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“One of the painful things about our time is that those who feel certainty are stupid,
and those with any imagination and understanding are filled with doubt and

indecision.”
—

Bertrand Russell. (1951)
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ABSTRACT

Shop scheduling is a combinatorial optimization type of problem in which we must allocate
machines to jobs for specific periods time. A set of constraints defines which schedules are
valid, and we must select one that minimizes or maximizes an objective function. In this work
we use the makespan, which is the time the last job finishes.

The literature contains several studies proposing techniques to solve shop problems such
as the job shop and open shop. These problems allow the steps of the production processes to
be either fully ordered or not ordered at all. With increasing complexity and size of industrial
applications we find, more recently, several works which propose more general shop problems
to model the production processes more accurately. The mixed shop, group shop and partial
shop are examples of such problems.

In this work we propose an iterated tabu search for the partial shop, which is a general
problem and includes several other more restrictive shop problems. The most important novel
components of the solver are the initial solution generator, the neighbourhood, and the lower
bound for the neighbourhood. In computational experiments we were able to show that the
general partial shop solver is able to compete with, and sometimes surpass, the state-of-the-art
solvers developed specifically for the partial, open, mixed and group shops.

Sometimes a machine is a bottleneck in the production process, and is replicated. In the lit-
erature the parallel machines case has being included in several extensions of shop problems. In
this thesis we also propose a technique to schedule the parallel machines heuristically, without
including them explicitly in the representation of the problem. We use general techniques for
the non-parallel machine cases to produce a fast tabu search heuristic results for the job shop
with parallel machines.

Keywords: Shop Scheduling. Heuristics. Tabu Search. Iterated Greedy. Partial Order. Parallel
Machines.



RESUMO

Um Estudo sobre Escalonamentos de Processos

Escalonamento de processos é um tipo de problema de otimização combinatória no qual
devemos alocar máquinas à tarefas por períodos específicos de tempo.

A literatura contém diversos estudos propondo técnicas para resolver modelos de escalona-
mento de processos como o job shop e o open shop. Esses modelos permitem que os passos no
processo produtivo sejam ou completamente ordenados ou sem ordenação alguma. Com o au-
mento da complexidade das aplicações industriais no encontramos, mais recentemente, diversos
trabalhos que propõe problemas de escalonamento de processos mais gerais para modelar mais
precisamente os processos produtivos. O mixed shop, group shop e partial shop são exemplos
de tais modelos.

Nesse trabalho nós propomos uma busca tabu iterada para o partial shop, que é um modelo
geral que inclui diversos modelos mais restritivos. Os componentes novos mais importantes da
técnica são o gerador de solução inicial, a vizinhança e o limite inferior para a vizinhança. Em
experimentos computacionais nós conseguimos demonstrar que a heurística genérica e única é
capaz de competir, e as vezes superar, as técnicas de estado de arte desenvolvidas especifica-
mente para partial, open, mixed e group shop.

Algumas vezes uma máquina é o gargalo de um processo produtivo, e é replicada. Na
literatura o caso das máquinas paralelas foi incluído em diversas extensões de problemas de
escalonamento de processos. Nessa tese nós também propomos uma técnica para escalonar as
máquinas paralelas, sem incluí-las explicitamente na representação do problema. Nós usamos
técnicas gerais para os casos sem máquinas paralelas para produzir uma busca heurística tabu
rápida, e estado da arte, para o caso do job shop com máquinas paralelas.

Palavras-chave: Escalonamentos de Processos, Heurística, Busca Tabu, Ordem Parcial, Má-
quinas Paralelas.
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1 INTRODUCTION

Combinatorial optimization is a topic that consists of finding good solutions, ideally an
optimal solution, from a set of possible feasible solutions. A feasible solution is one that obeys
a set of constraints, and the quality of the solutions is measured by an objective function.

Scheduling is a decision-making process that deals with the allocation of resources to tasks
for specific periods of time. The goals is to optimize the process according to some objective
function. Shop scheduling problems consist of machines and operations. The operations are
partitioned into jobs, and must be processed on the machines. Commonly some precedences
between the operations of the same job is enforced. A solution is a schedule, where for each
operation we provide an allocation of one or more time intervals to one or more machines, which
can be represented by a Gantt chart. Shop models are widely used in many manufacturing and
services industries [68, 69].

In Figure 1.1 we see an example of a Gantt chart showing a schedule with two machines
and two jobs. Job j1 starts the execution on machine m1 at 1s and occupies it for 1s, while on
machine m2 it starts at 2s and finishes at 4s. Job j2 does not use machine m1, but it is scheduled
twice on machine m2, from 0s to 2s, and from 5s to 6s.

In many shop problems it is impractical to perform an exhaustive search, and the alternative
is to use more refined methods. For decades much effort has being put into developing tech-
niques to solve shop problems such as flow shop problems, job shop problems and open shop
problems. The famous job shop instance with ten machines and jobs proposed by Fisher and
Thompson [21] was solved optimally twenty years later by a branch-and-bound algorithm by
Carlier and Pinson [14]. With time, the scale and intricacies of the real-world applications has
increased, Voß and Witt [86] presents a German steel manufacturer case with 30,000 jobs. In
this thesis we study several shop problems, and propose techniques to optimize the scheduling
of these problems.

Figure 1.1: Example of a Gantt chart.

j1

j2 j1 j2

m1

m2

t(s)
0 1 2 3 4 5 6
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1.1 Formal Definition of the Shop Models

We introduce some notations and definitions to show the mathematical model which will be
used as a framework throughout this work.

Let O = {1, . . . ,O} be a set of operations, which are sometimes called tasks, J = { j1, . . . , jn}
be the set of jobs, and M = {m1, . . . ,mm} be the sets of machines. Each job is a set of opera-
tions. Jobs are are sometimes called commodities, job lots, or production lots. Each machine is
also a set of operations, and can be called facility, work station, or (process) stage [38]. Each
operation is associated with an unique machine and a job, therefore both the set jobs and the set
of machines are partitions of the set operations

O = j1∪ . . .∪ jn

and
O = m1∪ . . .∪mm.

From these partitions we have two induced total functions. Let j : O →J be the function
that maps an operation o to the job jj(o) that contains it, and let m : O→M be the function that
maps it to the machine mm(o) that contains it .

In some cases the machines are replicated, and partitioned into stages. A stage is comprised
of an ensemble of k identical machines. In this case M = {m11,m12, . . . ,m1k,m21,m22, . . . ,mmk}
is the set of machines, where {ms1,ms2, . . . ,msk} is the set of machines of stage s.

Most problems we address in this thesis do not allow recirculation. That means that no two
operations of the same job can be on the same machine. In this case for a job j j and machine
mm we uniquely identify an operation, which we call o jm.

A partial order≺may be given for the operations, such that if o precedes o′ we write o≺ o′.

Each operation o has a processing time po, also represented as p jm where j(o) = j and
m(o) = m.

A solution for the problem is a schedule, which is an assignment of the operations to the
machines for specific periods of time. A valid schedule is one where

• each operation o ∈ O is scheduled on its associated machine m(o) for po units of time,

• each operation is processed uninterrupted (also called non-preemptive scheduling),

• no two operations of the same machine are being processed at the same time,

• no two operations of the same job are being processed at the same time,

• if o≺ o′, then o′ starts to execute after o is finished.

Therefore a valid schedule can be defined by the starting or finishing time of each operation.
We call So and Co the starting and completion time, respectively, of operation o in a schedule.
We do not allow for missing operations, therefore the functions j and m are surjective. We also
do not allow for operations with null processing time.
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In case of parallel machines, we modify the conditions for a valid schedule such that an
operation o can be scheduled on any of the k replicated machines of its stage. A stage may
process more than one operation at a time, but a single machine cannot.

The objective is to find a valid schedule that optimizes some objective function. Examples
are flow time which is the sum of the completion time of the last operation of each job, weighted
flow time which is similar but different jobs have different weights in the objective function, tar-
diness where we minimize the delay respective to due dates give for each job, and the makespan
where the objective function is simply the time the last operation is competed. The makespan
is the most common objective function in the literature and this work focuses on it.

1.2 Specification of the Shop Models

The General Shop Scheduling Problem is an umbrella term for the shop problems. It is the
case where there may be any kind of precedence relations between any operations, including
between operations of distinct jobs.

1.2.1 Partial Shop Scheduling Problem and its Special Cases

The Partial Shop Scheduling (PSS) is the particular case of the General Shop Scheduling
problem where only operations in the same job may have precedences and for each job the
operations must obey a given partial order precedence relation.

The most well studied special cases of the PSS problem are the Flow Shop Scheduling

(FSS), the Job Shop Scheduling (JSS), and the Open Shop Scheduling (OSS) problems. In all
these problems no precedence relation exists between operations of distinct jobs. For FSS the
operations each job must be processed on all machines in a particular linear order, and this
order is the same for all jobs. For JSS each job is also processed on the machines in a linear
order, but the order for a job may be different than the others. For OSS the operations can be
processed in any order. In these problems it is common in the literature to add the restriction
that no recirculation is allowed.

In the literature we find further special cases of the PSS problem. The Mixed Shop Schedul-

ing (MSS) is a scheduling problem where we combine JSS and OSS. Each job follows the
scheme of one of the two problems. The operations can be processed in any order or in one
particular linear order. Formally MSS is the case of PSS such that the relation≺ is either empty
or a total order.

In a Group Shop Scheduling (GSS) problem, the operations of a job are partitioned into
stages. The operations of each stage are independent, and the stages are linearly ordered. Op-
erations of a stage can only begin processing when all operations of the previous stage have
finished.

All these problem variants are NP-hard, since they either generalize either the OSS or the
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(a) The smallest PSS instance that is not a
GSS instance.

(b) Example of a MSS instance with two jobs and
four machines.

Figure 1.2: Examples of instances of the different problems. Solid arcs represent precedences,
dashed double-arcs independent operations.

(a) A GSS instance. (b) Associated PSS instance.

Figure 1.3: Transformation of GSS (Multi-Component Scheduling) instance into a PSS in-
stance.

JSS, and both are NP-hard [66].

The main difference between them lies in different flexibility of modeling production pro-
cesses, due to the different structures of the ordering of the operations in each job. In Figure 1.2a
we see the smallest example of a PSS instance that cannot be modeled as a GSS instance, since
there is no selection of groups for the operations that yields the same precedences, and conse-
quently can also not be modeled as an MSS instance. Figure 1.3a shows a GSS instance. As
mentioned above it can be modeled as a PSS instance (as shown in Figure 1.3b), but it cannot
be reduced to a MSS instance, since its order is neither empty nor full. Finally, an example of
an MSS instance is shown in Figure 1.2b. Industrial applications of the PSS can be found in
electronic and auto repair, logistics, and employee work scheduling [41], in fire engine assem-
bly plants [44], in production processes which need different assembly stages which in turn use
different shop problems [42]. The different flexibility has also consequences for secondary
problem characteristics. When modeling a given production process by a PSS, the search space
size will be larger than the one of a corresponding GSS problem, which in turn will be larger
of a corresponding MSS problem. Similarly, the order strength will in general increase from
the PSS to the GSS. Clearly, problem characteristics related to processing times such as job or
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machine loads will not be affected by the model.

1.2.2 Permutation Flow Shop Scheduling Problem

Permutation Flow Shop Scheduling (PFSS) adds the restriction to the FSS problem with no
recirculation that, for all machines, the operations of each job must be processed in the same
order. This means that the valid schedules are only permutation schedules. In a permutation
schedule, all jobs have to be processed on all machines in the same order, which reduces the
number of possible solutions to n! A valid solution for PFSS is always a valid solution for the
associated FSS problem, therefore the optimal solution for a PFSS is an upper bound for the
associated FSS problem.

1.2.3 Job Shop Scheduling Problem with Parallel Machines

The Job-Shop Scheduling Problem with Parallel Machines (JSS-PM) extends the JSS and
introduces k parallel identical replicas of each machine. It is not a particular case of the general
shop, which does not include parallel machines. A valid solution will generate a schedule, that
may use any of the parallel machines but, like in the previous problems a single machine may
not process more than one operation at any given time. For this problem the formal definition
must be changed such that to define a valid schedule, for each operation, we must also choose
one of the parallel machine to allocate it. The JSS-PM problem is NP-Hard in the strong sense
and since the JSS is a particular case of JSS-PM with k = 1, JSS-PM also is strongly NP-Hard
NP-hard [66].

1.3 The contribution of this Thesis

In this work we study several shop problems, their relations, and solutions to such problems.
We focus on PFSS, JSS-PM and mainly on PSS and its sub-cases.

The main contribution of this work are the techniques used in the proposed algorithm for
PSS, namely the initial solution generator, neighbourhood structure, and the lower bound for
new solutions generated by such neighbourhood. We highlight the large scope of different
shop problems for which the proposed solver performs well. We compared our results with the
state-of-the-art solvers designed specifically for PSS, but also for GSS, MSS and OS. There-
fore we defend the thesis that we can solve PSS and several particular cases of this problem
with a general solver and obtain a solution quality on par with the state-of-art with equivalent
computational effort.

The secondary contributions are the novel components associated with the algorithm for
JSS-PM, namely the initial solution generator, the neighbourhood and the scheduling technique
that ignores parallel machines and enables the heuristic to solve a JSS-PM instance without
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increasing the search space due to the parallel machines.
We also present some minor contributions: We organized and studied many shop problems,

according to their relations and the properties of their instances. We proposed a simple, but
effective, solver for PFSS. For PSS we performed a small study of the influence of the different
components for constructing an heuristic solver for the problem. For the parallel machines we
also proposed a simple learning technique to improve the speed of the heuristic for JSS-PM, and
a mixed integer programing model which can be used to solve small instances of the problem
exactly.
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2 RELATED WORK

In this section we present the relevant literature on the shop problems studied in this thesis.
We consider the problems JSS, PSS, MSS, GSS, OSS, PFSS, JSS-PM more important, and we
present a more comprehensive review. For the other problems we focus on their definition, most
important works and the differences between the problems. At the end of the section we discuss
the relation between the presented shop scheduling problems.

2.1 Partial Shop Scheduling and Related Models

We explained the PSS problem in the previous section, and it encompasses several other
more restrictive problems. Here we show the works related to PSS and to the most important
particular cases of it. We present first the problems we work with directly, then the related
problems. In those two categories we present them in order of the most general to the most
restrictive.

For a comprehensive overview of the work on scheduling problems, in particular for JSS,
OSS and FSS problems we refer to the survey by Potts and Strusevich [70].

2.1.1 Partial Shop Scheduling

Nasiri and Kianfar [60] propose the PSS problem as a natural extension of both JSS and
OSS. It is defined such that it can model the practical problems encountered in industry more
accurately. The authors define a mixed-integer programming formulation, and propose a hybrid
scatter search, coupled with a tabu search, to generate heuristic solutions of larger instances in
a timely manner. To test the algorithms Nasiri and Kianfar [60] propose a set of instances for
the PSS problem, which are generated using the processing times of the instances for the JSS
proposed by Taillard [81], with a randomly generated partial order of the jobs. Zubaran and Ritt
[90] propose a iterated greedy algorithm and test the quality of the solver on this instance set,
which improved the quality of the solutions for this test set.

2.1.2 Group Shop Scheduling

Several authors focus on the GSS problem, which was introduced by Blum and Sampels
[7]. Blum and Sampels [7] propose an ant colony optimization heuristic and define a set of
benchmark instances for GSS. They generalize the neighbourhood of Nowicki and Smutnicki
[62] with the concept of stage blocks (or group blocks) which takes into account the fact that
we can change the execution order of operations at the same stage. To the best of our knowl-
edge the first instance of GSS was proposed earlier, without defining the problem formally, in
a competition for children [19]. Liu et al. [50] present a tabu search for GSS, and show em-
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pirically that it improves the results of Blum and Sampels [7] on their instances. Nasiri and
Kianfar [59] propose a mixed-integer programming formulation and a hybrid genetic algorithm
and tabu search heuristic for the GSS problem (which they call the Stage Shop Problem). They
also define a new set of benchmark instances for GSS. Nasiri [58] proposes an artificial bee
colony algorithm, which improves the results of Nasiri and Kianfar [59].

2.1.3 Mixed Shop Scheduling

The MSS problem was proposed by Masuda et al. [54]. The authors focus on the particular
case of jobs which all have the same order (i.e. the FSS case) and investigate the structure of
the problem with two machines. Liu and Ong [49] propose a neighbourhood for MSS which
is a combination of three smaller neighbourhoods based on the critical path. They use the
neighbourhood in three different heuristics, of which a tabu search performed best. The authors
also define a set of instances, which combines JSS with OSS.

2.1.4 Open Shop Scheduling

An early development for the OSS problem is the branch-and-bound algorithm from Brucker
et al. [10]. In this paper the authors also propose a set of benchmark instances for the problem.
Guéret and Prins [29] propose two constructive heuristics which produce better solutions than
the previous solvers. More recently several meta-heuristics have been proposed for OSS: Liaw
[47] designed a tabu search algorithm, Liaw [48] a simulated annealing algorithm, Liaw [48]
and Prins [72] genetic algorithms and Blum [6] an ant colony optimization heuristic. Currently
the best performing meta-heuristic is the particle swarm optimization proposed by Sha and Hsu
[77]. It uses a greedy decoding scheme, based on a constructive heuristic that produces only
non-delay schedules. The authors modify the decoding technique by introducing a relaxation,
which allows allows the heuristic to produce several distinct possible schedules. The authors
combine this heuristic with a beam search technique, to select on of schedules that can be
generated by the decoding scheme. Dorndorf et al. [18] proposed a branch-and-bound solver
for the OSS problem, which is currently the best exact solver for OSS.

2.1.5 Job Shop Scheduling

The literature on JSS is extensive, and here we highlight some of the most important con-
tributions to the research. Several works use neighbourhoods based on a transposition of adja-
cent operations on a critical path. Early works that use this neighbourhood structure are [85]
and [83]. Nowicki and Smutnicki [62] developed a tabu search for the JSS problem, and the
most innovative element of the algorithm is the neighbourhood, later called N5 neighbourhood,
which also performs transpositions of successive operations in a critical path, but significantly
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decreases the size of the neighbourhood by restricting the transpositions by removing trans-
positions that are guaranteed to not immediately decrease the makespan. This neighbourhood
consist on the states generated only by transpositions of pairs of operations on the borderline
of the so-called blocks, which consists of successive operations in a critical path that share the
same machine. Adams et al. [1] proposed a constructive heuristic for the JSS problem called
the Shifting Bottleneck Procedure. It constructs a schedule by repeatedly inserting a bottleneck
machine into the current partial schedule, and re-optimizing all previously scheduled machines.
The bottleneck machine is found by solving a single machine problem with release dates and
delivery times for each unscheduled machine, and selecting the machine of longest makespan.
The re-optimization applies the same strategy to all scheduled machines. The single machine
problem is also NP-Hard, but usually can be solved in a timely manner with the branch-and-
bound algorithm developed by Carlier [13]. Balas and Vazacopoulos [4] proposed a heuristic
that combines the Shifting Bottleneck Procedure with a local search. The local search uses
a new neighbourhood, later called N6, which performs backward and forward shifts of oper-
ations in a block of the critical path to the edges of such block. N5 is a subset of the N6
neighbourhood. Zhang et al. [87] proposed a tabu search, and further extended the N5 and N6
neighbourhoods by allowing moves from the edge of the blocks to an internal position. Peng
et al. [65] combined this tabu search with a path relinking procedure to produce one of the
current state-of-the-art solvers for JSS. Akers Jr [2] presents an exact graphical method for the
2-job JSS, which transforms the problem into a shortest path problem in the plane. Gonçalves
and Resende [27] extended the graphical method as an heuristic, by starting with only two jobs
and inserting the remaining jobs into the solution one by one. The authors used this method in
a biased random key genetic algorithm producing one of the current state-of-the-art heuristic
solvers.

2.1.6 Other Partial Shop Related Models

Strusevich [78] proposes the Super Shop Scheduling problem. As in MSS all jobs are either
OSS jobs or JSS jobs. Additionally, there may be two kinds of precedences between jobs. In the
first kind, a job cannot start processing on a machine, before its predecessor has finished pro-
cessing on the same machine. This is the only kind of precedence in most other shop problems.
In the second kind, a job cannot start processing before its predecessor has finished processing
completely. The authors proofs the NP-Hardness of the problem and some sub-cases of it, a
lower bound for the solutions of the super shop, and polynomial solutions for some particular
cases of the problem.

The Multi-Component Scheduling, proposed by Kleeman and Lamont [41], generalizes the
GSS problem. It combines two other shop problems, one of which works as the outer structure,
and the other as the inner structure. To create a Multi-Component Scheduling instance com-
bining, for instance, OSS as the outer structure and JSS as the inner structure we start with a
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regular OSS instance, and we substitute each operation with a JSS shop. In this case there is no
order of the outer operations because it follows the OSS structure, but the inner operations in
each of them will be linearly ordered following the JSS structure. The inner operations are the
operations that are scheduled in the machines. When an inner operation of an outer operation
is scheduled on a machine, then the outer operation is considered to be executing. Like inner
operations, outer operations cannot be executed concurrently, and must be executed according
to the order its structure. When we combine a JSS as the outer structure, and OSS as the inner
structure of a Multi-Component Scheduling we have a GSS.

Kis [40] defines the JSS problem with Processing Alternatives. In this problem the routings
of the jobs are defined by a subclass of directed acyclic graphs. A graph with a single operation
belong to this class, and more complex graphs are constructed recursively by three possible
operations which combine two or more previously defined subgraphs into a new graph. In
a sequence of two subgraphs one subgraph precedes another, and the second one may only be
executed after the first one finishes. In an And-subgraph of any number of subgraphs all of them
can be processed in any order, but a successor of the resulting graph may only start processing
after all subgraphs have finished. In an Or-subgraph of any number of subgraphs exactly one
them must be executed before any succeeding subgraph.

2.2 Permutation Flow Shop Scheduling

The PFSS problem is a widely studied variation of the FSS problem. For more than two
machines the PFSS is a NP-hard problem [39] and since the seminal work by Johnson [35]
who proposed a polynomial algorithm for the case m = 2, it has been studied thoroughly. In-
stances of a size useful in actual applications are usually not exactly solvable, therefore several
constructive and improvement heuristics have been proposed. In particular we have the simple
and effective constructive heuristic NEH [61] which is often used to generate initial solutions
for more sophisticated approaches. Taillard [79] has shown that the NEH heuristic can be
implemented in time O(n2m). It is well known that tie-breaking rules are important for the
performance of NEH-like heuristics. Kalczynski and Kamburowski [37] study such rules and
propose the improved constructive heuristic NEHKK1. Extensions of the NEH-like heuristics,
which try to overcome the fixed job order, have been studied by Farahmand et al. [20].

Framinan et al. [22] considers adaptations of the NEH heuristic when the objective is not
to minimize the makespan. Other works with notable results are the ant colony algorithm of
Rajendran and Ziegler [73], the CDS algorithm [11], the work from Dannenbring [16] which
performs a constructive heuristic followed by an improvement phase, the iterated greedy al-
gorithm from Ruiz and Stützle [75], and the tabu search of Nowicki and Smutnicki [63]. For
more details on meta-heuristic approaches to solve the PFSS problem, we refer the reader to
the excellent surveys of Gupta and Stafford [31] as well as the aforementioned shop scheduling
survey by Potts and Strusevich [70].
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2.3 Job Shop Scheduling Problem With Parallel Machines and Related Models

JSS-PM introduces parallel identical replicas of each machine. The JSS is NP-Hard in the
strong sense Garey et al. [23] and since the JSS is a particular case of JSS-PM with k = 1,
JSS-PM also is strongly NP-Hard. Unlike the JSS the literature on JSS-PM is scarce. Rossi
and Boschi [74] provide a set of instances for the JSS-PM. The instances are generated using
the well known set of instances Lawrence [43] and replicated the jobs such that the optimal
solutions for the JSS are upper bounds for the optimal solutions for the parallel case. The
authors propose a hybrid heuristic algorithm which combines a genetic algorithm and an ant
colony optimization technique to solve the problem.

Gholami and Sotskov [25] propose an algorithm for JSP-PM that consists of several mod-
ules. The main module controls the sequencing of the machines by deciding the relative order
of pairs of operations. This sequencing is delivered to the module which produces the schedule.
A third module is used by the first one, and it controls the occupation of each machine as the
first module decides the priority of the operations.

While Rossi and Boschi [74] utilizes the same number of replicated machines for each stage
Gholami and Sotskov [25] proposes instances with a variable number of machines. Gholami
and Sotskov [24] extends the model by using release times for the jobs.

2.3.1 Learning good moves

In the solver we propose for JSS-PM we use a component that learns during the search
which moves produce the best solutions, and trims the neighbouhood when it is convinced that
the other moves are not promising.

The literature contains extensive works that use learning to improve the effectiveness of
meta-heuristics. Moll et al. [55] works with the dial a ride problem, with a neighbourhood
based on the 2OPT, and the evaluation of the objective function is the bottleneck of the process.
The authors propose a reinforcement learning technique to predict the value of the objective
function, and were able to improve the performance of the algorithm. Prestwich [71] studies
the SAT problem, and the algorithm proposed uses noise which allows the search to decrease
the quality of the current solution to improve the diversification of the search. The authors show
that using reinforcement learning to dynamically adjust the noise intensity improves the perfor-
mance of the solver. Benlic et al. [5] proposes a hybrid breakout local search and reinforcement
learning approach to the vertex separator problem, the authors use reinforcement learning to
decide the number of times the perturbation will be applied, and the chance of selecting one op-
erator over another. Mousin et al. [56] study a feature selection problem. The exploration of the
neighbourhood is divided in two steps. First the quality of the solutions is predicted, and later
only the most promising candidates are evaluated. The estimation of the quality is computed
from the quality of solutions with the same characteristics.
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2.3.2 Flexible Job Shop Scheduling

The Flexible Job Shop Scheduling problem is an extension of the JSS. In JSS each operation
is mapped to a machine through j, whereas in Flexible JSS the assignment of an operation is not
fixed, and can be processed on a subset of the machines. The operations may have a different
processing time for each machine, so for operation x, px is not necessarily constant and may
depend on the machine as well. The Flexible JSS is a NP-Hard problem since it generalizes
JSS. Chaudhry and Khan [15] present a comprehensive survey about the flexible JSS.

The Flexible JSS was proposed by Brucker and Schlie [9]. The authors define the problem
and work with the particular case with two jobs. An instance of such problem is classified into
either a partially or totally flexible JSS instance. For the total instances the set of machines is
available for all operations, while for partial instances only a proper subset of the machines is
available to at least one operation.

Jensen [34] is an early early influential development on the problem, proposed a Genetic
Algorithm. Pezzella et al. [67] also proposes a Genetic Algorithm, and was able to improve
the state of the art for the problem. Remarkable properties of the technique are: the initial
population is done by three dispatching rules where the operations of each job are scheduled
one by one. The first rule is random, and the other two give priority to certain operations, one
gives it to the job with most work remaining (sum of processing time), while the second gives
to the job with most number of operations remaining. The encoding uses coding uses the task

sequencing list representation proposed by Kacem et al. [36]. The decoding technique may
produce invalid solutions and require a repair step. Zhang et al. [88] improved the quality of the
solutions with another Genetic Algorithm. The proposed chromosome representation reduces
the cost of decoding, and has no repair step.

The current state-of-the-art solver for the Flexible JSS is González et al. [28], which is a
scatter search coupled with a path relinking. The algorithm uses the same neighbourhood used
in the path relinking, and is inspired by Nowicki and Smutnicki [62].

2.4 Relations of the Shop Models

Most of the problems previously introduced are related to one another, and many of them
differ only by the structure of the precedence relations of the operations. The General Shop
is usually used as an umbrella term. The PSS problem is the particular case of the general
shop where the operations of different jobs cannot precede one another, meaning the jobs are
independent.

The Multi-Component Scheduling can be reduced into a PSS by constructing the overall
partial order from the outer and inner structures. For instance if the outer structure follows
the FSS model and the inner structure follows the OSS, the operations of a single stage will
not have precedences among themselves, but will succeed all operations of the previous stages.
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GSS is the case of the Multi-Component Scheduling in which the inner structure follows OSS
and the outer structure follows JSS. GSS can also be seen as the special case of PSS such that
each operation of a stage precedes each operation of the following stage.

In Section 1.2.1 we saw the example of the transformation of a GSS job into a PSS job
illustrated in Figure 1.3. It also can be seen as a Multi-Component Scheduling that uses the
JSS model for the outer structure and OSS as the inner structure. In Figure 1.3a the stages are
represented by the dashed boxes, and in Figure 1.3b we see the associated PSS job. MSS is
a special case of GSS where either a single stage contains all operations, or each stage con-
tains only one operation. Formally, for a GSS problem, for each j j we have a set of stages
S j1, . . . ,S j,k( j), which partitions the set of operations J j. The partial order associated with a job
j j is ≺ j= S j1×S j2∪S j2×S j3∪·· ·∪S j,k( j)−1×S j,k( j), and the partial order for the problem is
≺=≺1 ∪ ≺2 ∪·· ·∪ ≺n.

JSS and OSS are the cases of MSS in which all the jobs follow either the JSS or OSS
structure. JSS is a particular case of MSS where for all jobs ≺ is a total order, and OSS is a
particular case where for all jobs ≺ is empty.

FSS is well known as a particular case of JSS. PFSS is not a particular case of any of the
other problems because of the restriction that only permutation schedules are allowed, which
cannot be emulated by the other problems. Despite not being a particular case of any of the
presented problems PFSS can be considered a restrictive problem in comparison to the others,
because solutions for PFSS are always solutions for the non-permutation case.

JSS-PM is the case of the Flexible JSS where for each operation x px is constant on all
machines it is allowed to operate, and the machines allowed for each operation in a job is
disjoint, and exactly k machines are available for each operation. JSS is trivially the particular
case of JSS-PM where k = 1.

Super shop differs from MSS only because it has the second kind of precedences. A Super
shop where there are no precedences of the second kind is also a MSS instance.

The relation of the problems is shown in Figure 2.1. The main difference between the
problems is highlighted in the arrows. In this figure we call JSS with Processing Alternatives
“JSS PA”.

The flexible JSS and JSS with Processing Alternative are similar but are neither is a partic-
ular case of the other. The first allows for alternative machines to process an operation, while
the former allows for different processing routes in which operations may be selected to not be
executed. This relation is shown as dashed arrows in the figure.
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3 REPRESENTATION AND PROPERTIES OF THE SHOP MODELS

3.1 Problem Representation

A disjunctive graph DG = (O†,C,D) is a useful way to represent an instance of the PSS
problem. It is defined over a set of operations O† = O ∪{0,∗}, a set of conjunctive arcs C,
and a set of disjunctive arcs D. The operations include an artificial source 0, which precedes
all operations, and an artificial sink ∗, which succeeds all operations. Their processing time is
defined to be 0. We consider only instances which have strictly positive processing times.

The conjunctive arcs C represent the transitive reduction of the precedence relations among
the operations. The set of disjunctive arcs D contains a pair of arcs (u,v) and (v,u) for each pair
of independent operations u and v of the same job, or same machine. Note that the disjunctive
arcs of each machine form a clique. An orientation of the disjunctive arcs is a selection of one
of each pair of these opposing arcs, and is called a complete selection if it is acyclic.

3.2 Properties of the Schedules Induced by the Disjunctive Graph

A complete selection defines a unique order of the operations for each machine and each
job. A schedule can be derived by starting each operation as soon as its predecessors have
finished. The completion time of an operation is equal to the length of the longest path from the
artificial source to the operation, where the length of a path is the sum of the processing times
of the operations it contains. This creates only semi-active schedules, i.e. schedules in which
no operation can be started earlier without changing the order of processing on any one of the
machines or jobs. The makespan of a schedule is the completion time of operation ∗.

The set of semi-active schedules corresponds one-to-one to complete selections, and at least
one optimal schedule is semi-active. Therefore, there always exists a complete selection which
defines an optimal schedule.

A schedule is active if it is impossible to generate any other schedule, through changes in
the order of processing on the machines and jobs, with at least one operation finishing earlier
and no operation finishing later. Our schedules are not necessarily active, but it is possible to
construct any valid active schedule with the proper complete selection of the DG.

3.3 Heads and Tails of the Operations

Given a complete selection we denote by o j the immediate job predecessor of operation
o, and by o j its immediate job successor. Symmetrically om and om represent the operation
immediate machine predecessor and successor respectively.

For a given operation o, let L be the set of all paths from 0 up to, but not including, o. In
DG all operations are reachable from 0, therefore this set is never empty. The length q(o) of
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Figure 3.1: Example of a disjunctive graph representation for a PSS problem instance with three
jobs (grey boxes) and three machines (yellow, blue, and brown).

the longest path in L is the so-called head of o, defined by q(o) = max{q(o j)+ p(o j),q(om)+

p(om)}, which is the earliest time o can be scheduled.
Let L j be the subset of L where the paths also contain o j. L j is never empty since o j is

reachable from 0, and, by definition, o j is directly connected to o in DG. We call the length of
longest path in L j the job head of o q j(o) = q(o j)+ p(o j). This is the earliest time o could be
scheduled in order to not be processed in parallel with the other operations in the same job. Let
Lm be the subset of L where the paths also contain om. We also call the length of the longest
path qm(o) = q(om)+ p(om) in Lm the machine head of o, which is the earliest time o could be
scheduled in order to no be executed in parallel with other operations in the same machine. The
heads of o is therefore q(o) = max{q j(o),qm(o)}

Symmetrically let L′ be the set of paths from, but not including, o to ∗. The length r(o) of the
longest path in L′ is the so-called tail of o, defined by r(o)=max{r(o j)+ p(o j),r(om)+ p(om)}.
Restricting L′ to paths which contains o j we define the job tail r j(o) = r(o j) + p(o j), and
restricting L′ to paths which contains om we define the machine tail rm(o) = r(om)+ p(om).
Analogously to the heads we can see the tails of an operation as the combination r(o) =

max{r j(o),rm(o)}.
Figure 3.1 shows an example of the disjunctive graph of a PSS problem instance with three

jobs and three machines. Operations of the same machine have the same color, and operations
of the same job are grouped into grey boxes. Conjunctive arcs are drawn solid, and disjunctive
arcs are dashed. For clarity the figure shows only the brown arcs associated with the brown
machine clique. Each operation o is labeled with its processing time po.

In Figure 3.2 we see a possible solution for the instance depicted in Figure 3.1. Figure 3.2a
shows a valid complete selection, and Figure 3.2b shows the Gantt chart of the corresponding
induced schedule, which is optimal. An alternative solution, which does not generate an optimal
schedule is shown in Figure 3.3.
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(b) Induced optimal schedule.

Figure 3.2: Disjunctive graph representation of an optimal solution and the Gantt chart for the
associated optimal schedule.
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(b) Induced sub-optimal schedule.

Figure 3.3: Disjunctive graph representation of a sub-optimal solution and the Gantt chart for
the associated sub-optimal schedule.
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0 5,2 5,1 5,7 2,7 2,2 4,2 3,2 ∗

Figure 3.4: A critical path and the associated job and machine block partitions.

3.4 Critical Path and Associated Concepts

We compute the maximum distances in linear time in the number of operations of the in-
stance. Since the processing times are positive, we can ignore transitive arcs in the disjunctive
graph, because they belong to no longest path. Thus we compute the maximum distances for
all operations in linear time by updating them in a topological order. However we do need the
transitive closure to avoid cycles in the generation of the initial solution and repair step of the
perturbation shown in the following section. We maintain the transitive closure for each job in
a data structure proposed by Italiano [33], such that we can check if there is a path from one
operation to another in constant time. We present more detail on how we compute the critical
path in sections 4.2.2 and 4.4.3, since the way we work with the critical path is different in the
cases with, and without parallel machines.

For a path P = o1 . . .ok, oi ∈O† in S, let l(P) = ∑i∈[k] p(oi). A critical path Pcrit is a longest
path between, but not including, 0 and ∗ in the disjunctive graph, and the makespan is l(Pcrit).
Every longest sequence of operations in a critical path that share a machine or job is a block of
this path: a job block if the job is shared, or a machine block otherwise. Thus, both the machine
and job blocks form a partition of this path. Each pair of adjacent operations o1 and o2 either
belongs to the same job block and a different machine block, or belongs to the same machine
block and a different job block. Figure 3.4 shows an example of a critical path. The operations
are labeled with the associated job and machine, and on the top we show the job block partition,
while on the bottom we show the machine block partition. For a given block of two or more
operations o1,o2, . . . ,ox−1,ox we refer to (o1,o2) and (ox−1,ox) as the borderline operations of
the block.

Lemma 3.4.1 LB jb = max j∈[J](∑i∈[m] oi j) is a lower bound (the so-called job lower bound) for

the PSS.

Proof. The minimum processing time of job j is ∑i∈[m] oi j, since the operations cannot overlap.
Thus, the maximum over these values is a lower bound for the PSS. �

Lemma 3.4.2 LBqr = maxi∈[m]

{
min j∈[n] q(oi j)+∑ j∈[n] poi j +min j∈[n] r(oi j)

}
is a lower bound

for the PSS. (LBqr is an improved machine lower bound and used in [60].)

Proof. The processing on machine mi cannot start earlier than the least head min j∈[n] q(oi j) of
any operation on this machine. Similarly, after processing all operations on mi the schedule
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cannot complete earlier than the least tail min j∈[n] r(oi j) of any operation on mi. Furthermore,
the minimum processing time of the operations on machine i is ∑ j∈[n] poi j , since they cannot
overlap. Thus, the sum of these three quantities is a lower bound for the PSS with respect to
machine i. Therefore the maximum over all machines is a lower bound for the PSS. �

Proposition 3.4.1 LB = max{LB jb,LBqr} is a lower bound the PSS.

Proof. Follows immediately from Lemma 3.4.1 and Lemma 3.4.2. �
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4 PROPOSED ALGORITHMS

In this section we introduce the algorithm designed for both PSS and JSS-PM.

4.1 A Simple Iterated Greedy Algorithm for the Permutation Flow Shop Scheduling

In this section we present the techniques developed for PFSS, which we use on a simple
iterated greedy algorithm.

4.1.1 Constructive Heuristics for the PFSS Problem

NEH and its variants are greedy constructive algorithms. For a given job order, they start
with an empty schedule and insert the next job in that order into the current partial schedule at
the position which maintains the makespan of the current partial schedule shortest. Thus, such
an algorithm performs n insertions. When inserting the jth job, the algorithm must determine
the makespan of j− 1 candidate insertion points, which leads to an overall of

(n
2

)
= Θ(n2)

makespan computations. Computing a makespan in O(mn) yields a O(n3m) algorithm. Taillard
[80] has shown that the makespan of all insertion points of a fixed job can be computed in time
O(mn) which reduces the time complexity to O(n2m). The basic NEH algorithm as proposed by
Nawaz et al. [61] processes the jobs in order of non-increasing total processing times ∑i∈[m] pi j,
for j ∈ [n] and is shown in Algorithm 1.

Algorithm 1: NEH
input : Processing times pi j ∀i ∈ m, j ∈ n.
output: A solution

1 let Pj := p j1 + p j2 + · · ·+ p jm.;
2 order the jobs such that P1 ≥ P2 ≥ ·· · ≥ Pn.;
3 let σ = () be the empty sequence.;
4 for all jobs j = 1, . . . ,n do
5 insert j in σ in the sequence at the position where it yields the lowest makespan.;
6 end
7 return σ ;

Kalczynski and Kamburowski [37] observed that the NEH heuristic can be improved by
inserting the jobs in the same order as proposed by Johnson [35] for the two-machine PFSS. If
we define

â j = ∑
i∈[m]

((
m−1

2

)
+m− i

)
pi, j

b̂ j = ∑
i∈[m]

((
m−1

2

)
+ i−1

)
pi, j
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then NEHKK1 insert the jobs in order of non-increasing ĉ j = min{â j, b̂ j}. Ties between differ-
ent insertion positions are broken by choosing the first job of minimum makespan, if ĉ j = â j,
and the last job otherwise. NEHKK1 reduces the average percent relative deviation from the
best known values in the instances proposed by Taillard [82] by about 15%. The NEHKK1
heuristic has the additional property that it solves two-machine PFSS optimally. We use the re-
sult from the NEHKK1 heuristic as the starting point for the improvement with Bubble Search,
as described below.

Farahmand et al. [20] proposed several extensions to NEH-like heuristics. The variants
that perform best reinsert the previously inserted jobs at positions max{1, p− k}, . . . ,min{p+

k,n} again after the insertion of the jth job at position p, for a parameter k. Their algorithm
FRB3 which considers all previously inserted jobs is equivalent to FRB4n. FRB4k is shown
in Algorithm 2. The reinsertion of the jobs is designed to counteract the strong greediness of
NEH. FRB4k has worst case time complexity O(kn2m).

Algorithm 2: FRB4k

input : PFSS instance
output: A solution

1 Let Pj := p1 j + p2 j + · · ·+ pm j.;
2 Order the jobs such that P1 ≥ P2 ≥ ·· · ≥ Pn.;
3 Let σ = () be the empty sequence.;
4 for all jobs j = 1, . . . ,n do
5 Insert j in σ in the sequence at the position where it yields the lowest makespan.;
6 for all positions i = max{1, p− k}, . . . ,min{p+ k, j} do
7 Reinsert the job at position i at the position which yields the lowest makespan.;
8 end
9 end

10 return σ ;

The last algorithm we consider is called FRB5, also proposed by Farahmand et al. [20],
which consists in the simple idea of performing the algorithm NEH followed by a full local
search after the insertion of each new job in the insertion neighborhood N1. This neighborhood
considers all possible reinsertion points of all jobs, similar to FRB3. The local search stops
when a local minimum is reached.

4.1.2 Bubble Search and its Variants

Bubble Search and its variants have been proposed by Lesh and Mitzenmacher [45] as sim-
ple and flexible modifications procedures for priority-based construction algorithms. For a so-
lution space which consists of all n! permutations like in the PFSS problem, visiting all of them
exhaustively will eventually find the optimal solution. The exhaustive search can be performed
in any order. In particular, exhaustive Bubble search proposes to visit all the permutations in
order of increasing Kendall-tau distance from a given permutation. Ties may be broken arbi-
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trarily. Formally, for two n-permutations π and π ′ the Kendall-tau distance, also known as the
Bubble Sort distance, is defined as

d(π,π ′) = ∑
1≤i< j≤n

[π(i)< π( j) and π
′(i)> π

′( j)].

It measures the number of transpositions necessary to transform π into π ′. Therefore d(π,π ′) ∈
[0,
(n

2

)
].

The search can be stopped at any time and will return best permutation found so far. The
performance of this truncated Bubble Search depends on a good initial order and a problem
structure, that makes it more likely that good solutions are close to this initial order, such that it
is more likely that we have visited solutions with better quality than random ones.

A natural variation of this proposal is the randomized Bubble Search, in which we choose
random permutations with a probability that decreases with increasing Kendall-tau distance.
Lesh and Mitzenmacher [45] suggest that we use a probability proportional to (1−α)−d where
α is a parameter to be adjusted and d the Kendall-Tau distance to the base ordering. For α = 0
randomized Bubble Search degenerates into random sampling, and for α = 1− ε it approxi-
mates a sampling in a neighborhood that allows only swaps of two adjacent elements in the
base order.

A further improvement of the randomized Bubble Search is the randomized Bubble Search

with replacement. This strategy replaces the current ordering by the new ordering, whenever the
new ordering is better that the current one. This turns randomized Bubble Search into a stochas-
tic search algorithm. Lesh and Mitzenmacher [45] observed to Bubble search with replacement
typically outperforms the simpler variants of Bubble Search. They also have demonstrated that
Bubble Search can produce results that are competitive with similar GRASP-based algorithms.

4.1.3 An adaptive Variant of Bubble Search

Randomized Bubble Search can be implemented by a simple stochastic process. To select
a new ordering, we start with an empty ordering, and process the elements of the current base
ordering. With probability α we select the current element, remove it from the base ordering
and append it to the new ordering. In this case we start visiting the elements from the start. Oth-
erwise, with probability 1−α , we continue with the next element of the current base ordering,
cycling as necessary. This process is repeated until the base ordering is empty and is shown in
Algorithm 3.

This process guarantees that an ordering of Kendall-tau distance d is selected with probabil-
ity proportional to (1−α)d [45]. However, since the range of the Kendall-tau distance increases
with n, the probability of selecting orderings with a fixed distance from the current ordering de-
creases with increasing n. We will show below that this behavior can affect the scalability of
Bubble Search adversely. We therefore propose to adjust α as a function of n as follows.



36

Algorithm 3: Bubble Search Sampling
input : A base permutation σ∗, a probability α .
output: A new permutation

1 Let σ = () be the empty sequence.;
2 for i = 1, . . . ,n do
3 j := 1;
4 while no element selected do
5 With probability α: select element σ∗j ;
6 Otherwise: j := j mod n+1;
7 end
8 Remove σ∗j from σ∗ and append it to σ ;
9 end

10 return σ

Consider the probability P[d = 0] that Algorithm 3 returns σ∗ on input σ∗. We have

P[d = 0] = α(1+(1−α)n +(1−α)2n + . . .)

×α(1+(1−α)n−1 +(1−α)2(n−1)+ . . .)

×·· ·×α(1+(1−α)2 +(1−α)4 + . . .)×1

= ∏
i∈[n]

α

1− (1−α)i = O(αn).

Therefore, we propose to compensate this behavior by setting α = α
1/n
0 for some base proba-

bility α0 which has to be calibrated. We call this approach adaptive randomized Bubble Search,
which can be applied with or without replacement.

4.2 Iterated Tabu Search for Partial Shop Scheduling Problem

In this section we propose an Iterated Tabu Search (ITS) algorithm for the PSS problem. An
ITS is similar to an iterated greedy algorithm, which is a meta-heuristic proposed by Ruiz and
Stützle [76], but substitutes the local search by a tabu search. The structure of the ITS algorithm
is shown in Algorithm 4. It keeps a current solution S, an incumbent (best known solution) S∗,
and a trial solution S′. The initial solution is generated by a constructive heuristic. At each step
the algorithm perturbs the current solutions and applies a tabu search. The perturbation destroys
part of the solution and reconstructs it, making sure to generate a new valid solution. The new
perturbed solution is used to initialize an elite set E. A tabu search is applied to the solutions
in this elite set, and when a new promising solution is found, the algorithm adds it to the set.
When the elite set is empty, the best solution found by the tabu search S′ is used to update the
incumbent S∗, and an acceptance criterion decides if it will be the new current solution S.

Each element of the elite set E is a triple (S,T,η), where S is a solution, T a tabu list and
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Algorithm 4: Iterated Tabu Search
input : ι , δI , τ , and C
output: The best solution found

1 Generate initial solution S with constructive heuristic
2 while Time limit not expired do
3 T is an empty tabu list
4 η is the complete neighbourhood of S
5 push (S,T,η) to the elite set E
6 I = ι

7 while E 6= /0 do
8 S′ = min(S′,TabuSearch(S′,E, ι , I,δI,τ,C))
9 end

10 Update S∗ with S′

11 Acceptance criterion decides if S = S′

12 Perform Perturbation on S
13 end
14 return S∗

η a subset of the neighbourhood of S. The elite set has a maximum size of e, and the element
with the worst solution, which is also the oldest element in the set, is discarded when this limit
is exceeded.

The parameters ι and δI control the variable I that is the maximum number of iterations of
the tabu search without improving S′. The tabu tenure parameter is τ , and C is used to calibrate
the stagnation detection which stops the tabu search.

The search stops if the lower bound is met, or if the time limit is reached.

4.2.1 A Constructive Heuristic for the PSS problem

The initial solution is generated by a constructive heuristic. It starts with an empty solution
and repeatedly inserts an operation into the current partial solution. A partial solution repre-
sented by a linear order of the included operations on each job and each machine. It can be
mapped to a partial solution represented by a disjunctive graph by selecting the orientation of
the arcs between included operations according to the linear orders. Operations are inserted in
order of non-increasing processing time. Each new operation oi j is inserted into the linear order
of machine i and job j at the positions which minimize the longest path from 0 to ∗ passing
through oi j. Only positions that respect the precedences ≺ between the operations and that do
not lead to cycles are considered. Note that, if the new critical path passes through oi j, this
procedure minimizes the makespan at each insertion. Otherwise, it gives preference to insertion
positions which minimize the internal delay caused by oi j.

The constructive heuristic is shown in Algorithm 5. It generalizes the constructive heuristic
INSA proposed by Nowicki and Smutnicki [62] to the JSS problem. The key difference is
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Algorithm 5: Initial Solution Generator
input : PSS instance
output: A valid solution

1 ∀ j ∈ [1,n], ι j = ()
2 ∀i ∈ [1,m],µi = ()
3 Σ = {ι j | ∀ j ∈ [1,n]}∪{µi | ∀i ∈ [1,m]}
4 for each operation o ∈ O in non-decreasing order of po do
5 let j be the job of operation o
6 let i be the machine of operation o
7 lmin = ∞

8 for x = 0, . . . , |ι j|,y = 0, . . . , |µi| do
9 ι ′j = ι j

10 µ ′i = µi
11 Insert o at position x in ι ′j
12 Insert o at position y in µ ′i
13 Map (Σ\{ι j,µi})∪{ι ′j,µ ′i} into a partial solution S
14 if S is a valid partial solution then
15 let l be the longest path from 0 to ∗ in S containing o
16 if l < lmin then
17 ι∗j = ι ′j; µ∗i = µ ′i
18 lmin = l
19 end
20 end
21 end
22 Σ = (Σ/{ι j,µi})∪{ι∗j ,µ∗i }
23 end
24 Map Σ into complete solution S
25 return S

that we need to set the position of the operation in the job as well, so each operation can, in
principle, have mn possible positions instead of n. This makes the construction of a schedule
more expensive.

To accelerate this procedure, for each new operation o to be inserted we compute the heads
and tails of the operations which are part of the partial solution. Given a candidate position for
o we can compute the maximum distance from 0 to ∗ passing through o in constant time by

max{q(o j)+ po j ,q(om)+ pom}+ po +max{q(o j)+ po j ,q(om)+ pom}.

This is similar to the acceleration technique proposed by Taillard [80] for the NEH heuristic
[61] for the permutation flow shop problem. We use the same optimization in the perturbation,
described further.
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4.2.2 Neighbourhood for the PSS Problem

In this section we introduce a new neighborhood for the PSS problems. We first explain how
we compute the critical path critical path, we then explain the neighborhood, and prove some
basic characteristics of it. Finally, in Section 4.2.2.1 we show how to speed up its evaluation.

Let S be a solution for a PSS instance. An arc of S from operation a to operation b is a
tight arc if, and only if, q(b) = q(a)+ p(a). This means that in the schedule associated with S

operation b will begin processing as soon as a finishes. A critical path contains the operations
in a path that follows the tight arcs from 0 to ∗. Each operation on this path will start processing
as soon as the preceding operation in the path finishes.

We find the critical path when we update the heads of each operation o according to q(o) =

max{q(o j)+ p(o j),q(om)+ p(om)}. This has linear time cost in the number of operations by
updating q(o) in topological order. The head q(∗) is equal to the makespan. Every time we
compute the heads of a new operation o we store the predecessor that is connected to o by a
tight arc, and if more than one is available we choose the job predecessor o j. This operation is
the critical predecessor of o. To compute the critical path we start from ∗ and follow the critical
predecessor until we reach 0. We then just invert the list of operations to get the critical path.
The reader can find more details on how to process the operations in topological order and find
the critical path in Brucker [8].

The neighbourhood used in the tabu search step of ITS consists of the solutions generated
by the transposition of pairs of operations that are adjacent on either a job or a machine in the
disjunctive graph DG. Such a transposition is equivalent to changing the selected orientation of
the corresponding disjunctive arc.

The pairs to be transposed in the neighbourhood are only pairs of operations in a critical
path. If there is more than one critical path we choose the one with the longest job blocks.
Furthermore, we only exchange the pairs of operations in the borderline of the blocks, except
the first and last two operations of the critical path, if they share a block of size two or more. In
the case of job blocks we perform only transpositions that respect the partial order, in order to
keep the generated solutions valid.

This neighbourhood is an extension of the so-called N5 neighbourhood proposed by Now-
icki and Smutnicki [62] for JSS. It has the following properties: it is disconnected, since it is
identical to N5 for the JSS problem, and N5 is disconnected. Of all possible transpositions of
operations, only transpositions in this neighbourhood can immediately decrease the makespan
(Theorem 4.2.1 below), and the transpositions in the neighbourhood always generates valid
solutions (Theorem 4.2.2 below).

In the following we use the notation shown in Figure 4.1. In the figure we assume the
operations a and b being transposed are in the same job. If the pair of operations share the same
machine the situation is symmetrical after exchanging the symbols j and m. We denote the head
and tail of an operation o before the transposition by q(o) and r(o), and after the transposition
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Figure 4.1: A transposition of a and b that share the same job.

by q′(o) and r′(o).

Theorem 4.2.1 Of all possible transpositions of a pair of operations (a,b), only the ones in the

neighbourhood can decrease the makespan.

Proof. We can assume that (a,b) is on a critical path. Otherwise, after the transposition the
same critical path would still exist and the maximum distance from 0 to ∗ would not decrease.

The length of the critical path before the transposition is l = q(a)+ p(a)+ p(b)+ r(b), and
after the transposition, the longest the path through b and a has length l′= q′(b)+ p(b)+ p(a)+

r′(a).
Assume that (a,b) share the same job block, and that the transposition of a and b decreases

the makespan, but is not in the neighbourhood. So the pair must be either in the interior of a
block or be the first or the last pair of the critical path in a block of size three or more. Since
(a,b) share a job block, q(a) = q(a j)+ p(a j), and r(b) = r(b j)+ p(b j). Note that if a is the
first operation of the critical path a j = 0, and q(a j) = q(a) = 0, and if b is the last operation of
the critical path b j = ∗, and r(b j) = r(b) = 0.

Moreover, by definition, q′(b) = max{q(a j) + p(a j),q(bm) + p(bm)} ≥ q(a j) + p(a j) =

q(a), and r′(a) = max{r(b j) + p(b j),r(am) + p(am)} ≥ q(b j) + p(b j) = r(b), and therefore
l′ ≥ l.

The same holds if (a,b) share a machine block, by a symmetric argument. �
Figure 4.2 shows an example of a critical path to illustrate Theorem 4.2.1. We show the

operations on the critical path labeled x(y), where x is the operation and y = px is its processing
time. We group blocks of operations of size two or more by brackets, where top brackets group
job blocks, and bottom brackets machine blocks. Each operation has an incoming arc on the
critical path. If there exists another predecessor not on the critical path it has a second incoming
arc. If this predecessor is a machine predecessor the arc enters from below, otherwise, for job
predecessors, from above. The incoming arc from each such predecessor is labeled with the
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Figure 4.2: A critical path, and the longest paths from 0 to each operation outside this critical
path.

a j a b b j

Figure 4.3: Arcs in DG of a job shared by a and b. A transposition of a and b removes the
dashed arcs, and introduces the solid ones.

length of the longest path from 0 passing through it. The length of the longest path from 0 to
an operation on the critical path is simply the sum of the processing times of its predecessors
on the critical path. For example, operation e has em = d on the critical path, and the longest
path from 0 to e passing through d is 19, while the longest path from 0 to e passing through job
predecessor e j is 18, therefore q(e) = 19. The length of the critical path is 38, which is the sum
of the processing times of all its operations.

For simplicity we assume this instance has no precedences between operations on this crit-
ical path. The neighbourhood contains the solutions generated by transposing the pairs (b,c),
(c,d) and ( f ,g). If we transpose pair (e, f ) the path abcd f egh of length 38 still exists and we do
not decrease the makespan. The same holds for every other adjacent pair not in the neighbour-
hood. After transposing (c,d) the path abdce f gh does not exist, since b is not a predecessor
of d and the makespan may decrease. In fact, the path from 0 to d through d j then following
ce f gh has length 36, and if no longer path was formed, it will be the new critical path and
the makespan will decrease. When transposing pair ( f ,g), the makespan will not decrease,
despite the fact that the solution is in the neighbourhood. This pair will be excluded from the
neighbourhood by the lower bound presented in Section 4.2.2.1

Theorem 4.2.2 For a valid solution S a transposition in the neighbourhood generates a valid

solution S′.

Proof. Since S is valid, the associated disjunctive graph contains no cycle, and the partial
order of the jobs is respected. We exclude transpositions that do not respect the partial order, so
the new solution will be valid if the disjunctive graph remains acyclic after the transposition.

Consider a transposition of (a,b). Then, by definition of the neighborhood, ab is on a
critical path P = QabR. If the transposition creates a cycle, then it must contain some of the
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arcs introduced by the transposition, since there was no cycle before. Figure 4.3 shows the
change in the arcs of DG, where the dashed arcs are removed, and the solid ones are introduced.

Case 1: only arc (b,a) is part of the cycle. Thus, there exists a path P′ from a to b in S′.
Since arc (a,b) is not part of S′, P′ has length 2 or more, and since no operation has time 0, we
have l(P′) > p(a)+ p(b). But P′ is also a path from a to b in S, and thus P′′ = QP′R is a path
of length l(P′′) = l(Q)+ l(P′)+ l(R)> l(Q)+ p(a)+ p(b)+ l(R) = l(P), a contradiction with
the fact path P is critical.

Case 2: The cycle contains at least one of the arcs (a j,b), (a,b j), and possibly arc (b,a).
In this case there must exist a path in S from operation b or b j to operation a or a j. In other
words, there is a path from an operation to another operation that precedes it in S (in Figure 4.3
operations to the left precede operations to the right in S). In this case S would contain a cycle.
�

To illustrate both cases of the proof, consider transposing operations (c,d) in the example
of Figure 4.2. There can be no indirect path from a to b, since that would contradict the fact that
abcde f gh is a critical path, and there can be no path from e to c, since that would contradict the
fact that the solution before the transposition cannot contain a cycle.

4.2.2.1 A Lower Bound for the Neighbours

The proposed neighbourhood leads to a manageable number of neighbours for each solution.
It tends to have less than twice the number of neighbours that N5 has for an equivalent JSS
instance. However, it is possible to decrease the number of solutions to be investigated. To do
so we use a lower bound to evaluate which neighbors are more promising, and evaluate them
first. We stop the neighbourhood evaluation when it is impossible to find better neighbours.

For a transposition of a pair of adjacent operations of the same job, the following theorem
gives a lower bound for the new solution.

Theorem 4.2.3 Let a and b be adjacent operations of the same job on the critical path, and

define L1 = max{q(a j),q(bm)}+ pb + r(bm), L2 = q(am)+ pa +max{r(b j),r(am)}, and L3 =

max{q(a j),q(bm)}+ pa+ pb+max{r(b j),r(am)}. Then, L =max{L1,L2,L3} is a lower bound

for the makespan of the new solution after the transposition of a and b.

Proof. The longest path passing through b and not through a has length L1, the longest one
passing through a and not through b has length L2, and finally the longest one passing through
a and b has length L3, therefore L is a lower bound for the new state. �

A similar theorem can be derived from the transposition of an adjacent pair of operations of
the same machine, by exchanging the indices j and m. Both lower bounds can be computed in
constant time, when the heads and tails are known.

As an example, consider the neighbourhood associated with the critical path shown in Fig-
ure 4.2. For the transposition of the pair ( f ,g) we L1 = max{22,30}+ 6+ 5 = 41, which is
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larger than the current makespan of 38.

4.2.3 Tabu Search Procedure

Tabu search is a meta-heuristic proposed by Glover [26] which combines a best-improvement
local search with short-term and possibly long-term memory, to escape local minima. Attributes
of previously visited solutions are stored in a so-called tabu list and are then declared tabu for
a number of iterations, the tabu tenure. Elements of the neighbourhood which are not tabu
are preferred. To avoid missing good solutions often the tabu search uses aspiration criteria

which are rules that allow the tabu neighbours to be selected even if non-tabu solutions are
available. We use the most common aspiration criterion which is accepting tabu neighbours if
they improve the incumbent best solution S′ found so far.

Algorithm 6: Tabu Search
input : S′,E, ι , I,δI,τ,C
output: Best solution found.

1 Let (S,T,η) be the best elite element.
2 i = 0
3 S = NSP(T,η)
4 Update (S,T,η) to (S,T,η \{S}), and remove it from the elite set if |η |= 1
5 while not Cycle(C,R) and i < I do
6 i = i+1
7 Update tabu list T
8 if Cmax(S)<Cmax(S′) then
9 I = ι

10 add (S,T,η) to the elite set E
11 return S
12 end
13 S = NSP(T,N(S))
14 end
15 I = I− I/δI
16 return S

Algorithm 6 shows the pseudo-code for the tabu search. It starts by getting the best element
(S,T,η) from the elite set, which is also the newest element in the set. Then, the neighbourhood

search procedure NSP, explained below, selects a neighbor S from the set of neighbors η . The
tabu search removes S from η of the selected elite element, and if η is empty removes the
element completely from the set. The algorithm updates the tabu list T according to the move
selected by NSP. Each element of the tabu list is a pair of operations swapped that generates the
selected neighbour. Each movement remains tabu for the number of iterations given by the tabu
tenure τ .

NSP evaluates the neighbors in non-decreasing order of their lower bounds L. The procedure
chooses the best neighbor if it improves S′, or the best non-tabu neighbor, otherwise. If there
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is no such neighbor, none is selected, and the next iteration begins. NSP stops when the lower
bound of the current neighbour is larger than the makespan of an already evaluated non-tabu
move.

If the current solution S is better than the best solution since the last perturbation S′, it adds
(S,T,η) to the elite set E and returns the solution S to the ITS.

The tabu search has a budget of I iterations that can be performed without improving S′. It
stops if it is able to improve S′, in which case the elite set is updated, or if stagnation is detected
by either reaching the limit of I iterations without improving S′, or if a cycle in the makespan
values of S is detected. Each time the tabu search finishes without improving S′, the budget I is
decreased by I/δI , and each time it is able to improve S′, the budget I is set to ι again. To detect
cycles the algorithm checks for the values for the makespan of each newly generated solution,
and if a sequence of at most C makespans repeats itself it assumes the search is cycling and
stops. This algorithm is adapted from Nowicki and Smutnicki [62].

4.2.4 Perturbation

The tabu search uses the tabu list to avoid getting stuck in local minima, yet it is still possible
that the search will get stuck in a region of the search space. In this case we may loose interesting
solutions, so we use a perturbation to move the search, more aggressively, to another part of the
search space.

The perturbation in the ITS algorithm uses the mechanism to build the initial solution. Given
a complete solution the procedure removes π operations and then reinserts them, where π is a
parameter. This operation is sometimes called “destroy and repair” or “deconstruction and re-
construction” in the literature. The operations are processed in a random order, and the insertion
position of each operation is determined as in the constructive heuristic, so the new solution is
guaranteed to be valid.

4.2.4.1 Bubble Perturbation

The bubble perturbation works by changing the relative ordering of sb jobs or machines,
where sb is a parameter to be calibrated. The bubble perturbation procedure is similar to the
perturbation in the Bubble Search proposed by Lesh and Mitzenmacher [46].

In bubble search sampling we obtain a new permutation π ′ from a base permutation π . Each
possible new permutation can be selected with chance proportional to (1−α)−d , where α is a
parameter and d is the Kendall-Tau distance to the original ordering. The procedure to select a
new permutation according to the bubble search sampling is explained in Section 4.1

To perform the bubble perturbation we select sb random jobs or machines. For each of job
or machine we extract the linear order π of its operations induced by DG. Let A be the set of
operations of the job or machine we selected to perturb. We then compute π ′ according to a
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modified bubble sampling. For each pair of operations u and v in A we make an new selection
of disjunctive arc. We select (u,v) if u is earlier than v in π , and we select (v,u) if not.

Given a complete solution for the PSS problem we cannot change the ordering of a ma-
chine or job arbitrarily, because some permutations can lead to a cycle in DG, or, can break the
expected partial order in case of a job and lead to invalid states. To avoid this problem we com-
pute a partial order Γ such that, if enforced, guarantees that the new modified DG will generate
a valid state. We modify the bubble search sampling, so that it generates only permutations that
are linear extensions of Γ.

To compute Γ for a machine we start with an empty partial order, and for a job we start with
the partial order of the job itself. In both cases we then remove the arcs of DG connecting any
two operations in A. For each pair of operations a,b ∈ A, such that a 6= b, and such that we can
reach b in DG starting from a, we add the precedence b≺ a to Γ.

This procedure guarantees that the new selection does not create cycles, if DG was acyclic
before the perturbation, and if the new order for the operations in A is a linear extension of Γ.
If a new cycle is introduced it has to contain one of the new arcs introduced to re-order the
operations in A, yet an arc (a,b) can only be selected if it is impossible for b to reach a. To find
quickly which operations reach one another we iterate once through the topological order that
we obtained when we computed the makespan, as explained in Section 4.2.2.

To change the permutation of operations in DG of a job or machine and generate a new
perturbed state we use the modified Bubble sampling, the Partial Bubble sampling, shown in
Algorithm 7. It follows the same structure of the Bubble sample but only operations whose
predecessors in Γ were already included in π ′ are tested for selection. The Bubble sampling is
an special case of the Partial Bubble sampling where Γ is empty.

Algorithm 7: Partial Bubble Sampling
input : A permutation π with length η , an insertion probability bp, and a partial order Γ.
output: A linear order that respects Γ.

1 let π ′ = () be the empty sequence.
2 for x = 1, . . . ,η do
3 y := 1
4 while no element selected do
5 if All predecessors of πy in Γ are in π then
6 with probability bp: select element πy
7 otherwise: y := y mod η +1
8 end
9 end

10 remove πy from π and append it to π ′.
11 end
12 return π ′

13 return S;

For a given a partial order Γ for a set H of size |H|= η the order strength os∈ [0,1] is given
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by Equation 4.1a. It is a measure of how many different topological orders exist for Γ. If there
are more possible topological orderings os is closer to 1, and if there are fewer it is closer to
0. A total order has only one possible linear extension and has os = 1, while an empty partial
order has η! possible linear extensions and has os = 0.

os = ∑
a,b∈H

ψ(a,b)
/(

η

2

)
(4.1a)

ψ(a,b) =

1, if a≺ b ∈ Γ

0, otherwise
(4.1b)

We use the order strength of the job when selecting the sb random jobs or machines to skew
the selection probabilities. We work with particular cases of PSS whose jobs partial orders
range from both ends of the spectrum of the order strength, so when performing the bubble
perturbation we select each job and machine with probability proportional to its flexibility. The
flexibility of a job is 1−os, and the flexibility of all machines is 1.

This perturbation is an extension of the bubble search procedure we implemented for PFSS,
where we include the partial order precedence into the perturbation. This perturbation is not
used directly in ITS, but we use it in the component analysis.

4.2.5 Acceptance Criterion

The ITS algorithm repeatedly applies the tabu search, and each time the tabu search finishes
and produces a new solution the ITS algorithm decides to either keep the new solution or to
discard it. The simplest approach is to keep only solutions that improve the current best solution,
but to allow better diversification we use the Metropolis acceptance criterion. It always accept a
new better solution, and worse solutions have a chance to be accepted, such that the probability
gets smaller for worse solutions. The probability of acceptance is given by

e−∆/T (4.2)

where T is a parameter, the so-called temperature. We define the temperature of an instance by

T = α p/10 (4.3)

for a parameter α and an average processing time of

p = ∑
j∈n

∑
i∈m

p ji

nm
. (4.4)
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4.3 Mixed Integer Program for Parallel Machines Job Shop

In the DG representation the conjunctive arcs model the given precedence relations between
operations, disjunctive arcs model alternatives in the processing order. We assume that the
operations of job j j are o( j−1)i+1, . . . ,o jm given in order of their execution. Then for the JSS we
have

C = {(Oo,Oo+1} | o ∈ (( j−1)m+1, jm), j ∈ J}

∪{(0,Oo) | o = ( j−1)m+1, j ∈ J}∪{(Oo,∗) | o = jm, j ∈ J},

D = {(Oo,Op} |m(o) =m(p)}.

A solution to the JSS is described by a selection of disjunctive arcs S ⊆ D, such that S con-
tains either (Oo,Op) or (Op,Oo) for each pair of operations with m(Oo) = m(Op), i.e. defines
a total order on the machines, and such that the graph G′ = (V,C∪S) is acyclic.

The disjunctive graph model leads naturally to a mathematical formulation of the JSS, where
we introduce a binary variable xop ∈ {0,1} for each pair of operations with m(Oo) = m(Op),
such that xop = 1 when operation Oo precedes operation Op on their common machine. Intro-
ducing further starting times yo ∈R for each operation o∈O, and an auxiliary variable Cmax ∈R
representing the makespan, i.e. the completion time of the artificial operation ∗, we obtain the
integer linear program

minimize Cmax (4.5)

subject to Cmax ≥ yo + po, ∀o ∈ O, (4.6)

yp ≥ yo + po ∀(Oo,Op) ∈C, (4.7)

yo ≥ yp + pp−Mxop ∀(Oo,Op) ∈ D, (4.8)

yp ≥ yo + po−M(1− xop) ∀(Oo,Op) ∈ D, (4.9)

xop ∈ {0,1}, ∀(Oo,Op) ∈ D, (4.10)

yo,Cmax ∈ R≥ 0, ∀o ∈ O. (4.11)

Here constraint (4.6) defines the maximum completion time, constraint (4.7) forces oper-
ations with fixed precedences to start after their predecessor terminated, constraints (4.8) and
(4.9) defines the order of the disjunctive operations depending on the chosen order by the x

variables. M is large constant, and can be set to M = ∑o∈O po, for example. Finally, (4.10) and
(4.11) define the domains of the variables.

When we introduce parallel machines, m(o) now only defines the stage on which the op-
eration has to be executed. In this case we have to decide additionally to which machine an
operation will be assigned. For the case of k parallel machines for each of the m stages, we
can introduce additional decision variables soi ∈ {0,1} such that soi = 1 when operation Oo is
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executed on the ith parallel machine on its stage. This leads to the model

minimize Cmax (4.12)

subject to ∑
i∈[k]

soi = 1 ∀o ∈ O, (4.13)

soi + spi ≤ xop + xpo +1, ∀(Oo,Op) ∈ D, (4.14)

yp ≥ yo + po−M(3− soi− spi− xop) ∀(Oo,Op) ∈ D, (4.15)

soi ∈ {0,1}, ∀o ∈ O, i ∈ [k], (4.16)

constraints (4.6),(4.7),(4.9),(4.10). (4.17)

In this model, the new constraints (4.13) make sure that each operation is assigned to a
single machine on its stage, and constraint (4.14) forces precedences among operations on the
same stage, when they have been assigned to the same machine. Note that, different from the
model for the JSS, it is possible that xop = xpo = 0 for some pairs of operations when they
have been assigned to different machines. Constraint (4.15) forces non-overlapping execution
of operations assigned to the same machine. Constraint (4.16) defines the domains of the new
variables soi.

4.4 Tabu Search for Job Shop with Parallel Machines

In this section we describe a tabu search designed for JSS-PM. It combines a neighbourhood
based on the critical path with an heuristic scheduling of the parallel machines.

4.4.1 Heuristic Scheduling for Parallel Machines

We present a novel way to produce a schedule for JSS-PM which does not include the repli-
cated machines explicitly in the DG representation. We use the DG representation of JSS ignor-
ing the replicated machines, but adapt the procedure that computes the schedule and makespan.
Given a complete selection of the DG we derive the associated schedule by starting the exe-
cution of each operation as soon as all preceding operations, according to the DG, have been
scheduled.

Our algorithm processes all operations in topological order, as defined by the DG. This can
be done in time O(mn). Each operation o will be assigned to one of the machines cm(o),1, . . . ,cm(o),k

and be scheduled on this machine. The assignment and starting time depends on the completion
time of its job predecessor and on the occupation of the k replicated machines of its correspond-
ing stage.

During the scheduling procedure when we process operation o all the preceding operations
of the corresponding job j(o) have been scheduled on stages different from m(o), and all the
preceding operations, according to the complete selection, at the same stage m(o) have being
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Operation released

Choose smallest idle time.

Some machine head is smaller than the job head.

Choose smallest delay possible.

All machines delay start.

Figure 4.4: Example of the heuristic scheduling of an operation for 3 machines.

scheduled on one of the k machines of the stage.
We use the concepts of job and machine heads to perform the heuristic scheduling. The job

head can be used unmodified for the non-parallel case, but the machine head has to be adapted to
incorporate the parallel machines. We call the completion time of the last operation scheduled
at the ith machine of stage m(o) the ith machine head qi

m(o)(o) of operation o.
Let o be the operation to be scheduled, such that m(o) = m. We check if there exists a

machine mm,i such that q j(o) ≥ qi
m(o), these are called non-delay machines. In case there are

non-delay machines we can schedule operation o at time q j(o) without delay. In this way
operation o will start as soon as its job predecessor finishes. Among the non-delay machines we
select the one with the largest machine head. The rationale behind this decision is that a machine
that is available earlier is more valuable, and therefore makes sense to select the machine that is
released later, this operation will not be scheduled any earlier with any other selection. Ideally
the selected non-delay machine will have the same head as the job head and no idle time will
be introduced in the machine or the job schedule.

If no machine satisfies q j(o)≥ qi
m(o) the set of non-delay machines is empty and we choose

the machines i with the lowest machines head and schedule the operation at time qi
m(o). In this

case the schedule will have idle time between operation o and o j, and will start as soon as any
of the available machine of its stage is free.

In Figure 4.4 we see an example of such a schedule. The operation’s job head is 4. In the
case on the left, the first machine’s head is 3, the second is 2, and the third is 5. The set of
non-delay machines contains the first two machines. Of the two we select the first machine,
because it introduces the least amount of idle time. In the figure on the right, the machines have
heads 6, 7 and 5. Therefore the set of non-delay machines is empty, and we select the third
machine, since it delays the start of the operation the least possible.

This procedure generates only non-delay schedules, but does not guarantee to generate ac-
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tive schedules. It is possible to generate any non-delay schedule with this procedure with the
proper ordering of the DG and at least one of the optimal schedules is a non-delay schedule.
Therefore it is always possible to represent at least one optimal solution for any instance of
JSS-PM in this way.

4.4.2 Tabu Search for the Parallel Machines Job-Shop Scheduling Problem

We propose a tabu search for JSS-PM. It is based on the tabu search for JSS by Nowicki and
Smutnicki [62], and is similar to the tabu search proposed for PSS.

Algorithm 8: Tabu Search
input : Instance and parameters Imax, ∆, L, T
output: Best solution found.

1 S∗ = Constructiveheuristic()
2 I = Imax
3 add S∗ to elite set E
4 while E 6= /0 do
5 get the next solution S from E
6 i = 0
7 repeat
8 i = i+1
9 S = NSP(S)

10 if Cmax(S)<Cmax(S∗) then
11 I = Imax; i = 0
12 update the incumbent S∗

13 insert S∗ into the elite list E
14 end
15 if Cycle or i > I then
16 I = I−∆

17 break
18 end
19 until;
20 end
21 return S∗

Algorithm 8 shows the pseudo-code of the proposed tabu search. The algorithm is deter-
ministic and has four parameters (I, ∆, L, T ) which will be explained below.

4.4.2.1 Constructive Heuristic

To generate the initial solution we use a constructive heuristic. We start with an empty
solution, and repeatedly schedule the first unscheduled operation of the job with the highest
remaining workload, where the remaining workload of a job is the total cost of its unscheduled
operations.
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To generate the schedule we keep track of the occupation of each parallel machine. We
schedule each new operation as early as possible after its job predecessor finishes. To this
end, we determine for each parallel machine the earliest starting time of the operation after the
completion of its job predecessor, such that it can run to completion without interruption. Note
that scheduling the operation can split an interval of idle time on a machine into two intervals.
To avoid fragmenting idle times, we break ties among machines with the same earliest starting
time by giving preference to those which do not split idle time intervals. Any remaining ties are
broken by selecting the machine that generates the smallest idle time before the operation to be
scheduled, and finally, if there is still a tie, by selecting the machine with smaller index.

4.4.2.2 Neighbourhood Search Procedure

The neighbourhood search procedure NSP evaluates and selects one of the neighbours at
each iteration. The tabu list contains pair of operations, which cannot be shifted. Each time a
move is performed, the inverse operation is added to the tabu list with a tabu tenure of T . The
NSP tests all neighbours of the current solution and chooses the next solution with the following
priority:

1. The best non-tabu move that improves the best solution found so far.

2. The best tabu move that improves the best solution found so far.

3. The best non-tabu move.

4. The oldest tabu move.

If we select the oldest tabu move, the algorithm artificially forwards the number of iterations
performed in the tabu list until a move is available.

For intensification the tabu search uses an elite list as a long-term memory. The elite list
contains the L best solutions found during the search. For each solution in the elite list, we
maintain a list of neighbors that have been examined already. Each time a new best solution is
found it is inserted into the elite list E along with the associated tabu list and the neighbours
that were not chosen by the NSP. If the list already contains L solutions, the oldest element of
the list, namely the solution, candidate and tabu list, is discarded.

The tabu search starts at the best neighbor of the initial solution. It runs with a budget of
a most I iterations, which is renewed whenever the incumbent improves. Otherwise after I

iterations or when a cycle has been detected, the current solution is abandoned, and the tabu
search continues from the next solution from the elite list. If the elite list is empty, the search
stops. The budget I is initially Imax and is reduced by ∆ whenever a solution is abandoned. If
the incumbent improves, the budget is reset to Imax.

In order to avoid cycling, the search includes a simple cycle detector. If the makespan of the
last 100 solutions is repeated then the search also abandons the current solution and continues
from the next solution in the elite list.
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4.4.3 Neighbourhood

Given a non-delay schedule there exists at least one permutation of a subset of the operations
{o1,o2, ...,ox} such that o1 starts at time 0, ox finishes at the makespan of the schedule, and
foi = soi+1 for all i ∈ [1,x). Such a sequence of operations is the critical path. Notice that this
is an alternative way to define the critical path to the one in Section 3.4. It is an equivalent
definition for the case with no parallel machines, but not for the case with parallel machines due
to the heuristic scheduling presented in Section 4.4.1. Any two adjacent operations (oi,oi+1) in
a critical path are either executed on the same machine or belong to the same job. Moreover,
in the usual DG representation for the JSS they are also directly connected by a conjunctive or
disjunctive arc. With our scheduling scheme this is necessarily true only if they belong to the
same job, otherwise oi may be any of the preceding operations of oi+1 in the DG that share the
same stage.

We adapt the technique to compute the critical path for the parallel machine case. Let o be
an operation to be scheduled. In JSS-PM o may be delayed not because of an operation that
immediately precedes it in DG, but by the last operation scheduled on the machine to which
it was assigned. Operations adjacent on the critical path will not necessarily be adjacent on
DG. When we schedule o, if there are any non-delay machines, then the job head is larger then
any of the machine heads, and so is defined by the job heads q j(o), hence o j will be also the
predecessor on the critical path. On the other hand if there are no non-delay machines and we
select machine i to schedule o, then this machine head qi

m(o) will define so and therefore the last
operation scheduled on this machine will be the predecessor in the critical path. This operation
is not necessarily om.

Let operation p be an operation on the critical path, and let bi be the last operation scheduled
on the ith parallel machine of before p was scheduled. Let B(p) be the set of operations that
contains all the operations bi that delay the start of operation p on the stage. Therefore it
contains the last operations scheduled on each machine of the stage when p was scheduled that
finish after p was released by the predecessor in its job.

The neighborhood of a complete selection consists of all complete selections generated by
a backward shift of an operation p on the critical path to the position immediately preceding
some element of B(p).

An example of the modification in DG caused by a backward shift on a machine is shown
in Figure 4.5. The orange operation f is shifted right before the other orange operation c.
We see the machine in the DG before the shift, the modification of the shift, and the resulting
machine ordering after the shift. The black arcs remain the same, the dashed arcs are removed,
and the red arcs are inserted. This may generate invalid states, because the resulting DG may
contain a cycle. In cases the operations are adjacent in the DG, then the shift is equivalent to a
transposition.

Figure 4.6 shows an example of a complete selection and the schedule induced by it. On
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a b c d e f g hChange

a b c d e f g hBefore

a b f c d e g hAfter

Figure 4.5: Example of a backward shift.

Table 4.1: Processing time of the operations.

Job

Machine 1 2 3 4

1 2 2 1 2
2 1 2 1 1

the left we see the DG representation of a complete selection for an instance with four jobs and
two stages, each with two parallel machines. The processing times of the operations is shown
in Table 4.1. On the right of Figure 4.6 we see the Gantt chart of the schedule induced by the
heuristic scheduling of the operations on the parallel machines. The makespan of this solution
is 6. The critical path is indicated on the Gantt chart by the dotted line. Figures 4.7 and 4.8
show the relation between a swap on the critical path and the associated shift on the machine.
Figure 4.7 shows the critical path explicitly, and a possible swap that generates a neighbour
solution, while Figure 4.8 shows the resulting shift on m1. Figure 4.9 shows the DG and the
schedule of the neighbour. The makespan was reduced to 5, which is the optimal makespan.

4.4.3.1 Extended Neighborhood

The neighbourhood may generate invalid solutions by creating cycles. We initially ignore
the invalid solutions, yet it is possible that the neighbourhood contains no valid solutions. In
such cases we use an extended neighbourhood.

Consider a solution in the neighbourhood of a valid solution, generated by the shift of op-
eration f right before c as shown in Figure 4.5. If the new solution has a cycle it must contain
one of the newly introduced arcs, marked in red in the figure. In particular the new cycle must
contain the arc ( f ,c), because if (b, f ) forms a cycle, then there is a path from f to b and there
would be a cycle before the shift. The same argument can be made for the arc (e,g). Therefore
to find the arcs that form the new cycle we find the paths from c to f .

The extended neighbourhood consists of all transpositions of adjacent operations in the
cycles formed on the regular neighbourhood.



54

j1 j4

j3 j2

j1 j3 j4

j2

m1a

m1b

m2a

m2b

t
0 1 2 3 4 5 6

Critical Path
0

j2m2 j2m1

j3m1 j3m2

j1m2 j1m1

j4m1 j4m2

∗

Figure 4.6: Disjunctive graph and Gantt chart before the swap.
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Figure 4.7: Critical path.
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Figure 4.8: Shift on the machine.
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Figure 4.9: Disjunctive graph and Gantt chart after the swap.
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4.4.3.2 Learning good moves

Here we introduce a learning component into the tabu search, which is able to learn and
predict promising moves. It works as follows. Whenever restarting from a new elite solution
the learning component is reset. During the tabu search it proceeds in two phases, a learning
phase and a trimming phase. In the learning phase, the neighborhood is fully explored to acquire
knowledge about good moves. In each iteration the best non-tabu move in the neighborhood
is identified, and applied. The learning component maintains, for each operation o ∈ O, the
frequency f1(o) of being part of the best move as the left element of the backward shift, and
the frequency f2(o) of being part of the best move as the right element of the backward shift.
In the trimming phase the learning component predicts the best β% of the moves (rounded
up), for a parameter β . These moves are then evaluated, and the best non-tabu move among
them is applied. The quality of a move (o, p) is predicted as the sum of the corresponding
frequencies f1(o)+ f2(p). The evaluated moves are also used to update the success frequency
of the operations. Note that this is robust in the sense that it yields with high probability the
same result as evaluating the complete neighborhood, since the best move is very likely part of
the selected moves. The search also maintains the agreement between the predicted order of
the moves in the neighborhood and the order defined by the objective function. The agreement
is measured by Kendall’s W. The search switches from the learning to the trimming phase W

exceeds some fixed threshold W0.
We do not allow the trimming phase start before the learning component has observed at

least 30 iterations, to avoid starting the trimming too early because the initial predictions were
lucky. When the neighbourhood search procedure selects a tabu move the statistics for the oper-
ations are not updated in the learning component. In case we are in the trimming phase, and the
neighbourhood search procedure cannot find a valid solution, the trimming is temporarily ig-
nored, and the whole neighbourhood is evaluated. If we still cannot cannot find a valid solution,
we use the previously explained extended neighbourhood.
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5 INSTANCES

Next we describe the set of instances used to evaluate the proposed algorithms.

5.1 Permutation Flow Shop Scheduling

For our test use the well known and widely used set of instances proposed by Taillard [82].
The test set consists of 12 groups of instances with the number of jobs varying between 20 and
500, and the number of machines between 5 and 20. Each group contains 10 instances, with
processing times drawn uniformly at random in the interval [1,99]. The current best known
values for all 120 instances can be obtained at Taillard [84].

5.2 Partial Shop Scheduling and Special Cases

We ran computational tests not only with instances proposed specifically for the PSS prob-
lem, but also for the shop problems GSS, MSS, OSS which are particular cases of PSS. We have
used one set of instances for the PSS, three sets for the GSS, one set for the MSS, and three sets
for the OSS. An overview of all instance groups of the same size is given in Table 5.1, which
shows for each group the names of the instances, the number of jobs n and machines m, the
number of instances in the group (“#”), and the order strength (“OS”), i.e. the fraction of actual
precedence relations of all possible precedences n

(m
2

)
. For MSS the number of linearly ordered

jobs and unordered jobs are given (“J j + Jo”). We could not obtain the instances marked with
∗ from the authors, so we generated them, as described below. The instances marked with †
are generated by us. In all such cases there is indeterminism in the generation procedure, so we
repeated the construction 10 times for the PSS and some of the GSS instances (ata71–80) and
20 times for the MSS instances, and in the experiments report averages.

The PSS set is based on the 80 instances proposed by [60]. We could not obtain these
instances, and therefore we generated them. The instances are based on the JSS instances
by Taillard [81]. Each has the same number of jobs, machines and processing times as the
associated JSS instance. The partial order is selected at random. Each job has a random number
of precedences in the interval [1,m] and each precedence is between two random operations of
the job. They are denoted PSSpta01–80.

For GSS we use the instances proposed by Blum and Sampels [7] and Nasiri and Kianfar
[59]. The first set contains the 40 instances GSSft10_01–10, GSSla38_01–15 and GSSabz7_01–
15. n, m and the processing times are given by a JSS instance. The GSSft10_01–10 instances
are associated with the JSS instance from [57], the GSSla38_01–15 with la38 [43], and the
GSSabz7_01–15 instances with abz7 from [1]. The second index in the instance names is the
stage size S for all jobs of that instance. The first s operations of each job belong to the first
stage, the next s to the second, and so on, until the last m mod s operations which belong to the
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Table 5.1: Instance sets used in the computational experiments.

Name n m # OS Name n m # OS

PSSpta01–10∗ 15 15 100 0.14 MSS10∗ 15+15 15 10 0.50
PSSpta11–20∗ 20 15 100 0.14 MSS11∗ 15+20 10 10 0.43
PSSpta21–30∗ 20 20 100 0.11 MSS12∗ 15+20 15 10 0.43
PSSpta31–40∗ 30 15 100 0.13 MSS13∗ 20+5 10 10 0.80
PSSpta41–50∗ 30 20 100 0.10 MSS14∗ 20+10 10 10 0.67
PSSpta51–60∗ 50 15 100 0.13 MSS15∗ 20+15 10 10 0.57
PSSpta61–70∗ 50 20 100 0.10 MSS16∗ 20+20 10 10 0.50
PSSpta71–80∗ 100 20 100 0.10 OSStai_4×4 4 4 10 0.00
GSSabz7_01–10 10 10 10 0.55 OSStai_5×5 5 5 10 0.00
GSSft10_01–10 15 15 15 0.55 OSStai_7×7 7 7 10 0.00
GSSla38_01–10 20 15 15 0.55 OSStai_10×10 10 10 10 0.00
GSSadmu01–05 20 15 5 0.86 OSStai_15×15 15 15 10 0.00
GSSadmu05–10 20 20 5 0.82 OSStai_20×20 20 20 10 0.00
GSSadmu10–15 30 15 5 0.85 OSSj5 5 5 9 0.00
GSSadmu15–20 30 20 5 0.80 OSSj6 6 6 9 0.00
GSSadmu20–25 40 15 5 0.85 OSSj7 7 7 9 0.00
GSSadmu25–30 40 20 5 0.89 OSSj8 8 8 8 0.00
GSSadmu30–35 50 15 5 0.82 OSSgp03 3 3 10 0.00
GSSadmu35–40 50 20 5 0.80 OSSgp04 4 4 10 0.00
GSSata01–10 15 15 10 0.87 OSSgp05 5 5 10 0.00
GSSata11–20 20 15 10 0.86 OSSgp06 6 6 10 0.00
GSSata21–30 20 20 10 0.82 OSSgp07 7 7 10 0.00
GSSata31–40 30 15 10 0.85 OSSgp08 8 8 10 0.00
GSSata41–50 30 20 10 0.80 OSSgp09 9 9 10 0.00
GSSata51–60 50 15 10 0.82 OSSgp10 10 10 10 0.00
GSSata61–70 50 20 10 0.80 GSS(PSS)01–10† 15 15 100 0.57
GSSata71–80∗ 100 20 100 0.85 GSS(PSS)11–20† 20 15 100 0.56
MSS1∗ 10+5 10 10 0.67 GSS(PSS)21–30† 20 20 100 0.53
MSS2∗ 10+10 10 10 0.50 GSS(PSS)31–40† 30 15 100 0.55
MSS3∗ 10+15 10 10 0.40 GSS(PSS)41–50† 30 20 100 0.55
MSS4∗ 10+20 10 10 0.33 MSS(PSS)01–10† 15 15 100 1.00
MSS5∗ 15+5 10 10 0.75 MSS(PSS)11–20† 20 15 100 1.00
MSS6∗ 15+5 15 10 0.75 MSS(PSS)21–30† 20 20 100 1.00
MSS7∗ 15+10 10 10 0.60 MSS(PSS)31–40† 30 15 100 1.00
MSS8∗ 15+10 15 10 0.60 MSS(PSS)41–50† 30 20 100 1.00
MSS9∗ 15+15 10 10 0.50

last stage. Therefore in this instance set all jobs of an instance are partitioned in the same way.
The procedure to generate this set of GSS instances is deterministic, so our set is identical to
the one proposed in [7]. The second set, proposed by Nasiri and Kianfar [59], consists of 120
instances GSSata01–80, and GSSadmu01–40. For this set the authors select a random number
of partitions, and each partition has a random size. All these instances were available, except
GSSata71–80, which we generated to complete the testbed.

The MSS test instances contains 16 instances, which we denote by MSS1–16, and have
been proposed by Liu and Ong [49]. Again the number of jobs, machines and processing times
are taken from a base JSS instance from [43]: la16, la24, la32 and la36, for MSS1-4, MSS5-
8, MSS9-12 and MSS13-16 respectively. We add 5, 10, 15 and 20 jobs with no precedences,
which are the OSS jobs of the instance. The new jobs have random processing times from 1 to
99. The lower number number of OSS jobs is on the MSS instance with lower index. We could
not obtain this set of instances so we generated it.

For OSS we used the instance sets by Taillard [81], Brucker et al. [10], and Guéret and Prins
[30]. We denote these instances by their name used in the literature with the prefix OSS.
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Inst. n m Inst. n m Inst. n m

la01 10 5 la06 15 5 la11 20 5
la02 10 5 la07 15 5 la12 20 5
la03 10 5 la08 15 5 la13 20 5
la04 10 5 la09 15 5 la14 20 5
la05 10 5 la10 15 5 la15 20 5

Table 5.2: Characteristics of the instances used in the computational experiments.

To be able to compare GSS, MSS, and PSS directly we also have derived from the PSS
instance set PSSpta01–50 corresponding instance sets GSS (PSS)01–50 for the GSS and MSS
(PSS)01–50 for the MSS. Since each PSS instance has 10 replicates, we have 500 instances
of this kind for GSS and MSS. Each GSS or MSS instance has the same processing times as
the corresponding PSS instance. The order of each job of the new instances is constructed
according to the corresponding partial order ≺PSS of PSS. For GSS, the first stage is formed by
the minimal elements of the partial order, which are then removed. This is repeated until all
operations have been assigned to a stage. For MSS, if ≺PSS contains any precedences, then the
corresponding job in the MSS instance has a JSS structure, and we set the job order as a random
linear extension of ≺PSS. If ≺PSS is empty, then the corresponding job for the MSS instance
has an OSS structure, and has no precedences. This creates GSS and MSS instances from PSS,
in a way that any solution for the generated GSS or MSS instances is also a solution for the
corresponding PSS.

The full set of instances can be found in the supplementary material [91].

5.3 Job Shop Scheduling with Parallel Machines

The tabu search has been evaluated on two distinct sets of instances. The first set contains
30 instances, and is derived from a set of 15 instances for the JSS proposed by Lawrence [43].
The number of jobs n and the number of machines m of these instances are shown in Table 5.2.
The 30 instances for the JSS-PM have been obtained by introducing k = 2 and k = 3 paral-
lel machines for each stage, and replicating each job by the same amount in each of the 15
instances.

These instances were proposed by Rossi and Boschi [74], and have a fixed replication factor
k. Such an instance is obtained from an instance of the JSS as follows. Each job j j from the in-
stance is replicated k times, which the same processing times and the same machine (resp. stage)
order. Each machine of the JSS is converted into a stage with k parallel machines. This set con-
tains thirty JSP-PM instances, which are called ROla01–15.k2 and ROla01–15.k3

Note that for these instances, a solution of the corresponding JSS leads to a solution of the
JSS-PM, where the k replicated jobs execute in parallel on the k replicated machines. Thus,
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Operation

Machine M1 M2 M3 4th

Job ord p ord p ord p ord p

J1 3 6 4 8 2 4 1 5
J2 2 14 4 9 1 3 3 16
J3 3 6 4 13 2 5 1 20

Table 5.3: Example of an instance of the JSS with three jobs and four machines.
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Figure 5.1: Gantt chart with the optimal solutions for a JSS and a JSS-PM instance.

the optimal solution of such a JSS-PM is at most the optimal solution of the corresponding
JSS. Rossi and Boschi [74] assert that this is also an optimal solution for JSS-PM, however, the
optimal solution of the JSS-PM can be less. Table 5.3 gives an example of an instance of the
JSS, where the column “ord” is the order of the operation in the total order of its job. For this
JSS instance the corresponding JSS-PM with k = 2 has a shorter makespan, as shown in the
Gantt charts in Figure 5.1. The top figure shows the Gantt chart of the optimal solution with
Cmax = 56 of an instance of the JSS with three jobs and four machines. On the bottom we see
the Gantt chart of the optimal solution with Cmax = 54 of the corresponding instance with k = 2
parallel machines and the double number of jobs. The replicated jobs have the same color, but
are hatched. The optimal makespan of the parallel instance is less than the optimal makespan
of the base instance.

We also evaluate our solver on a second set of 22 instances proposed by Gholami and Sot-
skov [24]. The instances of this set are based on instances la10–lat20 for the JSP proposed by
Lawrence [43] and instances mt10 and mt20 proposed by Muth and Thompson [57]. Unlike
the previous set, each stage can have a variable number of parallel machines. To generate the
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Table 5.4: Characteristics of the instances of the literature.

Inst. n m k Inst. n m k

ROla01–05.k2 20 5 2 GHla01–05 10 5 [1,5]
ROla06–10.k2 30 5 2 GHla06–10 15 5 [1,5]
ROla11–15.k2 40 5 2 GHla11–15 20 5 [1,5]
ROla01–05.k3 30 5 3 GHla16–20 10 10 [1,5]
ROla06–10.k3 45 5 3 GHmt10 10 10 [1,5]
ROla11–15.k3 60 5 3 GHmt20 20 5 [1,5]

instances the authors replicate each machine a random number of times from one to five. The
instances in this set are called GHla01–20, GHmt10, and GHmt20.

The characteristics of the instances from the literature are shown in Table 5.4. We also
propose a third, new set of 300 instances for the JSP-PM. For each combination of a number of
jobs in {5,10,15, . . . ,50}, a number of machines in {5,10,15, . . . ,30}, and a maximum number
of replications k̄ in {2,3,4,5,6} we generate a JSP-PM instance. The processing time of each
operation is a random number in [1,99], and the number of replications for each machine is a
random number in [1, k̄].
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6 RESULTS

In this section we report and discuss the experiments for the proposed algorithms and com-
pare it to the results found in the literature. We have implemented the algorithms in C++, and
compiled it with the GNU g++ compiler version 5.3.1.

The experiments for PFSS have been done on a PC with an Intel Core i7 930 processor
running at 2.80 GHz and 12 GB of main memory. For the PSS solver the experiments have
been performed on a PC with an 8-core AMD FX-8150 processor and 32 GB of main memory.
Finally for JSS-PM we used a PC with a 3.2 GHz Intel i5-6600 processor and 16 GB of main
memory running Ubuntu Linux. In each experiment only one core was used.

6.1 Simple Bubble Search for PFSS

In this section we report on computational experiments done with several variants of Bubble
Search starting from the base ordering obtained by the NEHKK1 algorithm presented in Sec-
tion 4.1.1. We have implemented the NEHKK1 algorithm using the enhancements proposed to
run in O(n2m) and the standard and adaptive variant of randomized Bubble Search.

6.1.1 An Analysis of the N1 Neighborhood on the Instance Carlier5

To decide the best acceptance criterion for Bubble Search with replacement we first con-
ducted an analysis of the N1 neighborhood. The analysis has been done in instance 5 proposed
by Carlier [12], since it has only 10 jobs and thus can be analyzed exhaustively. A classification
of the 10! = 3.628.800 solutions can be seen in Table 6.1. This table follows the classification
of Hoos and Stützle [32].

We can observe that the majority of the solutions are ledges (i.e. the have better, equal, and
worse neighbors), followed by slopes. All three optimal solutions of value 7720 are non-strict
local minima. Based on this analysis, we opted to not only accept solutions that are strictly
better in Bubble Search with replacement, but also solutions of equal value. Preliminary tests
have shown that this strategy performs significantly better than accepting only strictly better
solutions.

6.1.2 Parameter Adjustment

We next investigated the dependency of randomized Bubble Search with replacement on the
parameter α . We selected the first instance in each group, and ran Bubble Search with a time
limit of nm/2× 60ms for α ∈ {0.6,0.7,0.8,0.9,0.95}. Each test was replicated three times.
The results of these tests can been seen in Table 6.2. It reports for each value of α the average
percent relative deviation from the best known value over all 12 test instances. The smallest
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Table 6.1: Characterization of all solutions of instance Carlier5.

Type of solution Number %
Isolated 0 0
Strict local maximum 0 0
Plateau 0 0
Local maximum 6 0.00017
Strict local minimum 5 0.00014
Slope 134784 3.71
Local minimum 1743 0.048
Ledge 3492262 96.24

Table 6.2: Results for randomized Bubble Search with replacement for different values of α .

α (%)
n m NEHKK1 60 70 80 90 95 Adapt.

20 5 1.41 0.00 0.00 0.00 0.00 0.00 0.00
20 10 6.19 0.46 0.51 0.91 1.10 1.41 0.52
20 20 4.66 1.34 1.00 1.23 1.61 2.25 1.04
50 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00
50 10 5.95 5.02 4.51 2.75 1.49 2.84 2.66
50 20 5.22 4.48 3.97 3.24 3.03 3.10 3.14

100 5 0.38 0.00 0.00 0.00 0.00 0.00 0.00
100 10 1.32 0.88 0.63 0.18 0.20 0.16 0.16
100 20 5.47 5.47 5.43 5.07 3.85 3.30 3.41
200 10 0.97 0.68 0.33 0.13 0.09 0.21 0.16
200 20 3.22 3.22 3.22 3.22 2.92 2.41 2.24
500 20 2.71 2.71 2.71 2.71 2.57 2.14 1.54
Averages 3.12 2.02 1.86 1.62 1.41 1.49 1.24
Values are averages over three replicates.

deviations are highlighted in boldface.

The overall best value is α = 0.9 with a relative deviation of 1.41. There is however a
clear tendency to perform better with larger values of α for an increasing number of jobs. We
therefore chose a base value of α0 = 8×10−4 and ran adaptive Bubble Search with α = α

1/n
0 .

The choice of α0 fixes α = 0.7 for n = 20. The results for adaptive Bubble Search can be seen
in the last column (Adapt). Adaptive Bubble Search performs clearly better than any Bubble
Search with a fixed alpha, obtaining an overall average percent relative deviation of 1.24. The
relative deviation for each instance size is close to the best for the individual α values.

Table 6.2 also contains in column “NEHKK1” the relative deviations of the initial solutions
obtained by NEHKK1 from the best known value. We can see that randomized Bubble Search
with replacement has the potential to substantially improve over the values found by NEHKK1.
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Table 6.3: Results for adaptive randomized Bubble Search with replacement for time scales
nm/2× t0, t0 ∈ {0.5,8,60} on the complete Taillard instance set.

Bubble Search BM
n m NEH NEHKK1 FRB3 FRB412 FRB5 0.5 8 60 8

20 5 3.35 2.81 0.89 1.12 1.08 0.83 0.28 0.22 0.29
20 10 5.02 4.43 1.86 1.79 2.19 2.49 1.77 1.02 1.53
20 20 3.73 3.34 2.18 2.08 1.80 2.24 1.58 1.21 1.54
50 5 0.84 0.67 0.22 0.30 0.19 0.21 0.13 0.09 0.13
50 10 5.12 5.46 2.99 2.89 2.25 3.90 2.76 2.00 2.77
50 20 6.32 6.25 3.38 4.05 3.38 5.08 4.58 4.22 4.58

100 5 0.46 0.43 0.21 0.28 0.16 0.20 0.12 0.08 0.12
100 10 2.13 1.78 0.94 1.22 0.80 1.24 0.84 0.56 0.85
100 20 5.23 5.23 2.90 3.73 2.51 4.58 4.07 3.47 4.07
200 10 1.43 1.11 0.52 0.60 0.38 0.79 0.47 0.40 0.48
200 20 4.52 4.10 2.41 2.95 1.84 3.44 2.95 2.40 2.96
500 20 2.24 2.04 1.06 1.40 0.72 1.67 1.34 1.12 1.34
Averages 3.37 3.14 1.63 1.87 1.44 2.22 1.74 1.40 1.72
Values are averages over five replicates and ten instances.

6.1.3 Experiments on the Full Test Set

Based on the parameter adjustment above, we ran adaptive Bubble Search on all 120 in-
stances. We tested the method on three time scales, namely nm/2× 0.5ms, nm/2× 8ms, and
nm/2× 60ms to evaluate independently its utility for quickly improving initial solutions, as
well as its limit in the long term. Each test was replicated five times.

The results of these experiments can be seen in Table 6.3. It reports the average percent
relative deviation from the best known values for each group of instances for the original NEH
heuristics, the improved NEHKK1, the algorithms FRB3, FRB412, and FRB5 proposed by
Farahmand et al. [20], and for Bubble Search for the three time scales above.

The experiments confirm the potential of Bubble Search to produce good solutions and can
considerably improve over the initial solution obtained by NEHKK1. As expected, the average
quality of the solutions improves over time from 2.22% to 1.40%. In average over all instances,
in the largest time scale, Bubble Search is able to outperform the best re-insertion heuristic
FRB5, although only by a small margin. In the middle time scale its values are competitive in
quality with the construction heuristics FRB3 and FRB412. For very short execution times, it
still improves the initial values of NEHKK1 by about 1%, but produces about 0.4% to 0.6%
higher deviations than other constructive heuristics.

These results have to be judged relative to the computational effort of the different methods.
The result of Farahmand et al. [20] were obtained on a PC with a Pentium IV processor running
at 3.2 GHz, which is comparable to but slower than our machine. The time of Bubble Search,
on the other hand, is dominated by the computation of the new makespan, and is not fully



64

optimized, since the application of Taillard’s improvements are not straightforward to apply to
it. The average execution time of FRB3, FRB412 and FRB5 as reported by Farahmand et al. [20]
is 2.43, 0.20, and 4.88 seconds, respectively, while Bubble Search needs 0.31, 4.51, and 31.60
seconds on the three time scales. Thus, Bubble Search on the small time scale is comparable to
FRB412, on the middle time scale to FRB3 and FRB5.

Looking at the individual instance groups, we can observe that Bubble Search outperforms
FRB3 in eight of the 12 groups, in particular for the instances of smaller size. The same holds
for three of the smaller instance groups when comparing the short time scale with FRB412. This
indicates that Bubble Search may have a potential advantage on short time scales and small
instances. For large instances Bubble Search takes more time to obtain good results. This can
be explained by the stochastic component of the method, and the need to compute the makespan
of the perturbed orderings from scratch.

We finally briefly evaluated if a milder acceptance criterion would be able to improve the
results for Bubble Search in the middle time scale. To this end, we used a Metropolis acceptance
criterion, that for temperature T accepts solutions that are worse by ∆ with probability e−∆/T .
We followed Ruiz and Stützle [75] and chose a fixed base temperature of p/10×0.5, where p is
the average processing time over all machines and jobs. We adjusted this temperature such that
it is about ten times lower for the largest instances. We ran Bubble Search for 750nm iterations,
and then enabled the Metropolis acceptance criterion. The result of this test can be seen in
the final column (BM) of Table 6.3. The value when using the extended acceptance criterion
is better than Bubble Search in the middle time scale, but only slightly. In two of the smaller
instances, it obtains better results earlier. In summary, Bubble Search seems relatively robust
with respect to the acceptance criterion.

6.2 Iterated Tabu Search for Partial Shop Scheduling

In this section we evaluate the ITS developed for PSS.

6.2.1 Parameter setting

We used the R package irace [53] to calibrate the parameters of ITS. It performs an iterative
F-Race [3] over the parameter space, and identifies the setting that yields the best performance.
For the calibration we chose from each instance group several instances, which in prelimi-
nary experiments have shown to be most sensible to the parameter settings (namely the PSS
instances PSSpta11 and PSSpta30, the GSS instances GSSabz7_10, GSSft10_2, GSSadmu14,
GSSadmu27, GSSata15 and GSSata41, the MSS instances MSS1 andMSS 5, and the OSS in-
stances OSSta31, OSSbr10, OSSbr47, OSSgu57 and OSSgu68). For the instances which were
not available we chose the first one of the generated instances. The parameters and the range of
values evaluated during the calibration are shown in Table 6.19. The initial ranges were chosen
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Table 6.4: Parameters of ITS and the evaluated intervals.

Parameter Range Value

Tabu tenure τ [4,15] 6
Max. no. of tabu search iterations w/o improvement ι [500,10000] 2809
Reduction of the no. of iterations after backtracking δI [2,10] 6
Size of the elite list e [1,20] 4
Maximum size of detectable cycles C [10,200] 95
Parameter for the metropolis acceptance criterion α [0.0,1.0] 0.2169
Number of operations to perturb π [5,50] 33

based on preliminary experiments. The budget of runs for the calibration is 10000 and the time
limit for each run is 30s.

The result of the calibration can be seen in column “Value” of Table 6.19.

6.2.2 Methodology

We compare the results obtained by ITS to the state-of-the-art algorithms: for PSS we com-
pare in Section 6.2.5 to Nasiri and Kianfar [60], for GSS in Section 6.2.6 to Liu et al. [50]
and Nasiri and Kianfar [59], for MSS in Section 6.2.7 to Liu and Ong [49], and for OSS in
Section 6.2.8 to Sha and Hsu [77].

The running times reported in the literature have been normalized to account for differences
in the processing speed of each processor by dividing by the factors shown in Table 6.7. We
used the Passmark [64] CPU score, and where not available the Dhrystone/Whetstone measure-
ments to determine relative processing speed. The factors have been conservatively rounded up
because of the imprecision when comparing algorithms running on different CPUs.

In the tables we report the results of ITS and, when possible compare it to the state-of-the-art
algorithms. The relative deviation (Cmax−LBqr)/LBqr of solution values Cmax from the lower
bound LBqr is represented as D. The column “Instance” has the index of the instance. When we
are comparing ITS to algorithm “A”, then the adjusted time used by A is shown in the column
TA, and the deviation D obtained by A is in column DA . D f ull

IT S shows D obtained by ITS at
the end of the 5 minute execution. The column bet f ull shows how many times ITS obtained
results as good or better than A at the end of the execution, while opt f ull shows the number of
times ITS obtained the lower bound, and therefore a guaranteed optimal solution. Notice that
the instances may have optimal solutions above the lower bound. The same measurements are
provided at an equivalent time to the one used by A: Drel

IT S is D, betrel is the number of times ITS
solution had at least the same quality as A, and optrel is the number of times ITS reached the
lower bound. The time ttb(s) is the average time ITS took to reach the best solution it found,
and the time t(s) is the average time it took to reach the quality of the solution found by A.

When comparing to other algorithms, we run ITS with the normalized time limit reported in
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Table 6.5: Factor for adjustment of processing times.

Reference Environment Factor

Nasiri and Kianfar [60] Core Duo 2 T2400, 1.83 Ghz 2
Liu et al. [50] Pentium IV, 1.8 GHz 6
Nasiri and Kianfar [59] Core Duo 2 T2400, 1.83 Ghz 2
Liu and Ong [49] Pentium II, 500 MHz 20
Sha and Hsu [77] AMD Athlon 1800+ 3

Table 6.6: Comparing the loss of solution quality when using GSS and MSS to model a PSS
instance.

PSS GSS MSS

Group LBqr D300s ttb(s) LBqr D300s ttb(s) LBqr D300s ttb(s)

01–10 937.10 3.01 46.04 940.91 6.36 116.17 994.01 33.82 59.61
11–20 1182.50 0.00 0.03 1183.83 0.28 5.78 1231.96 15.42 113.52
21–30 1245.50 1.26 116.51 1250.53 4.48 171.59 1325.75 30.20 114.52
31–40 1728.80 0.00 0.02 1729.41 0.09 0.61 1741.98 2.71 112.60
41–50 1752.50 0.00 0.13 1753.68 0.19 18.49 1775.58 11.13 195.02

Avg. 1369.08 0.85 32.55 1371.67 2.27 62.71 1413.86 18.64 121.20

the literature. For problem sets PSS, GSS, and MSS this is the time for the maximum number of
iterations or for reaching the lower bound, for problem set OSS this is a time limit. Note that for
the former three groups running our algorithm for the reported time is strongly biased against
our method, since even if two algorithms have the same average running time and solution
quality, running one with the average time of the other will lead to apparent worse results. We
also executed ITS for a total of 5 minutes to evaluate its performance with additional time.

For the scatter plots we compare ITS with the state-of-the-art algorithms. The time used for
the comparison is always the time reported for the algorithm with which we are comparing ITS.

6.2.3 Comparison of PSS, GSS and MSS

First we use ITS to compare the PSS, GSS and MSS problems. We evaluate the lower
bound and quality of the solutions produced by ITS on the PSSpta01–50, GSS(PSS)01–50 and
MSS(PSS)01–50 sets of instances. The GSS and MSS sets of instances are built from the PSS
set, in such a way that a solution for the two former sets is always a solution to the corresponding
solution of the latter set as described in Section 5.2.

Table 5.1 shows the average order strength of the instances. We can see that MSS was
converted to only linear orders, with order strength 1.0. GSS is able to represent some of the
flexibility of PSS, but the order strength of the instances is in average 0.55 compared to 0.12 for
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the PSS instances.

In Table 6.6 we see the results of ITS for PSSpta01–50 under PSS, for GSS(PSS)01–50
under GSS and for MSS(PSS)01–50 under MSS. For each instance group, columns LBqr show
average lower bounds, columns D300s the average deviation from the PSS lower bound of the
solutions produced at 300 seconds, and columns ttb(s) the average time to find the best solution.
In order to make the quality of the solutions comparable, we used only the lower bound of the
PSS instance to compute the relative deviations of the corresponding GSS and MSS instances.

As expected, we can see that the lower bound of the PSS instances is smaller than for GSS
and MSS. The higher flexibility of PSS also leads to significantly better solutions, in average
about 1.4% compared to GSS and more than 17% compare to MSS. The average time of 32.55s
to find these solutions is also smaller for PSS. For GSS instances the time to find the best
solution is in average about twice as long, and for MSS instances four times as long. Thus a
larger search space not necessarily leads to more longer computation times. In summary, this
experiment shows that the increased flexibility of PSS in modeling instances leads to better
solutions.

6.2.4 Component Analysis

In this section we evaluate the influence of some of the most important components of ITS.
To perform this evaluation we chose a subset of representative instances. We selected instance
for which the time to best is large, which we consider as a metric to define the harder instances
for ITS, and therefore will more likely show the influence of the different components. We
selected a few instances from each benchmark set. For PSS the two instances with largest
ttb(s) is first PSSata23 and then PSSata26, but both have the same n and m, so to select a
more representative set of instances we selected the third largest ttb(s) which is PSSpta06. The
selected instances are: PSSpta06, PSSpta23, GSSft10_02, GSSla38_4, GSSata47, GSSadmu08,
MSS1, MSS13, OSSgp09-10, OSSj6-per0-0 and OSSta31. The analysis is performed at the end
of the 300 seconds.

To evaluate the influence of trimming the neighbourhood shown in Section 4.2.2.1 we mea-
sured the average number of state transitions in ITS. Each state transition consists in performing
the neighbourhood search procedure and selecting the new solution to be visited. The trimming
accelerates this procedure by discarding a part of the neighbourhood that does not have to be
evaluated. The average number of state transitions is 44381 per second without the trimming,
and 91788 per second with the trimming procedure, therefore the algorithm performs about two
times faster with this technique.

Table 6.7 shows the results at 300s for the different configurations of the components of
ITS. The column instance show the instance name. The column ITS shows the quality of the
solution produced by the ITS with the best configuration we found. It is the configuration we
used to compare it to the state of the art of PSS, MSS, GSS, and OSS bellow. The column



68

Tabu shows the results of the tabu search in ITS before it makes the first perturbation, while
the column Tabu50k shows it exchanging the Max number of tabu search iterations without
improvement ι of 50000 instead of 2809 used in ITS. The Restart column shows the value with
a random solution generation in place of the perturbation, while Bubble shows the ITS solution
substituting the perturbation, by the perturbation described in Section 4.2.4.1.

Table 6.7: Results for the component modifications in ITS.

Instance IT S Tabu Tabu50k Restart Bubble

PSSpta06 2,57 5.17 5.06 4.72 4.27
PSSpta23 2.45 7.65 6.66 5.06 4.22
GSSft10_02 22.73 26.01 24.47 22.78 22.22
GSSla38_4 5.34 5.93 5.51 5.51 5.51
GSSata47 5.07 9,40 5.62 7.34 7.16
GSSadmu08 13.00 15.90 13.08 13.00 13.46
MSS1 3.43 5.12 5.12 5.12 2.56
MSS13 1.63 6.82 4.33 2.72 2.72
OSSgp09-10 0.25 7.73 7.73 2.61 0.54
OSSj6-per0-0 0.90 5.01 5.01 3.12 1.61
OSSta31 0.85 2.51 2.51 2.20 0.47

Average 5.29 8.84 7.74 6.74 5.89

We see that the proposed ITS outperforms the other configurations, while substituting the
perturbation by the bubble perturbation is not very detrimental to the quality of the solution,
increasing the deviation by only 0.6%.

6.2.5 Partial Shop

In this sub-section we evaluate the performance of ITS on the PSS instances. We compare
the results with the Hybrid Scatter Search (HSS) of Nasiri and Kianfar [60]. Nasiri and Kianfar
[60] report the results obtained for HSS for the 50 smaller instances. We show a comparison
with ITS in Table 6.8.

The average relative deviation of ITS is 0.99% compared to 10.14% for HSS. In 34 instances
(01, 11–20, 24–25, 27, and 31–50) ITS always obtained the lower bound LBqr. ITS was able
to reach the quality of the solution obtained by HSS in 0.02s in average, never taking more
than 0.2s. The results show that ITS clearly outperforms HSS for PSS, that these instances are
mostly easy to solve, and that LBqr is a good lower bound for them. The small variations of
the relative deviations of ITS for the instance groups show that the solution quality depends
only weakly on the generated precedences. In 5 minutes the average relative deviation of ITS
on instances PSSata01–50 improves to 0.85%, and the average time to find the best solution is
32.55s.
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Table 6.8: Comparing ITS with the HSS of Nasiri and Kianfar [60]

Instance THSS DHSS D f ull
IT S bet f ull opt f ull ttb(s) Drel

IT S betrel optrel t(s)

PSSata01 29.75 25.15 0.00 100 100 2.14 0.00 100 100 0.00
PSSata02 28.85 25.08 2.50 100 0 5.24 2.50 100 0 0.00
PSSata03 28.90 17.26 2.33 100 0 14.37 2.35 100 0 0.00
PSSata04 29.50 27.80 4.71 100 0 3.20 4.71 100 0 0.00
PSSata05 29.35 27.86 4.21 100 0 1.91 4.21 100 0 0.00
PSSata06 29.95 28.26 1.00 100 3 200.99 2.57 100 0 0.00
PSSata07 29.30 17.27 1.63 100 0 75.45 2.09 100 0 0.00
PSSata08 29.80 23.27 11.98 100 0 1.75 11.98 100 0 0.00
PSSata09 30.15 17.18 1.66 100 0 4.29 1.66 100 0 0.00
PSSata10 29.55 16.32 0.11 100 62 151.01 1.05 100 1 0.00
PSSata11 40.55 2.71 0.00 100 100 0.02 0.00 100 100 0.01
PSSata12 41.45 10.32 0.00 100 100 0.01 0.00 100 100 0.01
PSSata13 40.00 7.28 0.00 100 100 0.01 0.00 100 100 0.01
PSSata14 38.90 1.50 0.00 100 100 0.02 0.00 100 100 0.01
PSSata15 40.60 10.64 0.00 100 100 0.03 0.00 100 100 0.01
PSSata16 39.80 12.22 0.00 100 100 0.15 0.00 100 100 0.01
PSSata17 42.75 6.58 0.00 100 100 0.02 0.00 100 100 0.01
PSSata18 38.30 10.89 0.00 100 100 0.03 0.00 100 100 0.01
PSSata19 39.80 1.32 0.00 100 100 0.01 0.00 100 100 0.01
PSSata20 39.90 12.27 0.00 100 100 0.02 0.00 100 100 0.01
PSSata21 85.00 22.43 3.20 100 0 205.50 4.07 100 0 0.01
PSSata22 96.20 9.73 0.00 100 99 55.31 0.03 100 86 0.01
PSSata23 89.55 12.12 1.51 100 0 234.93 2.45 100 0 0.02
PSSata24 92.75 20.90 0.00 100 100 6.86 0.00 100 100 0.01
PSSata25 90.45 20.56 0.00 100 100 3.04 0.00 100 100 0.01
PSSata26 94.25 14.44 2.76 100 0.00 233.58 3.69 100 0.00 0.01
PSSata27 96.95 17.17 0.00 100 100 7.53 0.00 100 100 0.01
PSSata28 91.95 16.47 0.00 100 100 28.94 0.00 100 98 0.01
PSSata29 96.95 19.35 0.44 100 19 208.61 1.08 100 2 0.01
PSSata30 93.50 19.49 4.68 100 0 180.80 5.29 100 0 0.01
PSSata31 119.60 0.79 0.00 100 100 0.02 0.00 100 100 0.01
PSSata32 128.65 2.75 0.00 100 100 0.01 0.00 100 100 0.01
PSSata33 62.65 0.00 0.00 100 100 0.02 0.00 100 100 0.02
PSSata34 113.70 0.60 0.00 100 100 0.01 0.00 100 100 0.01
PSSata35 112.35 0.87 0.00 100 100 0.02 0.00 100 100 0.01
PSSata36 47.75 0.00 0.00 100 100 0.02 0.00 100 100 0.02
PSSata37 14.45 0.00 0.00 100 100 0.02 0.00 100 100 0.02
PSSata38 99.55 0.00 0.00 100 100 0.02 0.00 100 100 0.02
PSSata39 128.40 2.49 0.00 100 100 0.02 0.00 100 100 0.02
PSSata40 112.90 2.18 0.00 100 100 0.03 0.00 100 100 0.02
PSSata41 140.75 6.00 0.00 100 100 0.05 0.00 100 100 0.03
PSSata42 75.70 0.00 0.00 100 100 0.03 0.00 100 100 0.03
PSSata43 151.00 1.00 0.00 100 100 0.08 0.00 100 100 0.05
PSSata44 111.60 0.00 0.00 100 100 0.04 0.00 100 100 0.04
PSSata45 120.95 0.00 0.00 100 100 0.06 0.00 100 100 0.06
PSSata46 113.50 0.00 0.00 100 100 0.03 0.00 100 100 0.03
PSSata47 150.15 4.43 0.00 100 100 0.07 0.00 100 100 0.03
PSSata48 142.45 6.12 0.00 100 100 0.04 0.00 100 100 0.03
PSSata49 92.85 0.00 0.00 100 100 0.03 0.00 100 100 0.03
PSSata50 150.90 6.18 0.00 100 100 0.87 0.00 100 100 0.03

Average 76.29 10.14 0.85 100 73.66 32.55 0.99 100 71.74 0.02

In the graph in the left of Figure 6.1 we show the evolution with time of the quality of the
solution produced by ITS. We grouped the instances by size and associated each with a color,
and each group corresponds to a set of 10 instances. The horizontal dashed lines show the
quality of the solution produced by HSS, while the vertical dashed lines show the time reported
for HSS. We show the time only up to 150 seconds despite the execution lasting 300 seconds.
For PSSata01-10 and PSSata21-30 still improve the solution quality up to close to 300 seconds
but the improvement after 150 seconds is negligible. The quality of the solution for PSSata11-
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20 stagnates in a second, and for 41-50 it stagnates after 10 seconds. For PSSata31-40 ITS
reaches the lower bound LBqr in a second. It shows that ITS converges very fast for these PSS
instances, and produces better solutions substantially better and faster than HSS. Notice that the
black, green and red curves are not shown because the instances converge to the value of lower
bound very fast, most in under 0.1 seconds.

The scatter plot on the right of Figure 6.1 compares for each of the 50 instances the average
relative deviation DHSS to the minimum, average and maximum average relative deviation DIT S

over the 10 generated instances.
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Figure 6.1: Graphs for evaluating the ITS and the HSS on the PSS instances.

The instances PSSpta51–80 are shown in Table 6.9, and there is no direct comparison with
HSS, since Nasiri and Kianfar [60] only report that the lower bound LBqr could be obtained
in all replications with different seeds in less than a second. The same holds for ITS, and the
average time to obtain the lower bound is 0.19s.

6.2.6 Group Shop

In this subsection we evaluate ITS on the GSS instances. We evaluate separately the in-
stances proposed by Blum and Sampels [7] and Nasiri and Kianfar [59].

6.2.6.1 Instances by Blum and Sampels [7]

We first evaluate ITS on GSS on the instances from Blum and Sampels [7], and compare it
to the state-of-the-art tabu search of Liu et al. [50].
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Table 6.9: IGA results for the large instances of Nasiri and Kianfar [60]

Instance D f ull
IT S opt f ull ttb(s)

PSSata51 0.00 100 0.05
PSSata52 0.00 100 0.05
PSSata53 0.00 100 0.06
PSSata54 0.00 100 0.05
PSSata55 0.00 100 0.05
PSSata56 0.00 100 0.05
PSSata57 0.00 100 0.05
PSSata58 0.00 100 0.05
PSSata59 0.00 100 0.05
PSSata60 0.00 100 0.06
PSSata61 0.00 100 0.11
PSSata62 0.00 100 0.10
PSSata63 0.00 100 0.09
PSSata64 0.00 100 0.09
PSSata65 0.00 100 0.11
PSSata66 0.00 100 0.10
PSSata67 0.00 100 0.10
PSSata68 0.00 100 0.09
PSSata69 0.00 100 0.09
PSSata70 0.00 100 0.10
PSSata71 0.00 100 0.43
PSSata72 0.00 100 0.44
PSSata73 0.00 100 0.42
PSSata74 0.00 100 0.42
PSSata75 0.00 100 0.42
PSSata76 0.00 100 0.44
PSSata77 0.00 100 0.43
PSSata78 0.00 100 0.41
PSSata79 0.00 100 0.46
PSSata80 0.00 100 0.45

Average 0.00 100 0.19

Table 6.10 shows the results of the tests. The average relative deviation of ITS is 6.69%, and
for the tabu search 7.07%. With additional time ITS obtained a relative deviation of 6.36% in
an average time of 42.82s. For all base instances and for all stage sizes the relative deviations
for ITS are lower than those of the tabu search. ITS obtained the same or a better result in 36 of
the 40 instances, and strictly better results in 21.

The difference in the overall average relative deviation is 0.38%. ITS was able to reach
the solution quality of the tabu search in 375 of the 400 runs, and with more time was able to
reach the values reported for the tabu search in all runs. The average time ITS takes to reach the
solution quality of the tabu search is 6.48s. Thus ITS is about a factor of 4 faster compared to
the average running time of 27.35s for the tabu search. ITS was able to reach the lower bound
LBqr in 98 of the 400 runs, and in six instances in all 10 replications. With additional time
ITS was able to reach the lower bound 125 times in the 400 runs, and in 12 instances in all 10
replications. In summary, ITS is consistently better than the tabu search, but only by a slight
margin.

Figure 6.2 shows the scatter plot comparing ITS to the tabu search. It shows that the quality
of the solutions of ITS and the tabu search are very similar, with a slight advantage for ITS.
Which is compatible with the difference of 0.38% difference in Drel

IT S, and DT S. Moreover we
can see that the difficulty to reach the lower bound for both algorithms is correlated.
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Table 6.10: Comparing ITS solver with TS of Liu et al. [50] for GSS

Instance TT S DT S D f ull
IT S bet f ull opt f ull ttb(s) Drel

IT S betrel optrel t(s)

GSSabz7_1 46.02 5.17 4.09 10 0 123.85 4.50 10 0 0.54
GSSabz7_2 45.05 8.09 8.09 10 0 1.28 8.09 10 0 1.28
GSSabz7_3 45.98 7.18 7.18 10 0 1.19 7.18 10 0 1.19
GSSabz7_4 44.67 6.65 6.65 10 0 5.00 6.65 10 0 5.00
GSSabz7_5 45.08 14.75 14.75 10 0 0.14 14.75 10 0 0.14
GSSabz7_6 40.77 5.45 5.45 10 0 2.24 5.45 10 0 2.24
GSSabz7_7 54.33 0.00 0.00 10 10 36.02 0.37 8 8 36.02
GSSabz7_8 45.77 3.78 3.78 10 0 0.13 3.78 10 0 0.13
GSSabz7_9 47.52 3.78 3.78 10 0 23.78 3.78 10 0 23.78
GSSabz7_10 44.98 10.07 10.07 10 0 6.84 10.07 10 0 6.84
GSSabz7_11 43.08 7.58 7.58 10 0 0.01 7.58 10 0 0.01
GSSabz7_12 43.83 4.79 4.59 10 0 0.01 4.59 10 0 0.01
GSSabz7_13 41.97 3.13 2.65 10 0 0.02 2.65 10 0 0.01
GSSabz7_14 42.47 0.00 0.00 10 10 0.02 0.00 10 10 0.02
GSSabz7_15 2.52 0.00 0.00 10 10 0.00 0.00 10 10 0.00
GSSft10_1 10.38 17.24 16.83 10 0 2.24 16.83 10 0 2.24
GSSft10_2 10.92 22.84 22.32 10 0 141.41 22.73 9 0 8.79
GSSft10_3 10.53 22.68 20.37 10 0 125.48 21.28 10 0 0.06
GSSft10_4 11.25 20.78 18.00 10 0 127.45 18.98 10 0 0.92
GSSft10_5 10.22 14.27 13.74 10 0 5.88 13.77 10 0 0.21
GSSft10_6 10.50 11.05 10.69 10 0 7.74 10.75 10 0 3.00
GSSft10_7 7.62 5.79 3.24 10 0 94.08 4.76 8 0 6.30
GSSft10_8 2.10 0.00 0.00 10 10 1.72 0.05 8 8 1.72
GSSft10_9 0.13 0.00 0.00 10 10 0.05 0.00 10 10 0.05
GSSft10_10 0.08 0.00 0.00 10 10 0.00 0.00 10 10 0.00
GSSla38_1 32.70 27.92 26.83 10 0 27.60 26.98 10 0 4.45
GSSla38_2 31.32 17.45 16.61 10 0 102.53 17.23 4 0 49.54
GSSla38_3 30.33 11.24 9.59 10 0 172.21 11.22 10 0 12.62
GSSla38_4 33.32 5.71 4.32 10 0 200.86 5.34 8 0 25.51
GSSla38_5 34.62 5.62 4.98 10 0 36.50 5.15 10 0 0.48
GSSla38_6 35.65 2.94 0.47 10 2 162.00 1.80 9 0 13.74
GSSla38_7 35.17 2.07 0.00 10 10 60.78 0.47 10 4 5.68
GSSla38_8 28.17 0.54 0.00 10 10 12.97 0.03 10 9 3.84
GSSla38_9 35.38 2.20 1.06 10 3 113.34 1.95 10 0 5.89
GSSla38_10 32.12 5.98 2.86 10 0 54.29 4.17 10 0 1.29
GSSla38_11 33.70 5.65 3.82 10 0 25.52 4.03 10 0 0.91
GSSla38_12 19.85 0.31 0.00 10 10 36.47 0.33 4 2 33.52
GSSla38_13 1.63 0.00 0.00 10 10 1.35 0.14 7 7 1.35
GSSla38_14 1.25 0.00 0.00 10 10 0.00 0.00 10 10 0.00
GSSla38_15 1.22 0.00 0.00 10 10 0.00 0.00 10 10 0.00

Average 27.35 7.07 6.36 10.00 3.12 42.82 6.69 9.38 2.45 6.48

Figure 6.3 shows the evolution of the solution quality of the ITS. The instances of Blum
and Sampels [7] have been generated using as a base the JSS instances abz7, ft10, and la38.
For an instance with m machines, m instances have been generated, by dividing each job into
dm/se stages of size s ∈ [1,m] (if s does not divide m, the last stage has size m mod s). Since
abz7, ft10, and la38 have 15, 10, and 15 machines, we have a total of 40 instances. In the
left, on Figure 6.3a, the instances are grouped by the base JSS instance, while on the right, on
Figure 6.3a, the instances are grouped by stage size.

For Figure 6.3a we show the evolution of the quality of the solution produced by ITS until
60 seconds. By that time for both the GSSab7_x instances and ft10_x instances ITS gets to
0.13% or less of the deviation at 300 seconds. For the GSSla38_x instances ITS still improve
D from 5.08 at 60 seconds to 4.71 to 4.71 at 300 seconds. The graph shows that the majority of
the improvement in the quality of the solution produced is done in the first 10 seconds, and the
behavior of the quality of the solution produced by ITS the 3 instances group.



73

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●●●●

●

●

●

●●

●

●●

●

0 5 10 15 20 25

0
5

10
15

20
25

Rel. dev. DTabu (%)

R
el

. d
ev

. D
IT

S
 (%

)

Figure 6.2: Scatter plot comparison of the ITS and the tabu search for the GSS instances by
Blum and Sampels [7].
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Figure 6.3: Time evolution of the quality of the solution for GSS on the instances by Blum and
Sampels [7].

For Figure 6.3b we also cut the time axis, to highlight the most interesting part of the evolu-
tion of the solution quality of ITS. The deviation D changes by 0.37% on the groups with stage
size 3 or less, and improves less on the other groups. In particular for the group with stage sizes
13 to 15 the solution quality stagnates after 2.72s very close to 0%.

In both graphs we can see that the comparison of the time evolution with the dashed lines
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Table 6.11: Comparison of quality of the solution produced by the ITS and the number of
possible arrangements for the jobs.

ss D†
IT S V

1 15.46 1.00
2 12.35 2.11
3 8.38 3.89
4 5.49 4.92
5 9.87 6.24
6 2.96 6.49
7 0.00 7.40
8 1.89 8.31
9 2.42 8.42

10 6.47 8.64
11 5.70 8.98
12 2.30 9.46
13 1.33 10.10
14 0.00 10.94
15 0.00 12.12

which represent the time and quality of the solutions produced by the tabu search also show that
the main advantage of ITS over the tabu search is produces good solutions much faster.

Table 6.11 shows a comparison of the average quality of the solution produced by ITS at
300 seconds, and the number of ways to arrange the operations in each job. We removed the
instances GSSft10. This instance groups does not have instances with groups size larger than
10, and both ITS and the tabu search produce solutions with higher D for this instance group,
therefore including them would skew the results. For the table in the left the column ss shows the
stage size, D†

IT S shows the average deviation for ITS at 300 seconds for this subset of instances,
and V shows log10(x) where x is the number of arrangements of the operations of each job
for that stage size. The figure in the right plots D†

IT S(V ). There is a strong inverse correlation
between D†

IT S and V of 0.86.

6.2.6.2 Instances by Nasiri and Kianfar [59]

The papers [59] and [58] work on this instances for GSS. We do not have full confidence in
the results presented by the authors. Most instances are available as a supplementary material
of [58], however the instances GSSata71-80 are not available.

Next we compare the performance of ITS with the ABC algorithm of Nasiri [58]. It must be
noted that the results for GSSadmu06 the solution is 111 units under the sum of the costs of the
operations of the first job. Which makes the reported solution impossible. The first job has an
operation with processing time of 111, which may be missing from the schedule. The schedules
for the solutions were not provided, and the authors did not respond to contact attempts, so we
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Figure 6.4: Plot showing the deviation of the solutions produced by ITS a the logarithm of the
possible arrangements for each job.

cannot be sure of the error.

In Table 6.12 we compare the ABC algorithm of Nasiri [58] to ITS on the GSSadmu in-
stances. On these instances ABC achieves an average relative deviation of 1.08%, and ITS of
2.99%. On GSSagmu06 the authors report a solution better than the lower bound. ABC ITS
finds better results than GA/TS in 17 instances, in another 23 ABC is better than ITS. The dif-
ference in the average relative deviation is explained by its uneven distribution, on the instances
where ITS obtains a better result, the difference is at most 0.02%. In all those cases ITS found
the optimal solution, while ABC found solution slightly above this value. The exception is
instance GSSadmu07 where ITS found a solution 8.46% better than ABC. In seven instances
(01,02,03,13,30,37,39) GA/TS finds solutions close to the lower bound whereas ITS has relative
deviations ranging from 3.1% to 11.6%. In 300s the average relative deviation of ITS decreases
to 1.64% with an average time to best of 50.91s. ITS now finds solutions of similar quality, ex-
cept for seven instances (01,02,03,05,06,10,13,18). Excluding these instances the average time
to best is 7.45s, and the average time to the target solution of ABC is t = 10.18s and shows a
similar behavior. In summary, both algorithms show a similar performance, except for a few
outliers. There seems to be no apparent correlation of the performance of ITS on these instances
with basic parameters such as size or order strength. In Figure 6.6 we see the graphs with the
quality of the solution evolution with time, and the scatter plot both show a better performance
by ABC.

In Table 6.13 we compare the ABC algorithm of Nasiri [58] to the results of ITS on the 50
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Table 6.12: Comparing ITS solver with GA/TS of Nasiri [58] for GSS

Instance Tabc Dabc D f ull
IT S bet f ull opt f ull ttb(s) Drel

IT S betrel optrel t(s)

GSSadmu01 5.98 0.15 4.36 0 0 2.28 4.36 0 0
GSSadmu02 6.76 0.11 6.57 0 0 229.71 11.03 0 0
GSSadmu03 5.82 0.12 9.11 0 0 143.40 11.63 0 0
GSSadmu04 9.84 3.89 3.98 5 0 160.94 7.38 0 0
GSSadmu05 8.10 4.12 6.98 0 0 141.32 7.77 0 0
GSSadmu06 15.86 -4.36 4.93 0 0 203.94 7.01 0 0
GSSadmu07 14.64 17.12 6.52 10 0 208.03 8.66 10 0 0.34
GSSadmu08 15.52 12.13 10.23 10 0 239.59 13.00 1 0 66.22
GSSadmu09 12.46 5.12 4.98 7 0 202.86 6.86 0 0
GSSadmu10 16.22 4.32 5.53 0 0 158.71 6.50 0 0
GSSadmu11 2.82 0.01 0.00 10 10 0.69 0.00 10 10 0.69
GSSadmu12 2.42 0.02 0.00 10 10 0.16 0.00 10 10 0.16
GSSadmu13 2.76 0.02 1.97 0 0 13.29 3.10 0 0
GSSadmu14 4.88 0.02 0.00 10 10 3.88 0.25 8 8 3.88
GSSadmu15 3.18 0.00 0.00 10 10 8.55 0.63 1 1 8.55
GSSadmu16 5.36 0.01 0.00 10 10 3.18 0.00 10 10 3.18
GSSadmu17 8.34 0.01 0.00 10 10 4.69 0.00 10 10 4.69
GSSadmu18 23.38 0.03 0.23 4 4 175.25 1.70 0 0
GSSadmu19 12.18 0.02 0.00 10 10 4.62 0.00 10 10 4.62
GSSadmu20 5.82 0.00 0.00 10 10 17.98 1.20 0 0 17.98
GSSadmu21 10.48 0.03 0.00 10 10 0.29 0.00 10 10 0.29
GSSadmu22 0.40 0.00 0.00 10 10 0.57 1.85 0 0 0.57
GSSadmu23 27.56 0.01 0.00 10 10 0.61 0.00 10 10 0.61
GSSadmu24 16.32 0.02 0.00 10 10 0.60 0.00 10 10 0.60
GSSadmu25 40.42 0.02 0.00 10 10 28.04 0.04 7 7 28.04
GSSadmu26 10.46 0.01 0.00 10 10 29.18 0.76 0 0 29.18
GSSadmu27 13.60 0.01 0.00 10 10 7.23 0.00 10 10 7.23
GSSadmu28 6.50 0.02 0.00 10 10 3.81 0.00 10 10 3.81
GSSadmu29 23.84 0.02 0.00 10 10 20.82 0.30 7 7 20.82
GSSadmu30 1.56 0.01 0.00 10 10 3.69 5.78 0 0 3.69
GSSadmu31 11.84 0.01 0.00 10 10 0.19 0.00 10 10 0.19
GSSadmu32 0.42 0.01 0.00 10 10 0.34 0.00 10 10 0.34
GSSadmu33 14.34 0.01 0.00 10 10 1.23 0.00 10 10 1.23
GSSadmu34 0.30 0.01 0.00 10 10 0.68 2.35 0 0 0.68
GSSadmu35 13.34 0.01 0.00 10 10 0.85 0.00 10 10 0.85
GSSadmu36 16.18 0.00 0.00 10 10 3.43 0.00 10 10 3.43
GSSadmu37 0.96 0.03 0.00 10 10 2.77 4.28 0 0 2.77
GSSadmu38 15.26 0.02 0.00 10 10 3.65 0.00 10 10 3.63
GSSadmu39 0.38 0.01 0.00 10 10 2.10 5.55 0 0 2.10
GSSadmu40 0.80 0.00 0.00 10 10 3.20 7.70 0 0 3.20

Average 10.18 1.08 1.64 7.90 7.10 50.91 2.99 4.85 4.58

GSSata instances. On these instances ABC achieves better results than ITS: the average relative
deviation for all instances is 7.78% for ABC, and 10.31% for ITS, and ABC is better in 43 of
the 50 instances. Different from the instance set GSSadmu there are no outliers, and the scatter
plot shows that the solution quality of both algorithms is highly correlated. On the remaining
instances, the average time-to-target is 37.4s. When running with a time limit of 300s, the
average relative deviation of ITS improves to 7.41%, with an average time of 116.64s to the
best value. Figure 6.6 we see the usual graphs which show that ABC outperforms ITS.

Instances GSSata51–80 are shown in the Table 6.14. Nasiri [58] report that these instances
are easy to solve. ITS solves them in an average time of 7.8s.
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Figure 6.5: Graphs for evaluating the ITS and the ABC algorithm on the GSS instances by
Nasiri and Kianfar [59] based on the test set by Demirkol et al. [17].
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Figure 6.6: Graphs for evaluating the ITS and the ABC algorithm on the GSS instances by
Nasiri and Kianfar [59] based on the test set by Taillard [81].
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Table 6.13: Comparing ITS solver with GA/TS of Nasiri and Kianfar (2011) for GSS

Instance Tabc Dabc D f ull
IT S bet f ull opt f ull ttb(s) Drel

IT S betrel optrel t(s)

GSSata01 2.61 13.37 12.98 10 0 75.22 16.18 0 0 52.78
GSSata02 2.50 21.73 21.27 10 0 43.42 23.57 0 0 39.65
GSSata03 2.62 23.36 23.00 7 0 120.67 24.54 0 0 135.05
GSSata04 2.75 18.25 17.68 10 0 71.75 19.00 1 0 51.69
GSSata05 2.77 12.96 13.51 0 0 73.36 15.59 0 0
GSSata06 2.21 17.71 17.42 10 0 121.93 19.40 0 0 67.42
GSSata07 2.15 17.42 16.82 10 0 16.85 18.12 1 0 11.14
GSSata08 2.42 17.63 16.21 10 0 108.28 18.60 2 0 6.95
GSSata09 2.83 18.76 18.24 8 0 169.75 19.34 1 0 43.73
GSSata10 2.67 22.04 20.89 10 0 25.37 22.36 2 0 16.25
GSSata11 3.48 7.67 6.67 10 0 164.71 12.29 0 0 52.79
GSSata12 3.31 0.42 0 10 10 87.88 1.94 0 0 60.91
GSSata13 3.53 5.59 5.19 8 0 179.45 7.48 0 0 135.35
GSSata14 3.04 5.37 4.65 9 0 121.57 8.78 0 0 37.78
GSSata15 3.62 6.06 5.79 3 0 197.44 9.83 0 0 135.30
GSSata16 3.10 5.96 4.55 10 0 219.17 7.10 0 0 46.01
GSSata17 3.57 6.20 6.26 4 0 142.26 7.55 0 0 137.76
GSSata18 3.29 12.14 12.65 1 0 152.17 15.92 0 0 126.23
GSSata19 3.37 1.93 0.78 10 1 194.43 3.61 0 0 94.89
GSSata20 3.17 4.35 2.75 10 0 154.62 6.46 0 0 34.54
GSSata21 3.96 16.61 17.40 1 0 202.76 23.86 0 0 69.79
GSSata22 3.83 15.77 14.01 10 0 175.62 16.63 0 0 31.96
GSSata23 4.25 13.25 12.93 7 0 178.22 18.19 0 0 109.94
GSSata24 4.84 14.63 13.23 10 0 188.63 18.03 0 0 102.90
GSSata25 3.91 10.38 10.55 5 0 141.20 14.86 0 0 106.54
GSSata26 4.19 17.43 17.75 4 0 129.93 22.44 0 0 136.58
GSSata27 3.85 7.09 7.36 3 0 228.85 13.00 0 0 223.37
GSSata28 3.76 7.79 7.16 9 0 197.80 12.35 0 0 130.28
GSSata29 4.45 13.28 12.43 9 0 192.17 18.72 0 0 72.59
GSSata30 4.38 12.03 12.19 4 0 196.89 17.41 0 0 159.20
GSSata31 1.55 0.01 0.00 10 10 0.28 0 10 10 0.28
GSSata32 1.38 0.02 0.00 10 10 1.14 0 10 10 1.14
GSSata33 3.18 0.02 0.00 10 10 2.51 0.01 9 9 2.51
GSSata34 1.57 0.03 0.00 10 10 0.39 0 10 10 0.39
GSSata35 4.79 0.82 0.12 10 0 42.88 1.34 0 0 20.61
GSSata36 4.04 0.07 0.00 10 10 2.71 0 10 10 2.53
GSSata37 1.10 0.04 0.00 10 10 0.59 0 10 10 0.59
GSSata38 1.41 0.04 0.00 10 10 0.39 0 10 10 0.39
GSSata39 3.79 7.94 2.08 10 0 138.38 3.52 10 0 0.36
GSSata40 5.68 0.02 0.00 10 10 12.56 0.83 1 1 12.56
GSSata41 6.34 0.05 0.00 10 10 73.69 2.52 0 0 73.69
GSSata42 2.62 0.44 0.00 10 10 17.71 6.05 0 0 12.73
GSSata43 3.56 0.03 0.00 10 10 146.34 3.81 0 0 146.34
GSSata44 6.62 0.06 0.98 3 2 209.59 5.53 0 0 226.63
GSSata45 6.17 1.85 1.85 8 0 191.80 7.54 0 0 172.61
GSSata46 5.03 0.04 0.00 10 10 9.48 0.57 2 2 9.48
GSSata47 6.18 1.54 1.33 7 0 270.57 6.83 0 0 215.73
GSSata48 6.08 4.59 5.08 1 0 151.29 8.11 0 0 161.07
GSSata49 5.33 0.26 0.00 10 10 53.15 4.71 0 0 46.01
GSSata50 5.75 3.79 6.51 0 0 234.01 11.02 0 0

Average 3.65 7.78 7.41 7.82 2.86 116.64 10.31 1.78 1.44

6.2.7 Mixed Shop

In Table 6.15 we compare the tabu search of Liu and Ong [49] for the MSS to ITS. Since the
instances were not available, we have generated them. The authors generated 20 replications and
executed the tabu search once, and we performed the same experiment with ITS. The results pre-
sented by Liu and Ong [49] use the deviation from the lower bound max{LB jb,maxi∈[m]∑ j∈[n] oi j},
which is weaker than LBqr, but in all MSS instances the two lower bounds are equal.
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Table 6.14: IGA results for the large instances of Nasiri & Kianfar (2011)

Instance ttb(s) Instance ttb(s) Instance ttb(s)

GSSata51 0.71 GSSata61 1.52 GSSata71 19.15
GSSata52 1.33 GSSata62 4.00 GSSata72 16.99
GSSata53 0.73 GSSata63 2.02 GSSata73 27.69
GSSata54 0.65 GSSata64 1.17 GSSata74 23.71
GSSata55 1.23 GSSata65 2.23 GSSata75 28.11
GSSata56 0.39 GSSata66 1.48 GSSata76 20.12
GSSata57 1.26 GSSata67 1.54 GSSata77 13.37
GSSata58 0.48 GSSata68 2.24 GSSata78 22.30
GSSata59 0.58 GSSata69 0.77 GSSata79 14.92
GSSata60 0.54 GSSata70 1.64 GSSata80 21.25

Average ttb(s) 7.80

Table 6.15: Comparing ITSA solver with the Tabu Search from Liu & Ong (2004) for MSS

Instance TT S DT S D f ull
IT S bet f ull opt f ull ttb(s) Drel

IT S betrel optrel t(s)

MSS1 2.11 3.84 2.46 15 6 56.87 3.43 10 5 1.94
MSS2 1.08 0.29 0.00 20 20 0.01 0.00 20 20 0.01
MSS3 1.42 0.04 0.00 20 20 0.01 0.00 20 20 0.01
MSS4 2.85 0.00 0.00 20 20 0.01 0.00 20 20 0.01
MSS5 1.44 1.56 0.00 20 20 0.09 0.00 20 20 0.04
MSS6 1.38 1.21 0.00 20 20 0.01 0.00 20 20 0.01
MSS7 2.47 0.05 0.00 20 20 0.01 0.00 20 20 0.01
MSS8 4.05 0.00 0.00 20 20 0.01 0.00 20 20 0.01
MSS9 1.04 0.20 0.00 20 20 0.04 0.00 20 20 0.03
MSS10 2.46 0.05 0.00 20 20 0.02 0.00 20 20 0.02
MSS11 3.39 0.03 0.00 20 20 0.02 0.00 20 20 0.02
MSS12 4.52 0.00 0.00 20 20 0.02 0.00 20 20 0.02
MSS13 18.77 4.03 1.23 19 11 50.75 1.63 15 10 27.52
MSS14 4.71 1.54 0.00 20 20 0.24 0.00 20 20 0.05
MSS15 16.43 0.82 0.00 20 20 0.04 0.00 20 20 0.03
MSS16 24.01 0.00 0.00 20 20 0.04 0.00 20 20 0.04

Average 5.76 0.85 0.23 19.62 18.56 6.76 0.32 19.06 18.44 1.86

We can see that ITS consistently produces better results, with an overall average relative
deviation of 0.32%, while the tabu search has an overall average of 0.85%. ITS was able to
achieve the average quality of the tabu search in most instances in 0.05s or under for most
instances. In instance MSS1 ITS was not able to reach the average deviation of the tabu search
in 5 replications of the 20 for that instance, while for MSS13 it was not able in one replication.
It is worth noticing that ITS was able to achieve an optimal solution given by the lower bound
in all replications of all instances except MSS1 and MSS13. For MSS1 it reached LBqr in 5 of
the 20 replications, and for instance MSS13 in 10.

With additional time, under 300 seconds, ITS was able to improve the average deviation to
0.23%, and found one more optimal solution for both MSS1 and MSS13.

In Figure 6.7 we see the time evolution of the solution quality of ITS and the scatter plot
comparing ITS with the tabu search. The scatter plot reinforces the conclusion that the quality
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Figure 6.7: Graphs for evaluating the ITS and the tabu search on the MSS instances.

of the solutions produced by ITS is better than the tabu search. The graph of the deviation value
by time shows only the first 20 seconds, and most of the evolution of the quality of the solution is
achieved in the first second. In Table 6.15, on the column ttb(s) we can see that for all instances
except MSS1 and MSS13 reaches the best value before 0.1 seconds, so the improvement seen
in the graph is due to these instances, for which ITS still improves the solution until later than
50 seconds.

6.2.8 Open Shop

For completeness, we studied in an additional experiment the performance of our solver on
the OSS instances proposed by Taillard [81], Brucker et al. [10], and Guéret and Prins [30].
Since OSS we have strong best known values we use them instead of LBqr to compute D for
OSS, and report the deviation from the best known values instead of the lower bound. We
compare ITS with the state-of-the-art algorithm for OSS, the Particle Swarm Optimization with
beam search of Sha and Hsu [77] (PSO).

6.2.8.1 Instances by Taillard [81]

In Table 6.16 we compare ITS to PSO on the instances by Taillard [81]. The PSO, with the
exception of two instances (OSSta49 and OSSta58), always finds the best known value, in an
average time of 24.69s. ITS produces in the same time an average relative deviation of 0.07%
deviation from the lower bound. In 45 of the 60 instances ITS was able to reach the same quality
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of the PSO, and in instance OSSta58 it produces a solution slightly better than PSO.

In 300s the average relative deviation of ITS drops to 0.01%. With this time ITS was able
to reach the optimal solution in at least 3 executions for all instances. Except for instances
OSSta26, OSSta27, OSSta31, OSSta45, OSSta49 and OSSta58 ITS was able to reach the best
known value in the 10 executions. For those instances it was able to reach the optimal value in
5, 9, 7, 7, 7 and 3 times respectively. For the executions where ITS reached the quality of the
solution of PSO the average time to do so was 16.51s which is faster than the time of 24.69s
for PSO.

In Figure 6.8 we see the graphics comparing PSO and ITS. On the left Figure 6.8a shows the
evolution with time of the quality of the solutions produced by ITS. We can see that the solution
converge fast to the best known value, but also show the slight advantage of the solution quality
produced by PSO. On the right, in Figure 6.8b, we see the scatter plot, and it also shows the
better solutions are produced by PSO, but it is worth noticing the low values for the deviations,
and that a big amount of the points are collapsed in the origin of the graph.
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Figure 6.8: Graphs for evaluating the ITS and the PSO search on the OSS instances by Taillard
[81].

In summary, both PSO and ITS have a similar performance for this instance set, with an
overall solution quality very close to optimal, but in a few instances PSO finds the best solutions
more consistently. On the other hand ITS was faster than PSO for some instances.
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Table 6.16: Comparing ITS with PSO from Sha and Hsu [77] for OSS in the instances by
Taillard [81]

Instance TPSO DPSO D f ull
IT S bet f ull opt f ull ttb(s) Drel

IT S betrel optrel t(s)

OSSta01 2.67 0.00 0.00 10 10 0.01 0.00 10 10 0.01
OSSta02 2.67 0.00 0.00 10 10 0.27 0.00 10 10 0.27
OSSta03 2.67 0.00 0.00 10 10 0.15 0.00 10 10 0.15
OSSta04 2.67 0.00 0.00 10 10 0.00 0.00 10 10 0.00
OSSta05 2.67 0.00 0.00 10 10 0.13 0.00 10 10 0.13
OSSta06 2.67 0.00 0.00 10 10 0.03 0.00 10 10 0.03
OSSta07 2.67 0.00 0.00 10 10 0.08 0.00 10 10 0.08
OSSta08 2.67 0.00 0.00 10 10 0.00 0.00 10 10 0.00
OSSta09 2.67 0.00 0.00 10 10 0.06 0.00 10 10 0.06
OSSta10 2.67 0.00 0.00 10 10 0.07 0.00 10 10 0.07
OSSta11 8.33 0.00 0.00 10 10 0.42 0.00 10 10 0.42
OSSta12 8.33 0.00 0.00 10 10 0.24 0.00 10 10 0.24
OSSta13 8.33 0.00 0.00 10 10 0.68 0.00 10 10 0.68
OSSta14 8.33 0.00 0.00 10 10 1.79 0.00 10 10 1.79
OSSta15 8.33 0.00 0.00 10 10 5.15 0.28 7 7 5.15
OSSta16 8.33 0.00 0.00 10 10 0.02 0.00 10 10 0.02
OSSta17 8.33 0.00 0.00 10 10 2.33 0.00 10 10 2.33
OSSta18 8.33 0.00 0.00 10 10 1.12 0.00 10 10 1.12
OSSta19 8.33 0.00 0.00 10 10 0.26 0.00 10 10 0.26
OSSta20 8.33 0.00 0.00 10 10 0.75 0.00 10 10 0.75
OSSta21 16.33 0.00 0.00 10 10 2.11 0.00 10 10 2.11
OSSta22 16.33 0.00 0.00 10 10 16.36 0.07 7 7 16.36
OSSta23 16.33 0.00 0.00 10 10 92.34 0.38 1 1 92.34
OSSta24 16.33 0.00 0.00 10 10 5.99 0.02 9 9 5.99
OSSta25 16.33 0.00 0.00 10 10 3.28 0.00 10 10 3.28
OSSta26 16.33 0.00 0.13 5 5 77.15 0.58 1 1 78.62
OSSta27 16.33 0.00 0.02 9 9 101.04 0.92 0 0 99.30
OSSta28 16.33 0.00 0.00 10 10 1.03 0.00 10 10 1.03
OSSta29 16.33 0.00 0.00 10 10 0.07 0.00 10 10 0.07
OSSta30 16.33 0.00 0.00 10 10 0.79 0.00 10 10 0.79
OSSta31 16.67 0.00 0.13 7 7 156.00 0.85 1 1 151.30
OSSta32 16.67 0.00 0.00 10 10 5.21 0.00 10 10 5.21
OSSta33 16.67 0.00 0.00 10 10 45.79 0.20 4 4 45.79
OSSta34 16.67 0.00 0.00 10 10 0.00 0.00 10 10 0.00
OSSta35 16.67 0.00 0.00 10 10 34.24 0.20 6 6 34.24
OSSta36 16.67 0.00 0.00 10 10 1.23 0.00 10 10 1.23
OSSta37 16.67 0.00 0.00 10 10 5.08 0.00 10 10 5.08
OSSta38 16.67 0.00 0.00 10 10 5.77 0.00 10 10 5.77
OSSta39 16.67 0.00 0.00 10 10 8.86 0.03 9 9 8.86
OSSta40 16.67 0.00 0.00 10 10 4.80 0.00 10 10 4.80
OSSta41 37.50 0.00 0.00 10 10 0.79 0.00 10 10 0.79
OSSta42 37.50 0.00 0.00 10 10 65.25 0.10 3 3 65.25
OSSta43 37.50 0.00 0.00 10 10 0.00 0.00 10 10 0.00
OSSta44 37.50 0.00 0.00 10 10 0.00 0.00 10 10 0.00
OSSta45 37.50 0.00 0.03 7 7 87.10 0.11 0 0 124.39
OSSta46 37.50 0.00 0.00 10 10 0.00 0.00 10 10 0.00
OSSta47 37.50 0.00 0.00 10 10 42.83 0.04 8 8 42.83
OSSta48 37.50 0.00 0.00 10 10 0.00 0.00 10 10 0.00
OSSta49 37.50 0.02 0.14 7 7 133.32 0.42 1 1 132.43
OSSta50 37.50 0.00 0.00 10 10 48.40 0.09 6 6 48.40
OSSta51 66.67 0.00 0.00 10 10 0.01 0.00 10 10 0.01
OSSta52 66.67 0.00 0.00 10 10 0.77 0.00 10 10 0.77
OSSta53 66.67 0.00 0.00 10 10 0.01 0.00 10 10 0.01
OSSta54 66.67 0.00 0.00 10 10 0.01 0.00 10 10 0.01
OSSta55 66.67 0.00 0.00 10 10 0.01 0.00 10 10 0.01
OSSta56 66.67 0.00 0.00 10 10 0.01 0.00 10 10 0.01
OSSta57 66.67 0.00 0.00 10 10 0.01 0.00 10 10 0.01
OSSta58 66.67 0.09 0.06 10 3 38.99 0.08 10 1 0.01
OSSta59 66.67 0.00 0.00 10 10 0.01 0.00 10 10 0.01
OSSta60 66.67 0.00 0.00 10 10 0.01 0.00 10 10 0.01

Average 24.69 0.00 0.01 9.75 9.63 16.64 0.07 8.55 8.40 16.51
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6.2.8.2 Instances by Brucker et al. [10]

In Table 6.17 we compare PSO to ITS on the OSS instances introduced by Brucker et al.
[10]. The average relative deviation for PSO is 0.12%, for ITS 0.62%. The relative deviation
of ITS is equal to that of PSO in 18 instances, mostly the smaller ones. In this case more time
ITS does improve significantly: in 300s the average relative deviation is 0.45%. In 7 of the
instances ITS never reaches the best known value, in 9 it reaches in some executions, but not in
all, and finally in 19 it was able to eventually reach the best known value in all executions. The
average time to the reach best solution ITS finds is 68.58s which is similar to the 75.52s.

Table 6.17: Comparing ITS with PSO from Sha and Hsu [77] for OSS in the instances by
Brucker et al. [10]

Instance TPSO DPSO D f ull
IT S bet f ull opt f ull ttb(s) Drel

IT S betrel optrel t(s)

j5-per0-0 41.67 0.00 0.00 10 10 3.28 0.00 10 10 3.28
j5-per0-1 41.67 0.00 0.00 10 10 0.04 0.00 10 10 0.04
j5-per0-2 41.67 0.00 0.00 10 10 1.20 0.00 10 10 1.20
j5-per10-0 41.67 0.00 0.00 10 10 0.22 0.00 10 10 0.22
j5-per10-1 41.67 0.00 0.00 10 10 13.36 0.00 10 10 13.36
j5-per10-2 41.67 0.00 0.00 10 10 0.19 0.00 10 10 0.19
j5-per20-0 41.67 0.00 0.00 10 10 0.03 0.00 10 10 0.03
j5-per20-1 41.67 0.00 0.00 10 10 0.00 0.00 10 10 0.00
j5-per20-2 41.67 0.00 0.00 10 10 0.65 0.00 10 10 0.65
j6-per0-0 60.00 0.00 0.27 1 1 185.95 0.90 0 0 137.32
j6-per0-1 60.00 0.00 0.00 10 10 1.66 0.00 10 10 1.66
j6-per0-2 60.00 0.00 0.00 10 10 11.23 0.00 10 10 11.23
j6-per10-0 60.00 0.00 0.00 10 10 8.84 0.00 10 10 8.84
j6-per10-1 60.00 0.00 0.00 10 10 6.99 0.00 10 10 6.99
j6-per10-2 60.00 0.00 0.00 10 10 0.96 0.00 10 10 0.96
j6-per20-0 60.00 0.00 0.00 10 10 26.20 0.01 9 9 26.20
j6-per20-1 60.00 0.00 0.00 10 10 0.14 0.00 10 10 0.14
j6-per20-2 60.00 0.00 0.00 10 10 3.72 0.00 10 10 3.72
j7-per0-0 81.67 0.31 1.95 0 0 69.51 2.07 0 0
j7-per0-1 81.67 0.36 0.66 3 1 144.68 1.11 1 0 141.67
j7-per0-2 81.67 0.09 0.42 2 2 93.79 0.65 1 1 75.08
j7-per10-0 81.67 0.31 0.50 3 2 161.81 0.93 1 0 172.86
j7-per10-1 81.67 0.00 0.63 1 1 171.10 1.13 0 0 222.12
j7-per10-2 81.67 0.39 1.65 0 0 148.62 2.08 0 0
j7-per20-0 81.67 0.00 0.00 10 10 0.35 0.00 10 10 0.35
j7-per20-1 81.67 0.30 0.21 9 0 145.15 0.66 5 0 92.58
j7-per20-2 81.67 0.17 0.28 3 2 118.70 0.52 1 1 171.02
j8-per0-1 106.67 0.41 2.00 0 0 151.19 2.39 0 0
j8-per0-2 106.67 0.15 1.28 1 0 171.19 1.55 1 0 91.08
j8-per10-0 106.67 0.60 1.59 0 0 183.55 2.14 0 0
j8-per10-1 106.67 0.56 1.69 1 0 164.58 2.20 0 0 140.76
j8-per10-2 106.67 0.40 1.91 0 0 134.76 2.27 0 0
j8-per20-0 106.67 0.06 0.47 0 0 137.83 0.66 0 0
j8-per20-1 106.67 0.00 0.00 10 10 1.42 0.00 10 10 1.42
j8-per20-2 106.67 0.00 0.16 1 1 137.53 0.38 0 0 162.37

Average 71.52 0.12 0.45 6.14 5.71 68.58 0.62 5.69 5.46

In Figure 6.9 we see the graphs comparing ITS and PSO. In Figure 6.9a we see the evolution
with time of the solution quality of ITS, which also shows ITS difficulty to reach the best known
value for the largest instances despite continually improving the produced solution with time.
In Figure 6.9b also confirms the better quality of PSO, despite having many points collapsed in
the origin.
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(b) Scatter plot comparison.

Figure 6.9: Graphs for evaluating the ITS and the PSO search on the OSS instances by Brucker
et al. [10].

In summary, on these instances PSO performs better than ITS, and ITS does not scale well
for larger instances.

6.2.8.3 Instances by Guéret and Prins [30]

In Figure 6.18 we show the results for ITS and PSO in the instances by Guéret and Prins
[30]. ITS achieved an overall average relative deviation of 0.10% from the best known value
while PSO obtained 0.16%. The average relative deviation of ITS is better or equal than that of
PSO in 75 of the 80 instances. To reach the same solution quality as PSO, ITS takes in average
10.38s, which is about a factor of 7 faster than PSO. In 300s the average relative deviation of
ITS improves to 0.07% with an average time-to-best of 23.40s. ITS was able to find a new best
solution for instance OSSgp09-03 (of value 1115), and with additional time four also found
new best solutions for OSSgp09-07, OSSgp09-08, and OSSgp10-04 (of values 1090, 1105, and
1078, respectively).

In Figure 6.10 we see the usual graphs comparing ITS and PSO. The plot of the solution
quality evolution with time in Figure 6.10a shows the faster convergence of ITS. The exception
are the instances OSSgp10*, for which PSO produces a better solution, but soon after the time
limit for those instances ITS produces the same quality of solutions as PSO. The scatter plot on
the right, Figure 6.10b shows that most solutions of ITS are better than PSO.

In summary, ITS performs better on this instance set, producing better solutions many times
faster than PSO.
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Table 6.18: Comparing ITS with PSO from Sha and Hsu [77] for OSS in the instances by Guéret
and Prins [30]

Instance TPSO DPSO D f ull
IT S bet f ull opt f ull ttb(s) Drel

IT S betrel optrel t(s)

gp03-01 15.00 0.00 0.00 10 10 0.00 0.00 10 10 0.00
gp03-02 15.00 0.00 0.00 10 10 0.00 0.00 10 10 0.00
gp03-03 15.00 0.00 0.00 10 10 0.00 0.00 10 10 0.00
gp03-04 15.00 0.00 0.00 10 10 0.00 0.00 10 10 0.00
gp03-05 15.00 0.00 0.00 10 10 0.00 0.00 10 10 0.00
gp03-06 15.00 0.00 0.00 10 10 0.00 0.00 10 10 0.00
gp03-07 15.00 0.00 0.00 10 10 0.00 0.00 10 10 0.00
gp03-08 15.00 0.00 0.00 10 10 0.00 0.00 10 10 0.00
gp03-09 15.00 0.00 0.00 10 10 0.00 0.00 10 10 0.00
gp03-10 15.00 0.00 0.00 10 10 0.00 0.00 10 10 0.00
gp04-01 26.67 0.00 0.00 10 10 0.00 0.00 10 10 0.00
gp04-02 26.67 0.00 0.00 10 10 0.00 0.00 10 10 0.00
gp04-03 26.67 0.00 0.00 10 10 0.00 0.00 10 10 0.00
gp04-04 26.67 0.00 0.00 10 10 0.00 0.00 10 10 0.00
gp04-05 26.67 0.00 0.00 10 10 0.00 0.00 10 10 0.00
gp04-06 26.67 0.00 0.00 10 10 0.00 0.00 10 10 0.00
gp04-07 26.67 0.00 0.00 10 10 0.05 0.00 10 10 0.05
gp04-08 26.67 0.00 0.00 10 10 0.00 0.00 10 10 0.00
gp04-09 26.67 0.00 0.00 10 10 0.00 0.00 10 10 0.00
gp04-10 26.67 0.00 0.00 10 10 0.00 0.00 10 10 0.00
gp05-01 41.67 0.00 0.00 10 10 0.00 0.00 10 10 0.00
gp05-02 41.67 0.00 0.00 10 10 0.01 0.00 10 10 0.01
gp05-03 41.67 0.00 0.00 10 10 0.00 0.00 10 10 0.00
gp05-04 41.67 0.00 0.00 10 10 0.71 0.00 10 10 0.71
gp05-05 41.67 0.00 0.00 10 10 0.18 0.00 10 10 0.18
gp05-06 41.67 0.00 0.00 10 10 0.00 0.00 10 10 0.00
gp05-07 41.67 0.00 0.00 10 10 0.00 0.00 10 10 0.00
gp05-08 41.67 0.00 0.00 10 10 0.00 0.00 10 10 0.00
gp05-09 41.67 0.00 0.00 10 10 0.00 0.00 10 10 0.00
gp05-10 41.67 0.00 0.00 10 10 0.01 0.00 10 10 0.01
gp06-01 60.00 0.00 0.00 10 10 0.55 0.00 10 10 0.55
gp06-02 60.00 0.00 0.00 10 10 0.00 0.00 10 10 0.00
gp06-03 60.00 0.05 0.00 10 10 0.00 0.00 10 10 0.00
gp06-04 60.00 0.00 0.00 10 10 0.00 0.00 10 10 0.00
gp06-05 60.00 0.00 0.00 10 10 0.00 0.00 10 10 0.00
gp06-06 60.00 0.00 0.00 10 10 0.02 0.00 10 10 0.02
gp06-07 60.00 0.00 0.00 10 10 0.15 0.00 10 10 0.15
gp06-08 60.00 0.04 0.00 10 10 1.67 0.00 10 10 1.67
gp06-09 60.00 0.01 0.00 10 10 0.00 0.00 10 10 0.00
gp06-10 60.00 0.00 0.00 10 10 0.45 0.00 10 10 0.45
gp07-01 81.67 0.03 0.00 10 10 0.85 0.00 10 10 0.85
gp07-02 81.67 0.00 0.00 10 10 0.09 0.00 10 10 0.09
gp07-03 81.67 0.00 0.00 10 10 0.50 0.00 10 10 0.50
gp07-04 81.67 0.00 0.00 10 10 0.58 0.00 10 10 0.58
gp07-05 81.67 0.00 0.00 10 10 0.04 0.00 10 10 0.04
gp07-06 81.67 0.01 0.00 10 10 0.64 0.00 10 10 0.64
gp07-07 81.67 0.00 0.00 10 10 0.07 0.00 10 10 0.07
gp07-08 81.67 0.00 0.00 10 10 0.00 0.00 10 10 0.00
gp07-09 81.67 0.00 0.00 10 10 0.54 0.00 10 10 0.54
gp07-10 81.67 0.00 0.00 10 10 0.00 0.00 10 10 0.00
gp08-01 106.67 0.91 0.00 10 10 24.53 0.00 10 10 0.00
gp08-02 106.67 0.04 0.00 10 10 9.21 0.00 10 10 9.21
gp08-03 106.67 0.36 0.00 10 10 15.72 0.00 10 10 4.05
gp08-04 106.67 0.02 0.00 10 10 6.62 0.00 10 10 6.62
gp08-05 106.67 0.07 0.00 10 10 0.00 0.00 10 10 0.00
gp08-06 106.67 1.07 0.00 10 10 23.67 0.00 10 10 12.85
gp08-07 106.67 0.34 0.00 10 10 93.40 0.08 10 6 12.58
gp08-08 106.67 0.00 0.00 10 10 0.00 0.00 10 10 0.00
gp08-09 106.67 0.03 0.00 10 10 35.40 0.00 10 10 35.40
gp08-10 106.67 0.03 0.00 10 10 14.80 0.00 10 10 14.80
gp09-01 135.00 0.37 0.00 10 10 15.44 0.00 10 10 13.59
gp09-02 135.00 0.37 0.14 10 1 24.87 0.14 10 1 7.11
gp09-03 135.00 0.09 -0.09 10 10 22.81 -0.09 10 10 7.66
gp09-04 135.00 0.51 0.00 10 10 18.27 0.00 10 10 7.53
gp09-05 135.00 0.00 0.00 10 10 0.00 0.00 10 10 0.00
gp09-06 135.00 0.10 0.00 10 10 17.65 0.00 10 10 8.80
gp09-07 135.00 0.50 -0.08 10 10 132.70 0.00 9 9 28.04
gp09-08 135.00 0.21 -0.01 10 10 74.13 0.09 9 1 42.21
gp09-09 135.00 0.31 0.00 10 10 14.77 0.00 10 10 13.51
gp09-10 135.00 1.30 0.00 10 10 167.18 0.25 10 2 15.54
gp10-01 166.67 0.35 1.06 3 2 110.35 1.08 3 2 32.98
gp10-02 166.67 0.19 0.00 10 10 21.23 0.00 10 10 20.48
gp10-03 166.67 0.86 1.87 4 0 178.96 2.13 4 0 137.04
gp10-04 166.67 0.84 -0.18 10 10 137.48 0.06 9 1 26.84
gp10-05 166.67 1.79 1.08 9 0 147.97 1.18 8 0 55.15
gp10-06 166.67 0.31 0.90 6 4 128.88 1.25 3 3 117.46
gp10-07 166.67 0.10 0.56 4 0 124.30 0.81 3 0 98.03
gp10-08 166.67 0.24 0.09 10 3 96.57 0.11 10 3 35.04
gp10-09 166.67 1.08 0.19 10 2 151.60 0.34 10 1 11.64
gp10-10 166.67 0.18 0.10 9 9 56.36 0.20 8 8 49.14

Average 79.17 0.16 0.07 9.69 8.53 23.40 0.10 9.57 8.51 10.38
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(a) Time evolution of the quality of the solution.
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(b) Scatter plot comparison.

Figure 6.10: Graphs for evaluating the ITS and the PSO search on the OSS instances by Guéret
and Prins [30].

6.3 Tabu Search for Job Shop Scheduling with Parallel Machines

In this section we evaluate the results of our proposed tabu search for JSS-PM.

6.3.1 Lower Bound for Job Shop Scheduling with Parallel Machines

To evaluate the quality of the solutions we use the relative deviation D from the lower bound

L = max{L1,L2}

which is the maximum of the job lower bound

L1 = max
j∈[n]

∑
i∈[m]

pi j

and the machine lower bound

L2 = max
i∈[m]

(
min
j∈[n]

Q(i, j)+
⌈

∑
j∈[n]

pi j/k(i)
⌉
+min

j∈[n]
R(i, j)

)
.

Here Q(i, j) is the sum of the processing times of the operations preceding operation oi j in job
j, and R(i, j) is the sum of the processing times operations succeeding operation oi j in the same
job.
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Table 6.19: Parameters of the tabu search, initial ranges, and calibrated values.

Parameter Range Value

Tabu tenure T [4,15] 8
Max. no. of tabu search iterations w/o improvement Imax [600,5000] 2905
Reduction of the no. of iterations after backtracking ∆ [0,500] 346
Size of the elite set L [0,8] 6

6.3.2 Parameter setting

Like in the algorithm for ITS we calibrated the tabu for JSS-PM with the R package irace [52].

The parameters we calibrated are Imax, ∆, L and T . We constructed 20 random instances
for calibration. They were selected with a random number of jobs n ∈ U [5,50], stages m ∈
U [5,30], and number of parallel machines per stage ki ∈U [1,5], and random processing times
pi j ∈U [1,99].

Differently from the ITS for PSS this algorithm stopping criterion is not the time, but it is
derived from the parameters ∆, L and T . Since they are directly connected with the budget of
time for the execution of the algorithm, to calibrate them using irace we calibrate the algorithm
focusing on its anytime characteristics using the hypervolume measure as proposed by López-
Ibáñez and Stützle [51]. Let D(t) be the relative deviation of the quality of the best solution
produced by the proposed tabu search at t seconds, the objective value to be minimized used
during the calibration is

∫ 30s
0s D(t)dt. Here we ignore the time to construct the initial solution

and take D(0) to be the relative deviation of the initial solution value from the lower bound.

The initial ranges for the parameters to be calibrated were chosen based on preliminary
experiments. These ranges, and the result of the calibration are shown in Table 6.19.

6.3.3 Experiment 1: Effectiveness of the learning component

In this section we assess the effectiveness of the learning component. We have first run
experiments without the trimming phase, to determine the typical range of Kendall’s W in the
instances. We have observed convergence, with an average of W = 0.47 after the initial 30
iterations, an average value of 0.65, and a final value of 0.70. Based on these values, we have
fixed W0 = 0.6. This allows most of the instances to enter intro the trimming phase with a
reasonably high probability of selecting one of the best moves. For a typical neighborhood size
of 20, for example, the probability of a random permutation having W ≥ 0.6 is only about 0.14,
and for β ≥ 0.4 the probability of selecting the best move is more than 0.5.

We next have studied the dependence on the trimming parameter β . For the limit of β →
0, i.e. selecting always the best predicted solution, we found an average relative deviation of
4.52% from the lower bound. This is only slightly worse than using the full neighborhood
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Table 6.20: Comparison of plain TS and TS with learning on the first two instance sets.

Plain TS Learning TS

Instance set D(%) t (s) D(%) t (s)

1 0.40 4.24 0.66 2.74
2 1.45 0.26 1.52 0.14

(β = 1.0) with an average relative deviation of 4.18%. We have finally selected β = 0.2, to
make the selection more robust. For this value we expect for a typical neighborhood size of 20
a probability of about 0.3 of selecting the best move for a random permutation. The empirical
probability is with 0.84 much higher, since observed permutations are not random and we often
have several best moves.

Table 6.20 compares the tabu search with and without the learning component on the first
two instance sets. We can see that in both instance sets we obtain a slightly worse solution
quality for a speedup in solution time of about 2.

6.3.4 Experiment 2: Comparison to results from the literature

Next we compare the results of the proposed algorithm (T l
zr2) with the literature including

our previous work on JSP-PM (Tzr1) [89]. In Table 6.21 we see the comparison of T l
zr2 with

algorithm GH for JSP-PM proposed by Gholami and Sotskov [24]. T l
zr2 produces better solu-

tions than GH in 17 instances and the same solution in the 5 remaining instances. The average
relative deviation of T l

zr2 is 1.52% compared to 8.21% for GH. We were able to reach the lower
bound in 14 of the 22 instances. All instances have a relative deviation of less than 2.5% from
the lower bound, except for GHla01 and GHmt10. Gholami and Sotskov [24] do not report the
execution times, but observe that all tests were concluded in under a second, which is also true
for T l

zr2.

We can also see that T l
zr2 improves the solution quality of Tzr1 of 15.22% in average by a

factor of ten. Most of the improvement comes from the instances GHla15 to GHla20, which
have 10 jobs and 10 stages and in average 3 parallel machines per stage. Therefore the time a
machine is occupied in a schedule will be in average 3 times less than for a job. This results
in critical paths that contains mostly conjunctive arcs, which can not be changed to generate
neighbours. For these instance most of the times Tzr1 is not be able to improve the initial
solutions due to not having valid neighbours. The regular neighbourhood T l

zr2 is already bigger,
and T l

zr2 is able to use the extended neighbouhood to avoid getting stuck.

Rossi and Boschi [74] have performed their experiments on a PC with an AMD Athlon
2800. Based on the scores from the PassMark benchmark, we conservatively estimate that
our computing environment is 5 times faster, and we adjusted the reported times of Rossi and
Boschi [74] accordingly.
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Table 6.21: Comparing T l
zr2 with the algorithm of Gholami and Sotskov [24].

GH Tzr1 T l
zr2 GH Tzr1 T l

zr2

Inst LB D(%) D(%) t(s) D(%) t(s) Inst LB D(%) D(%) t(s) D(%) t(s)

la01 530 23.02 5.28 0.45 5.28 0.06 la12 701 0.00 3.42 0.31 0.00 0.34
la02 655 1.83 0.00 0.07 0.00 0.08 la13 384 23.44 38.80 0.02 0.52 0.36
la03 494 5.87 0.00 0.34 0.00 0.08 la14 566 22.26 0.00 0.42 0.00 0.41
la04 369 12.74 12.74 0.00 0.00 0.00 la15 1142 5.25 0.00 0.32 0.00 0.27
la05 463 0.00 0.00 0.11 0.00 0.01 la16 717 14.23 29.71 0.00 1.53 0.01
la06 815 1.60 0.00 0.41 0.00 0.05 la17 730 10.96 41.51 0.08 1.23 0.11
la07 694 2.02 6.05 0.15 2.02 0.09 la18 663 0.00 55.05 0.00 0.00 0.00
la08 863 0.00 0.00 0.13 0.00 0.04 la19 685 4.96 56.20 0.00 1.46 0.10
la09 769 0.00 0.00 0.12 0.00 0.01 la20 756 0.00 55.29 0.00 0.00 0.00
la10 443 0.23 9.48 0.01 0.00 0.00 mt10 655 30.38 18.93 0.27 18.93 0.18
la11 532 2.07 0.00 0.38 0.00 0.47 mt20 613 19.74 2.45 0.89 2.45 0.41

Averages 8.21 15.22 0.20 1.52 0.14

Table 6.22: Comparing T l
zr2 with the HGA algorithm of Rossi and Boschi [74].

k = 2 k = 3

HGA Tzr1 T l
zr2 HGA Tzr1 T l

zr2

Inst LB D(%) t(s) D(%) t(s) D(%) t(s) D(%) t(s) D(%) t(s) D(%) t(s)

la01 666 0.00 36.60 0.00 0.41 0.00 0.17 1.65 72.20 0.45 0.78 0.00 1.53
la02 655 5.04 44.20 1.53 0.46 0.61 0.98 8.70 72.60 0.46 1.99 3.51 2.10
la03 588 6.46 58.00 3.06 0.65 5.44 0.95 14.46 49,60 7.14 0.79 3.40 4.11
la04 567 7.76 62.40 5.47 0.60 1.94 0.89 10.93 120.60 5.29 1.01 3.35 1.73
la05 593 0.00 0.00 0.00 0.28 0.00 0.37 0.00 38,60 0.00 0.39 0.00 1.16
la06 926 0.00 0.00 0.00 0.59 0.00 0.25 1.08 84,80 0.00 1.26 0.00 0.46
la07 890 0.45 22.00 0.00 1.02 0.00 1.29 3.60 240.40 0.00 3.08 0.00 2.96
la08 863 0.00 2,60 0.00 0.73 0.00 1.20 0.93 91.20 0.12 0.79 0.00 2.74
la09 951 0.00 0.00 0.00 0.66 0.00 1.11 0.11 121,80 0.21 1.55 0.00 4.21
la10 958 0.00 0.00 0.00 0.67 0.00 1.53 0.00 88.60 0.00 1.77 0.00 3.57
la11 1222 0.00 0.40 0.00 2.80 0.00 3.70 1.39 443,8 0.00 5.03 0.00 9.46
la12 1039 0.00 0.40 0.00 1.23 0.00 2.45 0.96 485,40 0.00 2.06 0.00 7.58
la13 1150 0.00 0.00 0.00 1.91 0.00 2.96 1.13 462,20 0.00 4.57 0.00 10.23
la14 1292 0.00 0.00 0.00 1.37 0.00 0.35 0.00 84.40 0.00 3.01 0.00 1.11
la15 1207 3.23 72.00 0.00 5.55 0.00 2.76 6.30 406.40 1.24 15.59 1.41 8.08

Avrg. 1.53 19.90 0.67 1.26 0.53 1.40 3.42 190.84 0.99 2.91 0.78 4.07

Total Average 2.48 105.34 0.83 2.09 0.66 2.74

In Table 6.22 we compare T l
zr2 with the hybrid genetic and ant colony (HGA) algorithm of

Rossi and Boschi [74] on instance set 1. T l
zr2 produced only solutions that are equally good as or

better than HGA. On the 15 instances with 2 replications T l
zr2 produced 5 better solutions than

HGA, and on the 15 instances with 3 replications T l
zr2 produced 13 solutions better than HGA.

The average relative deviation of the solutions produced by T l
zr2 is 0.66%, while for HGA it is

2.48%. T l
zr2 is also about 40 times faster than HGA.

T l
zr2 has reached the lower bound in 23 of the 30 instances, and the worst relative deviation

obtained was 5.44% in instance ROla03. T l
zr2 has an average relative deviation of 0.66%, a

slight improvement over Tzr1, with an average of 0.83%, but is also slightly slower.
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7 CONCLUSION

For PFSS we studied the utility of the Bubble Search algorithm. We have analyzed the de-
pendence of Bubble Search on its parameter α and proposed a new adaptive variant of Bubble
Search, that scales the probability of accepting a solution of Kendall-tau distance d in accor-
dance with the size of the instance.

Computational experiments we could demonstrate that for flow shop scheduling the adaptive
variant outperforms the regular randomized Bubble Search with replacement. The experiments
show also that Bubble Search is a promising technique for obtaining results comparable to the
best constructive heuristics, especially on small instances.

For PSS we have proposed a general solver, which includes OSS, PSS, MSS, and GSS, and
have have compared its performance to the current best algorithms in the literature for all these
problem variants. The solver is overall competitive with all tested algorithms, with a clearly
better performance for PSS and MSS, and a similar performance for the GSS and OSS, with
very few exceptions.

The experiments show that the main components of the solver, which use only the general
structural characteristics of PSS, translate well when drastically restricting the structure of the
problem.

Our main conclusion is that it is possible to design a single algorithm based on a few se-
lected, effective components for construction, perturbation and improvement of solutions that
works well on all these variants of shop scheduling problems. The comparison to five state-of-
the-art algorithms in significantly different time scales, also shows that a robust performance
for different time limits is achievable.

For JSS-PM the tabu search clearly outperforms the state of the art, in both processing time
and solution quality. On the 52 instances of the literature we produced solutions with the same
quality as the state of the art in 20 instances, and better in 32, and in no instances we produced
a worse solution.

On the instances proposed by Gholami and Sotskov [24] we obtained an average relative
deviation of 1.52% from the lower bound, while GH obtained solutions with relative deviation
of 8.21%. We reached the lower bound in 14 of the 22 instances. Gholami and Sotskov [24]
report execution times of less than one second, and the same is true for our algorithm, with an
average execution time of 0.14s.

For the 30 instances proposed by Rossi and Boschi [74] we obtained an average deviation
of 0.66%, in comparison to HGA that obtained 2.48%. On the instances 15 with two machine
replications in 10 HGA and T l

zr2 produce the same quality of solution, while in 5 T l
zr2 produces

better solutions. On the 15 with three machine replications T l
zr2 was able to improve the solu-

tions on 12, and only in 3 they produced the same quality of solution. The execution time of
the tabu search is considerably lower than that of the HGA in most of the instances. In average
the tabu search is more than a factor 10 faster for the instances with k = 2 replicated machines,
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and more than 40 times faster for the instances with k = 3 replicated machines. The better scal-
ability in relation to the number of replicated machines of the tabu search is probably due to the
strategy of not changing the DG representation with the number of replicated machines, which
maintains the search space size for the tabu search independent of the number of replicated
machines k.

We were able to show that the proposed tabu search can generate good results in a timely
manner combining a representation that ignores the replicated machines with a greedy strategy
to schedule such machines. The main contribution of this work is the scheduling strategy for
the replicated machines, combined with the new neighbourhood that uses an adapted critical
path. The results generated by the proposed tabu search are good, both in time and quality of
the generated solutions.

7.1 Future Work

We believe that it is possible to broaden the scope of the ITS solver even more, e.g. to parallel
machines, alternative routings, or job shop scheduling. Job shop scheduling in particular has
been studied intensively in the literature, but since our heuristic was not designed for it more
effort is necessary to include it (in preliminary tests ITS produces solutions about 1.8% above
the state of the art).

7.1.1 Partial Shop

To further the study of PSS we think a new set of instances, more representative of the
generality of the problem, can be of value. The current instance set has only instances with
low order strength, in average of 0.12. We think an alternative set that contains instances with
variable order strength and sizes can be useful to guide the further development of heuristics for
PSS.

During our research of shop problems a recurrent problem has being improving on solutions
with multiple critical paths, since all critical paths must be destroyed in order to improve the
quality of the solution. We developed a technique to identify all operations in all critical paths
in an efficient manner. This can be used in combination with all the techniques presented here,
and we think it is a promising line of research. We are also able to identify which operations are
in the edge of a block on any critical path, which can be used to reduce the neighbourhood in
the same way it is done on the N5 for JSS, or on the PSS neighbourhood presented in this work.

We performed some preliminary work on the adaptation of the N6 neighbourhood for PSS,
which we think can be a promising way of improving the effectiveness of the heuristics. In par-
ticular we think that adapting the main ideas proposed by Peng et al. [65] for JSS can generate
an effective solver for PSS.

Several of the problems presented in this work use alternative routings for the jobs. These
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alternative routes can be represented by a set of partial orders, and depending on the charac-
teristics of the instances, this set may be much smaller than the number of possible alternative
routings. We think that an approach that aims to identify which the alternative can be effec-
tively represented as partial orders can generate competitive optimization techniques for these
problems.

7.1.2 Parallel Machines

Like in the case of PSS it is harder to improve upon solutions with multiple critical paths
in the case of JSS-PM as well. Therefore the technique to identify the operations in all critical
paths can be of use in the case with parallel machines as well.

Several models use parallel machines that are not identical. For instance, in the Hybrid JSS,
each operation can be processed in one of a set of possible machines, but the processing time
of the operation depends on which machine it was assigned. The machine assignment can also
be solved implicitly instead of representing it directly in the DG, and we think extending the
heuristic parallel machine assignment presented in this work is a promising line of research.

7.1.3 Other Future Work

The learning component presented in here is simple and most likely can be improved. The
learning component can be used, without much change, to improve the speed of the other heuris-
tics proposed in this work. We think a more robust learning component can bring a considerable
speed up, and we intend to study the usage of the learning component to select which neigh-
bourhood, of a portfolio, should be used dynamically during the search. Using the learning
component to trim the neighbourhood may be more important for naturally larger neuighbour-
hoods such as the the N6 or neighbourhoods which change multiple critical paths.

Finally we think a partial shop with parallel machines is possibly a useful problem and we
think it can be interesting to study it.
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