throughput
capacity of routers, bandwidth capacity of links, and location
constraints – are also considered for both types. We envision
that a larger gradient of VN request types could be considered.
As an example, an intermediate level between our “type 1”
and “type 2” requests could contain estimates for flow table
requirements rather than exact values. We intend to further
explore this aspect in future work.

2016 IEEE/IFIP Network Operations and Management Symposium (NOMS 2016) 13

106

D. SDN/OpenFlow-aware Embedder

The SDN/OpenFlow-aware Embedder is run by the InP,
receiving VN requests that have been preprocessed by the
Privacy-aware Compiler and embedding them on a physical
substrate. It has been modeled as an Integer Linear Program
(ILP), and its formulation is presented next. Before presenting
our model, we introduce the syntax for our formulation.
Capital letters represent sets or variables, and superscripts
denote whether a given set or variable refers to physical (P) or
virtual (V) entities, or to routers (R) or links (L). Moreover,
subscript letters represent indices associated to variables or
paths.

Topologies: The topology of each VN request, as well as
that of the physical network, are represented as a directed
graph N = (R,L). Bidirectional links are represented by pairs
of edges in opposite directions. Each virtual router is mapped
to a single physical router, while virtual links may be mapped
to either a physical link or a substrate path.

Physical and Virtual Capacities: The capacity of physical
routers is measured in terms of throughput. The capacity of a
physical router i is expressed as TP

i . Likewise, TV
r,i denotes the

throughput required by virtual router i from VN r. Likewise,
the bandwidth capacity of a physical link (i, j) is represented
as BP

i,j , and the bandwidth requirement of a virtual link (k, l)
from VN r is represented as BV

r,k,l.
Locations: All physical routers are associated with a lo-

cation identifier – an integer number stored in set SP . This
enables customers to demand some of their virtual routers to
be instantiated in specific geographic locations. If a virtual
router has a location requirement, it is stored in set SV .

Flow Table Usage: As previously explained, the flow table
requirements of VN requests are calculated by the Privacy-
aware Compiler based on a given TIG and added to the
generated request. The flow table capacity of a physical router
is divided in two – one part (the majority of the available
flow table space) will be used for requests with specific flow
table requirements (type 2), while the remaining capacity will
be used for type 1 requests. The flow table capacity of a
physical router i reserved for type 2 requests is represented
as FP

i , while the remaining capacity reserved for type 1
requests is represented as FP

i . As for virtual routers, those that
belong to type 2 VN requests have their flow table requirement
represented as FV

r,j , while the estimated flow table requirement
for type 1 requests is represented as FV

r,j .
Previous Mappings: As VN requests are handled in an on-

line manner, the mappings of previously embedded VNs must
be taken into account and preserved while processing new
incoming requests. Mappings of previously embedded routers
and links are stored in sets ER

i,r,j and EL
i,j,r,k,l, respectively.

The variables of the ILP model indicate the optimal place-
ment of routers and links on the substrate.

• AR
i,r,j ∈ {0, 1} – Router allocation, indicates whether

virtual router j from VN r is embedded on physical router
i.

• AL
i,j,r,k,l ∈ {0, 1} – Link allocation, indicates whether

virtual link (k, l) from VN r is embedded on physical
link (i, j)

Next, we present the objective function of our
SDN/OpenFlow-aware Embedder and its constraint sets
(C1–C9). The objective function aims at minimizing overall
flow table occupation – i.e., the aggregated number of flow
table entries needed to instantiate incoming VN requests. The
calculation of flow table usage will be presented in further
detail after all constraint sets are listed and explained.

Objective:

Minimize
∑

(i,j)∈LP ,r∈NV ,(k,l)∈LV

(min(FV
r,k

,FV
r,l

) +min(FV
r,k

,FV
r,l

))A
L
i,j,r,k,l(1−AR

i,r,k)

2

+
∑

i∈RP ,r∈NV ,k∈RV

(FV
r,k + FV

r,k)A
R
i,r,k

Subject to:

∑

j∈RP ,r∈NV ,(k,l)∈LV

min(TV
r,k

,TV
r,l

) A
L
i,j,r,k,l(1−AR

i,r,k)

2

+
∑

r∈NV ,k∈RV

TV
r,kA

R
i,r,k ≤ TP

i

∀i ∈ RP (C1)∑

r∈NV ,(k,l)∈LV

BV
r,k,lA

L
i,j,r,k,l ≤ BP

i,j ∀(i, j) ∈ LP (C2)

∑

j∈RV

AR
i,r,j ≤ 1 ∀i ∈ RP , r ∈ NV (C3)

∑

j∈RP ,r∈NV ,(k,l)∈LV

min(FV
r,k

,FV
r,l

) A
L
i,j,r,k,l(1−AR

i,r,k)

2

+
∑

r∈NV ,k∈RV

FV
r,kA

R
i,r,k ≤ FP

i

∀i ∈ RP (C4)

∑

j∈RP ,r∈NV ,(k,l)∈LV

min(FV
r,k

,FV
r,l

) A
L
i,j,r,k,l(1−AR

i,r,k)

2

+
∑

r∈NV ,k∈RV

FV
r,kA

R
i,r,k ≤ FP

i

∀i ∈ RP (C5)∑

i∈RP

AR
i,r,j = 1 ∀r ∈ NV , j ∈ RV (C6)

∑

j∈RP

AL
i,j,r,k,l −

∑

j∈RP

AL
j,i,r,k,l = AR

i,r,k −AR
i,r,l

∀r ∈ NV , (k, l) ∈ LV , i ∈ RP (C7)

jAR
i,r,k = lAR

i,r,k ∀(i, j) ∈ SP , r ∈ NV , (k, l) ∈ SV (C8)
AR

i,r,j = ER
i,r,j ∀(i, r, j) ∈ ER (C9)

AL
i,j,r,k,l = EL

i,j,r,k,l ∀(i, j, r, k, l) ∈ EL (C10)

Constraint sets C1 and C2 ensure, respectively, that the
throughput capacity of physical routers and that the band-
width capacity of physical links is not exceeded. C3 prevents
multiple virtual routers from a single VN request from being
mapped to the same physical router. C4 and C5 ensure that
the flow table capacity of physical routers is not exceeded.
Constraint set C4 deals with type 2 requests, while C5 handles
type 1 requests. C6 guarantees that all routers in an incoming
VN request are mapped to physical routers. C7 ensures that
each virtual link is mapped to a physical path whose end-points
match the physical routers hosting the end-points of this link.
C8 ensures all virtual routers with location requirements are
mapped to physical routers in the correct location. Last, con-
straint sets C9 and C10 preserve the mappings of previously
embedded VNs.

For the sake of clarity, our objective function, as well as
constraint sets C1, C4, and C5, are shown in non-linear form.
However, in practice, they are linearized by replacing the

2016 IEEE/IFIP Network Operations and Management Symposium (NOMS 2016)14

107

multiplication AL
i,j,r,k,l(1 − AR

i,r,k) with an auxiliary variable
Zi,j,r,k,l ∈ {0, 1} and adding constraint sets C11, C12, and
C13 – shown below – to the model. Moreover, function
min (a, b) returns the lowest number between a and b and
can be defined as 1

2 (a+ b− |a− b|).
Zi,j,r,k,l <= AL

i,j,r,k,l ∀(i, j) ∈ LP , r ∈ NV , (k, l) ∈ LV (C11)
Zi,j,r,k,l <= (1−AR

i,r,k)

∀(i, j) ∈ LP , r ∈ NV , (k, l) ∈ LV

(C12)
Zi,j,r,k,l >= (1−AR

i,r,k) +AL
i,j,r,k,l − 1

∀(i, j) ∈ LP , r ∈ NV , (k, l) ∈ LV

(C13)

In order to properly account for flow table usage, the objective
function must not only consider explicit flow table require-
ments of virtual routers, but also the flow rules that must
be installed on auxiliary routers through which virtual links
traverse. The number of rules that must be installed on the
auxiliary routers used by a virtual link (k, l) corresponds to
the lowest number between the flow table requirements of
virtual routers k and l. In the objective function, the first
summation refers to the flow table constraints of auxiliary
routers, while the second one refers to that of physical routers
hosting virtual routers of each network. Constraint sets C1,
C4, and C5 employ the same strategy in order to compute the
throughput and flow table usage of auxiliary routers.

IV. EVALUATION

We now proceed to a performance evaluation of our pro-
posed VNE and SDN coordination approach. Experiments
were performed on a machine with an Intel Core i5 4278U
CPU, 8 GB of RAM and Operating System Mac OS X 10.10.5.
The previously introduced ILP model was implemented and
run using the IBM ILOG CPLEX Interactive Optimizer 12.4.

A. Workloads
In order to evaluate our proposal, we developed a simulator

that creates virtual topologies according to a series of param-
eters. Each virtual topology is then converted to a VN request
in the format required by our ILP model. The simulator is
run for 500 rounds, generating a new request on each one2. If
accepted, VNs remain embedded for 25 rounds before being
removed.

Fixed parameters: In all experiments, physical and virtual
topologies are generated with BRITE using the Barabási-
Albert model [13]. Generated physical networks contain 100
routers. Physical routers have a throughput capacity of 150
Gbps, while physical links have a bandwidth capacity of 30
Gbps. The flow table of each device is capable of storing up to
16,000 rules. Physical routers are uniformly distributed among
16 geographic locations.

Each generated VN request contains 5 routers. Virtual router
throughput and link bandwidth requirements are, respectively,
50 Gbps and 10 Gbps. Each VN has two edge routers
with randomly generated location requirements. 50% of the
generated VNs are type 1 requests, while the remaining 50%
are type 2 requests. Flow table requirements of type 2 requests
are set to 3,000 rules per router, while those of type 1 requests
(which are not known) are treated in different ways according
to the experiment being performed.

Variable parameters: We performed a number of differ-
ent experiments with variations regarding flow table space
reserved for type 2 requests as well as how flow table
requirements are considered. The first three experiments –
henceforth referred to as “Flow-70/30”, “Flow-80/20”, and

2On average, each request was optimally mapped in less than 5 seconds.

“Flow90/10” – reserve 70%, 80%, and 90% of each physical
router flow table space for type 2 requests. The remaining
flow table space is reserved to accommodate type 1 requests.
As we do not know their requirements, a minimal set of 1,500
rules is reserved for each router from these networks. The idea
here is to deliberately allocate little table space to these virtual
routers3.

In the fourth experiment, all flow table space is used to
embed type 2 requests, while accepted type 1 requests are
supported on a “best effort” manner. More specifically, type
1 requests are embedded as long as their other capacity
requirements (throughput and bandwidth) can be fulfilled, with
no flow table space guarantees. This experiment is referred
to as “Flow-100/0’. In the last experiment, no flow table
requirements are considered by the embedding model. This
experiment behaves similarly to an environment running a
traditional VNE algorithm and is carried out to assess the
impact of our proposed approach. This experiment is referred
to as “NoFlow”.

B. Results
We first analyze the overall acceptance rate in all exper-

iments, shown in Figure 6. The acceptance rates achieved
throughout experiments Flow-70/30, Flow-80/20, and Flow-
90/10 were, respectively, 70.2%, 64.2%, and 55.8%. As the
residual flow table space for type 1 requests decreases, more
VNs of this type (which require less resources and represent
half of all generated requests) are rejected, leading to lower
acceptance rates. Although the overall acceptance rate is lower,
this, in turn, favors the acceptance of a higher amount of type
2 requests. This is a desirable outcome for the InP in order
to prevent under- or overestimation of resources (as type 2
requests contain precise flow table occupation requirements),
potentially leading to improved resource usage (in the case of
overestimation) and/or lower rates of controller intervention (if
flow table requirements are underestimated). The acceptance
rates of individual types of requests and their effect on the
rate of controller interventions will be further analyzed in the
remainder of this section.

The acceptance rates observed in experiments Flow-100/0
and NoFlow were higher than those of other experiments
– 72.6% and 73%, respectively. This is due to the former
not reserving any flow table space for type 1 requests and
the latter disregarding flow table requirements entirely. While
seemingly a positive result at first glance, this is likely to result
in severe underestimation of resources needed to adequately
support the embedded VNs, potentially leading to high rates
of controller intervention. We emphasize that both Flow-100/0
and NoFlow are used as baseline scenarios, i.e., the best results
one would achieve in terms of accepted requests at the cost
of compromising network predictability and, in extreme cases,
its technical feasibility.

Next, Figure 7 depicts the acceptance rate of each type
of request in all evaluation scenarios. In experiments Flow-
70/30, Flow-80/20, and Flow-90/10, the acceptance rates of
type 1 requests were, respectively, 73.7%, 57.7%, and 30.83%.
Acceptance rates of type 2 requests observed for the same
experiments were of 67.18%, 69.77%, and 82.04%, respec-
tively. These increasing acceptance rates of type 2 requests are
a desirable outcome for InPs, as they would likely desire to
prioritize the embedding of this type of request. This happens
as a result of the fine-tuning of the amount of flow entries
reserved for each type of request, leading to an acceptance rate
of over 80% for type 2 requests in the most extreme scenario
(Flow-90/10). InPs may fine-tune these reservations as desired

3The amount of flow table space reserved for each router in type 1 requests
may be fine-tuned as desired by the InP.

2016 IEEE/IFIP Network Operations and Management Symposium (NOMS 2016) 15

108

0%

20%

40%

60%

80%

100%

 50 100 150 200 250 300 350 400 450 500

Pe
rc

en
ta

ge
 o

f
A

cc
ep

te
d

R
eq

ue
st

s

Rounds

Flow−70/30
Flow−80/20

Flow−90/10
Flow−100/0

NoFlow

Fig. 6. Overall acceptance rate in all experiments.

in order to allow more or less of each type of request to be
embedded and potentially minimize issues caused by type 1
requests (as a result of under- or overestimation of operational
requirements). Moreover, all scenarios exhibit variations in
acceptance rates within the first 250 rounds. In scenario Flow-
70/30, the acceptance rate of type 1 requests is initially higher
than that of type 2 requests. In scenarios Flow-80/20 and Flow-
90/10, in turn, acceptance rates for both types of requests
either increase or decrease during the first 250 rounds. This
can be attributed to the fact that the substrate is completely
empty at the beginning of the experiment, requiring some time
for acceptance rates to stabilize. In all cases, acceptance rates
become stable towards the last 250 rounds.

In the remaining experiments (Flow-100/0 and NoFlow),
acceptance rates of type 1 requests were, respectively, 73.4%
and 70.4%. Acceptance rates of type 2 requests, in turn, were
of 72.1% and 75.49%, respectively. As previously explained,
the former does not reserve any flow table space for type
1 requests while the latter completely disregards flow table
requirements. Therefore, the main causes of rejection are likely
related to topological factors or throughput/bandwidth resource
scarcity, leading to similar acceptance rates for both types of
requests on both experiments.

Last, we analyze the potential impacts of accurately or
inaccurately estimating operational requirements. To this end,
we consider that VN requests in each scenario have been
embedded and deployed, and we calculate the number of flow
rules each router would need to have installed in order to
support the embedded VNs. We first assume the 1,500 rules
reserved for each router of type 1 requests were sufficient.
Afterwards, we assume this lower bound was not adequate
and that type 1 requests would actually require 3,000 flow
rules per router. These scenarios represent extreme cases –
assuming either that a minimal set of flow rules was sufficient
or that actual requirements exceed this lower bound by a factor
of 2. Our goal is to determine in which cases the number of
necessary flow rules would exceed the capacity of physical
routers. As previously mentioned, if physical devices are not
able to accommodate all necessary flow rules, they would need
to frequently contact the controller in order to handle incoming
packets. This, in turn, would likely degrade the performance of
physical devices, hindering the quality of service experienced
by customers.

Figure 8 depicts the average number of flow rules that would
exceed the capacity of physical routers in each experiment,
considering the scenarios just described. Assuming the flow
table usage of type 1 requests fits within the minimal pro-
vided flow table space, no exceeding rules were observed
in scenarios Flow-70/30, Flow-80/20, and Flow-90/10. The
ILP model used in these experiments takes into account flow
table constraints for both types of requests, ensuring that the
capacity of physical devices will not be exceeded as long as
the reserved flow table space is sufficient. In experiment Flow-

100/0, in turn, the average number of exceeding flow rules
was 10,732, all belonging to type 1 requests. This is due to
this experiment disregarding flow table requirements for this
type of request, embedding them in a “best effort” manner. In
experiment NoFlow, which mirrors the behavior of a standard
VNE algorithm without flow-related constraints, the average
number of exceeding flow rules was significantly higher,
with both types of VN requests contributing to flow table
saturation. More specifically, an average of 27,593 exceeding
rules were observed (2,331 incurred by type 1 requests and
25,262 incurred by type 2 requests). The substantial numbers
of exceeding flow rules observed in scenarios Flow-100/0
and NoFlow highlight the importance of considering this
operational constraint in the embedding process.

Last, assuming the flow table usage of type 1 requests
exceeds the minimal provided flow table space (a likely sce-
nario in practice), all experiments exhibit flow table saturation.
In experiments Flow-70/30, Flow-80/20, and Flow-90/10, the
average numbers of exceeding flow rules were, respectively,
2,731, 19,783, and 18,130. Although these experiments took
into account flow-related constraints, assuming flow table
usage exceeds the established lower bounds led to significant
saturation – particularly in scenarios Flow-80/20 and Flow-
90/10, in which less resources were reserved for this type
of request. The highest numbers of exceeding flow rules
were observed in experiments Flow-100/0 and NoFlow –
which, as previously explained, either do not reserve flow
table space for type 1 requests or disregard flow constraints
entirely. The average amount of exceeding flow rules observed
in experiment Flow-100/0 was of 57,970 – all incurred by
type 1 requests. In experiment NoFlow, an average of 22,886
exceeding flow rules were incurred by type 1 requests and
25,262 by type 2 requests, adding up to a total of 48,148.
These results evidence that, in addition to the aforementioned
importance of considering operational constraints, accurately
determining flow table requirements plays a crucial role in
ensuring the feasibility of supporting the embedded VNs.
Regarding the former, it is important to note that, with the
exception of scenario NoFlow, all rules of type 2 requests were
properly installed in physical routers. Therefore, these VNs
will be able to operate with minimal controller interventions,
minimizing potential negative impacts on quality of service (as
controller intervention may increase latency by up to twice the
round-trip time between the switch and the controller [14]).

V. CONCLUSIONS

Although a substantial body of work exists in the area
of virtual network embedding, existing approaches do not
take into account relevant operational constraints related to
the instantiation of VNs on different embedding platforms.
In the case of Software-Defined Networking, which offers a
promising platform for network virtualization, memory space
for storing flow rules is often limited, becoming a crucial
operational constraint that may render VNE-provided map-
pings unsuitable for real environments due to unpredictable
or even unsatisfactory VN performance. At the same time,
demanding information regarding such operational constraints
from customers may be unrealistic as they may be either
not aware of how their VN affects the InP’s substrate at the
physical level or unwilling to share detailed information about
the inner working of their VNs.

Based on this reasoning, we proposed an abstraction model
for expressing requirements related to internal VN policies and
traffic patterns. This model – the Tenant Infrastructure Graph
– is built in a way that is familiar to customers in a network
virtualization environment. Moreover, it is preprocessed on
the customer’s end by a Privacy-aware Compiler in order
to derive information that is valuable to the InP and, at the

2016 IEEE/IFIP Network Operations and Management Symposium (NOMS 2016)16

109

0%

20%

40%

60%

80%

100%

 50 100 150 200 250 300 350 400 450 500

Pe
rc

en
ta

ge
 o

f
A

cc
ep

te
d

R
eq

ue
st

s

Rounds

Type 1 Type 2

(a) Flow-70/30

0%

20%

40%

60%

80%

100%

 50 100 150 200 250 300 350 400 450 500

Pe
rc

en
ta

ge
 o

f
A

cc
ep

te
d

R
eq

ue
st

s

Rounds

Type 1 Type 2

(b) Flow-80/20

0%

20%

40%

60%

80%

100%

 50 100 150 200 250 300 350 400 450 500

Pe
rc

en
ta

ge
 o

f
A

cc
ep

te
d

R
eq

ue
st

s

Rounds

Type 1 Type 2

(c) Flow-90/10

0%

20%

40%

60%

80%

100%

 50 100 150 200 250 300 350 400 450 500

Pe
rc

en
ta

ge
 o

f
A

cc
ep

te
d

R
eq

ue
st

s

Rounds

Type 1 Type 2

(d) Flow-100/0

0%

20%

40%

60%

80%

100%

 50 100 150 200 250 300 350 400 450 500

Pe
rc

en
ta

ge
 o

f
A

cc
ep

te
d

R
eq

ue
st

s

Rounds

Type 1 Type 2

(e) NoFlow

Fig. 7. Acceptance rate of requests per TIG type in all experiments.

 0

 10000

 20000

 30000

 40000

 50000

 60000

Flow−70/30

Flow−80/20

Flow−90/10

Flow−100/0

NoFlow

E
xc

ee
di

ng
 F

lo
w

 R
ul

es

Type 1
Type 2

(a) Assuming flow table space allocated for
type 1 requests was sufficient.

 0

 10000

 20000

 30000

 40000

 50000

 60000

Flow−70/30

Flow−80/20

Flow−90/10

Flow−100/0

NoFlow

E
xc

ee
di

ng
 F

lo
w

 R
ul

es

Type 1
Type 2

(b) Assuming flow table space allocated for
type 1 requests was insufficient.

Fig. 8. Number of flow rules exceeding the capacity of physical routers.

same time, remove sensitive data that the customer may not
be willing to disclose. The output of this compiler is then
forwarded to the InP, which can employ the SDN/OpenFlow-
aware Embedder to ensure embedded VNs do not break any
operational constraints of its network virtualization platform.

Through a comprehensive evaluation, we demonstrated that
taking the aforementioned operational constraints into account
is of paramount importance to maintain a desired level of
quality of service. Neglecting such constraints may render
the environment unable to cope with a substantial number
of flow rules that are crucial to ensure correct VN behavior.
As physical devices become unable to store all necessary
flow rules internally, they need to frequently contact the
controller in order to route incoming packets, which, in turn,
may lead to significant performance degradation for VNs
hosted on such devices. In our experiments, assuming the flow
table space reserved for requests with unknown requirements
was sufficient, the proposed approach was able to eliminate
controller intervention due to flow table saturation. Addi-
tionally, assuming the actual requirements of such requests
exceeded the allocated space by a factor of 2, the number of
exceeding flow rules was still reduced by 40.8% on average

(compared to a traditional VNE approach). Moreover, the
reduction of acceptance rates due to the added constraints
was limited to, on average, 9.6%. Our proposed approach
enables InPs to accurately assess operational constraints and
correctly embed incoming requests without violating these
constraints. Moreover, by adjusting the ratio of flow table
space dedicated to different types of incoming requests, the
InP may choose to which degree requests that include all the
necessary information are favored in detriment of requests that
do not (and that, therefore, rely on estimation of necessary re-
sources in order to be embedded). Perspectives for future work
include: (i) taking into account other SDN/OpenFlow-related
operational constraints; (ii) considering a larger gradient of
VN request types with varying amounts of information; and
(iii) including a negotiation phase between the customer and
the InP, providing alternatives for cases in which available
resources are not sufficient to embed requested VNs.

ACKNOWLEDGMENTS

This work has been supported by the Brazilian Na-
tional Council for Scientific and Technological Development
(CNPq).

2016 IEEE/IFIP Network Operations and Management Symposium (NOMS 2016) 17

110

REFERENCES

[1] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual network
embedding: substrate support for path splitting and migration,” SIG-
COMM Computer Communication Review, vol. 38, no. 2, pp. 17–29,
Mar. 2008.

[2] M. Chowdhury, M. R. Rahman, and R. Boutaba, “Vineyard: Virtual net-
work embedding algorithms with coordinated node and link mapping,”
IEEE/ACM Transactions on Networking, vol. 20, no. 1, pp. 206–219,
Feb. 2012.

[3] X. Cheng, S. Su, Z. Zhang, H. Wang, F. Yang, Y. Luo, and J. Wang,
“Virtual network embedding through topology-aware node ranking,”
SIGCOMM Computer Communication Review, vol. 41, no. 2, pp. 38–47,
Apr. 2011.

[4] G. P. Alkmim, D. M. Batista, and N. L. S. Fonseca, “Mapping virtual
networks onto substrate networks,” Journal of Internet Services and
Applications, vol. 3, no. 4, pp. 1–15, 2013.

[5] L. R. Bays, R. R. Oliveira, L. Buriol, M. P. Barcellos, and L. Gaspary,
“A heuristic-based algorithm for privacy-oriented virtual network em-
bedding,” in IEEE Network Operations and Management Symposium
(NOMS), May 2014, pp. 1–8.

[6] M. Demirci and M. Ammar, “Design and analysis of techniques for map-
ping virtual networks to software-defined network substrates,” Computer
Communications, vol. 45, pp. 1 – 10, 2014.

[7] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. McK-
eown, and G. Parulkar, “Flowvisor: A network virtualization layer,”
OpenFlow Switch Consortium, Technical Report, 2009.

[8] Z. Bozakov and P. Papadimitriou, “Autoslice: automated and scalable
slicing for software-defined networks,” in ACM Conference on Emerging
Networking Experiments and Technologies. ACM, 2012, pp. 3–4.

[9] R. Doriguzzi Corin, M. Gerola, R. Riggio, F. De Pellegrini, and
E. Salvadori, “Vertigo: network virtualization and beyond,” in European
Workshop on Software Defined Networking. IEEE, 2012, pp. 24–29.

[10] E. Salvadori, R. D. Corin, A. Broglio, and M. Gerola, “Generalizing
virtual network topologies in openflow-based networks,” in IEEE Global
Telecommunications Conference. IEEE, 2011, pp. 1–6.

[11] D. Drutskoy, E. Keller, and J. Rexford, “Scalable network virtualization
in software-defined networks,” IEEE Internet Computing, vol. 17, no. 2,
pp. 20–27, 2013.

[12] A. Al-Shabibi, M. De Leenheer, M. Gerola, A. Koshibe, G. Parulkar,
E. Salvadori, and B. Snow, “Openvirtex: make your virtual sdns pro-
grammable,” in Workshop on Hot topics in Software Defined Networking.
ACM, 2014, pp. 25–30.

[13] R. Albert and A.-L. Barabási, “Topology of evolving networks: Local
events and universality,” Physical Review Letters, vol. 85, pp. 5234–
5237, Dec 2000.

[14] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
S. Banerjee, “Devoflow: Scaling flow management for high-performance
networks,” SIGCOMM Computer Communication Review, vol. 41, pp.
254–265, 2011.

2016 IEEE/IFIP Network Operations and Management Symposium (NOMS 2016)18

111

	Agradecimentos / Acknowledgments
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Contents
	1 Introduction
	1.1 Problem Statement
	1.2 Hypothesis
	1.3 Goals and Contributions
	1.4 Organization

	2 Background
	2.1 Software-Defined Networking and OpenFlow
	2.2 Network Virtualization

	3 State of the Art
	3.1 Traditional VNE Approaches
	3.2 SDN-Oriented VNE Approaches
	3.3 Discussion

	4 Virtual Network Embedding with Flow-related Operational Constraints
	4.1 Multi-tenant Infrastructure Model and Network Virtualization Paradigm Considered
	4.2 Overview of our Proposed VNE and SDN Coordination Approach
	4.3 Specification of Infrastructure Resources
	4.3.1 Tenant Infrastructure Graph (TIG) – A Detailed Abstraction of a Virtual Network and its Communication Patterns
	4.3.2 Privacy-aware Compiler

	4.4 SDN/OpenFlow-aware Embedder
	4.5 Evaluation
	4.5.1 Workloads
	4.5.2 Results

	5 Virtual Network Embedding with a Rich Set of Operational Constraints
	5.1 SDN/OpenFlow-related Operational Constraints
	5.2 Mitigating Solution Space Reduction
	5.3 SDN/OpenFlow-aware Embedder
	5.4 Overarching Framework
	5.5 Evaluation
	5.5.1 Workloads
	5.5.2 Results

	6 Final Considerations
	6.1 Conclusions
	6.2 Future Work

	References
	Appendix A – Published Paper – JISA, 2015
	Appendix B – Published Paper – NOMS, 2016

