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0 - Introduction. Let R be a ring and let R[X] be the polynomial

ring over R . The structure of R-disjoint ideals of R[X] has
been studied in  [3] . In particular, we have a camplete description of
the prime ideals of ~ R[X] and & one-to-one correspondence betwesn the
set of R-disjoint prime ideals of R[X], the set of O-disjoint prime
ideals of (Q{X] and the set of monic irreducible polynomials of C[X],
- where () is a ring of right quatients of K and C is the extended
Ccentroid of R . For a skew polynomial ring of derivation type
R[X:d}, where d is a derivation of R, the corresponding matter has
bzen considered in  [6] .

Now, let p  be an automorphism of the ring K . The skew
Laurent polynomial ring R<{X;p» is the ring whose elements are of

n ) .
the form z lei, b,eR , where the addition is defined as usually
i=-n
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and the multiplication by &X = Xp{b) , far all b e R [4] . The skew

polynornial ring  R[X;p] is the subring of R{X;p> whose elements
no,

are the polynomials Z lei, bi € R . The purpose of this paper is to

i=0
to study prime ideals of R<X;p> and R[X;p].

We use § { . as an introductory section. In § 2 we study R-dis
joint prime ideals of R{X;p>. The main result states that if P is
an R-disjoint prime ideal of R<{X5p) then P is prime if and
only if R is pprime and P = {OK5e0> N ROGp», where 0
is the p-quotient ring of R and f, is an irreducible polynomial of
the center of (Q<X;p> . This result extends the results of [3] . We
also give an intrinsic characterization for P to be a prime ideal.

In &3 westudy prime ideals of R[X;p]. We prove that there
is a one-to-one correspondence between the set of all R-disjoint prime
ideals P of R[X;p] with X ¢P and the set of all R-disjoint
prime ideals of R<{X;p>. Then we have a description of those prime
ideals using the results of the former section.

Finally, in § 4, we apply the results to get necessary and
sufficient conditions far every prime ideal of R<X;p>  (R[X;p]) to

be nonsingular.

{ - Prerequisites.  Throughout this paper every ring has an identity

element. If R isaring and p is anautomaorphism of R, then an
ideal | of R is seid to bea p-ideal {p-invariant ideal} if
p{ly €1 (p(l) =1). Let P bea p-invariant ideal of R {we denote
it by P <]p R). Then P issaidtobe p-prime (strongly p-prime)
if 1J ¢ P forany p-invariant ideals I and J (p-ideal 1



and ideal J) of R implies either 1 <«Por J<P. The ring R
is said to be p-prime (strongly p-prime) if the ideal (0) of R is
p-prime (strongly p-prime}. Clearly, if R is strongly p-prime then
R is p-prime. Our terminology is taken from {{] and does not agres
with that of references [{0] and [{{]. It is also convenient to
remark that strongly p-prime is not the same as p-strongly prime {(see
[51).

Let R bea pprime ring. As in {[{9], Ch. 3) we define the

right (Martindale) p-quotient ring Q of R r:as_I%ci_ra:n_,b Homp, (I, Rg),
where @ is the filter of all non-zero p-inveriant ideals of R . By
C  we denote the center of (). The autornorphism p can be extended
to a unique automorﬁhism of (O which we will dencte by p again and
we put Cp ={aeC: pl® =sa}. Thering O inherits all basic
properties of the classical Martindale’s construction. In particular, we

" easily have the following (c.f [2], Lemma (.2 ).

Lemma {.1 (i) R<€ Q.
(i) If 0*] « R and f:I—R is s homo-
morphism of right K-modules, then there exists g e Q0 such that

fir) =qgr, forallrel. Moreover, qeC ifandonly if F isan
R-bimodule homomorphism.

(i11) For any Qs - 9, in Q there &xists
0¢1 <<]PR such that quC_:R for 1=1, ...

(iv) If ql=0 forsome qeQ and D #] <]PR,

, N-

. then q= 0.



(v Q is p-prime.
We will need also the following.

Lemma [.2 Assume that q e Q verifiess ¢R = Rq and

plg) =q. Then g is invertible in Q. In particular, Cp is a field.

Proof - I=gR R is ap-invariant ideal of R. If gr =0, for
some r ¢ R, then Ir=20 and so  r = Q. Hence the map
f: I— R defined by flgr) = r is a (well defined) right
homomorphism. Then the element of Q correspording to f  is an

inverse of q.

When R is prime, the center Z{QX;p]) of 0Q[X;p] has been
described in  ([B], Proposition 2.3) . Repeating the arguments in  [8]
‘we tan prove the following lermma.

Firstly, suppose that pk is an inner automorphism of 0 for
some k 2 {. Then there exists the smallest non-zero natural number
m suchthat p™" is an inner automarphism of Q  determined by a

p-invariant element b e Q. We have:

Lemma {.3 {1} If pk is not an inner sutomorphism of QO for
some k & {, then Z{Q{X;p») =ZQ[ X5p]) = Cp

(ii) If pk is an inner sutomarphism of Q for some k 2 {,

then  Z{Q<X5p2) = CP<2> and  Z{Q[X;p]) = Cp[z], whera

-z:Xmlb- , m and b as above.




The automorphism p  of R can be extended to an automorphism
of R{Xp>  (end R[X;p]) by the natural way . We denote the
extension by p sgain. If I isanidesl of R{pp, then I isa
p-invariant ideal. We say that 1 is R-disjoint if 1IN R = 0.

An element of R[X;p] is called a polynomial and & proper
polynomial if its constant term is norrzera. In case that f is a proper
polynomial, the degree of [ and the leading coefficient of f are
defined in the cobvicus manner and denoted by df and  feff),
respectively.

If I isanonzero R-disjoint ideal of R{X;p», there exists a
proper polynomial of minimal degree n in [.  The integer n is
caid to be the minimality of | and denoted by Min(I) .  We denote
by t{l) the p-inverient ideal of R of all the leading coefficients

of proper polynomials of minimal degree in 1 (together with 0).

2. - Prime ideals of R{X;py. If P isaprime ideal of R<{X;p),
then PNR isa p-prime ideal of R. By factoring ot P MR
and (P NR)CX50> fram R and  R<EX;p»,  respectively, we may
assume that R is pprime and P is R-disjeint. So, throughout

this section we assume that K is p-prime. We denate by Q) the
(right) p-quotient ring of R and by Z the center of Q<X;p).
We begin with the following.

Lemma 2.1 - Let I be a nonzera R-disjoint ideal of R<{X;p)

with = Min{I} = n. Then there exists a unigue monic proper
~ polynomial f; € QCGp>  such that for any polynomial fe 1 with

.df=n wehave f= Flfc(ﬂ. In addition, X_nfl e Z.

.
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Proof - If a ¢ t{l), then there exists a unique
R
Therefore the map a;: t{l) ~—+ R defined by a.l{a) =a, isa (well
defined) homomorphism of right R-madules, i=0, {, ..., n  {where
~a_ =a). Since t(l) isa p-invariant ideal there are elements

n
q,= 4,9 (G in Q suchthet ga=a , i=0,{,..,n Define

| f, = ><”+><”‘1qnmi+...+ gy € Q<X;p», which is clesrly the unigue

proper polynomial such that = fidelf),  for any polynomial f e I
with df = n.
Now we show that Xﬂnfl e Z. Farany aect{l) , pla)e(l).

Thus F]a el and flp(a} e I. Hence (fI - p(fIJ]p(a] = I,c:(a] - p{FIa} e ]
and since 8(]"1 - ,o(fI]] {n, we have (fI~p(fI)]r(I] = 0. This implies
that  p(f) = FI and so Xfy = fIX. Also, for any a e t(l) and
beR, bfael and flpn{b)a e I. Since 3(bf] - Flpn{b}) { n it follows
- as above that bfl = Flpn(b). Now we can get easily the required

relation.

The palynomial fI constructed in the above lemma will be called

the canonical polynomial of the non-zero R-disjoint ideal L.

Corollary 2.2 - Let f; be the canonical polynomial of the R-dis joint
ideal 1 of R<{X;p»>. Then 1€ fIQ<><;p> N R p).

Proof - Suppcse  fe I isa polynomisl. Since f; is monic there
exist polynommials h and r in Q<X;p> suchthat f= f'Ih +r
‘where either r=0 or dr < é)fI = Min(l). Take a non-zerc p-invariant
ideal J of R suchthat h] and rJ are contained in R{X;p) .

&



We get easily ro{l)J €1 andso re{)J=0. Since o{)J#0 it
follows that r=0, ie., f= fih e £QCG N R p5.

Now, if f 1isan arbitrary element of I, there exists an integer
t 2 0 such that th e I is a polynamial. Then }‘(tf £ FIQ{X;p‘)
Candso £ e XTFQOGE N RG> =[O0 N RKp).

Let [ be anonzero R-disjoint ideal of R{OX5p»  and [et fy
be the canonical palynomial of 1. Since X O (fI)FI € Z it follows that
fIQ{'X;p} is an ideal of QCXp>.  We define the clasure {I} of I by
[1] = FOXKsp> 1M ROKGp) . The ideal | is said to be closed if
(1] =1.

It is convenient to have an intrisic characterization of a closed
ideal.

Firstly, if 1 is an R-disjoint ideal of R{X;p> and
F=X"s 4+ Xn_ian_i+..:+ 3y is & proper polynomial of minimal degres
‘n in I, then g= arp(f) - o'(fr)pdia) eI (reR, jeZ) and dg {n.

So we have
(*) : ar"pj(f) = ;;:hn(fr)pj(a}j forall reR, jeZ.

Now, let TR be the set of all proper palynomials in  R{X;p)
which satisfy the condition (*}. For f ¢ FR with  fe(f) =a we put

[F]R: {e ¢ R{X;pp : thereis 0=1J <:1PR such that

pl(g)Ja C R{X;ppf, forall i e Z}.

Hereafter we denate [ and [ﬂR simply by I and |f]
cand we use I O anc(i] [f] 0 far the corresponding subsets of
Q<¢X;p>.  Note that FQ: [ fy € rQ : fp is monic} is equal to
" the set of all the manic proper polynomials g of Q<{X;p> such that

7



X-a

then the canonical polynomial fi of T isin FQ.

gg e Z. In particular, if 1 is an R~disjoint ideal of R<Xsp0,
D

Lemma 2.3 - If fel, then [f] isan R-disjoint ideal of

. R{X;p>  which contains £ as a proper polynomial of minimal

degree.

Proof - Write = X+ 4 Bg - It is easy to see that [f] is
an ideal of R{X;p>. Also, by condition (*), pi{f}ra = piqn{a)pﬁn(r)f
¢ ROGpyf, forall reR, ieZ. Then fe|f].

Suppose there exists a proper polynomial 0 # he [f] with 8h (8f.
Then there exists & narrzero p-invariant ideal J of R with
hla @ ROX;p>f. Take b e I such that hba # 0. Then hba = gf, for
some g = mem+...+ Xsbs (s {m), and we may assume thst g is
.chosen with m - s being minimal. If m 20, then pn(bm)a = [.
Using (*} and the p-primeness of R we easily get b f=0. Thus
pf = (g - mem)F..Hen‘ce we may assume that m < 0. In this case we
have bSaD =0 . Again, using (*] , we get be =0 and so

gf = (g - XSbS)F , a contradiction.

Proposition 2.4 - Let I be an R-disjoint ideal of R<{X;p> and

let f beanypolynomial of minimal degree n in [. Then fel
and {I] = [f]-

Proof - We have already seen that f e I'. Let FI be the
canonical polynomial of 1. Then f = fIa ,  where a = Icff).

Suppose  h = fIg el, geQGpr, andlet J bea nonrzero

8



p—in?/ar“iant ideal of R with gl ¢ RG>, Hence pi(ly)Ja = Flpi(g)Ja =
anl(gJ)X_ana < R{Xpxf, forevery 1 eZ, and it follows that
he [f] . Consequently [I] < {f].

Conversely, suppose ¢ € [fl andlet L be anon-zero p-invariant
_ideal of R such that p'(glla @ R<X;p)f, for all i € Z. There
exists t 20 with th e RX;p].  Since f; is monic there exist
"h and r in Q[X;p] such that th = fih +r, where either r =10
or 8r < n We easily get pi(r]La < fIQ[X;p] for every 1 ¢Z,
~ hence pi{r)La =0 andso r=0 Ths g= fIXch e {I] and the

~ proof is complete.

Corollary 2.5 -. Let I bte a non-zero R-disjoint ideal of R<{X;p)>.
Then [I] is the largest ideal H of R{X;p> which contains 1
and satisfies Min{H) = Min(I) . In particular, [[I]] = [I].

Proof - It is clear that Min{[I]) = Min{I) . If H2 1 and
Min{H) = Min{l), = cheose & polynomial f  of minimal degree in 1 .
Then H <[H] = [f] = [1].

Next we will need the following

Lemma 2.6 - A Q-disjoint ideal J of Q<CX;0» is closed if
and only if J = FQ{X5p> for some monic proper polynomial fj € FQ-

o
Proof - Suppose that fg ¢ FO and n = 3{fy . Since X"nfo e 2

is clear that fQ<{X:p> is an ideal of Q<Xs;p> . Let 1 be an ideal of
Q<X5p> suchthat T 2fQCGe> and Min{l) = n . If g € [, using the
. division argument we get g = fgh, h e Q{Xpp . Consequently

9



[ = Q<C%0>  is closed by Cornllary 2.5 .

Conversely, assume that J is a closed ideal of Q<{X;p» . Consider
the non-zero R-disjoint ideal [ =1 N R{X5p> of R{OX;p>  and the
canonical polynomial fI . It is clear that B(FI) = Min(I] = Min{J) and
. we can eacsily see that J = FIQO(;p).

Before proceeding to apply the former results to study prime ideals

we recall the following.

Lemma 2.7 (c.f. [{], Lemma {.4 and Proposition {.6} . Let F be

a non-zero R-disjoint ideal of R<{Xp» . Then P is prime if and only

if R is p-prime and P is maximal with respect to PN R =0 .

Let f beaproper polynomial in T p- Wesaythst f isirredu
cible in  I'n when the following condition holds : if there exist g ¢ M
"and a proper polynomial h e R{X;p> suchthat f=gh, then dg = df.
.Similarly, we define the irreducibility of a proper polynomial in FQ .

Now we can prove the main result of this section.

Theorem 2.8. lLet R bea p-prime ringand P a non-zero

R-disjoint ideal of R<{X;p> . Then the following conditions are equiva
lent.

{1) P isprime.

(i) P isclosed and every e P with df = Min(P)
is irreducible in TR . |
_ (iif) P = fQ<Gey M ROX5py , where fy is a monic
proper polynornial in FQ which is irreducible in FQ :

1



Proof ~ (ij—(ii) . P is closed by Lemma 2.7 . Suppose f e P
and 3f =Min(P). If f=gh, gely, then fe gRX;p> < [g]. 1t is
easy to see that this implies [fl € [g]. Then P = [f] = [p] and so
g = 8f. Thus f is irreducible in FR
| {11)-—~~lb (iii) If P is closed then P = fPQ\X,;:O M R<Xp2,
for f, € FQ . Suppese fp, = gh , where g e rQ Let J be a non-
ZEero ,omvarlant ideal of R with gl € R{X;p> and hl < R{X;p).
Put = BFP and s = dg and choose bi’ 5 in J such that

‘g = p“(binZ #0 . We have fpa = b(fob,= b ghb, = gp~(by)hb, ¢ P,
S(FPa)
SFP )

= Min(P) and gp (b) ¢ I, Hence 8g = 3(gp"(by) = 8(fpa) =
Consequently, fp is irreducible in FQ

(iii} —+{i) . Let L be an R-disjeint ideal of R{X5p)
with L 2 P. Replacing L by [L] wemayassume that L is
closed, i.e., L = hQ{Xsp> M R{X5p>  for same hy ¢ r JIF £y =
hog + 1, where either r=0 or dr {ahy , we easﬂy get r =0.
Then fp=heg and irreducibility gives 8hg = dfy , so hg =f; . Con
sequently, P =L and P is prime by Lemma 2.7 .

If there exists a nom-zero R-dizsjeint ideal of R<{X;p»,  then
Z*C  bylemma 2.1. Hence we know that Z =0C <z, where
m, - {

z = X'b~, m and b~ asinlLemma {.3. Using this notation

we have.

Corollary 2.9 . Let P bea NGN-ZEro R-disjoint ideal of R{X;p) .

Then thé following conditions are eguivalent.

(i) P is prime.

$t



(i) P = gQCGe> M ROGp> ,  for some monic proper
polynomial gy € CP[Z] which is irreducible in CP[Z] and gy #z .

Proof - (i) —» (ii). If P is prime, then P = fQ{X;0> N R{<XK;pp,
-where [ € I"é and it is irreducible in TQ. Since X"afoﬂ, € L We
easily get 8fp = ms, for somes z {. Then g, = fob"S is & monic
‘pr‘oper‘ polynornial in C [z} . The irreducibility of f; in FQ implies
the irreducibility of g, in Cp [z] . Finally P =g,0X;p> N R{Xp0.

{i1) — (i) . It is easy to revert the arpuments.

Corollary 2.10. There is a one-to-one correspondence between the

following.

(i) The set of all R-disjoint prime ideals of R<{X;p)>.

(i) The set of all Q-disjoint prime ideals of Q<{X;pp.

(ii1) The set of all maximal ideals of Z .
~ Moreover, this correspondence associates the R-disjaint prime
ideal P of R{Xipd , the Q-disjoint prime ideal P of O<X:pd
and the meximal idesl M of Z if FIARGGps = P and MO<Xsp)
= p".

Proof - If there is no norzero R-disjoint ideal of R<{X;p)
then the same is true of QX and Z = Cp is a field. This

establish the result in this case. The other case can essily be proved

using Lemma 2.6, Theorem 2.8 and Corollary 2.9.

In particular, we have

Corollary 2.11.  Assume that there exists a non-zero R-disjoint
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ideal of R<{X;p> . Then there is a one-to-one correspandence between
the following.

(i) The set of all R-disjoint prime ideals of R<{X;p).

(ii) The set of all prime ideals of Cp[t} which are different

. of th[t] , where t s an indeterminate.

Remark 2.12. Using the results on closed ideals we can also give

a one-to-one correspondence between the set of all closed ideals of
R{X;p> , the set of all closed ideals of Q<X;p> and the set of all
the ideals of Z, as in Corollary 2.10. It follows that an intersection
of closed (prime) ideals of R<{X;p> is non-zero if and only if it is a

finite intersection. -

3 - Prime ideals of R[X;pl . It is quite easy to describe the

prime ideals of R[X;p] , based on the results of the former section.

| Firstly, Iet [ bean ideal of R{X;p] . We say that X s
regular module I if the following condition holds : Xf eI implies
fel and gX el implies gel, forany fg in R[Xp] . Itis
easy to see that if P is a prime ideal of R[X;p] with X ¢P , then
X iz regular modulo  P.

We begin this section with the following.

Lemma 3.1. There is a one-to-one carrespondence via contraction
between the following.
(i) The set of all R-disjoint ideals of R{X;p).
{if)  The set of all R-disjoint ideals 1 of R[X;p] such that

X is regular medulo 1.



Proof - If 1 is en R-disjoint idesl of R{X;p> , then I =
INR[X;p]  isan R-disjoint ideal of R{X;p] and X is repular
modulo Iy . On the other hand, if J is an R-disjoint ideal of R[X;p]

such that X is regular modulo J wept ()= SXJ. Then ()
iz0
is an ideal of R<{X;p> suchthat (J) N R{X;p] =J . The rest is

clear.

If P is aprime ideal of R[X;p] , then either X e P and
P=(PNR) + XR(X;p] or X isregular modulo P and PMNR is a
strongly p-prime ideal of R { [{] , Lemma {.3 ). Since the prime
ideals of the first type are determined by the prime ideals of R, we
- are interested in the prime ideals P with X ¢P . In this case, by
factoring out P MR we may asume PN R =0 and R isstrongly

p-prime . We recall the following.

Lemma 3.2. ({c.f [{], Proposition {.6) . Let P be an R-disjoint
ideal of R[X;p] with X ¢P. Then P is prime if and only if R is

strongly p-prime and P is maximal with respect to P MR = 0.

As an immediate consequence of our former results we have the

following corollaries.

Corollary 3.3 Let R be a strongly p-prime ring . Then there is

a one-to-one correspondence via contraction between the following.
(i) The set of all R-disjoint prime ideal of R{X;p).
(i) The set of all R-disjoint prime ideals P of R[X;p]
with X ¢ P.



Corollary 3.4 Let R be s strongly p-prime ring and let P be

a non-zero R-disjoint ideal of R[Xip] . Then P is prime if and only
if one of the following conditions is fulfilled.

() R isprimeand P =XR[{X;p] .

(1) P =0l NRIX;p] , where f, is a monic irre-
ducible polynomial in Cp[z] which is diffferent of 2z {z = Kmb~i as

P above).

Remark 3.5 We also have a one-to-one correspondence between the

set of all R-disjoint prime ideals of R[X;p] , the set of all Q-disjoint

prime ideals of Q[X;p] and the set of all maximal ideals of Cp[z] .
when Z(Q[X;p])# cp.

On the other hand, it is slso possible to define a closure operator in
the set of R-disjoint ideals of R[X;p] so that the prime ideals

. become closed. But we do not see any good reason to study this notion .

4 - Nonsinpular prime ideals . In this section we denote by 3(R)

the (right) singuler ideal of R ([7] , p.30) . We recall that a prime
ideal P of R is seid to be (right) nonsingular if S{R/P) = 0 .
From the results in  ({3], §4) it follows that every prime ideal of the
polynomial ring R[X] is nonsinguler if and only if every prime ideal
of R is nonsingular.

The purpose of this section is to apply the results in the former
sections to get necessary and sufficient conditions far every prime

-ideal of R{X;p» (R[X;p]) to be nonsingular . We have the following.



Theorem 4.1 Every prime ideal of R<{X;py is nonsingular if and

only if every p-prime ideal of R is nonsingular.

Theorem 4.2 Every prime ideal of R{X;p] is ronsingular if and

only if every prime ideal and every strongly p-prime ideal of R are

nonsingular.

The proof of Theorem 4.! is a trivial consequence of the next
lemmas . Theoremn 4.2 can be shown similarly.
We denote by rg(a) the right amnihilator of a in R . Also, if T is

a right ideal of R, I{X}> denctes the right ideal of R<{X;pp whose
n
elements can be written in the farm 2 b, X ;b el Finally we

put T = R{Xspp. 1=

Lemma 4.3 S(T) = SR)<X;0) .

Proof - Suppose that a € S(R) and let 1 be a non-zero right
ideal of T. If I M R # 0, then it is clear that there exists
0#Zbel MR suchthat ab=0. Assume [N R =0 and suppose that
ag # 0 for every non-zero polynomial g e 1. Hence there exists a non-
zero polynomial f e I such that d(af) is of minimal degree s, say,
af = ><5pE‘(a)aS + ... +asy . Since aR#0 and p-(a) € S(R) , there
exists r e R with aSr;fD and p()ar-O Thus O #fr el
and 3lafr) { s, a contradiction . Therefore rT(a) N1 #0 and so
a € 5(T).

Now, [et f = Z Xb e &H(T) b A0t =n. If I isa nonzero
i=t



right ideal of R , then there exists 0 # he I{X> with fhi=0.
It follows that rp( ) NI#0. Hence b eS(R) and so x“bn e S(T).
Thus f - ann e S(T) and repeating this argument we get
f e S(R)<X;p> . This completes the proof .

Lemma 4.4 Assume thet R is p-prime and 3(R} = 0. Then

"every prime ideal P of T suchthat PR =0 is nonsingular.

Proof - If P =0, then P isnonsingular by Lemma 4.3 . Thus

we may assume P # 0 . Let fp be the canonical polynomial of P.
We have P = fPQ<X;P> N R<Xspp. If S(T/P) =1/F # 0, then
IQP andso [NR#0. Teke 0 #ael MR and suppose J isa
non-zero right ideal of R . Since 0 # (J<X> + P)/P and rT(a+P] is
an essential right ideal of T/P, there exists 0 # f e J{X)> such that
af ¢ P . We may assume that f is a polynomial . If 3f { Min{P) = n,
then we get as, = O for every left coefficient a, of f.If 8f2n we
write f =hfp+r, where h, reQ<{X> and r is a polynomial with
either r = 0 or dr { n. Using the fact that ]CP is monic and
f e JQCX> we easily get r e JOOK;» . Also ar = af - ahfP €
Q<X;p>fp and so  ar = 0. Choose & non-zero p-invarient ideal L of
R suchthat TfLE€JCX)> . Then arb=0 forsome 0 Zrbe JOO .
It follows that I“R(a) N J # 0 and therefore a ¢ S(R) = [

contradiction.

, a

Lemma 4.5 If P is a prime nonsingular ideal of R<{X;p> with

PNR=0, then R 1is nonsingular.

Proof - If P =0, then R is nonsingular by Lemma 4.3 .
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Assume P # 0 and suppose r‘R{a) is an essential right ideal of
R forsome aeR. Let J/P#0 arightideal of T/P. If g and
f are proper palynomials of minimal degree m and n in J and P,
respectively, then 0 € m £ n . Asstme m = n . Therefore
'grpi (a} - p_n(br)pi(f] eJ, forevery reR, where a=1Ic{l) and b=
fe(g) . Hence gr)(ia e P, forevery reR, ieZ, and it follows
that g e P . A standart argﬁment shows that J=P.

Thus we may assume m (n. If ag #0 forevery ge J such
that 3g = m , then there exists h e J, dh = m, such that ah Z 0
and d(ah) is minimal . We get a contradiction as in the proof of
Lemma 4.3 . Conseguently there exists 0 #g e J with 8g = m and
ag = 0. This gives (a+P){g+P) =0 in T/P, where 0 # g+P ¢ J/P.
Therefore a+P e 5(T/F) =0 and so a e PN R =0 . The proof is

. complete.

Remark 4.6 All this paper was devoted to consider right questions.

There are, of course, similar results for the left p-guotient ring of R

and left nonsingular prime ideals.
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