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Abstract

We develop a velocity—pressure algorithm, in primitive variables and finite differences, for
incompressible viscous flow with a Neumann pressure boundary condition. The pressure field
is initialized by least-squares and up-dated from the Poisson equation in a direct weighted
manner. Simulations with the cavity problem were made for several Reynolds numbers. It
was obtained the expected displacement of the central vortex as well as the development of
secondary and terciary eddies.

1 Introduction

We develop a velocity—pressure algorithm for incompressible viscous flow in primitive va-
riables by using finite differences, a Neumann boundary condition for the pressure and without
any iteration method for updating the pressure.

The incorporation of the Neumann condition for incompressible flow has been deeply discus-
sed on a remarkable work of Gresho and Sani'® (1987). From a mathematical point of view, the
system of equations governing an incompressible flow is singular with respect to the pressure.
There is no an evolutive equation for the pressure. In practice, the system is usually considered
as the momentum equation subject to a solenoidal restriction for the velocity field. The initial
and boundary conditions being prescribed only for the velocity field.

The discretization by difference methods of the Navier-Stokes equations on a staggered grid,
when formulated in matrix terms, allows to identify a singular evolutive matrix system. When
we derive the Poisson equation for the pressure and perform its integration, we can observe that
a clear influence of the Neumann condition arises. From this we can extract a non-singular sys-
tem for determining the pressure values at the interior points. The initialization process of the
pressure, by a least-squares procedure, somehow incorporates an optimal pressure as a starting
point, instead of employing an arbitrary constant as it usually made with iterative methods.
The values of the velocity and pressure at interior points can be well determined by the forward
Euler method for the velocity and by solving a non-singular Poisson equation without iteration.
This later means that we incorporate the values of the pressure and velocity as soon as they are
computed.

The formulation of our algorithm follows the unified operator approach introduced by Casulli?
(1988) which allows to consider, with minor modifications, the up-wind and semi-lagrangean me-
thods.

This velocity—pressure algorithm with central differences has been tested with the cavity flow
problem for a wide range of Reynolds numbers. The displacement of the central vortex to the
geometrical center of the cavity was obtained when increasing the Reynolds number, as earlier
established by Burgggraf®(1966), Ghia et al'*(1982) and Schreiber and Keller®*(1983), among
others. Also, the development of secondary and terciary vortices.

2 The Continuum Equations for Incompressible Flow

In this section we give a brief account about the prescription of the Neumann condition as
done by Gresho and Sani (1987). The Navier-Stokes equations for the velocity u(x, t), pressure



p(x,t) with initial and boundary conditions for the velocity constitute the system

%-{-u.Vn—%Vp:quu, t>0 (1)
V=0 (2)
u(x,0)=up(x), x inQ=Q @ T (3)
u=w(x,t) in I'=00. (4)

Here € denotes a limited 2D region, I its boundary and
V=0 in Q, (5)
an initial solenoidal velocity field. From the above system follows the initial normal velocity
ug.n =w(x,0).n on TI. (6)

and the global mass conservation

/ru.ndx =0 , (7)

We observe that no initial nor boundary conditions are prescribed for the pressure. Thus p
is determined up to an additive constant corresponding to the level of hydrostatic pressure.

The conditions of an initial velocity field solenoidal and normal velocity compatible with
the above conditions are required for the problem to have a well defined, unique and solenoidal
solution for all ¢ > 0.23 The initial tangential velocity field is not required to be compatible with
the conditions, if so, then the solution may be smoother.

By assuming adequate differentiability hypotheses, we can derive the Poisson equation by
taking divergence of the momentum equation and using the vector identity

Viu=V(V.u) -V xVxu. o (8)
We have that

20

V.(w.Vu) 4+ V?p = (v V20 - = )

in Q, (9)
where @ = V.u.
Since the prescribed conditions for u in I' are valid everywhere on time, that is,
Va=0 in Q for t>0. (10)
we can substitute it in the equation for ©® and obtain Poisson’s equation for the pressure
Vip=-V.(u.Vu) in Q for t>0. (11)
Let us consider the equivalent equation
V?p = V.(vV*u - u.Vu) . (12)

In order to complete the specification of the problem for the pressure, we should impose boundary
conditions for the pressure on I'. Since the last two equations have derived, the boundary
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conditions should be also derived. One obvious manner is to set the momentum equation valid
on the boundary. However, this is a vector equation and only one scalar boundary condition
is required. We can choose either the normal or the tangential projection of the momentum
equation upon I'. The first option gives us

n.Vp= % = vV2u, — (

a;tﬂ +uVu,) inT fort >0 (13)

Thus equations (11)—(12) and (13) constitute a Neumann problem for the pressure.

On the other hand , the tangential component of the momentum equation upon I' gives a
Dirichlet condition type
op

T.Vp= B~ vV, — (

dur
o +u.Vu,) , (14)

where the value of p on T, that is, Dirichlet data, is provided by integration of (14) through 7.

The determination of the solution of the Poisson equation (11) with Neumann boundary
conditions (13) requires to hold the compatibility relationship

//ﬂvzp a0 =f [ -V.(u.vu) a2 = jérpn ar (15)

where p, =n.Vp, and n an exterior normal unit vector to I'.

3 Discretization of the Navier—-Stokes Equations

We have for a nondimensional 2D incompressible viscous flow, the primitive equations

ou Ou  Ou dp 1 ,0*u  0%u

E'f'u*a—x-l-vgg = _3_$+E(b?+51_‘;2) (16)
v v v dp, 1,0 O
a+u§&-+v3_y = —@+E(BE—2+WJ2) (17)
du Ov
Gt =0 (18)

where u(z,y,t) and v(z,y,t) denote the velocity components in  and y directions, p(z,y,t) the
pressure and Re > 0 the Reynolds number. This system can be written in the operator compact

form U
ME+NU=—PU—I—LU (19)

U 1 00
U=|v |, M=]1010/{,
p 0 00

where
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We now use central differences for approximating the spatial derivatives. For simplicity, we
shall restrict our formulation to a rectangular staggered grid (Figure 1).

Setting Az; = Az, i =0...n and Ay; = Ay, j =0...m, let
ui,j = u(iAdz, (j + 1/2)Ay),

Vi = U((? + 1/2)&1‘,}&?}),
pij =p((i+1/2)Az, (j+ 1/2)Ay).
We write (16), (17) as

% = Ri(wv) - Gu(p) (20)
o = Fa(v) ~ Galp) 1)



respectively, then we apply spatial central differences. It turns out that

u£+l‘J = ui_lnj uivj+l S uf‘j_l

Fi(u,v) = —u;j s — vy Ay +
i Uigl,j — 21&,"_,' + Ui-1,j5 Ui j4+1 — 21!.,‘._,' + ui -1
Re( Ax? ik Ay? ) (22)
_ Vig1,j7 — Vi-1,5 o U4l — Vij-a
Fa(u,v) = —1,r;|,‘,‘.rJ s - Ui ; 2AY +
1 g1, — 205+ vim1,; | Vig41 — 2005 + Vi1
= : ! - d B 2
Re[ Aot + Ay ) (23)
Similarly,
Pij — Pi-1,5
&y i~ Pi-lis 24
1(p) Ra (24)
i p‘;j - pilj_l
G = £h) S 25
2(p) Ay (25)
Here vly, ; and u|,, ; denote the average values
o= vij+1 T vij+ U:’;-l.j+l + Vit1,j—-1 (26)
Tilu.-lj- - i+1,5 1,] 4l+1,3+1 1,741 (27)

3.1 Matrix Formulation

The above spatial discretization procedure, together with the pressure Neumann condition,
for the Navier-Stokes equations on a rectangular staggered grid amounts, in matrix terms, to
replace (19) by the spatial approximation

dU r Fyp1F P F FrrF
ME+N(U)U+N (U, U"U" = -PU-P"(U,U") + LU+ LU" . (28)

Here U = [U;,;], where U;; includes the values w172, » ij+1/2 » Pi,j at a cell (3,7). The
vector U corresponds to the boundary values of u, v e p. The matrices M, N, L , PP are the
corresponding spatial approximation of the continuous terms and NF | LF | PF are matrices
that contain boundary values. The above systems are singular once M is a singular matrix.

If we use an up-wind approximation for the velocity field and keep central differences for the

pressure gradient, it will turn out that the matrix formulation reads
dU - : o

M—- + N(U,UF)U + NF(U,UF)UF = —-PU - PF(U,UF) + LU+ LFUF (29)

From such equations, we observe that, although the N matrix is different for each method,

there is a direct influence of boundary values on the non-linear convection matrix when discreti-

zed by the up-wind method. This is not the case for central differences and, in numerical terms,

it means, that boundary values do not interfere with the numerical convection at interior points.

The above matrix formulation will be of a similar nature for non-rectangular domains.
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3.2 Time Discretization

The time discretization of the momentum equations, besides modifying the order of appro-
ximation, raises numerical stability problems. Although implicit methods have better stability
properties, they are expensive to implement. In this paper, we shall employ the explicit Euler
or Adams-Bashforth methods.

The Adams-Bashforth method, applied to the equations (20) and (21) can be written as

np—1

uF =k 3+ At Z a[Fy (u,v) — G1(p)] i)
1=0
ﬂp—l-

vF = oF 4 At Z a[F2(u,v) — G2(p)] (31)
=0

where k = t/At represents the time steps and the coefficients n, and «; define a specific method:
np, = 1,a, = 1 (first-order forward Euler), n, = 2, a, = 3/2,ay = —1/2 (second-order Adams-
Bashforth) and n, = 3, a, = 23/12, 0y = —4/3, ap = 5/12 (third-order Adams-Bashforth).

4 The Corrected Pressure Equation

Gresho and Sani derived an equation for the pressure in such a way that for V.ug = 0, the
system given by (1),(2) can be replaced by

Ju | ,
% +u.Vu+ Vp= _R_ev u (32)
1
Vip= V.[E;Vzu - u.Vu) (33)
where the boundary condition for p is given by
_ dp _ _1_ 2 Oun .
n.Vp= e Rev Uy — ( o +u.Vuy,) fort >0 (34)

The discretization of the Pressure equation, being a derived one, requires a special care,
in order to control the accumulation of numerical errors that might invalidate the continuity
equation. This means the need of introducing corrective terms to the pressure equation.

Let us consider the momentum equations discretized as

np—1

ubtl = uk 4 AL S a[F(uf7!) - Vo] (35)
1=0

where, n, and a; depend upon the employed Adams-Bashforth method, F(u*) being the discre-
tization operator of the convective add diffusive terms.

Applying the divergence operator in both sides of (35), we obtain

np—i
v.uﬁjl = V.uf; + At Z af,-[V.F(ufJT’) = vzpﬁ;.‘] (36)
=0
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The incompressibility condition at the (k+1)th-time step, V.u**! = 0, is then characterized

by
2k by Vouk 1 k
uy -
vV p‘-!j o VF(U‘J) -} KA; -+ 0’—0 Z Q’,‘[V.F(ui’j 'l) pl,j ] (37]
=1
We observe that for the Euler method, the above correction coincides with the dilatation
term D; = V&u“ 3,13,21
e,
The equation (37) can be written in the compact form
V2pF = V.H(u*) (38)
where
np—1
k=ly _ . k=l
H() = P + ooy + 0 3 alF(a™) - Vi) (39)

We now discretize the laplacian of the pressure with second-order central differences on a
staggered grid

V2p;; & Pi-1,j + Pi,j-1 — 4!;:,2,3 + Pit1,j + Pij+1 -
where h = Az = Ay. Thus (38) becomes
Pi—1,j + Pij—1 — 4pi; + Pit1,j + Pij+1 = h(Hyyy,, — Hy,, + Ha, j,, — Ha,)) 1)

where Hy, i and Hy, ; are the x and y components of H(u), respectively, applied at the points
(iAz, (j+ 1/2)Ay) for the first component and ((i + 1/2)Az, jAy) for the second one.

For a good convergence of the discretized Poisson equation with a Neumann condition, the
compatibility relationship (15) must hold exactly on the discretized domain, that is'

Ipi
V2p; i s+ (42)
i,jzeﬂ ,JZGF

By adding (41) for all points of the square domain, we have

n—=1m-—1 n—1m-=1

Z Z Pi-1,j + Pij—1 — 4Pij + Pit1,; + Pij+1 = hz ) Hyyy,; — Hyy + Ha,yy, — Hayy (43)
i=1 j=1 i=1 j=1

and making simplifications, we obtain

m—1 n—1
Z (Poj — P1,j — Pn—1,j + Pn;j) + Z(Pi.n = Pit = Pim—1 + Pijm) =
=1 i=1
m=1 n—1
h " (Hy,, — Hyy ;) +h Y (Hy = Hayy) (44)

Then the discrete Neumann condition holds for
Po,; = P1,; — hHly, (45)
p“tj — pﬂ"lvj + h}‘fln.j (46]
pio = pig — hHz,, (47)
Pim = Pim-1+ hHy, (48)

We should observe that these boundary conditions are discretizations of (34).



5 The Velocity—Pressure Algorithm

We now give an algorithm for integrating the Navier-Stokes equations. First, the pressure
is initialized by solving a singular system that arises from the discretization of the pressure
equation with the Neumann conditions. Second, the momentum equations are solved for the
velocity field at each time step. Third, the pressure is up-dated by solving a Poisson equation,
giving a special treatment for the interior points that correspond to interior cells and to the
adjacent cells in such a way that the compatibility condition is verified. This updating contains
corrective terms for the direct calculation of the pressure at interior points of interior cells. This
is done by incorporating the already known pressure values at neighboring points.

5.1 Pressure Initialization
To initialize the pressure, we consider the equation (38) with k = 0.
v?p® = V.H(u (49)

Here we use n, = 1 and ap = 1, as V.u® = 0, H(u®) = F(u°). No corrective term appear on
the initialization and the discretize boundary conditions are (45)-(48).

The equation (49) discretized as done in (41) associated to the boundary conditions, when
written in matrix terms, turns out

Ap®=hb (50)
where A is the singular matrix
( 5 I i
I Sy 1
I S, I
A= ) ) .
I S, 1T
L I Sl 4 (mxn)x(mxn)
with
-2 1 -3 1
1 -3 1 1 -4 1
Sl - 1 82 =
1 -3 1 1 -4 1
1 -2 1 -3

nxn nxn

and I is the identity matrix of order n.
At time k = 0, the vector p? contains the values of the pressure at interior points, that is,

0o_r,0 0 0 0 0 0 0 0 0 T
P —[P1,1 P21 +++ Pnag P12 P22 -+ Pn2 -+ Piym P2m «- Pn,m] .

The vector b contains all values u;, v); from the right hand side of (45)—(48), which are
given initial values, and this has the particular form,

b=[0 w00 bmn—n+l Qi 0 bmn]ﬁx-n
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where
2v 2v

bmn-—-n+l = T and bmn = _T

Hence, b is a non-zero vector.

The above singular system can be solved by several methods: least-squares, iterative or LU.

5.2 The One Step Pressure Updating
Once the pressure is initialized, the interior pressure values p; ; at time t+4 At are computed

with the following one step and explicit scheme (Fig. 2):

h?
Pﬁjl [pk+1 ‘klj'll +pi+1-1 +le+1] = —V H( k+1] (51)

llj

which incorporates by a simple averaging old and new values for the pressure.

s
j+1 5 o:old (k)
j(* ° o) x:new (k+1)
j—1 * e = average value of
1 \‘ij i1 the new / old

Figure 2: Pressure molecule

This updating of the pressure field can be written in matrix terms as

B pk-i-l + c pk — _Q(u.‘.‘-l—]) (52)
where _ -
Bl Cl I
I B c, I
B = I B and C' = 4
. . I
I Bl | Cl
with
i [0 1 i
1 -4 0 1
B, = 1 =4 and C) = 0
g 1
1 -4 0




where B and C' are matrix of order ((m —2) X (n —2)) X ((m —2) x (n—2)), By and C of order
(n—2) X (n—2) and [ is the identity matrix of order (n — 2).

The term Q(u**!) contains the velocity and corrective terms of (51). The above matrix equation
for updating the pressure must not considered as being iterative. It is just a compact form of
writing (51).

5.3 Velocity—Pressure Algorithm

The algorithm for solving an incompressible viscous flow with prescribed Neumann condi-
tion for the pressure is given as follows.

1. Introduction of the initial velocity components at time to = 0, corresponding to level k = 0,
and the boundary conditions for the velocity field.

2. Initialization of the pressure by solving a singular linear system of the type
Ap’=b

through least-squares or iterative or LU decomposition.

k41

i1 by using (30), (31),respectively.

kj-'l and v

3. Computation of the velocity field u;
4. Computation of the pressure p at level time k + 1 through (51).

5. Up-dating of the pressure and velocity field by setting p*+! instead of p* and u*t! for ut.
6. To perform steps (3)—(5) for k =1,2,....

7. End the calculations.

Remarks
1.This algorithm computes corrected pressure values at interior points without any iteration.

2.The algorithm can handle non-rectangular geometries. The only modifications are related
to boundary rows and columns of matrices A, B and C, the nonlinear term Q and the initial
vector b. In this work, for simplicity and numerics with a broad range of Re, the algorithm was
set up from a 2D square cavity discussion. However, simulations were made for cavities with a
non-rectangular bottom.

3.The above algorithm have been successfully employed with 3D rotating convective flow
and with the inclusion of viscoelastic terms. It is a matter of a forthcoming work.

5.4 Extension to 3D Domains
The case of a 3D cubic cavity can be easily handled. For a velocity field u=(u,v,w) on a

staggered grid, we consider

Uiy iyis = B(IzAT, iy + 1/2)Ay, (1. + 1/2)Az)

Vigiyis = V((iz + 1/2) Az, iyAy, (i, + 1/2)Az)
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Wi, i, i = W((Ez + 1/2) Az, (iy + 1/2)Ay, i:Az2)
Piziyiz = P((iz + 1/2)Ag, (iy + 1/2) Ay, (i + 1/2)Az)

The discretized momentum equations read

np—1
k k=1
uf:-i..ilyliz = lx.ly.lz + At I.Z O:','[F( sx,ty,lz) - vpi;,iy,i,] {53)
=0

where the operator F have a similar meaning to the two dimensional case.

The equation for the pressure, including correcting terms, becomes

Vu"‘ ;3 1 np—1
k Iy "z
vgpi,,iy.l, =V. F( 1,3,,1,) =+ ﬁ' + ?‘; Z Oz'f[v F( ‘:‘ly,‘z) vzptk;,tlly,l,] (54)

1=1

The discretization of the laplacian operator on a cubic cavity by second-order central dif-
ferences and the fulfillment of the discrete compatibility relationship lead to the one step and
explicit scheme

1 | i i :
p:c:.‘lly,lx = _[pf:-—lll‘.yn‘z + p::l:‘];'_lvi: + p"::‘sly:"z_l + pi"{'l'i&il‘.z + pfx!iy'*']'".‘ + pt'iy'fr}'l]
h2
__V H(ul;,ly,lz) (55)
k 1 np—1
where H(u*) = F(uf) + W L=y Z a[F(u*!) — vpk ] (56)

=1
Here h = Az = Ay = Az.
6 Numerical Simulations

We consider the incompressible viscous flow within a cavity that it is induced by the shear
movement of the the upper wall, with uniform horizontal velocity ur = 1, and keeping fixed the
other walls. The driven cavity flow is often employed for testing and comparison of numerical
techniques for solving the Navier-Stokes equations.%12:16:18

We have the horizontal velocity boundary conditions
u(z,0,t) = v(0,y,t) = v(X,y,t) =0 , u(z,Y,t)=ur =1
and the normal velocity conditions
u(0,y,t) = u(X,y,t) = v(z,0,t) = v(z,Y,t) =

where X and Y are the linear dimensions of the cavity. We shall assume that at time ¢, = 0 the
velocity field is zero.

11



u=1 v=_0 u=1 v=_0
Y Y
u=10 u=20 u=1{0
v=0 CAVITY v=10 CAVITY v=0
T

Figure 3: Cavity driven flow (a) rectangular ; (b) curved.

The governing equations were considered in nondimensional form for

gl pad e gesdl
X X T ar T ar
_  tu ur X
t:——XT ﬁ:_p.z Re= —
pup v

The simulations were performed for Re = 100, Re = 1000 and Re = 5000 and compared
with the results of Ghia et al.'". Figure 4 shows the streamlines and the appearance of the
primary vortex, the secondary and terciary vortexs at the lower and upper left corners of the
cavity. Figure 5 shows the velocity profiles at the centerlines of the cavity (y = 0.5 and z = 0.5),
compared with those of Ghia et al. For Re = 100 and Re = 1000, it was enough to consider a
66 x 66 non-uniform grid, refined at the walls, while for Re = 5000, we considered a 130 x 130
refined grid. However, good results can be obtained with smaller refined grids. Figure 6 shows
the flow for Re = 7000 with a refined grid 50 x 50.

The proposed algorithm was derived, for simplicity, with a rectangular domain. However, it
works too with more complex geometries as shown by the simulations made for a curved cavity.
Figure 7 exhibits the results for a parabolic bottom with Re = 10, Re = 400, Re = 1000 and
Re = 2000.

In order to test the non-iterative one-step pressure updating for 3D domains, we considered
a cubic cavity. Although the geometry is relatively simple, the flow is quite complex and appro-
priate for testing computational codes.?

Figure 8 shows the flow for Re = 400 with a grid 60 x 60 x 60. We can observe from the

upper and frontal views that the flow exhibits some kind symmetry which is to be expected
from the boundary conditions. Some authors?®, make use of this observation for reducing the

12



(2)

Ny

(c)

Figure 4: Streamlines (a) Re = 100; (b) Re = 1000; (c) Re = 5000.

computational time. However, we did not need to make use of such device. The reason being
that we wanted to observe if such symmetry could be detected with the proposed non-iterative
pressure algorithm which do not need to update the pressure in a symmetric way.

The pattern of the streamlines for a cubic cavity is certainly more complex than the 2D
case. We observe in Figure 9 that the flow moves between the wall and the center of the cavity,
besides circulating around the axis of the main vortex. Figure 6 illustrates isobaric surfaces.
The pressure at the interior of the cavity is near zero and the extreme values are obtained at
the upper corners. The negative values of the pressure being at the upper left corner and center
of the vortex, while the positive ones ocurr at the bottom and upper right corner of the cavity.

13



(b)

(®

a 100
b 1000
c 5000

sy

~aa

* Ghia ot. al

- Presenl Work

=0.5;

(a) x

Velocity profiles

Figure 5

(®)

(®

1
A
1
.

UIIIRERY
Pty

L

al

nes.

(c) Streamli

ized velocity field;

(b) normal

Nonuniform grid (a) grid 50 x 50;

Figure 6

14



A

Figure 7: Curved cavity (a) Re = 10; (b) Re = 400; (c) Re = 1000; (d) Re = 2000.

(a)
©

7 Conclusions

An algorithm has been developed for the numerical solution of the incompressible Navier-
Stokes equations with a central differences scheme in primitive variables and the Neumann
boundary condition for the pressure on a staggered grid. The algorithm solve without any ite-
ration a Poisson equation which is transient due to the Neumann condition for the pressure.

This algorithm was tested with the driven cavity flow problem for several Reynolds numbers,
uniform and nonuniform grids, curved domains and a 3D cubic cavity. It has been observed the
aparition of the central vortex and the recirculation with secondary and terciary eddies. As the
Reynolds number increases, the central vortex moves toward the geometrical center of the cavity
as shown before by Burggraf®, 1966; Ghia et al.', 1982; Schreiber e Keller??, 1983, etc..

The matrix formulation allows to follow the influence of the Neumann conditions for the
pressure when integrating the velocity and pressure fields at interior points. A correction of the
pressure equation was introduced and for increasing the time step and to diminish the number

of iterations, we can use other time integration methods.
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Figure 9: Driven Cavity Streamlines at Re = 400 (a) Perspective; (b) Lateral view; (¢) Upper
view; (d) Frontal view.

The formulation of our algorithm follows the unified operator approach introduced by Casulli®
(1988) which allows to consider, with minor modifications, the up-wind and semi-lagrangean me-
thods.

Numerical simulations were carried out for a broad range of Reynolds numbers. The results
were compared with the existing solutions'* showing a very good agreement. Besides this, si-
mulations done for the cubic and parabolic cavities illustrate that the algorithm can handle 3D

and non-rectangular domains.
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Figure 10: Driven cavity isobaric surfaces at Re = 400.
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