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Organotins (OTs) are considered some of the most toxic chemicals introduced into 
aquatic environments by anthropogenic activities. They are widely used for agricultural 
and industrial purposes and as antifouling additives on boat hull’s paints. Even though 
the use of OTs was banned in 2008, elevated levels of OTs can still be detected in 
aquatic environments. OTs’ deleterious effects upon wildlife and experimental animals 
are well documented and include endocrine disruption, immunotoxicity, neurotoxicity, 
genotoxicity, and metabolic dysfunction. Crustaceans are key members of zooplankton 
and benthic communities and have vital roles in food chains, so the endocrine-disrupting 
effects of tributyltin (TBT) on crustaceans can affect other organisms. TBT can disrupt 
carbohydrate and lipid homeostasis of crustaceans by interacting with retinoid X recep-
tor (RXR) and crustacean hyperglycemic hormone (CHH) signaling. Moreover, it can 
also interact with other nuclear receptors, disrupting methyl farnesoate and ecdysteroid 
signaling, thereby altering growth and sexual maturity, respectively. This compound also 
interferes in cytochrome P450 system disrupting steroid synthesis and reproduction. 
Crustaceans are also important fisheries worldwide, and its consumption can pose 
risks to human health. However, some questions remain unanswered. This mini review 
aims to update information about the effects of OTs on the metabolism, growth, and 
reproduction of crustaceans; to compare with known effects in mammals; and to point 
aspects that still needs to be addressed in future studies. Since both macrocrustaceans 
and microcrustaceans are good models to study the effects of sublethal TBT contami-
nation, novel studies should be developed using multibiomarkers and omics technology.

Keywords: crustaceans, organotins, endocrine disruption, growth, metabolism, reproduction

inTRODUCTiOn

Organotins (OTs) are organometallic compounds in which an atom of tin (Sn) is covalently bounded 
to one or more organic chains (1). They are considered some of the most toxic chemicals introduced 
into aquatic environments by anthropogenic activities (1–3). OT’s deleterious effects upon wildlife 
and experimental animals are well documented and include endocrine disruption, immunotoxic-
ity, neurotoxicity, genotoxicity, and metabolic dysfunction including obesity (2, 4). Butyltins (BTs) 
and phenyltins, the major species of OTs, are widely used for agricultural purposes (insecticides, 
fungicides), in PVC industry, as industrial catalysts, and as additives on boat hull’s paints to avoid 
encrustations by barnacles, mussels, algae, and other aquatic invertebrates (1–3, 5, 6). Therefore, 
large quantities of OTs have been released into aquatic ecosystems, either directly as wastewater 

http://www.frontiersin.org/Endocrinology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2018.00065&domain=pdf&date_stamp=2018-02-27
http://www.frontiersin.org/Endocrinology/archive
http://www.frontiersin.org/Endocrinology/editorialboard
http://www.frontiersin.org/Endocrinology/editorialboard
https://doi.org/10.3389/fendo.2018.00065
http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:evvogt@gmail.com
https://doi.org/10.3389/fendo.2018.00065
https://www.frontiersin.org/Journal/10.3389/fendo.2018.00065/full
https://www.frontiersin.org/Journal/10.3389/fendo.2018.00065/full
https://www.frontiersin.org/Journal/10.3389/fendo.2018.00065/full
http://loop.frontiersin.org/people/504999
https://loop.frontiersin.org/people/529315
http://loop.frontiersin.org/people/413053


FiGURe 1 | Main hormones controlling metabolism, growth, and reproduction of crustaceans and possible TBT’s action sites. MF, methyl farnesoate; MIH, 
molt-inhibiting hormone; MOIH, mandibular organ inhibitory hormone; CHH, crustacean hyperglycemic hormone; GIH, gonad-inhibiting hormone; IAG, insulin-like 
androgenic gland hormone; TBT, tributyltin; XO-SG, X organ–sinus gland system.
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treatment plants or indirectly as hull’s residues, posing serious 
environmental risks to non-target species (5, 6). Even though the 
use of OTs was banned in 2008, as determined by the International 
Marine Organization in 2001 (7), high levels of OTs can still be 
detected in different matrices such as surface water, clays, quartz, 
amorphous silica, natural soils, sediments, and organisms (5, 6, 
8–10). OT levels vary in the different matrices and in different 
geographical regions, since environmental factors (e.g., pH, 
salinity, temperature) as well as the properties of the matrices 
can affect their adsorption (5). Recent studies in Europe revealed 
that OTs are still being released into the environment as outgoing 
water from boat wash pads, historic paint layers of hulls, and 
abandoned boats (11).

Marine sediment invertebrates, such as mollusks, ascidians, 
and crustaceans, can accumulate OTs (6, 8, 12–15). Since mol-
lusks and crustaceans are important fisheries worldwide, many 
studies on OT accumulation and toxicity were developed in these 
animals (16, 17). Marine bivalves (mussels, clams, and oysters) 
tend to accumulate higher OT levels than fishes or crustaceans 
(13, 14, 16). Tributyltin (TBT) and triphenyltin, the most toxic 
forms of OTs, are well-recognized endocrine-disrupting chemi-
cals of mollusks causing imposex or masculinization of females 
in more than 200 species (4, 13, 18, 19). Fishes and marine mam-
mals can be contaminated either by drinking or by ingesting 
OTs-contaminated invertebrates. Therefore, the consumption of 
contaminated seafood (fishes, clams, mussels, oysters, crabs, and 
shrimps) can pose risks to human health (4, 6, 12, 20–22).

Crustaceans form a large and diverse clade of arthropods, 
whose members are usually free-living aquatic animals, with 
some terrestrial (isopods), parasitic (fish lice, tongue worms), 
and sessile (barnacles) species (17, 23, 24). Small crustacean 
species or microcrustaceans (water flees, brine shrimps, and 
copepods) and larval forms of larger species of decapods (crabs, 

lobsters) are major constituents of the zooplankton and have 
a vital role in the trophic transfer of nutrients and xenobiotics 
(17, 22, 25, 26). Decapod crustaceans, important worldwide 
fisheries, are usually marine, with few freshwater (crayfishes) 
and terrestrial (land crabs) species (17). Since decapods live on 
the sea floor, they can accumulate OTs dissolved in the water, 
in their food, or on the sediment (8, 27, 28). However, there is 
still little information about the mechanisms of OTs’ effects in 
crustaceans. This mini review aims to update information about 
the effects of OTs on the metabolism, growth, and reproduction 
of crustaceans; to compare with known effects in mammals, and 
to point aspects that still needs to be addressed in future studies.

OTs eFFeCTS On THe MeTABOLiSM

The main neuroendocrine center of crustaceans is the X organ–
sinus gland system, located inside decapods’ eyestalk (Figure 1) 
(29, 30). This system is the functional counterpart of the verte-
brate hypothalamus–pituitary axis, controlling many processes 
such as metabolism, growth, color, and reproduction (17, 29, 
31, 32). It secretes neuropeptides, amines (serotonin, melatonin, 
and catecholamines), and opioids (enkephalins) (29, 32, 33). 
The most abundant neuropeptide is crustacean hyperglycemic 
hormone (CHH), which forms a protein family with gonad-
inhibiting hormone (GIH), molt-inhibiting hormone (MIH), 
and mandibular organ-inhibiting hormone (MOIH). As verte-
brate pituitary trophic hormones, these neuropeptides regulate 
other endocrine glands: gonads, androgenic gland, mandibular 
organ (MO), and Y organ, controlling the synthesis and secretion 
of other hormones (29, 32, 34).

Both macrocrustaceans and microcrustaceans are consid-
ered good animal models to study xenobiotics’ ecological and 
toxicological effects (16, 25, 26, 35–37). Acute toxicity assays of 
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xenobiotics, useful to assess environmental risks, usually evaluate 
endpoints parameters such as mortality, egg hatching, develop-
ment, growth, and reproduction (16, 25, 37, 38). These endpoints 
are usually expressed as median-lethal or median-effect concen-
trations (LC50 and EC50) and no-observed-effect-level, which 
can be compared with predicted environmental concentrations 
in exposure media for purposes of risk assessment (17, 19, 39). 
Decapod crustaceans exhibit higher LC50 values to TBT than 
mysidacid shrimps, copepods, amphipods, and branchiopods 
(16, 26, 35, 40). This higher tolerance to TBT of decapods can be 
related to a faster rate of TBT elimination and/or activation (16). 
However, larval forms of decapods are highly sensitive to TBT 
(41). The LC50 for TBT of the shrimp Penaeus japonicus increased 
progressively during initial larval stages (nauplius to mysis) and 
sharply after metamorphosis (41). When the larvae were exposed 
to hyperosmotic or hypo-osmotic stress, the osmoregulatory 
capacity was compromised by TBT (41).

Organotins can enter crustacean’s hemolymph from water, 
sediment, or food via gills and stomach (28, 42). Once inside the 
animal, their fate depends on the processes of accumulation, bio-
transformation (metabolism), and elimination (16, 28, 42, 43). In 
the hermit crab Clibanarius vittatus, assimilation of a single dose 
of TBT from food was higher than from water, and the levels of 
TBT in the tissues decreased progressively after 15 days, reaching 
null values after 75 days (44). In this study, dibutyltin (DBT) was 
also detected indicating an active metabolism of TBT (44). The 
hepatopancreas of crustaceans is an important metabolic organ 
that accumulates functions equivalent to vertebrate pancreas and 
liver: digestive enzyme synthesis, uptake and storage of nutrients, 
and xenobiotic’s metabolism (42, 45–49). According to their 
physicochemical properties, xenobiotics can be metabolized in 
two distinct phases: phase I—oxidation, reduction, and hydroly-
sis of the substance by the cytochrome P-450 (CYP) system family 
of proteins; and phase II—conjugation of polar groups to become 
soluble (28, 42, 50). Crustaceans’ hepatopancreas have an active 
CYP-dependent monoxygenase system that oxidizes TBT to a 
series of hydroxylated derivatives that are dealkylated to form 
DBT and/or monobutyltin (MBT) (42, 50–53). When blue crabs 
Callinectes sapidus were fed with TBT-contaminated food, TBT 
levels in the whole abdomen peaked to 0.12 µg g−1 after 4 days 
of feeding, while DBT and MBT peaked to 0.39 and 0.35 µg g−1 
after 8 and 12 days of feeding, respectively (54). In another study 
in which C. sapidus were fed TBT-contaminated food, TBT levels 
were higher in hepatopancreas compared to gills and muscle (43). 
In a third study in which C. sapidus was fed TBT-contaminated 
food, the respiration rate, the expression of P-450 3A (CYP3A), 
and heat shock proteins (HSPs) in the hepatopancreas increased, 
indicating that the crabs were stressed by TBT (51). An active 
heat shock response, specially with increased HSP70 expression, 
occurs when crustaceans are exposed to many types of environ-
mental stress such as heat (55–58), metals (59, 60), and salinity 
alterations (61, 62). Therefore, increased expression of HSPs 
could be a useful indicator of BTs/TBT contamination that should 
be studied in other crustacean species (Figure 2).

Reactive oxygen species (ROS), byproducts of cellular respira-
tory chain, are kept at physiological levels by a balance between 
oxidant and antioxidant agents (63, 64). Liver phase I metabolism 

also generates ROS as byproducts, leading to oxidative stress (OS) 
(37). Many drugs, pesticides, and metals induce OS in crusta-
ceans, either by altering the expression and activity of antioxidant 
enzymes such as catalase, superoxide dismutase (SOD), and 
glutathione peroxidase (GPx) or by decreasing non-enzymatic 
antioxidants such as glutathione (37, 65, 66). In mammals, BTs 
increase ROS by decreasing the concentration and activity of 
SOD, GPx, and glutathione reductase (GR), while simultaneously 
increasing lipid peroxidation in liver, testis, and kidney (67). Since 
decapod crustaceans, such as the green crab Carcinus maenas, 
C. sapidus, and Macrobrachium rosenbergii, are considered good 
sentinel species, OS biomarkers should be monitored in bioassays 
with sublethal concentrations of BTs.

Stressed animals usually develop hyperglycemia. In vertebrates, 
it is considered a secondary response to the increase in catecho-
lamine and corticosteroids’ blood levels (68, 69). In crustaceans, 
the main hormone responsible for triggering hyperglycemia 
during stress is CHH (29, 34, 70, 71). Injection of 10 μmoles of 
tripalmitin, fentin, and fenbutatin increased glucose levels in the 
hemolymph of the crab Oziotelphusa senex senex (72). Since this 
effect did not occur in the eyestalk-ablated crabs, it is possible 
that OTs injection caused CHH secretion (72). In M. rosenbergii, 
the treatment with TBT (10, 100, and 1000 ng L−1) dissolved in 
water for 90 days also increased glucose levels in the hemolymph 
(73). Therefore, synthesis, release, and secretion of CHH and its 
signaling are processes that could be disrupted as the result of OTs 
exposure and needs to be further investigated.

In mammals, TBT disrupts both glucose and lipid homeostasis: 
increases body weight, inflammation, adipogenesis, and blood 
glucose and insulin levels (2, 74, 75). These effects are mediated 
by alterations in insulin signaling cascade and of nuclear recep-
tors such as estrogen receptor, peroxisome proliferator-activated 
receptor γ (PPARγ), and retinoid X receptor (RXR) (2, 74, 75). 
RXR can form both homodimers or heterodimers with many 
other nuclear receptors, including PPARs, and therefore bind 
to DNA response elements inducing the transcription of genes 
involved in xenoprotection, lipid homeostasis, and development 
(19, 76). Since TBT is recognized as a potent agonist of RXR, 
this binding can be considered a key step of TBT’s mechanism of 
action (19, 77).

The main sites of glycogen and lipid storage in decapod crus-
taceans are the hepatopancreas, gonads, and muscle, and these 
energetic reserves fluctuate in distinct species according to season-
ality, reproductive stage, molt cycle, type, and regularity of the diet 
(46, 49, 78). These metabolites are distinctively mobilized during 
diverse types of stresses, reflecting homeostasis alterations that can 
be used as biomarkers of health and stress condition (31, 37, 46, 
47, 79). In the freshwater prawn M. rosenbergii, TBT (10, 100, and 
1,000 ng L−1) treatment reduced hepatosomatic index (HIS) and the 
content of proteins, glycogen, and lipids in the hepatopancreas in a 
dose-dependent manner (73). In the cladoceran Daphnia magna, 
lipids are stored in spherical lipid droplets scattered throughout 
the body, and treatment with 0.036 or 0.36  µg  L−1 increased 
lipid fluorescent stain (80). In female D. magna, both doses of 
TBT decreased the levels of triglycerides, cholesteryl esters, and 
phosphocolines and increased diacylglycerol levels and altered the 
expression of many genes, including RXR (Figure 2) (80).
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FiGURe 2 | TBT actions impairing metabolism, cell protection, and reproduction. ATAT, acyl-CoA:testosterone acyltransferase; CHH, crustacean hyperglycemic 
hormone; Ec, ecdysteroid; EcR, ecdysteroid receptor; EcRE, ecdysteroid responsive element; GPx, glutathione peroxidase; GR, glutathione reductase; HSP, heat 
shock protein gene; ROS, reactive oxygen species; RXR, retinoid X receptor; SOD, superoxide dismutase; TBT, tributyltin.
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OTs eFFeCTS On GROwTH

Crustacean growth, as in other ecdysozoans, occurs by the 
recapitulated molting process (81). Molting is regulated by 
a negative feedback mechanism involving CHH, MIH, and 
ecdysteroids (Figure  1) (81, 82). Ecdysone and 25-deoxy-
ecdysone, inactive ecdysteroids, are secreted by the Y-organ and 
converted to 20-hydroxyecdysone (20-HE) and ponasterone 
A, the active forms, in peripheral tissues (33, 81). Ecdysteroids 
bind to arthropod ecdysteroid receptor (EcR) that complex 
with RXR (22, 80). The heterodimer EcR:RXR binds to ecdys-
teroid response element regulating the transcription of genes 
involved in development, growth, reproduction, and the genes 
involved in the pathways of ecdysone synthesis (17, 22, 80).  
Incomplete ecdysis leading to death occurs when D. magna is 
exposed to exogenous 20-HE (22). TBT alone do not alter the 
incidence of incomplete ecdysis; however, when in combination 
with 20-HE, this incidence is increased. Therefore, TBT syner-
gizes with 20-HE leading to mortality associated with molting 
(22). In TBT-treated daphnids, the expression of RXR and EcR 
increase, disrupting the ecdysteroids’ pathways (22, 80). In the 
brown shrimp Cangron cangron, it was demonstrated that TBT 
fits in the ligand binding pocket of RXR, affecting the expression 
of RXR and EcR and probably of downstream genes (83). This 

genomic action of TBT was also demonstrated in the larvae of 
an insect Chironomus riparius, where TBT also increased the 
expression of RXR, EcR, as well as estrogen-related receptor gene 
and E74 (84).

Besides ecdysteroids, the sesquiterpenoids methyl farnesoate 
(MF) and juvenile hormone are also important during arthropod’s 
growth and metamorphosis (85). MF, synthesized in the MOs, 
is the main sesquiterpenoid of crustaceans (Figure 1) (86). The 
major function of MF in crustaceans is regulation of reproduc-
tive maturation (86). MF binds to methoprene-tolerant (MET), 
which forms a heterodimer with steroid receptor coactivator 
(SRC), activating the transcription of downstream genes, such 
as sex-determining genes involved in oocyte maturation (87). In 
D. magna, TBT also affected the expression of genes related to 
MF signaling pathway such as MET and SRC (80). Considering 
that TBT may also affect MF signaling in other crustaceans, and 
therefore alter their growth and development, serious impact on 
both planktonic and benthic communities can be expected.

OTs eFFeCTS On RePRODUCTiOn

Imposex in female gastropods is one of the better-known effects 
caused by TBT on invertebrates. Imposex is characterized by 
the formation of male sexual organs such as penis and vas 
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deferens in these females (19, 86). Although some studies show 
an early sexual reversal (intersex) in crustaceans exposed to 
TBT, these changes are less marked than those occurring in 
mollusks (31, 88). Nevertheless, other detrimental effects on 
the reproductive system of different species of crustaceans were 
found in both females and males (27, 88–90). The mechanism 
by which TBT causes these damages is still unclear, and there 
are different possible sites of action (80, 86, 89).

Unlike mollusks, when female crustaceans are exposed to 
TBT, there is no formation of complete male sex organs (31). 
Nevertheless, in M. rosenbergii, the treatment with TBT (10, 100, 
and 1000  ng  L−1) for 45  days altered ovarian morphology and 
induced spermatogonia and ovotestis (with spermatocytes and 
structures similar to seminiferous tubules) (88). In the hermit 
crab C. vittatus, TBT induced several degrees of ovarian disor-
ganization with follicular atresia and irregular oocytes although 
there was no formation of male sexual structures (27). Besides 
damage to reproductive organs, TBT may impair reproductive 
rates in further generations. Juvenile female D. magna exposed to 
TBT (100 and 1,000 ng L−1) produced smaller newborn neonates 
than those of unexposed females and suffered a higher mortality 
during their adulthood, which resulted in lower reproductive 
output and fitness. The reproductive rates of exposed female’s first 
clutch were also lower than control (80).

Although the main described effect of TBT is the masculiniza-
tion of females, it also causes damage to male reproductive organs. 
In M. rosenbergii, exposure to TBT (10, 100, and 1,000 ng L−1) for 
45 or 90 days caused several damages to the gametes and to the 
gonadal tissue itself. The gonadosomatic index of the testes reduced, 
and the seminiferous tubules architecture was compromised by an 
increase in connective tissue and immature cells (spermatogonia 
and spermatocytes) (73, 90). Spermatozoa count and length 
reduced (73, 90). The activity of the antioxidant enzymes SOD, 
GPx, and GR reduced in the testes, while DNA damage increased 
(89). These results are in line with studies in mammals such as the 
hamster Mesocricetus auratus, where TBT also caused alterations 
in testicular histology and reduction in spermatogenesis and in 
enzymatic and non-enzymatic antioxidants (67).

Since sex steroids are the major regulators of vertebrate repro-
duction, many steroidogenic enzymes and steroid receptors seem 
to have co-evolved (91, 92). However, the role of vertebrate-type 
sex steroids on invertebrate reproduction is not well determined 
(19). In mollusks, TBT-induced imposex correlates with increased 
free testosterone (T) levels, probably induced by inhibition of acyl-
CoA:testosterone acyltransferase, which conjugates T with fatty 
acids, and/or CYPs, reducing T clearance (19, 93). The stimulatory 
effects of steroids on crustacean reproduction are well recognized; 
however, it was only with the development of modern omics tech-
nology that genes of steroidogenic enzymes and putative steroid 
receptors were identified (31, 39, 94–98). In female M. rosenbergii, 
TBT reduced 17β-estradiol in the hemolymph and ovary and 
increased T levels in the ovary (88), while in males, TBT reduced 
T levels in testis (73, 90) (Figure 2) (53, 94). In crustaceans, an 
alternative action proposed was that TBT could block T excretion, 
but results are still inconclusive (18, 93, 99, 100).

The synthesis and release of steroids in crustaceans is con-
trolled mainly by GIH and CHH, released from the ES-SG system 

(Figure 1) (32, 39). As already mentioned, OTs can stimulate CHH 
release and probably also interfere with other peptides of the CHH 
family such as GIH (72). Gonad-stimulating hormone, released 
from the brain and thoracic ganglion, monoamines, and MF also 
participate in the control of crustacean reproduction (32, 33, 39). 
GIH and MIH also regulate a peptide hormone called insulin-
like androgenic gland hormone, synthesized by the androgenic 
gland, which is responsible for male sexual differentiation (39, 
97). Therefore, there are many sites where TBT may affect the 
neuroendocrine regulation of crustacean’s reproduction.

COnCLUSiOn

Crustaceans form a large group of aquatic animals that are impor-
tant from both the economic and the ecological perspectives. They 
are important members of zooplankton and benthic communities 
and have vital roles in food chains, so the endocrine-disrupting 
effects of TBT on crustaceans can affect other organisms. They are 
also important fisheries worldwide. Therefore, human consump-
tion of TBT-contaminated crustaceans can pose risks to human 
health. In summary, TBT can disrupt carbohydrate and lipid 
homeostasis of crustaceans by interacting with RXR and CHH 
signaling and can interact with other nuclear receptors, such as 
EcR, MET, and SRC, disrupting MF and ecdysteroid signaling, 
thereby altering growth and sexual maturity, respectively. This 
compound also interferes in cytochrome P450 system disrupt-
ing steroid synthesis and reproduction. Both macrocrustaceans 
and microcrustaceans are good models to study the effects of 
sublethal TBT contamination, usually found in natural environ-
ments. Multibiomarkers studies focusing on TBT’s effects on 
molecular, biochemical, cellular, morphological, physiological, 
and behavioral endpoints can be developed with crustaceans. 
The recent advances in omics technology, with the development 
of transcriptomes, lipidomes, and proteomes, are providing a 
novel set of information. The knowledge of the genes involved in 
the growth, development, and reproduction of crustaceans will 
certainly provide novel insights about TBT effects.
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