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‘1. Introduction. The concept of dilation was introduced and
investigated by several important_mathematiciéns. Given prob-
ability measures P, Q on the o~field of Borel subsets of .a
topological space S, we say that Q is a dilation of P relative
fofa'set K of functons § + IR,'and write P é Q, Lff [fdP <

J £dQ for éll feK {the integrability is assumed). The set of
functions K is usually a cone. It is possible that, dlthoﬁgh
Q QOes not dilate P relatively to K, it nearly doés so in some

sense, giving rise to what we call an e-dilation of P. A natu-

ral approach is to employ a "distance" of type

§(P,Q):= infle20 | [£dP < [£dQ + ¢L(f), feK},

where L(f5 > 0 measures the ”size”_of:f. For exemple, suppose
tS,d) is a separablélmetric space and L(f) the Lipschitz con-
stant of £, L(f)::inf{ceﬂilif(sl-f(t)l.Scd(s,t}}.-Let further

CKi={f | L(£) < o). Then, provided all the functions in K are
P-integrable and Q-integrable, Dudley {1976) proved that

*

o ' . v .
6(P,Q) is equal to the Wasserstein metric

W(P,Q):= inf [d(s,t) dup,
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where the infimum is Caken over ali u_em(Sz) having marginals
. P, Q Lseé Notaﬁions below). This result follows from-Theprém 9 of
Kemperman {1982) too and is often called the Kantarovich-Rub-
instein Thcgrem (1958) because these authors éstab}ished the
speéial case Qhere 5 1s compact.

| ﬁe allow any cone of bounded functions which is ad-
- missible, i. e., a convex cone of continﬁous functions contain-
- ing the constants and beeing invariant under the operation v.
The lattér means . that max {f, g} e K as soon aé f, geK. Initial-
ly L(f) will be taken as the oscilation of f.'Afterwafdsj other
-e—dilations will also be discussed. Theorem12is our main result.
-2‘.' Notations. In this paper A denotes the complement of the
set A; 8=06(8) the o-field of Borel subsets of a topdlogiéal
space S; C(s) the set of all continuous fgnctioné S+ R; Cb{S)
énd Cbb(S) the set-of all functions in C(S)} which are bounded
énd bounded‘from'below, resﬁectively; distribution fhnction is
abbreviated as d. £.; K' is the set of all feK (K is a cone
of functions) with inf £=0 and sup £=1; M1(S}) the set of all
probability measures on the o-field of Borel subsets éf S
osc £ stands for oscilation of the function f; §, represents
the Dirac measure at the point s; and,_finally, the symbols
v, 4'have the usual meaning, i. e., they denote the maximum and
the minumum operation, rcsbectively, andll. s. ¢. abbreviates

lowver semicontinuous.



3. Lemma. If X is a compact topological space and (f ) is a
sequence in C(X)} with £, + £ e C(X) pointwise, then this con-

vergence is,uniform, in particular, lﬁhlmin g1==min £.
Proof. Apply Dini's Theorem to the sequence (f- £ ). ||

‘The next lemma is essential for the fundamental Theo—
rem . It was suggested by.Lemma & in [ 2}, Cto which it reduces

4. Lemma. Let S be a completely regular Hausdorff topological
space and K C Cbb{S) an admissible cone. Let P,Q(EM(SJ be such
that ffdP < ffdQ + eosc f for all feK. Let us fix bounded

functions o, 8, ¢.: S + IR, where a« and B are Borel measurable

i
-and bi 20, i=1, ..., n. Further let us £ix foeK, i=1,...,n.
+ Then
o ; n . .
(1)~ inf [a{s)+ B(L) + = (fi(s]-fi(t))¢i(s}] 2 0
implies
(2) JadP + fBdQ +.coscs 2> 0.

Proof. The proof is,patternéd éfter that of Lemma 4 in [2]. As



A

in that lemma; the-crucial step consists of defining an aux-
iliary function BR™ + R:= {~m; -f-co}_ ha-ving convenient prop- ‘
erties. The Euclidean spacé R" will be_gquipped with the usual
coordinatewise partial ordering. Throughout the rest of the
proof we will use the notations £i= (gl,r;.,fn) and T:=
(El"‘f>fﬁ) where fi'denotes thé Stone extension of fi (sece,
for.instance, [4 ], p: 86), i = 1,...,n: Also BS will denote
the étone—éech compacltification of S.

From (1) we obtain the inequality

(3)  als) + B(£) 4

NI SR

[fi(s)-mTi(t}]fi(s) >0,

i=1

valid for all (s,t) e $x8S. Here B :8S8 + R is the I. s. c. regu-

' lariéation of 8.1t is given by lim 8(s):= 'g(t).
. s+L
s A .. seS

Let xe R and consider the sequences

(4) (pys Py +--)ef051]® with py + py + ... =1,
(5) (g, ty, ...) e (85)®  with x < Epjf(tj).
Set

T := {Epj'ﬁ(tj) | (4) and  (5) h.old}
and define

éfx):: info._

It is easy to sece that #x) is finite on and only on



the sét U:= {xeimnl X fy‘for sohe y e conv T(88) /. Here.thé.
notation conv F(RS) indicates the convex hull of T{8S). The
propeftiés of # that we are interested in are: (i} -a < Bof
5.B_Qn S, .(ii) B is increasing, (iii}) B is convex, and {iv) B
is 1. é. ¢. . The last one is the more important and it is the
Lemma 5 in [2]. - o : Y

| Let us prove the  property fil. Taking (py,pg,.-.
P = {l,IO, ...) and (tl, 52’ .:.):= (t, t, ...)e (BS)qﬂ we see

that g(t) e Ty, y; hence B(T(t)) =< s(t), that is,
(6) BoF < 8 <8 on S.

-~ For the first inequality in (i), fix se S, set x:= f{s) and
.take ' sequences (Pj}’ (tj) verifying (4) and (5}, repec-
tively. In particular - ‘

o

7) f Fle.).
(7} | (s)ﬁgpj (LJ

‘Let us apply (3) with t:= tj; afterwards, we multiply by Pj

and sum over j obtaining

2

af{s) + gpjg(tj)_+

! [fi(s}-giji(th]¢i(s) > 0,

i=1 i

which gives, using (7}, al(s) «+ xpjﬁ(tj) > 0. This together
] :
with the delfinftion of § yield u{s) +Bof(s) 20 so that, by (6),



(8) . ~a £ fiof < B on S..

That #'is increasing is immediate: if x, ye R"
with % < y, then TyC: Tx. Therefore.ﬁ(xl = irﬁfo < inf'I‘y =
B(y). '

" The convexity is just as easy: let p, qe[0;1] with

p o+ =1, x,.yeimn and

r p.Blt.)eT , s£q.8{t.)eT .
jpaﬁ it €t qu_ i’ €y

" Therefore it is readily seen that

: B(E.) + & .B{C.) T s
[’j PRyalty) v b adyRlty Fe Tpxsqy

_ hence
Blpx + qy) < p ¢ p;B(tl) + QL q.8l(e.),
? < TP Cij Y

which produces

A

Blpx + qy) pinf T _ + qijﬁny = pB(x) +.qﬁ(y),-

~so B is convex indeced.

-

It is known that a convex L. s. c. function like 8

restricted to U, which is a convex set with non-empty interior,



{s the limit of an increasing sequence_(h(UJJ of functions

where, for 1 = 1, ..., v, h; is the restriction ta U of an

affine function on R given by
ﬁ\ ho(x):i=<A., x>+ a., A. e R%, a. e R.
i i’ i 71 > Ui
.Here <-,+> is the usual inner product. Since B is incfeasing,
we can suppose that all the h/s are increasing, equivalently,
that A; 2 0. As K contains the constants, the linear combina-

tions hiofezK, thus also h(v)of<sK for all v e N, because K is

. invariant under the operatibn v, 8O that
-Th(v}ofdP < fh(u)dfdQ + eosc(h(u)OE)-for all nem.

Therefore by the Monotone Convergence Theorem (each ) being

-

bounded and thus integrable relatively to both P and Q)
JBof dP < [Bof dQ + & limosc (h ) °f).

It is obvious that supii(ujof < sup sof. Further liﬂlh(u)of =



infaof by Lemma 3.  Thus, Tﬂﬁosc(h(u)of) < osc (pof) < oscep.

Putting all together, one arrives at the inequality
9y JBofdP < [ fofdQ + ¢ 0sCp.
Finally, using (8) and (9), " we conclude that

fadP + [8dQ 2 [fadP + [RofdQ

1

f{a+ Bof) dP - « 0scg

v

- eoscpg. |l

‘Let P, Qem(S). We will describe the property

' ffdP < IfdQ + ¢ osc £, for all £ in a subset L of Cb(Sl also

by saying that Q is an e-dilation of P relativg'to L.

. | The foliowing theorem supplies an equivalent defini-
tion of cfdilation relativ¢'t0 an admissible cone Kc C(S) for
the caﬁe Lhat S is compact; It sayé that a necessary and suf-
ficieﬁt.condition for Q to be an e~dilation of P relative to
K is thét one can find a probability.measures'k eﬂHSZ) that

satisfies
{10} J(f(s) ~ £(t)) ¢(s) alds,dt) < 0 for 511 fek, ¢ eC(S)

and whose first marginal is P and second marginal is '"e-close"

to Q.

(¢) /P = Q< 2€i ™ —~ T oo T om =
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M. We will show that (a) > {b)."‘z (c) = (a).

(a) = (b): Since the indicator function 1, of an_openlset AcS.
is 1. s. c., it is the pointwise limit of an'increasiné se-
guence 6f non-negative functions in cbtsd. So (a) implies
through the Monotone Convergence Theoreﬁ.that P(A)IS QlA) + ¢

for all open sets A (CT-5. Now (b)-folloﬁs by regularity of P.

(b;.4\(cJ:.Let ni= (P + g)/Z‘and consider f:= O 81T T the
. Rodon-Nikodyn derivatives. We have, using (b),

N

Ll = fIf-glan £ 26

(c) = (a): Let w, £ and g be as in the proof of (b) = (¢},
__qub{S) and c:= {supa« + inf «)/2. Therefore 2la + cl] = osca

énd

CfadP ~ fadQ = [(a + c){Ff = g)du < [la + c{lf{f-gldu

l

Ha + cl- [P ~Qll. 5 eosca. [

7. Definitions. In view of Theorem S and Lemma 6 it be-

comes natural to study the five quantities ai(P,Q), i=1,...,5
denined as follows. |
‘Let $ be a standard space, K Cb(S) an admissible

cone and P, QeM(S). By "<" we will mean n<, Let us define
_ _ " )
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Eji={e20[f£dP < [fdQ + c osc £ for all feK},

1
Ey:= {c20] there exists Q' e M(S) with P<Q' and
Q" - Qil- £ 2¢],
E3:= [EZ()ithere exists P'QM(S) with P'<.Q and
1 e =PRI < 2¢},
N
E4:~ {e20] there exist P'; Q'cem(S].with P' < Q',
L [[P* - PJ < 2¢ and |IQ' -QI| $ 2¢),

5 le >0 ] there exist P', Q' eM(S)with P'<X Q' and

E.:=
1P -2l + 1lQ" -Qll = 2¢].

ﬁow,Qe define

(13) _ei(P,Q)‘:= infE;, 1 =1, v, 5.

It is trivial that E,c B, and that (E,[JEyc 1:) c E,.

Therefore €4 < €, and‘ min{ﬂz, €3] 2 ¢ g > El&‘.
8. . Theorem. Suppose that S is compact. Then €,(P,Q) < El{P,Q)

= 62(1’,Q) .‘E. 83(P,QJ-

Proof. It suffices to show that £, € E, and E,C 1*:'2'. The flirst
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inclusion follows at once from Theorem 5 taking Q' as the
second marginal of the measure » in that theorem. For the other
inclusion, let e-e Eqg- This means that there exists P'eM(S),

such that,

(14) [£dP' < [FdQ, for all feKk

and

(15)  jip* =PIl < 2e.
"By Lemma 6 . the inequality (15) can be expressed in the form
'_(16) JadP < [adP' + € osc a, for all «eC(S).

“The relations (14)  and {15)  give [EdP £[fdQ + e osc £ for all

f eK. Thus 'eeEl. [

£

9. Remarks. (i) Later on it will be seen that €g = €y and
that the inequalities in Theorem 8 “.are frequently strict.

(i1) .If P <Q, then ei(P,Q) =0, 1i=1, ..., 5.

[ W]

0
(1ii) We always have 0 < ci(P,Q) <1, i=1,...,

{iv) Obviously

(17) cl(P,Q}‘= sup [[fdp - [fdQ].
' osclsl
fek
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{(v) Thceorem 5 is false for-nonwbompact standafd
spaces. For such. spaces the condition [fdP < [fdQ + ¢ oscf
- for all fekK is (obviouslyj necessary but no longer sufficient
for (10), (11) and (1 2). To see that the named condition
fails to be sufficient, consider S:= [0;1), take P:= 6x and
Q:= ﬁ- wifﬁ 0<y < x <1 and let K conéist-of.all increasing
‘convex functions on S. On€ can show that él(P,Q) = (x-y)/(1-y)
and that there is no Q' eM(S) dilating P with Iﬁ}'— Qfl < 2¢.
This céntradic&;Theorem .8, specificaiiy, it qontradicts the

. inclusion Ei(: £, thus Theorem 5. I

‘10. Examéle. Let S:= [a;b] = R, K the cone of convex increas-
ing continuous functions § » R and P, Qen(8). We want to com-
‘ puté sl(P,QJ. For that goal we need to_take-into.account only
the fpnctioﬁs in K of the form S'F~>(s-5c]+3= (é;—CJVO, where
¢ is a conétant, because those, functions (together with the
constaﬁts) sban a cone dense in K. Here we implicitly also
use that osc(f +g) = oscf + osc g'when f, g are inéreasing.

Hence, by (17),

(1: g (P,Q) = éup E%E [fis ~c)aP ~ [(s-c)dQ].
- agczb ' .

As a speclal illustration take [a;Db] = [0;1], P{ds)

the Lebesgue measurc, and let Q be the discrete proba-
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bility measure defined by Q({1/2n Hoi= 1/211 , =1, 2, R

Thea (1 8) Dbecomes

1 1
7= e

¢ (P,Q) = sup (s -clds -~ | (s-¢)Q(ds)]
1 0<esh [c3%)
= sup g(é),_-

O<csh
whefq\g(c):: T%E[%(l—é)z - %(1 - 4fm) + cl1-2"™] and m is the
largest integer with ¢ = 1/2m. Note that it is only necessary
to use‘c_in_the interval [0;3%] because for ¢ > % the value
[lf(_ll—,::)].f(S—cJers = 1/2,‘ while fts = )" Qlds) = 0.
Néw using the derivative g'({c) one eésily shows that ¢ = % and

¢ = % are the unique points of maximum of g. By computing one

can see that g(%) < g(%) = 1/4. Thus £, (P,Q) = 1/4. ||

‘_F}om (1 7) it follows immediately that €1 satisfies
the triangle inequality. But ¢, is not symmetric. The mapping
{P,Q) he'ﬁi(P,Q):= el(P,Q) +e4{Q,P) is a pscudo-metric on A(S),
in fact a métric when K is a determining class for A{(S) (for
instance, 8 a convex compact metrizable subset of a topological
vector space and K< C(S) the cone of convex functions). It is
not .difificult to prove that a sequence (Pn] in M(S) converges
with respect to &,, i. e., 61(Pn,PJ + 0 for some PeM(S), iff

the sequence of lincar functional [ > ffdpn converges uniformly
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on K ﬂ{ffeCKSj II}fH;:l].'As a consequence, 1f K is a déter-
mining class for Mmisy, then the §,—topology on M(3) is finer
than the weak tobology.

'Neither €4 NOr e, satisfy the triangle inequality as
Exémplé 11 and 20 will show. On Che other hand it is easy

F:O 5¢ee that Ea(lst) < 2[C4(P,Q) + Ca(Q,R)].

11. Example. A case wheére 53(P,R) > 53(P,Q] 1 53(Q,RJ. Let

S:= [a;b], K C C(S) be the cone of all convex functions- and

H

ca £ x <y < b, Put zi= (L-axX+ ay with 0 < « < 1, so that

X-¢ z # y.. Consider

. P:= 8.5 Q:= {1—~a)6X + aay, R:= GX.
For each feK, f{z) < (1-a)f{x) + of(y), so that P <Q, hence
I%j{l’,Q_) = 0. Since P'" < R :.;: §, requires P' = 6_ and since P=¢

with z # x, it follows that e4(P,R) = Hﬁx-_ GZH /2 = 1. On the

other'hgnd 53(Q,R) < |IQ - RI /2 = a. ||

Probably there is no easy formula for computing the
value c5 o i =1, ..., 5, but next theorem and corolianzare an

important step in this direction.

12, Theorem. Let S bc a compact space, K¢ C{S} an admissible

cone, P, QeM(8) and u, v 2 0 constants. Then there exist
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P', Q' eM(S), such that,

(19) He' = Pl < 2u, )IQ'-Qll = 2v, P'<Q
_ K

if and only if, for all feK with inff = 0 and all ce R Iwith

0 < ¢ g supf,
(20) [facdP < f£dQ + uc + vsupf.

Proof. 'By the very definition of e,), (19) is equivalent to

the existence of P' e M{S), such that,
(21) HP' - P[] < 2u, ez[P',Q) < v,

By Lemma 6 and the equality €9 = €1 condition (2 1) on P’

is equivalent to

Fat

JodP' < fadP + uosc e, for all a e C(S)
{2 2) _ :
£ dP?

IA

f£dQ + vosc £, for all feK.

Since C(S) and K are cones, Thecrem A.2 (sce Appendix ) tells
us tﬁat a P'e M(S) satisfying (22) exists iff, for all fje K,

e, € C{8), and m, ne N, we have that

m n
v} inf(za]. + v £.) >0
i=1" J-—-l
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implies
Cm . n .
{2 4) : (fJa.dP + uOSCail i p{fL.dQ + voscf.) > O.
f=1 =1 3
Letting o i= fa, and f:= zfj, then « e C{S) and feK, since
the conesTC(S) and K are convex.‘As'ost a.g Losc ui‘and osc f <
rosc fj, it suffices to establislt the implication
N
(2 5) aeC(8), feK, infl(a+f) 2 0 = fodP + [ fdQ +uosc a+vosc £ >0,

~Introducing hi= a + f, this is equivalent to the re-

QUirement‘that
.(2 G) JLdP - [£dQ £ [hdP + uosc(f-h) + vosc £, if feX, heC (8).

,Given feK, we want to choose heéC+(SJ‘so as to min-
imize the right hand side of (2 6) Put-a:= inf(f-h) and c:=
sup(f - h) so that osc(f-h)=c¢c-a and 2 < £~h < ¢, or
f-c<hx<f ~-a. As h > 0, settiﬁg ho:: (f - )= (f -civ0,
we have £ - ¢ £ ho <h < f - a. Further f - ¢ < ho < £ ~ a, or
a < f - ho g.c, which shows that osc (f - ho) < ¢ - a = oscl(f-h).

Since O ch = (f - c)® < h and osc(f -h ) < osc{f-h), it is

clear from (26) that it suffices to consider only functions

+ . :
of the form h:= (f~c)”, where ¢ is a constant. Obscrving that
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£~ (f—-c)+ - fx\(.;., (2 6) is equivalent to

(2 7) ftﬂ(,: dr - [£dQ S_u osc(frc) + voscf, for all feK, celR
i.eﬁ us show that iln (.2 7)) we gn_ly. need

(2 8) inff < sup.f.

For, the choice ¢ > supf is the same as the choice ¢ = sup f
,Ibe'cause in both cases fac = f. If ¢ £ inf f, then [facdP = ¢
.and'ffdQ > inf £ > ¢ so that {27) " is always true.
' ISince K -contains the constants we ‘can take a]‘_wa)?s
_inff - 0, in which case osc f = sup £. Thus the proof will be
Cornpl_lete if we show that osc(fre) = c¢. Indeed, bly (2 8)
.Iil-nf(ff\c) = inf £ =.O and sup(fac) = 0. [] |

Besides using onl)-/ functions feK with inf £ = 0 in

(20) one may also assume without loss of generality that

sup £ = 1. Hence {2.0); thus also (1 9), 1is equivalent to
(29) tu + v 2 oft), for all 0 2 t £ 1.

Here

0(t):= sup {JEAtdP - [fdQ ] feK, inff =0, supf=1}.
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The set of relations (29) represents a family

(HtJtef0;1] of closed half planes. The intersc;tion
A= A(P,Q,R):= [ f7 I% ]rW{ {u,v) e mz [uz0, v>0]
;1

te[0;

is a closed convex subset of m?. The pairs (u,v) e A are precise-
ly the pairs for which there exist P', Q' efM(S) satisfying {1 9)

Considering the definitions of ei(P,Q) it is clear that

€, (P,Q) = inf {v | (0,v) e Al

€5(P,Q) = inf {u] (u,0) ea},

.Ea(P,Q] = inf {u ] (u,u) e Al,
tS(P,Q} = inf{u-bv | (u,v) e Al.
The geometric meaning gf €4 = €93 Eq, €4 apd cg is

" clear. So putting all together we have the situation described

in Fig. 1.

VA

e ¥

Fig. 1
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.The only thing that is not clear is how €5 fits into

the picture. In fact one has:

1 3. Corollary. Eg = &9

Proof. The function t v ¢(t) in {2 9) 1is increasing. Hence

e5(P,Q) = ¢(1). Therefore taking t =1 in (29) all.points

(u,v} e A satisfy
U+ Vo2 EZ(P,QJ-

The equality sign is attained at (0,e,(P,Q)). This proves that

€g = 5:2._H

Before goiﬁg further, we will present some illustra-

fidﬁs. We ??11 consistently use the notation
,K':=I{f;3K| inf £ = 0, Subf =.1},
where K is a given cone of funct;ons.
1 4. - Exaﬁgie. We will study iﬁ detail the case S:= [031],

- K:= cone of all convex increasing continuous functions S » IR,

‘thus inf £ = £(0) and sup £ = f{1) for each feK'. Let further

Ir

5 the Dirac measure at 0. Note

Pem{S) be arbitrary and Q: 0
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thac,,fof cach feK', we have £(0) = 0, f{1) = 1 and f(t) £
F¥(t):= t, where f%e R’

~ The functlon $ in (29) is given by

6 (L) = sup (ffath - ffdé )
feK _
= SUP If’\t dP = ff*/\t adP = I 5 dp + t I dP
fek [0;¢t] (t;1]

= tF(t) - fOtF{S)ds « t(F(1) = F(t))

£ - fOtF(s) ds.

" Here F denotes tﬁe distribution function (d; f.) of P and we

have integrated by parts. Therefore (29) in this case reads

(30) Ctu o+ vz oe(E) =t—-IOtF(s)ds, for all te[0;1].

We observe that, letting X be a random variable
whose discribution is P, then t = 1 in (3 0) leads to

u + v E[X].

(i) Let us.consider the case in which P is supported
by {xl, s xn}, 0 < xy<ev < X, . Let P({xj}) = Py 0f course
Py + ser F Py = 1. Here

n

F(s) = oz p [ J(s).



Hence
‘ | t ‘ o - +
t - ¢(t) =%Fw3ds= Lpdti=x0".-
i=1 7,
The line tu + v = ¢{t) = t rotates about the point
T:= {1,0) when t increases from 0 to xy. Similarly, the line
tu * v =:¢(t? = L - pl(t - %Xy} - R pj(t_— xj) rptates

" about the point

Tj:=_(1 =Py T osee = Py p1#1 +oee. + pjxj)

. when t increases from x . to this for for § = 1, ..., n.

X, o
| J J+l .
In particular for j = 1 the line rotates about T, = (0,E[X]).
"The point"l‘j 1s also the intersection of the two lines with
Ct = xj.and t = xj+1. Hence the region A(P,GO,K) looks like in
- Fig. 2, _ : and we see that its lower boundary is po-
lygonal.
| We conclude that ei(P;GO) = E(X]. It was obvious
from the beginning that e3(P,60) = 1, because 60-0n1y'dilates

itself relatively to K (see definition (13)}. The value

e (P, 8) cannot be given by a simple formula.
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(0,1)4

A‘P,Gd,K)

N

Fig. 2

(i1). Assume ﬁow P.has no atoms.lThereforé F in
{3(” is continuous. Hence we obtain from (30) that the part
of the lower bouﬁdary of A(P,sO,KJ not contained in the coordi-

nate axes is a smooth curve (envelope} with parametric equations

u.= 1 - F(t)
' v = tF{t) - fo F(s)ds, te{0;1].
Letting u = 0, the first equation gives F(t) = 1, which has a

solution t = 1 (not necessafily unique). Substituting these
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values for F(t) and t in the second equation of (31), we

arrive Cto
(372) | 51('1@,50)_. -1 - 101 F(s) ds = E[X].

It is obvious that es(P,s ) = 1. Finally (solving

for v = u in (31)),

{33) EQ{P’GO).: 1~ F(ta),

-.wbere focejogl] is a solution of the e@uatioﬁ
S (34)  [FF(s)ds = (& + 1)F(c) - 1.

(1ii) Let us specialize. (ii) téking for P a measure

~Poe M([0;1]) given by

Pn(B):= é(n + 1)snds, ne {0, 1, ... }.

The d. f. of P 1is the finction F given by F(s) =,Pn(w03;s].

Hence, by (3 2},

Eliminating the parameter t in (31) we get
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- {35) v o= g%%(i + u)(n+21/(n+1), ue [0;1],

which is the Cartestian equation-of the lower boundary of -

' A(Pn,a K). Taking v = u inI(B 5) Iwe see that e4=64(Pn,60)

0,
is implicitly given by

neles | 64)(n+2)/(n+1).-

€4 % n+z
For n = 0, P_ = Po = ds is the Lebesgue measure on
[0;1] and (35) represents a convex_pafabola with vertix

(1,0) - see ‘Fig. 3." i

Va

EZ=% L

A(ds, 60) .

S
3

'_l

it
by
Oy

Fig. 3
15;_ Example. Let S:= [O;i],'P:==ds (Lebesgue measure) , Q:i=6_,
xe (0;1}, and K € C(S) the .cone of convex increasing functions.
This exampie generalize the Example 14 (iii). Here with some

work we obtain
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-elfds,ax) = (1-—:{)/.2, -CB(dS"‘Sx) =1-x, E4tdsf’6x) ={l~x)(2-v3),

valid for all xe [03;1]. |l

Previous calc-uiatigns with Q= 6_ were easy because
K’ Contaii.led a largest element £¥* ﬁhil:e £(0) = 0 for all f£eK'.
.IMore géneral: 'let S be a’ compact' space with a partial order,
ancl‘ffé\the'c'one of all continuous increasing functions that
- aséL;me their minimum at e-verSr point of U:.=_ sup'p Q, the support
-of Q. Note that such cone K is not only invariant undéf the
opera'tidn v but also under a. Leﬁti11g'PeM_(S) be arbitrary, we
4

have as ¢{t) in (2 9) IP(UC) .

. ele) = fealye(s) B(ds) = eP{U®),

which leads to g =8y = Eg = 264

v >
..= €g =P(US) - see Fig. 4. : ' Fig.4 P(UC_)-
-The above expression for ¢(t) was possible because
K' is filtering from right (see [ 1], p. 145), i. e., gi\;en
f, geK', there exists heK' with £, g < h. In general, if S
is a compacf:l space with a pérti_al ﬁrdering, KcC C(S}) an ad-
missible cone, such that, K' is filtering ffom the right, and

Qe MS) is such that eac;h‘feK' assumes its minimum at every

point of SUiDp Q, then {2 9) . takes the form
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(36). tu + v > o(t) =-t—~f;:F(s}ds, ce[0;1],

where F is‘the P;diétribution function of s Eﬁ suplf(sf:: f*(s).
| | It’is true in general that the right_gigpe r of the

loﬁef'boundary of a region A{P,Q) at (0,51} is given by the

formula r = —inf[te[O;l] | #is constant bn_[t;l]], where ¢ is

‘as in (2 9). Now, if "¢(t) is the right hand side in (3 6),

then, 'as it is easy to see, the formula for r specializes to
S (37) r = =inf {te[0;1]} F(t) = t].

Slmllarly, it is true in general that the left slope
‘ l of the lower boundary of A(P,Q) at (eq,0) is obLalned by the
formula d = —sup.hﬁ‘e[O;l] | ¢(t}/t is constant on (O;tl]f,

which, in the situation of (36), Dbecomes
t38)3 4 = ~ sup hﬁ_e[o;l] | F is comnstant on {O;tl]}.

- 16. ‘Examgle._Let.ué reconsider ﬁxample.14 '_(iii)..In that
- example f* is given by £%(s) ZIS, whose ?n—distribution func-
tion F is given by F(s} = sn+1 if s e [0;1]. Hence formulas
(37) and (38) yield r = ~1 and { = 0, respectively, for

all n - see Fig. 3. I

17. Example. Let .5 be the interval [031], K-&:C(S) the cone
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of convex-increasing functions, PeM(S) the measure with den-—

1 o - ' P -
sity E:E'El[a;b] (s) ds where O 5,‘a < b <1, and.Qi= 6 . The cor-
~ responding’ d. £.'F is given by F(s):= (s-a)/(b-a) if se[a;bl
"Hence here r = -b and { = -a, which shows that the right slope
of the lower boundary of.A at .(O,el} can be any number in
[-1;0 ] and its left slope at (€3;O) any number in - 1;0]. We
-obsexve also that here EI(P,GOJ =1 - fol-F[S) ds = {a + b)/2,
‘so that €4 can be close to 0 orll.' . -

For instance, letting a = 0 and b = %, we calculate

the function ¢ in (36} - by

£ -t
Cel{t) ={ _
' 1%, if tel%;1].

2 iftel0:})

2

The system of inequalities tu + v 2 t - £°, te [0;%) determines

A(P,Q); The lower boundary of th_é latter is the envélope of the

2, te[0;%], which has as Carte-

"family of lines tu + v = t ~ ¢
sian representation v = (%} (1 - u}z, ue [0;1] - see Fig. 5.
Similarly, if a = %, b = 1, then v = (%:)uz - u + 3/4,

ve {0317, ‘instead - see Fig. 6. |

'

{‘:\f
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N <

N

. Fig. 6

Eﬁ\

- 18. Examgle. Let S C R” be a compact convex set and let
‘Pn(A}:;\IAJYISI be the normalized Lebesgue measure on S. Let
yﬁeinfTS}'and Ky:; {fec(S) | £ is convex, inf f = f(y)]. Also

let Q:= }y' Here there exists the largest element f¥*:= f; of

K':i= K;.'Its graph is the 'lateral' boundary of the solid

n+1

cone in R with vertex (f,O) and base‘[(s,lfelmn+1 | s eS}.

For ze[O;llllet S, be the part of the hyperplane s  ; = 2 (we‘

th ‘n+1

_céll S the i coordinate of a point se R ) inside the

graph of f;. Therefore

P_(n(s_)) = z",

where 1 : R . R™ is the natural projection. This implies

that the d. f. F of f; relative to the probability space (S,Pn)

n

is given by F(t} = t, if te[0;1], which is independent of y
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oxr the éhape of S. Since, . by (36), A(Pn,ﬁy,KyJ depends only
on F, the conclusions of Exémple 14 (iii) also hold for the

present sifuation; 1

19.. Measures Pl, Q! Realizing the Bouﬂdary of A(P,Q). As was

-élready observed, A(P,Q) is a closed subset of IR2. This means
that, for each poiﬁt (u,v) on the boundary of A(P,Q), one can
~attain both equality signs in (19)° by a suitable choice of
P! and Q'. Let us now give an example where P', Q' can be ex-
y pliciﬁly deséribed. | -

Let S be a compact space and-K < €(8) an admissible
cone. Suppose K' possesses a largest element f*. Choose Pe(S)
Iand let F be the P-distribution function of f*t'Suppose there
‘is a'unique pointhy in S with f%(y) = 0. and a unique poinﬁ y!
in S with:f%(y') = 1. (Example: let S be a compact épace with
a partial ordering, a leastheleménf y and a greatest element
&', and let K C(S) be the cone of all convex increasing fune-
.tions.)l Choose Q = 6&. The paramétric equatibns_for’the lower

_portion of the boundary of A{P,s K} aré, by (31} (we are

y’
also assuming that P has no atom),

It

u(c) = 1 - F(e)

vit) tF(t) - fOtF(s)ds, te (0317,

Define P!, Q' en(S) by .
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PI(E):= P[E{) (£% 2 €)]+ u(t)ay(m,'
QLE) i~ v(£)8 ((E) (1 = v(E))s (E).
Certainly HPE ~ P{] = Zu(t)‘and HQE - Qli = 2v(t). Moreover,

given‘féIC,-

J£ dp!

< [f*dP! = [ -sdF(s) + uf*(y)
¢ © o 05e) -
. f sdF(s) = tF(t) - [EF(s)ds = vit),
[0;¢] _ : o
- and : _ .
JE4Q = VIEIE(Y') + [T - v(E)JE(y) = v(E).

. Thus [£dP{ s [£dQ/. This proves that P! < Q-

S

20. The Triangle Inequality.Fails for e¢,. Let S:= [0317,
K < C(S) be the cone of decfeasing convex functions and Q:=
-p§, + g6, with.p + g = 1. We want to show 'that, for convenient

~values of p, q,
(39) 84(6%’61) > ta(d%,QJ + e (Qy84).

Let first compute 54(6%,61J. Here (3 6) applies.

The function s »~> -s+l is the largest .element in K and its



> buti ‘jon is F = Using (36 -
es!5 distribution function is F 1[%;¢” stng‘( } we obtaln

the following family of half planes

b, if t £ %
tu + v 2

[N

L O4if t© 2

Thus w + 2v = 1 is the eduation of the lower becundary of

u in that equation, we conclude that

-

A{ﬁg,ﬁl).fLetting \

1/3.

i}

:ﬁ\ '54(6%361}

; Next, consider 64(5%,QJ. Hexre it is easier gding

A

back to (29). We have-

o(t)

H

sup [I(fAchG% - [£dQ]
feK'

£ ~p,t <k

il

‘IE_PJ iftilﬁo

The equation of the important part.of the lower boundary of
A[G%,Q)‘is u+ 2v =1 - 2p, from which, letting v = u, we obtain

[o, if p>%.

(40)  €,(6,,Q) = |
47% (1 - 2p)/3, if p < %.

"As to e4(Q,51); here again (36) applies. The Q-dis-
tribution function F of * ¢ > -s+1 has values F(s) = 0 if s < 0,

f(s) = qif 0.< 5 <1 and F(s) =1 if s » 1. By (3 6)
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tu + Vo2 £ - &fFTs) ds = t - qt = pt, te[0;1].

So ‘the part of the lower bbundary of A(Q,Gl)-we are interested

Cin dis givén.by u+ v=p, ue(0;p], showing that
(41) | 54(Q,%) = p/2.

Adding (40)  and (41) we obtain

p/2, if p 2 %

€,(6,,Q) + ¢,(Q,8,) = . '
A R A {1/3 - p/6, if p < %.

_ Since_eé(ﬁ%,hl) = 1/3, this shows that (39) obtains whenever

-.-'0_ <p < 2/3. 1|

e ‘When we dealt with_cones both invariant under
ﬁaxlénd min operation, the cofresponding picture, Fig. 4,
w&;vefy peculiar. In particular egy = eq = éca in that situa-
“tion. Let us show that this is al@ays so whenever thé cone has

- the mentioned property through the following proposition.

21. Proposition. Let S be a compact space, K¢ C{S) an admis-.
sible cone which is invariant under the operation A and let
P, QeM{S). Then the portion of the boun&ary of A(P,Q,K) not

contained in the u-axis is a linec segment with slope -1.
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In particular ey = ¢y = €4 =2¢, = €, at (P, Q).

Proof. The: lower.boundary of A(P, Q, K) has slope £ 1 (in abso-
~lute value). But so has the corresponding set A(P, Q, -K), where
~K:={f] -F eK}. Since A(P,Q,¥K) is simply the reflexion

[ (v, u) { (u, y)caA(P,(Q,K)] of A{P, Q, K}, the lower boundary of"

the iéttef is a straight line of slopg.—l. il

Before ending this article it is worthwile to make

the following

22. Remark. Let S be a compact space, K & C(S) an admissible
. cone and P, QeM(S). Using the definition of al(fz Q) and Theo-

" rems 8 and 12, we have

{eiz(P,Q)_ Stfip [.IfqP —-ffdQ],_i =1, 2, 5;

E3tP,Q} = sup[-1

sup L/EAt dP - T/£dQ];
] B

- —, 1 ': , 1 )

E4~5UEImILAtOP—m‘IfdQ],
3 ' .

where f runs over K' and t over (0 ; 1). It follows that, endow-

ing M(S) with the weak tbpology, the function (P,Q)Prci{P,(N,

i=1, ..., 5, 1s 1. s, ¢, and convex. if is easy tb produce

examples showing that those functions are not (weakly) contin-

wous. |



Appendix

TWO MOMENT THEQREMS

K\\

Here we are goipg to state two moment theorems, The-
“orem A.1 and Theorem A.2 below, whicﬁ are basic tools for this
'paper.kih Fact they wefe used- several times. As stated below
Chey afelparticular cases of'Theorem.shand Tﬁeorem 7 in-{ 7],
respectively. A more general result for Polish spaces of the
second ‘theorem can be found_in [ 6]. Below J will bé any index
' Set.- o

: A.l:_Ihggéég. Let § be a compact topological sPaée. For each.
jedJ let hj:S .~ Rbeal s.c. function and n e R. Then
‘there e%ists Pe A(S), such that, | hde < " s for each jeJ if
and only if

inf £ b.h.(s) >0 = I b.

n. 20
cseS jeg J J jeg A7

for each choice of the family (bj} of non-negative constants

jeJd

all but finitely many equal to zero.
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Let Sl’ 82 be'lmeﬁric spaces and Pierv{sﬂ, ij= 1,2,
Let {(hj, nj) ]jej be a family of pairs where hj: Slxs2 + R 1is
al. 5. C. function and nje ]R Next; let Ki be a convex cone of
* bounded bélow_l. s. c. Pi--ir;ttegrable functions «;: S, » R and
containing the bounded 1. s. c. functions, this for i = 1, 2.
=in addition, suppose that, for each je J, there exists ¢jieKi,
i =1, 2, such that, the-1. s. c. function (s,t) h@»hj{s,t] +

¢jl(s) + %Z(t] on.S'le2 is bounded from below. We have the .

' A,2. Theorem. There exists enﬂslkszJ with marginals P,, Py,

~ such that, .
, [hj(s,t)x(ds,dt) s_nj for all jelJ
if and only if

ag{s) + enlt) + nglojhj(s{t) > 0 for all (s,t)e8, xS,

;implieg

fa,dP. + fandP, + £ b,n. 2 0
1951 22 057"

for each family (bj)jeJ of non-negative constants all but fi-

'nitely many equal to zero and each choice of the a; ek, ,i=1, 2.
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