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Abstract

We develope a velocity-pressure algorithm, in primitive variables and finite dillerences,
for incompressible viscons flow with a Neumann pressure boundary condition.  The
pressure field is initialized by least-squares and np-cated lrom the Poisson equation in
one step withtout iteration. Simulations with the square cavily problem were made for
several Reynolds numbers, It was obtained the expected displacemnent, of the centraf
vartex and the apperance of secondary and terciary eddies. Diflerent geometry ratios
for the cavity were also considered. Simulations for a 31D cavity were carricd out with
an Adams-Bashforth method.



1 Introduction

We develope a velocity -pressure algorithm for incompressible viscous lfow in primitive variables by
nsing finite differences and a Newmann pressure houndary condition, as diseussed by Gresho and
Sani (1987).

The discretization by difference methods of the Navier-Stokes equalions on a staggered grid, as
made by Casulli (1988}, when formulated in matrix terms, allows to identify a singular evolative
matrix system. When we derive the Poisson equation for the pressure and perform its integration,
we can observe that a clear influence of the Neuman condition arises. From this we can oxtract i
non-singular system for determining the pressure values at the interior points. ‘Ile initialization
process of the pressure, by a least-squares procedure, somehow incorporates an optimal pressure
as a starling point, instead of employing an arbitrary constant as it usually made with iterative
methods. The valies of the velocity at interior points can then be well determined by a foward
Fuler method or Adams-Basforth, For the pressure we solve a non-singular Poisson equation with-
out iteration. This later means that we incoporate the values of the presure and velocity as soon
as Lhey are computed.

This velocity-pressure algorithm with central differences has been tested with the cavily problem
for a wide range of Reynolds numbers and geomteric ratios that include square, deep and shallow
cavities, lor a square cavity the displacement of the central vortex Lo the geometrical coenter of the
cavily was oblained by increasing the Reynolds number, as earlier established by Burgggrafl(1066),
Guia et al(1982) and Schreiber and Keller(1983), among others. Also, the apparition of secondary
atdl Lorciary vortices.

The proposed algorithm, described in detail for 21) regions, can be appropiately madified Tor 3
regions. Simulations were made for a 3D eavity.

2 The Continuum Equations for Incompressible Flow

The Navier-Stokes equations lor the velocity u(x,?), pressure p(x, 1) with initial and boundary
conditions for the velocily constitule the system

%? -uVu+4 Vp=vViu, (>0 (1)
Vau=10 [2)
ux,M=uy{x), x nT=0 @ ()
u=wix,t) in I'=gQ. {1

iTere §2 denotes a limited rogion, I' its boundary and
Vap=0 in Q, (5}
an inttial solenoidal velocity field. From the above system follows the initizl normal velocity

ug.n=w(x,0).n em T. (G)



and the giobal mass conservation

/ undi=10. (7}
Jr

We observe that no initial nor houndary conditions are prescribed for the pressure. s p s
determined up to an aditive constant corresponding to the level of hydrostatic pressure. By taking
divergence on the momentnm equations, with adequate differentiability hypotheses, we obtain the
Poisson equation

Vip = -V.{u.Vu) in Q for 1>0. (%)
or the equivalent equation
Vip= V.(vViu - uw.Vu) . {9)
Here we shall prescribe the Neuman condition
dp . .
nVp= 5{: = vV, - (—-OT- +uwVa,) inl fori >0 (10)

whaose discnssion has been made by Gresho and Sani.

The determination of the solution of the Poisson equation with Neumann boundary conditions
requtires that the following compatiblity realtion holds

/./;1 -V.(u.Vu) dQl = ?l( Pl (1)

where p, = n.Vp . and  n an exterior normal unit veetor Lo I

3 Discretization of the Navier—Stokes Equations

The primitive equations for a 213 incompressible viscous {low are

i du du dp (r')"!u 4 J*u (12)

— — J— = —— JJ (DU T—

a ez T ay gz g T g

v v dv ap v O

AT AL AL I3

at T e +v vy dy + U(r'):rr“ iy (13)
du  do = 0 (L)

where u{z,y,1) and v(z,y,{) denote the velocity components in x and y directions, p(a,y,¢) the

pressure and » < 0 kinematic viscosity coefficient. This system can be written in the operalor
compact form

a7

M’T—I-NU= P4 L (15)
i
whore
U P ¢ 0
U=1{ v , M=10 10 ,
P 0 oo
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2 > 0

We now use central dillerences for approximating the spatial derivatives and the explicit. 1Suler
method for approximating the time derivative. Thus, with reference to the staggered grid, we have
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or equivalently

L &
Piy1,; =P
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(16)

1=1,2,...,n—1, J=1,2,...,m



where the finite difference operator £ is given by
I ;

vk _ Lk -
l'l”i+|,!2,j = Wi (17}
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denotes the average vahie
k k k k
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lor the vertical velocity component v we make a similar discretization as the one done for v, Thus

ok nk
Piijer — Pij

kil _ ok
Mtz = }'ﬂ"i.j-i-lﬂ — At Ay (19)
i=1,2,...,n, J=12,... ,m—1
wheore
ok _ Lk .
120 e = Yijsap (20
k k k k
— Arlat Yipt 4172~ Vic1je1/2 e Yigrafz = Vijotg2
S LIRER Y AT Vi it1/2 Iy
k k k k gk k
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As hefore, we consider ﬂqu-l;z as a mean value of the known neighhouring points, that. is
ok k k k
_ Mg T e T i T o]
g2 = 1 (21)

The spatial discretization procedure for the Navier-Stokes equalions amounts, in matrix terms,
amonnts 1o replace (15) by the semi-discrete approximation matrix equation

M% + N(U)U 4+ NF(U,UHUF = ~PU - PF(U,U") 4+ LU 4+ LEGF (22)
Here U = [U; ;] where U ; incIndes the values Uip1p2,5 0 Vigei/2 » Piy al acell (4,7}, The veetor U
corresponds to the boundary values of u, v ¢ p. The matrices M, N, L , P are the corresponding
spatial approximations of the continuous terms and N* | LY P¥ are matrices that contain bonndary
values. The above systems are singular once M is a singular matrix. We have that F is difference
operator corresponding to the discretization of the convective and viscous terms, inclueling the
continuity equation, and P corresponds to the spatial discretization of the pressure gradient.
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4 The Pressure Equation Discretization

The Poisson equation for the pressure is given by
Ap=—V.(4.Vi) = 1) (23)
where the dilation term
D=u,+nuv,.

15 included for numerical stability pitrposes. We now restrict, onr discission to a rectangular ¢o-
matn.

Y
— Az p—
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n
o X
R I T Xy = A

Figure 2: Rectangular Grid Q

With respect to Fig. 2, the following Nenmann boundary conditions for Lhe pressitre are oblained
from the momentum equation on a solid houndary

~Pr = Wt uing+vuy+v (v, —uy,) in x=0, A (24)

Py = it uvgtvuy v (g — ) in y=140, 1, (25)

The Paisson equation (23) and the boundary conclitions (23} (24) for the pressure are now
approximated on a staggered grid with Az = Ay = L. The spatial derivatives i (23) , (20)
and (25) shall he now approximated by second-order central differences for interior colls and rolls
adjacent to the boundary.

4.1 Interior Cells

We consider the Poisson equation
d, du d , du i, dv a, duv

Py + Py = —J;{u-(-;] - —(v— ) - % va) -,

bz By’ Oy O (26)

|



As usual, the dilatation term D, is approximated hy

DEY _

!)( -~ Al

(27)

where the superseript indexes & and &+ 1 refer to the time levels ¢ and ¢ + At.In order 1o satisfy
the continuity equation (14), D¥+1 is made equal to zero.

Let (7, 7) refer to an interior cell, that is, withont common sides with the boundary { Fig. 1). Then
the Poisson equation (26) is approximaled hy

+ ) ) (“(')u 7] f)u) i) ( f)v)
Iy = —|gz(u— = [a={v5 = |- lus -
! Py - Ox' Oz - dx Uﬂy ., iy “or "
d ., dv U fou du )
[Tﬁ?ﬂ] 5 (7 ) s

i=2,3,...,n-1; I=243,...,m—1,

- (”’H:.-:) J
Uy f2.4

where eacl term is given by
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My
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We snbstitute (29)-(33) in (28) and use second-order central differences for approxitmating the
derivatives prz e pyy,, so that

Pig1,j+ Pictg + Piger i1 —dpi; = —%ﬂ-wuzd (’”£+:s/2,j = 12,;)

1 1
Fatticiyzy (Mipjag = wieage;) = 302 (Mipjage = gz -1)

+30i1j25 (Micijajer = Wimijg o) — 54172 (Miktjaisz — Vst jopa)
(31)

| = 1
Tz Vit otz = Vit joija) = $V a0 (Vi jyap2 = Vijoi2)
1 F
Favii-iz Wigeiz = vigoap) + A7 (o = wieageg + g2 = 0oy )

t=23,...,n=1, §=23....m-1.

5 Cells Adjacent to the Boundary

The boundary condition (24) is computed at g5 by using a central difference approxintation.
Thirs

. — A k+1 L |
P2i =P = — g ("3/2,3' = Mgy i) = gtasa(ts ey — i /2,)

— i

apa,i(Ma2540 = a2 jo) = F(=v1 5512 + va g 2

-1
2

(35)
TGj-12 = Vrioije = Mapagia + Luspy = g goy)
J=23,...,m~1.

Similar expressions are obtained by using {24) at iy and computing the hounea ry condilion
(25) al v 4, andw; 1, 2, that is

, _ hog k1 ke 1., ; .
—Png FPae1; = A (”.,,_;;2‘_,- - ",1..1/;.;'3-) + §"n_t/2,j(*'fu-;-1/2,j = fy_ay2,j)

+%ﬁn—:f2,j(“u—a,!2,j+t ~ Uno1/2,-1) F 5 (=Uny jg12 F Va2 36)
36
oy -1p2 Ppj—1/2 = Un_1f2541 T 2"-‘-71412,;' = Mp_1j2,i—1) »

J=23,... ., m~-1.



. _ _k kg1 & [
Pz —pia = —zﬁ‘ (”,-.;Jf;g - ",-,3;2) - 5“:‘,3;2(”;+|,3{2 = Pio1a/2)

—50i372(Viss2 — vy p0) + & (Vig1372 = 20372

(37)

s sy g0 — Rit1f2,2 — Wioaen + i) s
1=2,3,...,n-1,
— k41 L 1=
—Mim "'pi,m—] = }T‘((”,"j;._],xg - ”,"m_]f-g) + f"i.m—I{2(”f+l,m~l,f2 - ”i—l,m—l{!)
t K

+§T’l‘.m—lf?(”i.m-l—l,’? - ”:',m-.'],-"?) - ;_l(”i-l—l,:rl—lf? - 2"1',m—|{2

(38)

TVt metf2 Wi pagn — Hittfzom =~ Wic)f2m-t + Wip1p2m—1)
i=23,...,n—-1.
The terms 7,4, ; and i jvyz M (34) (38) are defined by (18) and (21).

The addition of terms on hoth sides of (34)-{38) can be interpreted as a discrote divergence theorem
[Alfrink, 1981]). Tn our case, hoth add up to zero which tell us that the compatibility eepiation {11}
is exactly satisfied on a staggered grid.

We should observe that the viscous terms in the momentum equations (12), (13) do not appear
in the source term for the Poisson equation (23). llowever, they are present. within the Neumanm
boundary conditions (24), (25). In order to satisly the compatibility condition (11), the integral
of the viscous terms over the boundary must cancell. This is oblained by writting the viscons
terms in a convenient way. More precisley, by using the continnity equation (14), we can writoe
Urp + Uy = =y + Uy, in (24) and vy, + Uyy = Uy — Ugy i (28). The additional term does nol
ocassionatle any trouble on the compatibility condition because the integral of the dilatation over
the solution domain vanishes due to global continuity.

6 'The Velocity-Pressure Algorithm

We now give an algorithm for integrating the Navier-Stokes equations. Ilirst, the pressure is
initialized by least-squares from the singular system that, arises from the discretization of (23) with
the Nenman conditions (24)-(25). Second, the momentim equations (12)-{13) are solved for the
velocity ficld at each time step. ‘I'hird, the pressure is up-dated from (23)-(25) by giving a special
treatment for the interior points that correspond to interior ecolls and Lo Lhe adjacent eells in suel
a way that the compatibility condition is verified. The pressure at interior points of interior colls
are computed in a direct manner, that is, by incorporatling the already known pressure vaines al
neighbonring points in (34).



6.1 Pressure Initialization
From (34} at the time level & = 0, we set,

1] 4] N 1] 0 _ 1.0 i} {]
Piprg Py H Pl oo~ = -4 Yeprpeg (Miospa, = i fa,,)

1.0 0 n 1=0 0 0
Fa%iii 2, (”£+1;2,J‘ - "'"-5-:;;;»:,,;) T 2V (“i-|-|;‘;a,,i+| “:’+|f‘z,j—l)

1-0 0 0 1-0 0 0
+ai_ 12 [“s—:,!z,jH - ui—l[?,j—l) LRy ["'£+1.j+1f2 ”:‘~l,j+l/2)
(39)
1:20) ] 0 L0 ] _.n
3 ("f+1,;,-'_1/z = "s—|,j-uz) T Vit (”i,j+:s,!2 ”i,j—l}'z}

1,0 0 _ a0 A0 ¢ 0 _ 0
Favioa Wi = Wiiap) + & (s 125 = Wi o + P2 = Vi)
t=1,2,...,n, F=1,2,....m.
The Neumann condition at such time lovel is discretizad at the houndary as follows. At Uy fa gy WO

se second-order eentral differences so that

0 _ 0 N 1 _ 0 1,0 40 ol
Po;= Pijt a; (“1,!2.3' W)+ 2“'|;‘2,3(“:;f2,3‘ Wy 5)

1 =) {} 17 4]
T30 2,5 g = W) F (54 + VL 1/
{10)

440 0 0 Loyl o
V0=tr2 T Vlgeage T Mg Ty )
J=0L2,...,m.

Similar expressions are obtained by using (24) at Unyy/2,; and computing the boundary concition
(25) at vy 7y and ;4,44 72, given hy (11)-(43)

?“;:+|,_; = T’tr{.j - Eh? ("1]1+1/2,j - "‘24-1{2,;'] - %"‘2+1;2,j("2+:1/2,j - "'::—lfz,;)
‘%ﬁg+uz,j("ﬂ+uz.j+1 - "2+I;2.j—lJ ~ 5=t Tty (1
+"2,3‘-1;2 - ”ﬂ+1,j-1;2 - "2+[,12,j+l + 2“'::+|;‘z‘j - ":+|{'.»:,;-1) ,
i=1L2,...,m.
Poo = P+ A (”c!.lﬂ - “?.1;2) + %ﬁ?,l,!z(”?q-l.uz - ”?—l,uz)
+%”21;2(":'].3;2 - "?.wl,z‘z) -k (”5;1,1/2 - 2”RI/2 (1)

1} 0 0 0 L}
T2 T 20 T Y gan T Yty T My ja0)

i=1,2,...,n.



0 Y N a0 _ 10 0 .0
Pf,m-}-] - ?Jl'.ﬂ'l Y (ﬂi,m+]/"2 vx‘,m+1f2) '2“:',!11-}-!{2(7’1"{—],m+!/2 "i-—l.m-{—l/?}
_L,n 0 _ b Iyt 9,0
z”i,m-;-l,fz(“i,er:w Vim—12) T § (”i+:,m+1;2 20; 1 2
(13}
0 0 _ .0 a0 1
a2 T o irrpzmer ~ Yicigam T )
i=1,2,...,n.
The above system, when written in matrix terms, turns out,
App=1t (1)

where A s the singular matrix

[S1 1 ]
IS, I
IS I
A= .
I 5 1
- ! SI J{mxn]:([mxn)
with
-2 | -3 1
1 -3 1 1 -4 ]
S] = 1 'q2 =
I -3 1 L= ]
t — nxn ] - T

and [ is the ldentity matrix of order n.

Al time & = 0, the vector py contains all associated values of the pressure at interior points, that

is, N
M= [ p(l),l pg,l ;”Ei,l p(ll,ﬂ ?12‘2 i"?;,'z e pfll‘m pg,m P(::.,m ]i

The veetor b contains all values "?+|!'2-J" ”:‘Tj+l,’2 from the right hand side of (39)- (43), which are

given initial values, and this has the particnlar form,

b= [ 0...0 bmn—n—i—] 0...0 bmn ]T

mxn

where ,
; 2u | ; 2uv
Ymn—ntt = anc han = — =
An-nt h it

[Tence, bis a non-zero vector.
The singular system (44) is then solved by least-sepiares.



6.2 Pressure Equation

Once the pressure is initialized, the interior pressure values Pig al time L Al are compnted with
the following eriteria {(Fig. 3):

L. At the interior points corresponding to adjacent, bonndary cells we cmploy (15) (1R), which
are obtained froin (35) -(3K):

k1 _ ok b gkl ok [ YU NP ¥R R
Piy = Paita; (":s,f-z,j "3;2,;')“" 2“:;/2,3'(“5;2,;‘ Uy ;)
R RPN S Y v k) k41
+90/2,i(Majz 0 — Wlas ) F R0 L+ Uy ittf2
(15)
N R 5 e Skl ok
T i-12 Vag—tgz T My g 200 Uyry i)
i=2,3,...,m—1.
kel Lk R gkl k Y E41 ke
M = Puoyy At (”n—]f'z,j "n—l[?,j) '.Zﬂn—l,"z‘,j(un+lf2,j ”u—li/"),_,-')
1kt k1 e gkl k41
2";1-1/2,3'(”"—1/2,j+1 nn-——l;"l,j-—l) il Vst T ¥ 1z
(16)
k+1 . _ okl B k41 k41
RIS V=12 = %aly/2,541 |'2"n—1/2,j - "n-—l{’z,j—{} '
i=2,3,...,m—1.
Y ok ko kg MU 28 RS S R o
Pin = P2t 5 (”i,:;;'z Vigga) :a"f.:;;z("£+|,:s;;e Vi1 ag)
Lokl o kbl k4 v gkt 9yt
+2”i,:s;2(vi,5,!2 Vi) — (”{+1,:1/2 - 2":‘,3,'2
(17)
k1 L Y 8 L k41
FU a2 T s Uipspaa ™ Misimn T 00)
t=23,...,n—1.
EHL Lk _ o k] ok 1=kt k-1 _ k]
Pim = Pim—o m(”i,m—uz ”i,m—lj'),) - 2”.‘,m~|;2(’£+|,m-1;2 Vi tm—1/2
1, k41 k41 ke v bl ok
"'2”;,m—|,!2(”£,m+|,!2 Vimesya) T h(vi-i-!,m—-lf’z 2”;‘,".—|,12
(-18)
k1 S N 8 N T 41
+ i—1,m=1/2 + "i--lf‘.!,'.-n "i+l{2,m "i—l,fl,m—] + “i-l—lf’z,m—l] ’

i=23...,n-1.

2. At interior points of the interior cells, we employ (34) 1o compute the pressnre values at cach
time level by incorporating previous values of the velocity and pressure ficlds. This modification
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lead us 1o

kgt _ k41 k41 1, k41 N I TR
Pij =i T(vk VIR o A ?’u+| +75-1) + 8ik1/2,5 (”i+3;2,j w2,
k+1 k1 k1 1=k+1 kgl k1
vz Uigeg = Milape ) ¥ a0 ey (G i = W i)
_L—k«H k41 L L+1 k1 k41
Vic1/2. (”i_lﬂ.jﬂ 1-—If23 O+ g7 L3412 ('x+:,;+1;2 Uit/ ()
[y | k+1 k41 J\-|~[ E+1 L-{-]
s"u—uz (o2 = Vi) T g Vigrr/z (Vijeas = Vi i)
pkt) kA1 k1 __h gkt k1 _ ok pFtl
—3 =172 (”5,;'+|,u Vi 3,!2) a7 (u PPN B Y W L YRR Y

i=23,...,n=-1, §=23,...,m—-1.

The up dating (19) of the pressnre fick] at points of the interior cells (49) can be writlen in matrix
Lerms as

B prear = =D N(Tpae) (50)

where If is a non-singular matrix of the type

" Iy, i
Ity IRy Hy
R= Ry Iy
Iy
- 11’2 ['3] i ((TT?-—Q]X(H—?)]X((!N—?]x[-;:—‘z]]
wilh
— 1 [
1 =4 I
HI = o Hg =
|
- [ _ ‘
! 1 (—2) % (n—"2) [n=2}x({n-1)
The term D N(T4a¢) in (50) contains all the values “?::}2.,: , 'fﬂlﬂ of the right. hand side of (149,

Thus, the computation of the pressure field at interior points of the grid can be visualized as
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Figure 3: Computation of the pressure at interior points

6.3 Velocity-Pressure Algorithm

The algorithm for solving an incompressible viscous Now with preseribed Newman condition for e
pressure is as follows.

. ISRy o . vt apl) ] 1t iy _ . w HE-
I. Introduction of the initial vn]m.ll.y components “i+l,f2.,;" UE.J'+U'2 al time Iy =}, corresponding

to Jevel & =0, and the houndary conditions for the velocity field.

2. Initialization ol the pressure by solving (39)-(43) through leasi-squares, that is, to solve a
singular linear system of the type
Apag=1.
3. Computation of the velocity field “f:llﬂ,j and ”ﬁ;ﬁ];z by nsing (16)}-(t8) ¢ (19) (21).

4. Computation of the pressure p at level time & + 1 through (45)-(49).

o

Up-dating of the pressure and velocity field by setiing piia; instead of pp and Wy ar Tor .
6. To perform steps (4)-(6) for k=1,2,....
7. lind the calenlations.

We should emphasize that the pressure values at interior points are obtained without any iteration
method.

7 Simulations

Nutnerical simulations were carried ont for the cavity problem for a broad range of Reynolds mm-
bers and geometric ratios A4 = h—f&;Lfi The Figure 4 show the velocity and pressure fields for fte =

100, 400, 1000, 5000 and 10000 on a square grid (A = 1) with Az = 0.01 and time steps Al =
0.001, 0.002. This values meet the stability criteria At/h < 1 and At < ¥ /v as suggested by



[Roach, 1982; Casulli, 1988], among others.

The proposeed algorithm was directly extended for a 3D cavity. The simlations were carried ont
with a second-order Adams Bashforth method. The figure 5 exhibits the simulations far e = 100
with a 60 x 60 x 60 grid and At = 0.0],

8 Conclusions

An algorithm has been developed for the numerical solittion of the incompressible Navier-Stokes
with central differences in primitive variables and the Nemman boundary condition lor the pressure
on a staggered grid.

This algorithm was tested with the cavity problem for several Reynolds numbers. [t has heen
observed the aparition of the central vortex and the recirenlation with secondary and Lerciary
ccdies. As the Reynolds number increases, the central vortex moves toward the geometrical con-
ter of the cavity as shown before by Burggral, 1966; Ghia et al., 1982: Schreiber o Kaller, 1983, ote..

The matrix formulation allows to follow the infiuence of the Nenman conditions for the pressure
when integrating the velocily and pressure ficlds at interior points. The time integration ean be

also performed by other methods.

Simulations for a 31 cavity were carried out with an Adams-Bashforth mothod and noticed that
Lhe proposed algorithm substantially diminishes the time for the ronputations.

We can also consider, within Casulli’s nnified formulation, up-wind and semi-lagrangean moethods
for the spatial discretization.
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Figure 5: Tridimensional Cavily at Re = 400 {(a) Perspective View; (b) y-z plane view ; (¢}
x-7 plane view (d) x-y plane view.
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