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Nota 
 
 
 
 
 
 
 
 
 
 

 

 
 
Este trabalho foi realizado no primeiro ano de existência do projeto BRAFITEC-PAGINER, 
coordenado pelo Prof. Dr. Cláudio F. R. Geyer e com o objetivo de promover o intercâmbio 
acadêmico entre alunos de engenharia de computação da UFRGS e estudantes de engenharia do INPG 
– Institut National Polytechnique de Grenoble (França). 

Durante o período de agosto de 2003 a junho de 2004, cursei o último ano do curso de Engenharia de 
Telecomunicações em Grenoble, o qual é composto por duas etapas: um semestre de disciplinas e um 
semestre de estágio em uma empresa ou laboratório da universidade. 

Na segunda etapa, realizei meu estágio no laboratório de pesquisas TIMA, onde desenvolvi, durante 
quatro meses, meu projeto de final de estudos. Regressando ao Brasil, propus continuar com meu 
trabalho, realizando, assim, uma obra um pouco diferenciada. Logo, este trabalho divide-se em duas 
partes: uma feita no Brasil e escrita em português (este resumo) e outra feita na França e escrita em 
inglês. Além disso, no final da versão inglesa encontram-se as transparências e o código em VHDL 
apresentado para a banca avaliadora do meu projeto no Brasil. 

 
 
 
 
Porto Alegre, 05 de janeiro de 2005. 
 
 
 
 
Alcides Silveira Costa. 





Introdução à versão brasileira 
 
 
 
 
 
 
 
 
 
 
 
 
O presente trabalho tem por finalidade continuar com o projeto de final de estudos desenvolvido na 
França, INPG – Départment Télécommunications através do programa CAPES/BRAFITEC. Realizado 
no TIMA Laboratory sob orientação do Professor Régis Leveugle (PhD em microeletrônica – INP 
Grenoble) durante o período de fevereiro de 2004 até junho de 2004, foi avaliado por Jean-Louis Roch 
(PhD em Matemática Aplicada - Université Joseph Fourrier de Grenoble), obtendo nota final 14/20. 

O tema proposto era o desenvolvimento em VHDL de um coprocessador criptográfico utilizando o 
algoritmo RSA [4]. Devido à complexidade do problema em manipular números de alta ordem, muito 
tempo foi despendido em busca de uma arquitetura capaz de executar o algoritmo em um tempo 
plausível. Várias arquiteturas foram estudadas e, após profunda análise, optamos por implementar 
uma arquitetura com seu núcleo baseado em pipeline [26]. Ao final do tempo de projeto, terminamos 
e validamos por meio de simulações a implementação de um módulo que realizava a multiplicação 
Montgomery [18]. 

De volta à UFRGS, venho propor a implementação do algoritmo de cifragem/decifragem RSA, sem o 
processo de geração de chaves. Isto foi definido pelo fato de sabermos que a geração de chaves pode 
ser feita via software. Além do mais, o processo de geração de chaves é realizado apenas uma vez, não 
havendo necessidade real de um hardware dedicado para isto. Logo, este documento relata o esforço 
no desenvolvimento final do hardware, sem preocupar-se com o processo de geração de chaves. 

A estrutura desse trabalho está organizada da seguinte forma: este resumo apresenta, na primeira 
parte, uma síntese do trabalho realizado na França. Após, adicionou-se os resultados adquiridos na 
UFRGS. A versão detalhada com conceitos sobre o RSA, algoritmos de implementação estudados, 
diferentes arquiteturas e resultados anteriores está em inglês e anexada ao final deste documento. 
Maiores detalhes podem ser encontrados e serão referenciados no decorrer do texto. 





Resumo 
Síntese da versão inglesa 
O surgimento da internet mudou radicalmente a maneira pela qual as pessoas trocam informações. 
Devido à sua crescente popularidade, aplicações como correio eletrônico, clientes de mensagens 
instantâneas, comércio eletrônico, transações bancárias e compras on-line estão se tornando parte de 
nossas vidas. Serviços como SMS e WAP estão crescendo em popularidade também. Entretanto, toda 
essa informação está sujeita a escuta. Uma pessoa pode interceptar sua informação se o sistema não 
prover mecanismos de segurança adequados para seus usuários. Tentando evitar problemas como 
estes, criptosistemas devem ser usados quando uma comunicação segura for necessária. 

Criptografia é muito mais que apenas codificar e decodificar mensagens. Quando analisamos o mundo 
eletrônico, autenticação e identificação também são necessárias. Por exemplo, utilizamos autenticação 
a cada dia em nossas vidas, assinando documentos, cheques, etc. Entretanto, quando movemos para 
um mundo onde nossas decisões são tomadas eletronicamente, precisamos dispor de técnicas 
apropriadas. 

Observando esse problema, Ronald Rivest, Adi Shamir, and Leonard Adleman desenvolveram em 
1978 o criptosistema RSA (Rivest, Shamir, Adleman) [4]: um sistema de chave pública que permite 
tanto cifragem quanto assinaturas digitais (autenticação). 

Em sistemas de chave pública, cada usuário possui um par de chaves. A chave pública é, obviamente, 
deixada pública enquanto a chave privada é mantida em segredo. A cifragem é realizada com a chave 
pública enquanto a decifragem é feita com a chave privada. A assinatura de um documento é realizada 
com a chave privada enquanto a autenticação é feita com a chave pública. Melhores detalhes sobre o 
funcionamento de sistemas de chave pública, como o RSA, podem ser encontrados na versão inglesa, 
seção 2, Understanding Public-key Cryptosystems. 

O algoritmo de cifragem RSA é simples e está descrito na seção 3, The RSA Cryptosystem. Sendo a 
chave pública definida pelo par de números positivos (e, n) e, similarmente, a chave privada definida 
pelo par (d, n), temos 

 
para a cifragem de uma mensagem M e 

 
para realizar a decifragem de uma mensagem cifrada C. 

Apesar de simples, o algoritmo envolve números de altíssima ordem (atualmente, M, e, n e d devem 
ser de, pelo menos, 1024 bits de tamanho, conforme [8]). Essa ordem de grandeza surge do fato que a 
segurança do RSA está baseada na dificuldade de fatorar grandes números: as chaves são calculadas 
matematicamente combinando dois números primos de alta ordem. Mesmo conhecendo-se o produto 
desses números primos (que faz parte da chave pública divulgada, n), a segurança do algoritmo é 
garantida pela complexidade de fatorar esse produto e se obter os valores secretos.  

Sendo assim, a implementação desse algoritmo em hardware torna-se desafiadora, pois o problema 
concentra-se em encontrar uma forma de realizar uma exponenciação modular rapidamente. 

Para um melhor entendimento do algoritmo, robusteza, tamanho das chaves e um simples exemplo 
mostrando sua funcionalidade, refira-se à versão inglesa, seção 3, The RSA Cryptosystem. 

Vários algoritmos foram estudados para resolver esse problema [7, 14-18, 20, 24]. Dentre eles, foi 
escolhido o método de exponenciação de Montgomery [7] (seção 4.1.2), utilizando o método de 
multiplicação de Montgomery [18]. Mesmo assim, três arquiteturas diferentes também foram 
analisadas, todas sugerindo maneiras diferentes de executar o RSA. Estas eram: arquiteturas em 
pipeline [16], arquiteturas baseadas em CRT [15] e arquiteturas baseadas em RNS [17]. Após análise, 
foram tiradas as seguintes conclusões. 

)(mod)( nMMEC e{{

)(mod)( nCCDM d{{



Arquiteturas baseadas em CRT 

Apresentam falha de segurança, deixando margem para o atacante. Como os fatores p e q, necessários 
para a geração das chaves não são destruídos (são mantido dentro do chip), o atacante pode decifrá-los 
através de um método de ataque por hardware [19]. Entretanto, essas arquiteturas são as que 
apresentam a solução mais rápida atualmente, pois dividem o cálculo da execução do RSA em duas 
unidades de processamento com tamanho de dados reduzidos pela metade. 

Arquiteturas baseadas em RNS 

Convertendo números binários para um sistema de números diferente (RNS), uma arquitetura 
altamente paralelizada pode ser implementada. Entretanto, estas não são adequadas para tamanhos de 
chave pequena, pois os passos de conversão de binário para RNS e vice-versa consomem muito tempo 
de processamento. Além do mais, sua complexidade de implementação é a maior dentre as três 
arquiteturas propostas. Apresenta resultados satisfatórios quando o tamanho de chave é maior que 
2048 bits. 

Arquiteturas baseadas em Pipeline 

Apesar de não apresentarem a mesma taxa de cifragem que as duas arquiteturas propostas 
anteriormente, não apresentam problemas de segurança em sua estrutura e não são tão complexas. 
Além do mais, sua taxa de cifragem de dados é mais que suficiente para muitas aplicações. 

Optamos por implementar a arquitetura em pipeline, devido a sua simplicidade e eficiência. Maiores 
detalhes sobre os algoritmos e as arquiteturas estudadas podem ser encontrados na seção 4 da versão 
inglesa, Design Methods. 

Depois de escolhida a arquitetura, partimos para a especificação do sistema, a qual pode ser vista na 
seção 5. Abaixo, temos a estrutura de blocos do sistema. 

Figura 1 –Diagrama de Blocos 

Cabe salientar que a idéia inicial era a de codificar todo o algoritmo RSA em VHDL. Entretanto, esse 
trabalho requer muito mais tempo de projeto. Perceba que vários blocos precisam ser implementados, 
cada um com características diferentes. Por exemplo, um bloco de geração de números aleatórios 
exige um tratamento totalmente diferente do bloco de testes de números primos. Logo, percebendo a 
inviabilidade de implementarmos todo o sistema em tempo hábil, decidimos concentrar nosso foco na 
unidade de exponenciação modular. 

No final de quatro meses de trabalho, conseguimos terminar e validar por simulações um submódulo 
da unidade de exponenciação modular – a multiplicação de Montgomery – utilizando uma estrutura 
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em pipeline. Algoritmos, softwares utilizados e desenvolvidos para a validação do módulo podem ser 
analisados na seção 6 do documento em anexo.  

Ao término do tempo de projeto, obtivemos um módulo totalmente parametrizável, podendo realizar 
a multiplicação de Montgomery com qualquer tamanho de operando, pois este seria quebrado em 
palavras definidas pelo usuário. Além disso, o trabalho foi escrito de maneira a conter ótimas 
referências, dando oportunidade para aqueles que querem conhecer a área de criptografia uma ótima 
introdução ao assunto. 



 



Continuação 
Trabalho realizado no Brasil 
Chegando ao Brasil, foi proposta a continuação do trabalho com algumas restrições. Não seria 
implementada a parte de geração de chaves RSA no trabalho: apenas a continuação do algoritmo de 
exponenciação modular. Logo, tínhamos como meta implementar todos os blocos referentes a 
cifragem/decifragem. 

Adaptação ao novo ambiente, reescrita de código e revalidação 

A primeira dificuldade encontrada foi o novo ambiente de desenvolvimento utilizado. Todo o projeto 
tinha sido desenvolvido no Modelsim e sintetizado utilizando o Leonardo Spectrum da Mentor 
Graphics. Agora, estávamos utilizando o Quartus II Web edition da Altera. Houve necessidade de 
reescrita de código em alguns trechos devido a incompatibilidades encontradas no momento da 
síntese. Além do mais, test benches desenvolvidos em VHDL não eram mais necessários, desde que o 
ambiente da Altera utiliza waveforms para obter resultados de simulações. Logo, um certo tempo 
inicial foi despendido no aprendizado da nova ferramenta. 

Passada esta etapa inicial, revalidamos o Módulo de multiplicação de Montgomery no Quartus II e 
extraímos os seus resultados. Conferimos com os resultados já adquiridos com o ModelSim (seção 
6.1.1.1, IP Implementation) e todos fecharam. Entretanto, o trabalho original não descreve a 
arquitetura interna dos blocos PE (processing element), apenas mostra uma arquitetura básica do 
módulo de multiplicação modular (figura 4-3, versão inglês). Logo, detalharemos um pouco mais a 
arquitetura do coprocessador neste trabalho, começando pela a organização interna de um PE. 

Processing Element (PE) 

A figura 2 representa a implementação das linhas 3 a 14 do algoritmo da seção 6.1.1. Note que s_ff 
mantém o resultado da primeira soma (linha 3), o qual é usado para decidir se m_i (módulo) será 
somado ao resultado nas outras iterações ou não. 

Figura 2 – Processing Element 
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Além disso, há necessidade de um contador para controle do for loop nas linhas 6 e 11, pois este é 
controlado pelo sinal de habilitação (en_i), que permanece ativo enquanto os dados de entrada forem 
válidos. As operações de deslocamento (linhas 8 a 13) são realizadas no registrador mais próximo da 
saída s_o. 

Entretanto, o algoritmo de multiplicação Montgomery ainda não está pronto, pois este deve utilizar 
vários PE para ser construído, conforme explicado a seguir. 

Montgomery Multiplication Unit (MM) 

Figura abaixo mostra a maneira como foi implementado o multiplicador de Montgomery. 

Figura 3 – Montgomery Pipeline 

Salientamos que o pipeline mostrado na figura acima é realimentado e que sua saída é totalmente 
dependentes dos parâmetros p (número de unidades paralelas) e m (tamanho do módulo em bits). 
Logo, existe um controle especial para determinar quando o resultado do pipeline deve ser copiado 
para os registradores de saída. Outro sinal importante é o shx_o. Este indica quando o registrador x 
(figura 4-3, versão inglês) deve ser deslocado. 

Escolha do algoritmo de exponenciação modular 

Finalmente chegamos ao momento de implementar o RSA propriamente dito. Vários algoritmos 
foram estudados (seção 4, Design Methods). Entretanto, o que melhor se adaptou às nossas 
necessidades foi o algoritmo apresentado logo abaixo, estudado no Brasil e extraído de [16]. 

 

Exponenciação de Montgomery 

Entradas: kneM ,,,  

Saída: neM mod  
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4    :x MonPro � �xx,  

5.   if 1 ie  then  :x MonPro � �xM ,  

6   :x MonPro � �1,x  

7.  return x  

O parâmetro k é uma constante e deve ser pré-calculado, assim como as chaves. Ele vale nm mod22 , 
onde m equivale ao tamanho do módulo n em bits. Perceba, também, que o algoritmo usa somente a 
unidade de multiplicação de Montgomery, não havendo necessidade de uma unidade especial para o 
cálculo do algoritmo de Euclides, como proposto no algoritmo da seção 4.1.2. 

O Coprocessador RSA 

O coprocessador RSA desenvolvido também possui uma interface parametrizável onde os dados de 
entrada são quebrados em palavras. Dessa forma, podemos carregar os dados para dentro do 
coprocessador com uma palavra de tamanho l. Este tamanho independe do tamanho das palavras 
internas ao coprocessador (barramento interno), ou seja, os cálculos internos são realizados com um 
tamanho de palavra w. A figura abaixo ilustra a arquitetura interna do coprocessador RSA. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 4 – Coprocessador RSA 

Os registradores dat_reg, m_reg, x_reg e n_reg possuem n+w bits de tamanho. Este requisito é 
necessário para o funcionamento do algoritmo de multiplicação (capítulo 6). Os registradores m_reg e 
x_reg são rotacionadores de w bits e acc_reg é um registrador de deslocamento de p bits controlado 
pelo sinal shx_o (MM). Além disso, acc_reg também serve de acumulador para resultados 
intermediários.  

Note que essas características permitem, por exemplo, sintetizar um coprocessador com uma 
quantidade mínima de pinos. Este é o caso de muitos Smart Cards que são utilizados em transações 
bancárias, onde o número de pinos não passa de oito. 
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Problemas com o algoritmo MWR2MM 

O algoritmo proposto por [26] e apresentado no capítulo 6 apresenta algumas falhas. Na 
implementação do coprocessador RSA, foram descobertos alguns erros. Por exemplo, suponha o 
seguinte problema: 

Sendo n=13, M=6 e=5, calcule neMC mod . 

Substituindo os valores, temos 2 C . Entretanto, se encontrarmos 15 C , este resultado não está 
totalmente errado, já que .213mod15   C Ou seja, a maneira como foi implementado o algoritmo 
MWR2MM, retorna, em alguns casos, um resultado fora do intervalo [0, n). Logo, um bloco de 
correção deve ser adicionado na figura 4. Sua arquitetura é mostrada na figura abaixo. 

 

 

 

 

 

 

 

 

Figura 5 – Subtrator em pipeline 

Note que a correção é uma subtração entre o resultado fora do intervalo [0, n) e n. Para isso, os dados 
de entrada são calculados, palavra a palavra, da mesma maneira que o cálculo da multiplicação 
Montgomery. A nova arquitetura da figura 4, então, é mostrada na figura 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 6 – Coprocessador RSA com correções 
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Resultados da Simulação 

Sendo m o número de bits dos operandos, w o tamanho de uma palavra interna e l o tamanho do 
barramento de dados de entrada, analisamos os seguintes casos: 

Caso I: 2,4,8    lwm e 2562   mr  

Para os dados de entrada, temos: 

221,55,199,200     nedM e 120221mod2256mod2    nrk  

E, em binário: 

M = 11 00 10 00 

e =   00 11 01 11  d = 11 00 01 11 

n =   11 01 11 01  k = 01 11 10 00 

Os dados devem ser inseridos da palavra menos significativa à mais significativa, necessariamente. A 
ordem dos operandos deve ser: M/C, e/d, n e k. A figura abaixo mostra M, e, n, e k sendo carregados, 
respectivamente, no coprocessador (carregados aos pares de bits). Note que um sinal de reset foi 
inserido para inicializar o sistema. 

Figura 7 – Simulação (entradas - M, e, n e k) 

Transcorrido certo tempo, obtivemos o seguinte resultado: 

Figura 8 – Simulação (resultado - C) 

Ou seja, 2100010101221mod20055    bC . Carregando C, d, n, e k novamente nas entradas do 

coprocessador, devemos obter M, a mensagem cifrada. As figuras a seguir ilustram esse processo. 

 

 

 



Figura 9 – Simulação (entradas – C, d, n e k) 

Figura 10 – Simulação (resultado – M) 

20011001000221mod21199    bM . Deciframos a mensagem. 

Caso II: 2,4,16    lwm e 655362   mr  

Entrada: 41989,503,31247,18001     nedM e 3845341989mod265536mod2    nrk  

Seguindo os mesmos passos da sistemática de testes do caso I, temos: 

Figura 11 – Simulação (entradas - M, e, n e k) 

Figura 12 – Simulação (resultado - C) 



Figura 13 – Simulação (entradas – C, d, n e k) 

Figura 14 – Simulação (resultado – M) 

Novamente, os resultados confirmam a funcionalidade do coprocessador desenvolvido. 

Resultados da Síntese 

Sendo 32,1024   wm  e 8 l , obtemos os seguintes resultados utilizando o sintetizador XST da 
Xilinx e codificação one-hot: 

 
Total de Registradores: 373 

91 Flip-flops  
1  Registrador de 10 bits 
256  Registradores de 32 bits 
17 Registradores de 34 bits 
2 Registradores de 6 bits 
6 Registradores de 8 bits 
 

Total de Multiplexadores: 165 
1  Multiplexador de 1 bit de 1056-para-1 
164 Multiplexadores 2-para-1 

 
Total de Somadores/Subtratores: 57 

1 subtrator de 10 bits 
17 somadores de 32 bits 
2  subtratores de 33 bits 
34 somadores de 24 bits 
2 somadores de 6 bits 
1 somador de 8 bits 

 
Total de Comparadores: 2 

2 Comparadores de 9 bits (menor igual) 
 



Total de pinos de IO: 20 
 
O dispositivo selecionado foi um Virtex Pro II (2vp100ff1696-6). Abaixo segue um relatório sobre o 
total de recursos utilizados: 
 
Number of Slices  :  12829  out of  44096    (29%) 
Number of Slice Flip Flops :  8977  out of  88192     (10%) 
Number of 4 input LUTs  :  22562  out of  88192     (25%) 
Number of bonded IOBs  :  19  out of   1164      (1% ) 
Number of GCLKs  :  1  out of     16      (6% ) 
 
Freqüência máxima de operação : 99.636MHz 
 
Caminho Crítico: 

mp_block/current_state_FFd4 (FF) -> mp_block/MP0/cs_reg1_33 (FF) 
Tempo: 6.863ns lógica e 3.174ns roteamento (68.4% lógica e 31.6% roteamento) 

Sabendo que a equação do número de ciclos para a cifragem de m bits é dada por: 
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podemos estimar a taxa média de bits cifrados por segundo, o qual pode ser aproximada por: 

sbitsm
mcNpcN
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cifragemT /24

2
#

�
�

 . 

Como m=1024 nos nossos testes, obtivemos uma taxa média de cifragem de 24Kbits/s. 

Interface do Coprocessador RSA 

Para o funcionamento do IP, as seguintes medidas devem ser tomadas’: 

Durante processo de síntese 

- A largura do barramento de dados de entrada deve ser menor ou igual à do barramento de 
dados internos lw t . 

Durante o funcionamento 

- Mensagem a ser cifrada deve ser menor que o módulo n; 

- Módulo n deve permanecer entre o intervalo � �mm 2,2 1� ; 

- Parâmetro k deve ser pré-calculado; 

Abaixo segue uma tabela com os pinos de entrada e saída do coprocessador recém desenvolvido: 

Nome do Pino Tamanho Direção Ativo Descrição 
clk 1 entrada borda de subida Relógio do Sistema 
en_i 1 entrada 1 lógico Habilita dados de entrada 
dat_i L entrada - Dados de entrada (mensagem) 
rdy_o 1 saída 1 lógico Indica dados válidos na saída 
dat_o L saída - Dados de saída (mensagem cifrada) 

Tabela 1 – descrição dos pinos do coprocessador RSA 

 



Conclusão da versão brasileira 
 
 
 

 

 

 

 

 

 

 

O presente trabalho mostrou diversos passos considerados no desenvolvimento de um coprocessador 
RSA. Do aprendizado de um novo assunto até o resultado final, muitas decisões foram tomadas. 

Apesar de existirem soluções mais rápidas, esta implementação garante a segurança dos dados cifrados, 
pois não mantém internamente os fatores primos intermediários para acelerar o seu cálculo (CRT). 
Apresentando apenas uma unidade de cálculo, a arquitetura desenvolvida tem a grande vantagem de 
consumir menos recursos da arquitetura alvo, fato não verdadeiro em arquiteturas RNS. 

Muitas dificuldades foram encontradas no decorrer do caminho: um assunto novo, uma arquitetura 
desafiadora, um algoritmo problemático e ferramentas de desenvolvimento não disponíveis para o 
desenvolvimento. Entretanto, chegamos ao final do tempo de projeto com um IP funcional e 
reutilizável para qualquer tamanho de chave, pelo menos enquanto o RSA existir e for considerado 
seguro. 

Mesmo assim, ainda podemos realizar algumas melhorias no coprocessador. Por exemplo, atualmente 
o IP não suporta que a largura do barramento de dados externo seja maior ou igual do que a largura do 
barramento de dados interno (l >= w). Leituras após a validação do projeto [16], constataram que uma 
melhoria no algoritmo pode levar a taxas de 50 Kb/s, não importando se for o melhor ou o pior caso. 
Esta melhoria aconteceria com a duplicação dos recursos utilizados do dispositivo alvo. Além disso, o 
coprocessador não aceita mensagens maiores que n e menores que r, uma precaução ainda não 
tomada. 

E, finalmente, apesar de existirem soluções mais rápidas, a velocidade de cifragem atingida neste 
trabalho é mais que suficiente para muitas aplicações. Por exemplo, alguém utilizando uma Smart 
Card para autorizar o débito em sua conta bancária, com certeza, não se importaria em esperar cinco 
centésimos de segundo para assinar uma mensagem digitalmente. Em outro exemplo, podemos citar o 
envio de informações telefônicas no início de uma chamada por celular (código do aparelho e número 
do telefone do assinante), onde este tempo gasto não faria a menor diferença para o usuário (e o 
protegeria da clonagem de seu aparelho). 
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Résumé 
Ce travail décrit la conception d'un co-processeur RSA. Les fondements des cryptosystèmes à clef 
publique sont présentés, en montrant leur importance et leurs applications. L'algorithme RSA est 
ensuite présenté et expliqué. Trois architectures différentes utilisées aujourd'hui pour 
l'implémentation matérielle de cet algorithme sont ensuite étudiées et analysées: CRT, RNS et 
l'architecture basée sur un pipeline. Des algorithmes arithmétiques existants sont également détaillés. 
Après l'analyse des avantages et des inconvénients de chaque solution, nous avons décidé 
d'implémenter une architecture pipeline qui calcule l'algorithme de multiplication de Montgomery. 

Le circuit correspondant a été décrit en VHDL et simulé avec ModelSim. Les résultats obtenus ont 
montré que l'architecture développée est entièrement fonctionnelle. Elle peut manipuler  des 
nombres de taille quelconque simplement en choisissant la taille des données du pipeline. 
Finalement, nous pouvons réaliser un taux d'encryptage/décryptage d'environ 25 Kbits/s avec une 
horloge de 80,9 Mhz et des entrées de 1024 bits. 
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Abstract 
This work describes the design of a scalable RSA coprocessor. By introducing the basics of public-key 
cryptosystems we provide a good background in cryptography, showing its importance and 
applications. The RSA algorithm is presented and explained. Three different architectures used today 
are studied and analyzed: CRT, RNS and Pipelined-based architectures. Existing arithmetic 
algorithms are also covered. After realizing advantages and disadvantages of each solution we decided 
to implement a pipelined-based architecture which computes the Montgomery Multiplication 
algorithm. 

By doing this, we coded this architecture in VHDL and simulated it with ModelSim. The results 
obtained proved that the developed architecture is fully functional. It can manipulate any number of 
bits simply by selecting the pipeline word size. Finally, with an 80.9 MHz clock and 1024-bit inputs, 
we can achieve an encryption/decryption rate of about 25 Kb/s. 
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Introduction 
The advent of the Internet has radically changed the way people exchange information. Due to its 
growing popularity, applications like electronic mail, instant messengers, electronic commerce, 
electronic banking, and online shopping are becoming part of our lives. Cell phones services like SMS 
and WAP are growing in their popularity as well. However, all this information is vulnerable to 
eavesdropping. A third party group may tap your information if the system doesn’t provide adequate 
security for users. To avoid this problem, cryptographic algorithms are used when secure 
communication is needed. 

Since ancient times, cryptography has been used mainly for military purposes. Its first use dates back 
to 1900 BC, when a scribe in Egypt used a derivation of the standard hieroglyphic of the day to 
communicate [12]. However, the Roman emperor Julius Caesar is considered to be one of the first 
people to have employed encryption for securing messages [11]. Caesar decided his standard 
algorithm would shift each letter of the Roman alphabet a predetermined number of places.   He 
informed all of his generals of his decision.  By following this example and shifting the contemporary 
English alphabet over 3 places, a message like ZEBRA would be ciphered as CHEUD. Despite of being 
an unbreakable cryptography system at that time, this system can be currently broken in a few 
seconds.  

Today’s cryptography is concerned with more than just encrypting and decrypting messages. When 
we move to an electronic world, authentication and identification schemas are needed. Whenever we 
log on a remote computer to access our bank account, or we shop online using our credit card, we are 
subjected to eavesdropping and possibly forgery.  

By observing this problem, Ronald Rivest, Adi Shamir, and Leonard Adleman developed in 1978 the 
RSA (Rivest, Shamir, Adleman) cryptosystem [4]: a public-key cryptosystem that offers both 
encryption and digital signatures (authentication).  

Public key cryptosystems are not the only ones used in applications. Secret key cryptosystems and 
elliptic curve cryptosystems are largely exploited as well. However, a detailed explanation about these 
last cryptosystems is outside the scope of this work. Only cryptography tools associated to the RSA 
cryptosystem will be discussed. 

It’s not the purpose of this work to write lines of codes or draw pages of logic schematics. The 
purpose of this work is to present the design of a RSA coprocessor and give a theoretical base to the 
reader in the cryptography field. This allows interested parties to understand the project and proceed 
with the work, if necessary. For this reason, the first three sections are reserved to give a good 
background to the reader.  The other sections will be reserved for the project itself, detailed below. 

Section 1 provides a basic introduction to the field of cryptography. It gives a brief explanation about its 
main concepts, some applications where it can be found, and its importance to the electronic world. 

In section 2 public-key cryptosystems are covered. Also, two systems related to public-key 
cryptosystems are introduced: secret-key cryptosystems and hash functions. 

Section 3 approaches the RSA cryptosystem, explaining its algorithm in a very practical way.  

Section 4 introduces some modular exponentiation algorithms used to compute RSA and how they 
can be applied in digital systems. It presents and compares the three most used architectures found in 
the literature today: CRT, RNS and Pipelined based architectures. 

Section 5 specifies our proposed coprocessor organization in a block diagram form and its related 
pinout interface. 

Finally, in section 6 we describe the techniques used to implement some blocks introduced in the 
section 5 and its results.  
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1. A Glance at Cryptography 
This section provides the reader a basic introduction to the field of cryptography. It gives a brief 
explanation about its main concepts, some applications where it can be found, and its importance to 
the electronic world. This chapter was extracted from [1]. 

1.1. Concepts 
Cryptography today might be summed up as the study of techniques and applications that depend on 
the existence of difficult problems. We should also say that it is the science of using mathematics to 
secure information and create a high degree of trust. Cryptanalysis is the study of how to compromise 
(defeat) cryptographic mechanisms, and cryptology (from the Greek kryptos logos, meaning ‘‘hidden 
word’’) is the discipline of cryptography and cryptanalysis combined. To most people, cryptography is 
concerned with keeping communications private. Indeed, the protection of sensitive communications 
has been the emphasis of cryptography throughout much of its history. However, this is only one part 
of today’s cryptography. 

Encryption is the transformation of data into a form that is as close as possible to an understandable 
form of reading without the appropriate knowledge (a key; see below). Its purpose is to ensure 
privacy by keeping information hidden from anyone who it is not allowed, even those who have 
access to the encrypted data. Decryption is the reverse of encryption; it is the transformation of 
encrypted data back into an intelligible form. 

Encryption and decryption generally require the use of some secret information, referred to as a key. 
For some encryption mechanisms, the same key is used for both encryption and decryption; for other 
mechanisms, the key used for encryption and decryption is different. Data to be encrypted is called 
Plaintext. Ciphertext is the encrypted data. 

Today’s cryptography is more than encryption and decryption. Authentication is as fundamental as 
privacy. We use authentication throughout our everyday lives (when we sign our name to some 
document, for instance). As we move to a world where our decisions and agreements are 
communicated electronically, we need to have electronic techniques for providing authentication. 

Cryptography provides mechanisms for such procedures. A digital signature binds a document to the 
possessor of a particular key, while a digital timestamp binds a document to its creation at a particular 
time. These cryptographic mechanisms can be used to control access to a shared disk drive, a high 
security installation, or a pay-per-view TV channel. 

The field of cryptography encompasses other uses as well. With just a few basic cryptographic tools, it 
is possible to build elaborate schemes and protocols that allow us to pay using electronic money, to 
prove we know certain information without revealing the information itself, and to share a secret 
quantity in such a way that a subset of the shares can reconstruct the secret. 

While modern cryptography is growing increasingly diverse, cryptography is fundamentally based on 
problems that are difficult to solve. A problem may be difficult because its solution requires some 
secret knowledge, such as decrypting an encrypted message or signing some digital document 
without the key. The problem may also be hard because it is intrinsically difficult to complete, such 
as finding a message that produces a given hash value (explained in section 3.2.2). 

An encryption system together with a corresponding decryption system is a cryptosystem [2]. Two 
classes of cryptosystems are secret-key and public-key cryptosystems. In secret-key cryptosystems, 
also referred to as symmetric cryptography, the same key is used for both encryption and decryption. 
The most popular secret-key cryptosystem in use today is the Data Encryption Standard, also known 
as DES. 

In public-key cryptosystems, each user has a public key and a private key. The public key is made 
public while the private key remains secret. Encryption is performed with the public key while 
decryption is done with the private key. The RSA public-key cryptosystem is the most popular form 
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of public-key cryptography. RSA stands for Rivest, Shamir, and Adleman, the inventors of the RSA 
cryptosystem. 

The Digital Signature Algorithm (DSA) is also a popular public-key technique, though it can only be 
used only for signatures, not encryption. Elliptic curve cryptosystems (ECCs) are cryptosystems based 
on mathematical objects known as elliptic curves. Elliptic curve cryptography has been gaining in 
popularity recently. Lastly, the Diffie-Hellman key agreement protocol is a popular public-key 
technique for establishing secret keys over an insecure channel. 

1.2. Cryptography Applications 
Privacy is perhaps the most obvious application of cryptography. Cryptography can be used to 
implement privacy simply by encrypting the information intended to remain private. In order for 
someone to read this private data, one must first decrypt it. 

There are a large number of applications in which it is being currently in use. For example, simple 
cryptography systems can be used for secure communication, identification, authentication, and 
secret sharing. However, more complicated applications include systems for electronic commerce, 
certification, secure electronic mail, key recovery, and secure computer access. A better explanation 
of these applications can be read in the next lines below. 

1.2.1. Secure Communication 

Secure communication is the most straightforward use of cryptography. Two people may 
communicate securely by encrypting the messages sent between them. This can be done in such a 
way that a third party eavesdropping may never be able to decipher the messages. While secure 
communication has existed for centuries, the key management1 problem has prevented it from 
becoming commonplace. Thanks to the development of public-key cryptography, it is possible to 
create a large-scale network of people who can communicate securely with one another even if they 
had never communicated before. 

1.2.2. Identification and Authentication 

Identification and authentication are two widely used applications of cryptography. Identification is 
the process of verifying someone’s or something’s identity. For example, when you withdraw some 
money from a bank, a teller asks you to see your identification (a drive’s license, for instance).  By 
doing this, he or she verifies the identity of the owner’s account (your identity). This same process 
can be done electronically by using cryptography. Every automatic teller machine (ATM) card is 
associated with a ‘‘secret’’ personal identification number (PIN), which binds the owner to the card 
and thus to the account. When the card is inserted into the ATM, the machine prompts the 
cardholder for the PIN. If the correct PIN is entered, the machine identifies that person as the 
rightful owner and it grants him access. Another important application of cryptography is 
authentication. Authentication is similar to identification, in that both allow an entity access to 
resources (such as an Internet account), but authentication is broader because it does not necessarily 
involve identifying a person or entity. Authentication merely determines whether that person or 
entity is authorized for whatever is in question. 

1.2.3. Secret Sharing 

Another application of cryptography, called secret sharing, allows the trust of a secret to be 
distributed among a group of people. For example, in a (k, n)-threshold scheme, information about a 
secret is distributed in such a way that k-out of n people (k ≤ n) have enough information to 
determine the secret, but any set of k - 1 people do not. In any secret sharing scheme, there are 
designated sets of people whose cumulative information suffices to determine the secret. In some 

                                                           
1 The various processes that deals with the creation, distribution, authentication, and storage of keys. 
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implementations of secret sharing schemes, each participant receives the secret after it has been 
generated. In other implementations, the actual secret is never made visible to the participants, 
although the purpose for which they sought the secret (for example, access to a building or 
permission to execute a process) is allowed. 

1.2.4. Electronic Commerce 

Over the past few years there has been a growing amount of business conducted over the Internet. 
This form of business is called electronic commerce or e-commerce. E-commerce is comprised of 
online banking, online brokerage accounts, and Internet shopping, to name a few of the many 
applications. One can book plane tickets, make hotel reservations, rent a car, transfer money from 
one account to another, buy compact disks (CDs), clothes, books and so on all while sitting in front of 
a computer. However, simply entering a credit card number on the Internet leaves one open to fraud. 
One cryptographic solution to this problem is to encrypt the credit card number (or other private 
information) when it is entered online, another is to secure the entire session. When a computer 
encrypts this information and sends it out on the Internet, it is incomprehensible to a third party 
viewer. The web server (‘‘Internet shopping center’’) receives the encrypted information, decrypts it, 
and proceeds with the sale without fear that the credit card number (or other personal information) 
slipped into wrong hands. As more and more business is conducted over the Internet, the need for 
protection against fraud, theft, and corruption of vital information increases. 

1.2.5. Certification 

Another application of cryptography is certification. Certification is a scheme by which trusted 
agents such as certifying authorities vouch for unknown agents, such as users. The trusted agents 
issue vouchers called certificates which each have some inherent meaning. Certification technology 
was developed to make identification and authentication possible on a large scale. 

1.2.6. Key Recovery 

Key recovery is a technology that allows a key to be revealed under certain circumstances without 
the owner of the key revealing it. This is useful for two main reasons: first of all, if a user loses or 
accidentally deletes his or her key, key recovery could prevent a disaster. Secondly, if a law 
enforcement agency wishes to eavesdrop on a suspected criminal without the suspect’s knowledge 
(akin to a wiretapping) the agency must be able to recover the key. Key recovery techniques are in 
use in some instances. However, the use of key recovery as a law enforcement technique is somewhat 
controversial. 

1.2.7. Remote Access 

Secure remote access is another important application of cryptography. The basic system of passwords 
certainly gives a level of security for secure access, but it may not be enough in some cases. For 
instance, passwords can be eavesdropped, forgotten, stolen, or guessed. Many products supply 
cryptographic methods for remote access with a higher degree of security. 

1.2.8. Other Applications 

Cryptography is not confined to the world of computers. Cryptography is also used in cellular 
(mobile) phones as a means of authentication, that is, it can be used to verify that a particular phone 
has the right to bill to a particular phone number. This prevents people from stealing (‘‘cloning’’) 
cellular phone numbers and access codes. Another application is to protect phone calls from 
eavesdropping using voice encryption. 

1.3. Importance of Cryptography 
Cryptography allows people to transfer to an account the confidence found in the physical world to 
the electronic world, thus allowing people to do business electronically without worries of deceit and 
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deception. Every day hundreds of thousands of people interact electronically, whether it is through 
e-mail, e-commerce, ATM machines, or cellular phones. The constant increase of information 
transmitted electronically has lead to an increased reliance on cryptography. 

1.3.1. Cryptography on the Internet 

The Internet, comprised of millions of interconnected computers, allows nearly instantaneous 
communication and transfer of information, around the world. People use e-mail to correspond with 
one another. The World Wide Web is used for online business, data distribution, marketing, 
research, learning, and a myriad of other activities. 

Cryptography makes secure web sites and electronic safe transmissions possible. For a web site to be 
secure all of the data transmitted between the computers where the data is kept and where it is 
received must be encrypted. This allows people to do online banking, online trading, and make 
online purchases with their credit cards, without worrying that any of their account information is 
being compromised. Cryptography is very important to the continued growth of the Internet and 
electronic commerce. 

E-commerce is increasing at a very rapid rate. By the turn of the century, commercial transactions on 
the Internet are expected to total hundreds of billions of dollars a year. This level of activity could not 
be supported without cryptographic security. It has been said that one is safer using a credit card over 
the Internet than within a store or restaurant. It requires much more work to capture credit card 
numbers over computer networks than it does to simply walk by a table in a restaurant and take a 
credit card receipt. These levels of security, though not yet widely used, give the means to strengthen 
the foundation with which e-commerce can grow. 

People use e-mail to conduct personal and business matters on a daily basis. E-mail has no physical 
form and may exist electronically in more than one place at a time. This poses a potential problem as 
it increases the opportunity for an eavesdropper to catch the transmission. Encryption protects e-mail 
by rendering it very difficult to read by any unintended party. Digital signatures can also be used to 
authenticate the origin and the content of an e-mail message. 

1.3.2. Authentication 

In some cases cryptography allows you to have more confidence in your electronic transactions than 
you do in real life transactions. For example, signing documents in real life still leaves one vulnerable 
to the following scenario. After signing your will, agreeing to what is put forth in the document, 
someone can change that document and your signature is still attached. In the electronic world this 
type of falsification is much more difficult because digital signatures are built using the contents of 
the document being signed. 

1.3.3. Access Control 

Cryptography is also used to regulate access to satellite and cable TV. Cable TV is set up so people can 
watch only the channels they pay for. Since there is a direct line from the cable company to each 
individual subscriber’s home, the Cable Company will only send those channels that are paid for. 
Many companies offer pay-per-view channels to their subscribers. Pay-per-view cable allows cable 
subscribers to ‘‘rent’’ a movie directly through the cable box. What the cable box does is decode the 
incoming movie, but not until the movie has been ‘‘rented.’’ If a person wants to watch a pay-per-
view movie, he/she calls the cable company and requests it. In return, the Cable Company sends out a 
signal to the subscriber’s cable box, which unscrambles (decrypts) the requested movie. 

Satellite TV works slightly differently since the satellite TV companies do not have a direct 
connection to each individual subscriber’s home. This means that anyone with a satellite dish can 
pick up the signals. To alleviate the problem of people getting free TV, they use cryptography. The 
trick is to allow only those who have paid for their service to unscramble the transmission; this is 
done with receivers (‘‘unscramblers’’). Each subscriber is given a receiver; the satellite transmits 
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signals that can only be unscrambled by such a receiver. Pay-per-view works in essentially the same 
way as it does for regular cable TV. 

As seen, cryptography is widely used. Not only is it used over the Internet, but also it is used in 
phones, televisions, and a variety of other common household items. Without cryptography, hackers 
could get into our e-mail, listen in on our phone conversations, tap into our cable companies and 
acquire free cable service, or break into our bank accounts. 
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2. Understanding Public-key Cryptosystems 
This section gives more details about public-key cryptosystems, providing more information about 
the concepts involved in cryptography. Two systems related to public-key cryptosystems are 
introduced; secret-key cryptosystems and hash functions. These systems are introduced because they 
can be found in many applications using public-key cryptosystems (section 3.4). Also, a comparison 
between secret-key cryptosystems and public-key cryptosystem is written. 

This chapter was extracted from [1]. 

2.1. Public-key Cryptosystems 
In traditional cryptography, the sender and receiver of a message know and use the same secret key. 
The sender uses the secret key to encrypt the message, and the receiver uses the same secret key to 
decrypt the message. This method is known as secret key or symmetric cryptography. The main 
challenge is getting the sender and receiver to agree on the secret key without anyone else finding 
out. If they are in separate physical locations, they must trust a courier, a phone system, or some 
other transmission medium to prevent the disclosure of the secret key. Anyone who overhears or 
intercepts the key in transit can later read, modify, and forge all messages encrypted or authenticated 
using that key. The generation, transmission and storage of keys is called key management. All 
cryptosystems must deal with key management issues. Because all keys in a secret-key cryptosystem 
must remain secret, secret-key cryptography often has difficulty providing secure key management, 
especially in open systems with a large number of users. 

In order to solve the key management problem, Whitfield Diffie and Martin Hellman introduced the 
concept of public-key cryptosystems in 1976 [3]. Public-key cryptosystems have two primary uses, 
encryption and digital signatures. In their system, each person gets a pair of keys, one called the 
public key and the other called the private key. The public key is published, while the private key is 
kept secret. The need for the sender and receiver to share secret information is eliminated: all 
communications involve only public keys, and no private key is ever transmitted or shared. In this 
system, it is no longer necessary to trust the security of some means of communications. The only 
requirement is that public keys be associated with their users in a trusted (authenticated) manner (for 
instance, in a trusted directory). Anyone can send a confidential message by just using public 
information, but the message can only be decrypted with a private key, which is in the sole 
possession of the intended recipient. Furthermore, public-key cryptography can be used not only for 
privacy (encryption), but also for authentication (digital signatures) and other various techniques. 

In a public-key cryptosystem, the private key is always linked mathematically to the public key. 
Therefore, it is always possible to attack a public-key system by deriving the private key from the 
public key. Typically, the defense against this is to make the problem of deriving the private key from 
the public key as difficult as possible. For instance, some public-key cryptosystems are designed such 
that deriving the private key from the public key requires the attacker to factor a large number, in 
such a way that it is computationally infeasible to perform the derivation. This is the idea behind the 
RSA public-key cryptosystem. 

2.1.1. Encryption 

When Alice wishes to send a secret message to Bob, she looks up Bob’s public key in a directory, uses 
it to encrypt the message and sends it off. Bob then uses his private key to decrypt the message and 
read it. No one listening in can decrypt the message. Anyone can send an encrypted message to Bob, 
but only Bob can read it (because only Bob knows Bob’s private key). 

2.1.2. Digital Signatures  

To sign a message, Alice does a computation involving both her private key and the message itself. 
The output is called a digital signature and is attached to the message. To verify the signature, Bob 
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does a computation involving the message, the purported signature, and Alice’s public key. If the 
result is correct according to a simple, prescribed mathematical relation, the signature is verified to be 
genuine; otherwise, the signature is fraudulent, or the message may have been altered. 

2.2. Systems related to Public-key Cryptosystems 

2.2.1. Secret-key Cryptosystem 

Secret-key cryptosystems is sometimes referred to as symmetric cryptography. It is the more 
traditional form of cryptography, in which a single key can be used to encrypt and decrypt a message. 
Secret-key cryptography not only deals with encryption, but it also deals with authentication. One 
such technique is called message authentication codes.  

The main problem with secret-key cryptosystems is getting the sender and receiver to agree on the 
secret key without anyone else finding out. This requires a method by which the two parties can 
communicate without fear of eavesdropping. 

Public-key cryptography has come to overcome this deficiency of secret-key cryptosystems by 
establishing secure means for sending keys in a trusted way. Public-key cryptography is not meant to 
replace secret-key cryptography, but rather to supplement it, to make it more secure (see key 
agreement protocol, 3.4.2). Secret-key cryptography remains extremely important and is the subject 
of much ongoing study and research. 

2.2.2. Hash functions 

A hash function H is a transformation that takes an input m and returns a fixed-size string, which is 
called the hash value h (that is, h = H(m)). Hash functions with just this property have a variety of 
general computational uses, but when employed in cryptography, the hash functions are usually 
chosen to have some additional properties. 

The basic requirements for a cryptographic hash function are as follows. 

x The input can be of any length. 

x The output has a fixed length. 

x H(x) is relatively easy to compute for any given x. 

x H(x) is one-way. 

x H(x) is collision-free. 

A hash function H is said to be one-way if it is hard to invert, where ‘‘hard to invert’’ means that 
given a hash value h, it is computationally infeasible to find some input x such that H(x) = h. If, given 
a message x, it is computationally infeasible to find a message y not equal to x such that H(x) = H(y), 
then H is said to be a weakly collision-free hash function. A strongly collision-free hash function H is 
one for which it is computationally infeasible to find any two messages x and y such that H(x) = H(y). 

The hash value represents concisely the longer message or document from which it was computed; 
this value is called the message digest. One can think of a message digest as a ‘‘digital fingerprint’’ of 
the larger document. Examples of well known hash functions are MD2 and MD5 and SHA. 

Perhaps the main role of a cryptographic hash function is in the provision of message integrity checks 
and digital signatures. Since hash functions are generally faster than encryption or digital signature 
algorithms, it is typical to compute the digital signature or integrity check to some document by 
applying cryptographic processing to the document’s hash value, which is small compared to the 
document itself. Additionally, a digest can be made public without revealing the contents of the 
document from which it is derived. 

Note that sometimes information is not supposed to be accessed by anyone, and in these cases, the 
information may be stored in such a way that reversing the process is virtually impossible. For 
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instance, on a typical multi-user system, no one is supposed to know the list of passwords of everyone 
on the system. Often hash values of passwords are stored instead of the passwords themselves. This 
allows the users of the system to be confident their private information is actually kept private while 
still enabling an entered password to be verified (by computing its hash and comparing that result 
against a stored hash value). This scheme is applied in the widely used operating system UNIX [2] 

2.3. Advantages and disadvantages of public-key cryptosystems 
The primary advantage of public-key cryptography is increased security and convenience: private 
keys never need to be transmitted or revealed to anyone. In a secret-key system, by contrast, the 
secret keys must be transmitted (either manually or through a communication channel) since the 
same key is used for encryption and decryption. A serious concern is that there may be a chance that 
an enemy can discover the secret key during transmission. 

Another major advantage of public-key systems is that they can provide digital signatures that cannot 
be repudiated. Authentication via secret-key systems requires the sharing of some secret and 
sometimes requires trust of a third party as well. As a result, a sender can repudiate a previously 
authenticated message by claiming the shared secret was somehow compromised by one of the 
parties sharing the secret. For example, there are secret-key authentication systems involving a 
central database that keeps copies of the secret keys of all users; an attack on the database would 
allow widespread forgery. Public-key authentication, on the other hand, prevents this type of 
repudiation; each user has sole responsibility for protecting his or her private key. This property of 
public-key authentication is often called non-repudiation. 

A disadvantage of using public-key cryptography for encryption is speed. There are many secret-key 
encryption methods that are significantly faster than any currently available public-key encryption 
method. Nevertheless, public-key cryptography can be used with secret-key cryptography to get the 
best of both worlds. For encryption, the best solution is to combine public- and secret-key systems in 
order to get both the security advantages of public-key systems and the speed advantages of secret-
key systems. Such a protocol is called a digital envelope (section 3.4.3). 

Public-key cryptography may be vulnerable to impersonation, even if users’ private keys are not 
available. A successful attack on a certification authority will allow an adversary to impersonate 
whomever he or she chooses by using a public-key certificate from the compromised authority to 
bind a key of the adversary’s choice to the name of another user. 

In some situations, public-key cryptography is not necessary and secret-key cryptography alone is 
sufficient. These include environments where secure secret key distribution can take place, for 
example, by users meeting in private. It also includes environments where a single authority knows 
and manages all the keys, for example, a closed banking system. Since the authority knows everyone’s 
keys already, there is not much advantage for some to be ‘‘public’’ and others to be ‘‘private.’’ Note, 
however, that such a system may become impractical if the number of users becomes large; there are 
not necessarily any such limitations in a public-key system. 

Public-key cryptography is usually not necessary in a single-user environment. For example, if you 
want to keep your personal files encrypted, you can do so with any secret key encryption algorithm 
using, say, your personal password as the secret key. In general, public-key cryptography is best 
suited for an open multi-user environment. 

2.4. Some applications liked to Public-key Cryptosystems 

2.4.1. Authentication and Digital Signature 

Authentication is any process through which one proves and verifies certain information. Sometimes 
one may want to verify the origin of a document, the identity of the sender, the time and date a 
document was sent and/or signed, the identity of a computer or user, and so on. A digital signature is 
a cryptographic means through which many of these may be verified. The digital signature of a 
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document is a piece of information based on both the document and the signer’s private key. It is 
typically created through the use of a hash function and a private signing function (encrypting with 
the signer’s private key), but there are other methods. 

Every day, people sign their names to letters, credit card receipts, and other documents, 
demonstrating they are in agreement with the contents. That is, they authenticate that they are in 
fact the sender or originator of the item. This allows others to verify that a particular message did 
indeed originate from the signer. However, this is not foolproof, since people can ’lift’ signatures off 
one document and place them on another, thereby creating fraudulent documents. Written 
signatures are also vulnerable to forgery because it is possible to reproduce a signature on other 
documents as well as to alter documents after they have been signed. 

Digital signatures and hand-written signatures both rely on the fact that it is very hard to find two 
people with the same signature. People use public-key cryptography to compute digital signatures by 
associating something unique with each person. When public-key cryptography is used to encrypt a 
message, the sender encrypts the message with the public key of the intended recipient. When 
public-key cryptography is used to calculate a digital signature, the sender encrypts the ‘‘digital 
fingerprint’’ of the document with his or her own private key. Anyone with access to the public key 
of the signer may verify the signature. 

Suppose Alice wants to send a signed document or message to Bob. The first step is generally to apply 
a hash function to the message, creating what is called a message digest. The message digest is usually 
considerably shorter than the original message. In fact, the job of the hash function is to take a 
message of arbitrary length and shrink it down to a fixed length. To create a digital signature, one 
usually signs (encrypts) the message digest as opposed to the message itself. This saves a considerable 
amount of time, though it does create a slight insecurity (addressed below). Alice sends Bob the 
encrypted message digest and the message, which she may or may not encrypt. In order for Bob to 
authenticate the signature he must apply the same hash function as Alice to the message she sent 
him, decrypt the encrypted message digest using Alice’s public key and compare the two. If the two 
are the same he has successfully authenticated the signature. If the two do not match there are a few 
possible explanations. Either someone is trying to impersonate Alice, the message itself has been 
altered since Alice signed it or an error occurred during transmission. 

There is a potential problem with this type of digital signature. Alice not only signed the message she 
intended to but also signed all other messages that happen to hash to the same message digest. When 
two messages hash to the same message digest it is called a collision; the collision-free properties of 
hash functions are a necessary security requirement for most digital signature schemes. A hash 
function is secure if it is very time consuming to figure out the original message given its digest. 
However, there is an attack called the birthday attack that relies on the fact that it is easier to find 
two messages that hash to the same value than to find a message that hashes to a particular value. Its 
name arises from the fact that for a group of 23 or more people the probability that two or more 
people share the same birthday is better than 50%. 

In addition, someone could pretend to be Alice and sign documents with a key pair he claims is 
Alice’s. To avoid scenarios such as this, there are digital documents called certificates that associate a 
person with a specific public key. 

Digital timestamps may be used in connection with digital signatures to bind a document to a 
particular time of origin. It is not sufficient to just note the date in the message, since dates on 
computers can be easily manipulated. It is better that timestamping is done by someone everyone 
trusts, such as a certifying authority. There have been proposals suggesting the inclusion of some 
unpredictable information in the message such as the exact closing share price of a number of stocks; 
this information should prove that the message was created after a certain point in time. 
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2.4.2. Key agreement protocol 

A key agreement protocol, also called a key exchange protocol, is a series of steps used when two or 
more parties need to agree upon a key to use for a secret-key cryptosystem. These protocols allow 
people to share keys freely and securely over any insecure medium, without the need for a 
previously-established shared secret. 

Suppose Alice and Bob want to use a secret-key cryptosystem to communicate securely. They first 
must decide on a shared key. Instead of Bob calling Alice on the phone and discussing what the key 
will do, which would leave them vulnerable to an eavesdropper; they decide to use a key agreement 
protocol. By using a key agreement protocol, Alice and Bob may securely exchange a key in an 
insecure environment. One example of such a protocol is called the Diffie-Hellman key agreement. 
In many cases, public-key cryptography is used in a key agreement protocol. Another example is the 
use of digital envelopes for key agreement. 

2.4.3. Digital Envelope 

When we are using secret-key cryptosystems, users must first agree on a session key, that is, a secret 
key to be used for the duration of one message or communication session. In completing this task 
there is a risk the key will be intercepted during transmission. This is part of the key management 
problem. Public-key cryptosystems offers an attractive solution to this problem within a framework 
called a digital envelope. 

The digital envelope consists of a message encrypted using secret-key cryptography and an encrypted 
secret key. While digital envelopes usually use public-key cryptography to encrypt the secret key, 
this is not necessary. If Alice and Bob have an established secret key, they could use this to encrypt 
the secret key in the digital envelope. 

Suppose Alice wants to send a message to Bob using secret-key cryptography for message encryption 
and public-key cryptography to transfer the message encryption key. Alice chooses a secret key and 
encrypts the message with it, then encrypts the secret key using Bob’s public key. She sends Bob both 
the encrypted secret key and the encrypted message. When Bob wants to read the message he 
decrypts the secret key, using his private key, and then decrypts the message, using the secret key. In 
a multi-addressed communications environment such as e-mail, this can be extended directly and 
usefully. If Alice’s message is intended for both Bob and Carol, the message encryption key can be 
represented concisely in encrypted forms for Bob and for Carol, along with a single copy of the 
message’s content encrypted under that message encryption key. 

Alice and Bob may use this key to encrypt just one message or they may use it for an extended 
communication. One of the nice features about this technique is they may switch secret keys as 
frequently as they would like. Switching keys often is beneficial because it is more difficult for an 
adversary to find a key that is only used for a short period of time. 

Not only do digital envelopes help solve the key management problem; they increase performance 
(relative to using a public-key system for direct encryption of message data) without sacrificing 
security. The increase in performance is obtained by using a secret-key cryptosystem to encrypt the 
large and variably sized amount of message data, reserving public-key cryptography for encryption of 
short-length keys. In general, secret-key cryptosystems are much faster than public-key 
cryptosystems. 

The digital envelope technique is a method of key exchange, but not all key exchange protocols use 
digital envelopes. 

2.4.4. Identification 

Identification is a process through which one ascertains the identity of another person or entity. In 
our daily lives, we identify our family members, friends, and coworkers by their physical properties, 
such as voice, face or other characteristics. These characteristics, called biometrics, can only be used 
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on computer networks with special hardware. Entities on a network may also identify one another 
using cryptographic methods. 

An identification scheme allows Alice to identify herself to Bob in such a way that someone listening 
in cannot pose as Alice later. One example of an identification scheme is a zero-knowledge proof. 
Zero knowledge proofs allow a person (or a server, web site, etc.) to demonstrate they have certain 
piece of information without giving it away to the person (or entity) they are convincing. Suppose 
Alice knows how to solve the Rubik’s cube and wants to convince Bob she can without giving away 
the solution. They could proceed as follows. Alice gives Bob a Rubik’s cube which he thoroughly 
messes up and then gives back to Alice. Alice turns away from Bob, solves the puzzle and hands it 
back to Bob. This works because Bob saw that Alice solved the puzzle, but he did not see the solution. 

This idea may be adapted to an identification scheme if each person involved is given a ‘‘puzzle’’ and 
its answer. The security of the system relies on the difficulty of solving the puzzles. In the case above, 
if Alice were the only person who could solve a Rubik’s cube, then that could be her puzzle. In this 
scenario Bob is the verifier and is identifying Alice, the prover. 

The idea is to associate with each person something unique; something only that person can 
reproduce. This in effect takes the place of a face or a voice, which are unique factors allowing people 
to identify one another in the physical world. 

Authentication and identification are different. Identification requires that the verifier check the 
information presented against all the entities it knows about, while authentication requires that the 
information be checked for a single, previously identified, entity. In addition, while identification 
must, by definition, uniquely identify a given entity, authentication does not necessarily require 
uniqueness. For instance, someone logging into a shared account is not uniquely identified, but by 
knowing the shared password, they are authenticated as one of the users of the account. Furthermore, 
identification does not necessarily authenticate the user for a particular purpose. 
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3. The RSA Cryptosystem 
The present section approaches the RSA cryptosystem, explaining its algorithm in a very practical 
way. It also covers its main characteristics like its speed compared to other secret-key cryptosystems, 
its strength against attacks, and its security closely related to the key sizes. At the end of this section, 
we have solved a very simple example using the RSA algorithm. The contents of sections 3.1 to 3.4 
were estracted from [1, 4-5, 8-10]. 

3.1. The RSA algorithm 
The RSA cryptosystem is a public-key cryptosystem that offers both encryption and digital signatures 
(authentication). Ronald Rivest, Adi Shamir, and Leonard Adleman developed the RSA system in 
1978; RSA stands for the first letter in each of its inventors’ last names. 

The RSA algorithm works as described below: 

First, compute n, where 

(3.1.1) 

and p and q should be two large prime numbers chosen randomly. The number n is called modulus. 

Then, pick up an integer d to be a large, random integer which is relatively prime to (p–1)(q–1). That 
is, check that d satisfies: 

(3.1.2) 

Here, gcd means “greatest common divisor”. Finally, compute another number e from p, q, and d to 
be the multiplicative inverse of d modulo (p-1).(q-1). Thus we have 

(3.1.3) 

The encryption key is thus the pair of positive integers (e, n). Similarly, the decryption key is the pair 
of positive integers (d, n). Each user makes his encryption key public, and keeps the corresponding 
decryption key private (these integers should properly be subscripted as in nA, eA, and dA, since each 
user has his own set). 

Now, to encrypt a message M using a public encryption key (e, n), proceed as follows: 

Represent the message as an integer between 0 and n – 1. If necessary, break a long message into a 
series of blocks, and represent each block as such an integer. The purpose here is not to encrypt the 
message but only to get it into the numeric form necessary for encryption. 

Then, encrypt the message by raising it to the eth power modulo n. That is, the result (the ciphertext 
C) is the remainder when Me is divided by n. 

To decrypt the ciphertext, raise it to another power d, again modulo n. The encryption and 
decryption algorithms E and D are thus: 

(3.1.4) 

for a message M. 

(3.1.5) 

for a ciphertext C. 

Note that encryption does not increase the size of a message. Both the message M and the ciphertext 
C are integers in the range 0 to n-1. 

3.1.1. Encryption 

Suppose Alice wants to send a message M to Bob. Alice creates the ciphertext C by exponentiating C 
= Me mod n, where e and n are Bob’s public key. She sends C to Bob. To decrypt, Bob also 
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exponentiates: M = Cd mod n; the relationship between e and d ensures that Bob correctly recovers 
M. Since only Bob knows d, only Bob can decrypt this message. 

3.1.2. Digital Signature 

Suppose Alice wants to send a message M to Bob in such a way that Bob is assured the message is 
both authentic, has not been tampered with, and from Alice. Alice creates a digital signature S by 
exponentiating: S = Md mod n, where d and n are Alice’s private key. She sends M and S to Bob. To 
verify the signature, Bob exponentiates and checks that the message M is recovered: M = Se mod n, 
where e and n are Alice’s public key. 

Thus encryption and authentication take place without any sharing of private keys: each person uses 
only another’s public key or their own private key. Anyone can send an encrypted message or verify 
a signed message, but only someone in possession of the correct private key can decrypt or sign a 
message. 

For interested readers, a formal proof and explanation of the RSA algorithm can be found in [4]. 

3.2. RSA Speed 
An “RSA operation”, whether encrypting, decrypting, signing, or verifying is essentially a modular 
exponentiation. This computation is performed by a series of modular multiplications. 

In practical applications, it is common to choose a small public exponent for the public-key. In fact, 
entire groups of users can use the same public exponent, each with a different modulus (there are 
some restrictions on the prime factors of the modulus when the public exponent is fixed). This makes 
encryption faster than decryption and verification faster than signing. With the typical modular 
exponentiation algorithms used to implement the RSA algorithm, public-key operations take O(k2) 
steps, private-key operations take O(k3) steps, and key generation takes O(k4) steps, where k is the 
number of bits in the modulus. “Fast multiplication” techniques, such as methods based on the Fast 
Fourier Transform (FFT), require asymptotically fewer steps. In practice, however, they are not as 
common due to their greater software complexity and the fact that they may actually be slower for 
typical key sizes. 

By comparison, DES and other private-key cryptosystems are much faster than the RSA algorithm. 
DES is generally at least 100 times faster in software and between 1,000 and 10,000 times faster in 
hardware than RSA, depending on the implementation. Implementations of the RSA algorithm will 
probably narrow the gap a bit in coming years, due to high demand, but private-key cryptosystems 
will get faster as well. 

3.3. RSA Robustness 
There are a few possible interpretations of “breaking” the RSA system. The most damaging would be 
for an attacker to discover the private key corresponding to a given public key; this would enable the 
attacker both to read all messages encrypted with the public key and to forge signatures. The obvious 
way to do this attack is to factor the public modulus, n, into its two prime factors, p and q. From p, q, 
and e, the public exponent, the attacker can easily get d, the private exponent. The hard part is 
factoring n; the security of RSA depends on factoring being difficult. In fact, the task of recovering 
the private key is equivalent to the task of factoring the modulus: you can use d to factor n, as well as 
use the factorization of n to find d. 

It is not necessarily true that a large number is more difficult to factor than a smaller number. For 
example, the number 101000 is easier to factor than the RSA-155. To keep abreast of the state of art in 
factoring, RSA Security [13] administers with quarterly cash awards a challenge called RSA Factoring 
Challenge, where the most important result thus far was the factorization of the RSA-155 (a number 
with 155 digits). Its factorization was completed in August 1999, after seven months, by a group 
performing the necessary computations on 300 workstations and PCs. The factorization of this 512-
bit number is crucial as 512 is the default key size used for the major part of the e-commerce on 
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Internet. The result indicates that a well-organized group of users using distributed systems might be 
able to break a 512-bit key in just a couple of days. 

As a curiosity, we mention that the RSA-155 factorization is 

1094173864157052742180970732204035761200373294544920599091384213147634998428893478471
7997257891267332497625752899781833797076537244027146743531593354333897 

= 

102639592829741105772054196573991675900716567808038066803341933521790711307779 

* 

106603488380168454820927220360012878679207958575989291522270608237193062808643. 

For more information about the RSA Factoring challenge, see [9]. 

What is true in general is that a number with large prime factors is more difficult to factor than a 
number with small prime factors (still, the running time of some factoring algorithms depends on the 
size of the number only and not on the size of its prime factors). This is why the size of the modulus 
in the RSA algorithm determines how secure an actual use of the RSA cryptosystem is. Namely, an 
RSA modulus is the product of two large primes; with a larger modulus, the primes become larger and 
hence an attacker needs more time to factor it. Yet, remember that a number with large prime factors 
might possess certain properties making it easy to factor. For example, this is the case if the prime 
factors are very close to each other (see next section). 

It has not been proven that factoring must be difficult, and there remains a possibility that a quick 
and easy factoring method might be discovered, though factoring researchers consider this possibility 
remote. 

Another way to break the RSA cryptosystem is to find a technique to compute eth roots mod n. Since 
C = Me mod n, the eth root of C mod n is the message M. This attack would allow someone to recover 
encrypted messages and forge signatures even without knowing the private key. This attack is not 
known to be equivalent to factoring. No general methods are currently known that attempt to break 
the RSA system in this way. However, in special cases where multiple related messages are encrypted 
with the same small exponent, it may be possible to recover the messages. 

The attacks just mentioned are the only ways to break the RSA cryptosystem in such a way as to be 
able to recover all messages encrypted under a given key. There are other methods, however, that 
aim to recover single messages; success would not enable the attacker to recover other messages 
encrypted with the same key. Some people have also studied whether part of the message can be 
recovered from an encrypted message. 

It should also be noted that hardware improvements alone will not weaken the RSA cryptosystem, as 
long as appropriate key lengths are used. In fact, hardware improvements should increase the security 
of the cryptosystem. 

Of course, there are also attacks that aim not at the cryptosystem itself but at a given insecure 
implementation of the system; these do not count as ‘‘breaking’’ the RSA system, because it is not any 
weakness in the RSA algorithm that is exploited, but rather a weakness in a specific implementation. 
For example, if someone stores a private key insecurely, an attacker may discover it. One cannot 
emphasize strongly enough that to be truly secure, the RSA cryptosystem requires a secure 
implementation; mathematical security measures, such as choosing a long key size, are not enough. In 
practice, most successful attacks will likely be aimed at insecure implementations and at the key 
management stages of an RSA system. 

3.4. Key sizes 
The size of a key in the RSA algorithm typically refers to the size of the modulus n. The two primes, 
p and q, which compose the modulus, should be of roughly equal length; this makes the modulus 
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harder to factor than if one of the primes is much smaller than the other. If one chooses to use a 768-
bit modulus, the primes should each have length approximately 384 bits. If the two primes are 
extremely close or their difference is close to any predetermined amount, then there is a potential 
security risk, but the probability that two randomly chosen primes are so close is negligible. 

The best size for a modulus depends on one’s security needs. The larger the modulus, the greater the 
security, but also, the slower the RSA algorithm operations. One should choose a modulus length 
upon consideration, first, of the value of the protected data and how long it needs to be protected, 
and, second, of how powerful one’s potential threats might be. 

As showed in the section 4.3, 512-bit RSA keys may be factored for less than $1,000,000 in cost and 
eight months of effort. This means that 512-bit keys no longer provide sufficient security for 
anything more than very short-term security needs. 

Currently, it is recommended key sizes of 1024 bits for corporate use and 2048 bits for extremely 
valuable keys like the root key pair used by a certifying authority. 

Several recent standards specify a 1024-bit minimum for corporate use. Less valuable information 
may well be encrypted using a 768-bit key, as such a key is still beyond the reach of all known key 
breaking algorithms. 

It is typical to ensure that the key of an individual user expires after a certain time, say, two years. 
This gives an opportunity to change keys regularly and to maintain a given level of security. Upon 
expiration, the user should generate a new key being sure to ascertain whether any changes in 
cryptanalytic skills make a move to longer key lengths appropriate. Of course, changing a key does 
not defend against attacks that attempt to recover messages encrypted with an old key, so key size 
should always be chosen according to the expected lifetime of the data. The opportunity to change 
keys allows one to adapt to new key size recommendations. RSA Laboratories [8] publishes 
recommended key lengths on a regular basis. 

Users should keep in mind that the estimated times to break the RSA system are averages only. A 
large factoring effort, attacking many thousands of moduli, may succeed in factoring at least one in a 
reasonable time. Although the security of any individual key is still strong, with some factoring 
methods there is always a small chance the attacker may get lucky and factor some key quickly. 

As for the slowdown caused by increasing the key size, doubling the modulus length will, on average, 
increase the time required for public key operations (encryption and signature verification) by a 
factor of four, and increase the time taken by private key operations (decryption and signing) by a 
factor of eight. The reason public key operations are affected less than private key operations is that 
the public exponent can remain fixed while the modulus is increased, whereas the length of the 
private exponent increases proportionally. Key generation time would increase by a factor of 16 upon 
doubling the modulus, but this is a relatively infrequent operation for most users. 

It should be noted that the key sizes for the RSA system (and other public-key techniques) are much 
larger than those for secret-key cryptosystems like DES, but the security of an RSA key cannot be 
compared to the security of a key in another system purely in terms of length. 

3.5. A Simple Example 
After providing the reader with the basis of the RSA algorithm, let’s try a little example. Initially, we 
should generate two random prime numbers required by the algorithm. Let p = 2 and q = 5. Though 
these numbers are not used in practical applications, they serve as a good example. 

From equation 4.1.1, we have, 

 

To compute the private key, we should apply equation 4.1.2, as showed below: 
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As may be seen, we chose d = 7. We could have chosen d = 3, d = 5, d = 9 and so on. However, 
remember that d is an exponent and if we pick a big number we will deal with large computations. 
Here, our goal is to show an example that can be performed using just paper and a pencil. 

Our next step is to find the public key. This can be accomplished by solving equation 4.1.3. Then, we 
have  

 

Finally, we possess both keys: the private one (7, 10) and the public one (3, 10). For encrypting a 
message, for instance, M=3, we proceed as described bellow. 

By taking equation (4.1.4), we have, 

 

Hence, our enciphered message C is 

 

Now, to decrypt C, we apply, 

 

Then, resulting in 

 

Note that despite handling small key sizes and short messages we have reached results of the same 
order of magnitude as 106 (77 = 823543)! This example has clearly demonstrated that the RSA 
algorithm needs too much computation for encrypting/decrypting. Also, the public key was made 
smaller than the private one. This reason is obvious: it makes encryption faster than decryption and 
verification faster than signing. A better explanation can be found in section 4.2. 

We didn’t choose p and q by chance. As a matter of fact, the product pq gave us as a result the 
modulus n=10. There is no doubt that modulo10 operations are much easier to solve than any other 
modulo operation. You should just take the least significant number of an integer to solve its modulo 
(823543 mod 10 = 3). Of course, we still have modulo 1 and modulo 2 operations, but I couldn’t create 
any practical examples with these operations. 

You should also have perceived that p and q are picked randomly. But truly random numbers are 
difficult to come by software. This poses a challenge for software developers implementing 
cryptography as computers are logical and deterministics. For this reason, computer-generated 
random numbers are sometimes called pseudorandom numbers. As an example we can refer to the 
linear congruence method and the elementary cellular automaton method [5].  

.3)4(mod17))15()12(mod(17))1()1(mod(1  �{�����{�����{ eeeqped

).10(mod3)(mod)( 3{�{{ CnMMEC e

),10(mod7)(mod)( 7�{{ nCCDM d

.7 C

.3 M



 

 

 
28 



 

 

 
29 

4. Design Methods 
This section introduces some modular exponentiation algorithms used to compute RSA and how they 
can be applied in digital systems. Also, it presents and briefly explains the three most used 
architectures found in the literature nowadays: CRT, RNS and Pipelined based architectures. Finally, 
at the end of the section a good comparison among these architectures is written, allowing us to 
choose which type of implementation can bring us the best results. 

4.1. Modular Exponentiation Algorithms 
There are many arithmetic algorithms for implementing RSA in hardware in the technical literature. 
Most of then are concerned in finding a fast way of solving the RSA algorithm. By being more 
specific, these algorithms are centered in solving operations with large size operands, i.e., 

 

where M, e and n have more than 512 bits. As mentioned in section 3.3, 512-bit keys are not secure 
enough and 1024-bit key sizes must be used to give a certain level of security to the user. That’s why 
at the present moment various researchers are working on discovering a faster way to perform 
operations with large size operands in hardware/software. 

The modular exponentiation algorithm found in many articles is practically the same: the binary 
method. It seems to be the most adequate. Others algorithms, e.g., m-ary method, factor method, 
power three method, addition chains and recording binary method can also be found [6]. However, 
they were not cited in the documentation researched [15-17]. Sections 4.1.1 and 4.1.2 were extracted 
from [6]. 

4.1.1. Binary Exponentiation Method 

The binary method scans the bits of the exponent either from left to right or from right to left. A 
squaring is performed at each step, and depending on the scanned bit value, a subsequent 
multiplication is performed. We explain the left-to-right binary method below. Interested readers 
can find more information about the right-to-left binary method in [6]. 

Let k be the number of bits of e and the binary expansion of e be given by 

 

 

 

for }1,0{�ie . The binary method for computing )(mod nMC e  is given below (by scanning the 
power bits from left to right): 

 

The Binary Exponentiation Method LR 

Inputs: neM ,,  

Output: )(mod nMC e  

1. if 11  �ke  then MC  :  else 1: C  

2. for 2� ki  downto 0  

2a.   )(mod: nCCC �  

2b.   If 1 ie  then )(mod: nMCC �  

3.  return C  
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Assuming 0!e , the total number of multiplications is: 

x )1(2)1()1( � ��� kkk ,       (maximum) 

x 10)1( � �� kk  or        (minimum) 

x )1(23)1(21)1( � ��� kkk ,       (average) 

where we assume that 11  �ke . 

Steps 2a and 2b can be replaced by any modular multiplication algorithm. 

4.1.1.1. Interleaving multiplication and reduction 

Let iA  and iB  be the bits of the k-bits positive integers A and B, respectively. The product P can be 
written as 

� �¦¦ �

 

�

 
� � � 

11
.22

k

oi
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i
k
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i

i BABABAP  

This formulation yields the shift-add multiplication algorithm. We also reduce the partial product 
modulo n at each step: 

 

The Interleaving Multiplication and Reduction Method 

Inputs: BA,  

Output: P  

1.  0: P  

2. for 0 i  to 1�k  

2a.   ikBAPP ���� 12:  

2b.   )(mod: nPP   

3.  return P  

 

In line 2b, we have a modular division. The multiplication step is then followed by a division 
algorithm in order to compute the remainder. However, we are not interested in the quotient; we 
only need the remainder. 

Therefore, the steps of the division algorithm can somewhat be simplified in order to speed up the 
process. The reduction step can be achieved by making one of the well-known sequential division 
algorithms. In the following sections, we describe the restoring and the nonrestoring division 
algorithms for computing the remainder of P when divided by n. 

4.1.1.2. Restoring Division Algorithm 

Let iR  be the remainder obtained during the thi  step of the division algorithm. Since we are not 
interested in the quotient, we ignore the generation of the bits of the quotient in the following 
algorithm. The procedure given below first left-aligns the operands P  and n . Since P  is 2k-bit 
number and n  is a k-bit number, the left alignment implies that n  is shifted k bits to the left, i.e., we 
start with nk2 . Furthermore, the initial value of R  is taken to be P , i.e., PR  0 . We then subtract 
the shifted n  from P  to obtain 1R ; if 1R  is positive or zero, we continue to the next step. If it is 
negative the remainder is restored to its previous value. 
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The Restoring Division Algorithm 

Inputs: nP,  

Output: nPR mod  

1. PR  :0  

2. nn k2:  

3. for 1 i  to k  

4.  nRR ii � �1:  

5.  if 0�iR  then 1: � ii RR  

6. 2: nn   

7. return kR  

In Step 5 of the algorithm, we check the sign of the remainder; if it is negative, the previous 
remainder is taken to be the new remainder, i.e., a restore operation is performed. If the remainder 

iR  is positive, it remains as the new remainder, i.e., we do not restore. The restoring division 
algorithm performs k subtractions in order to reduce the 2k-bit number P  modulo the k-bit number n . 

4.1.1.3. Nonrestoring Division Algorithm 

The nonrestoring division algorithm allows a negative remainder. In order to correct the remainder, a 
subtraction or an addition is performed during the next cycle, depending on the whether the sign of 
the remainder is positive or negative, respectively. This is based on the following observation: 
Suppose 01 �� � nRR ii , then the restoring algorithm assigns 1: � ii RR  and performs a subtraction 
with the shifted n , obtaining 

.22 11 nRnRR iii � � ��  

However, if 01 �� � nRR ii , then one can instead let iR  remain negative and add the shifted n in 
the following cycle. Thus, one obtains 

� � ,222 111 nRnnRnRR iiii � �� � ���  

which would be the same value. The steps of the nonrestoring algorithm, which implements this 
observation, are given below: 

The Nonrestoring Division Algorithm 

Inputs: nP,  

Output: nPR mod  

1. PR  :0  

2. nn k2:  

3. for 1 i  to k  

4.  if 01 !�iR  then nRR ii � �1:  

5.  else nRR ii � �1:  

6. 2: nn   

7. if 0�kR  then nRR � :  

8. return kR  
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Note that the nonrestoring division algorithm requires a final restoration cycle in which a negative 
remainder is corrected by adding the last value of n back to it. 

4.1.1.4. Montgomery’s Multiplication Algorithm 

In 1985, P. L. Montgomery introduced an efficient algorithm [18] for computing nbaR mod�  
where a, b, and n are k-bit binary numbers. The algorithm is particularly suitable for implementation 
on general-purpose computers (signal processors or microprocessors) which are capable of performing 
fast arithmetic modulo a power of 2. The Montgomery reduction algorithm computes the resulting k-
bit number R without performing a division by the modulus n. Via an ingenious representation of the 
residue class modulo n, this algorithm replaces division by n operation with division by a power of 2. 
This operation is easily accomplished on a computer since the numbers are represented in binary 
form. Assuming the modulus n is a k-bit number, i.e., kk n 22 1 ��� , let r be k2 . The Montgomery 
reduction algorithm requires that r and n be relatively prime, i.e., gcd(r, n) = gcd( k2 , n) = 1. This 
requirement is satisfied if n is odd. In the following we summarize the basic idea behind the 
Montgomery reduction algorithm. 

Given an integer a < n, we define its n-residue with respect to r as 

.modnraa �  

It is straightforward to show that the set 

^ 1̀0|mod �dd� ninri  

is a complete residue system, i.e., it contains all numbers between 0 and n-1. Thus, there is a one-to-
one correspondence between the numbers in the range 0 and n-1 and the numbers in the above set. 
The Montgomery reduction algorithm exploits this property by introducing a much faster 
multiplication routine which computes the n-residue of the product of the two integers whose n-
residues are given. Given two n-residues  a  and b , the Montgomery product is defined as the n-
residue 

nrbaR mod1���  

where 1�r  is the inverse of r modulo n, i.e., it is the number with the property 

.mod11 nrr  ��  

The resulting number R  is indeed the n-residue of the product 

nbaR mod�  

since 

.modmodmod 11 nrbanrrbranrbaR �� ���� �� ��  

In order to describe the Montgomery reduction algorithm, we need an additional quantity, n’, which 
is the integer with the property 

.1'1  ��� � nnrr  

The integers 1�r  and 'n  can both be computed by the extended Euclidean algorithm [14]. The 
Montgomery product algorithm, which computes 

� �nrbau mod1���  

given  a  and b , is given next: 
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Montgomery Product 

Inputs: rnnba ,',,,  

Output: � �nrbau mod1���  

1.  bat � :  

2.  rntm mod': �  

3.  � � rnmtu ��  

4.  if nu t  then return nu �  

else return u  

The most important feature of the Montgomery product algorithm is that the operations involved are 
multiplications modulo r and divisions by r, both of which are intrinsically fast operations since r is a 
power 2. The MonPro algorithm can be used to compute the product of a and b modulo n, provided 
that n is odd. 

Montgomery Multiplication 

Inputs: rnba ,,,  

Output: � �nbau mod�  

1. Compute n’ using the extended Euclidean algorithm. 

2. .mod: nraa �  

3.  .mod: nrbb �  

4.   :x MonPro � �rnnba ,,',,      (montgomery product) 

5.   :x MonPro � �rnnx ,,',1,      (montgomery product) 

6.  return x  

However, the preprocessing operations, especially the computation of n’, are rather time-consuming. 
Thus, it is not a good idea to use the Montgomery product computation algorithm when a single 
modular multiplication is to be performed. 

4.1.2. Montgomery Exponentiation 

The Montgomery product algorithm is more suitable when several modular multiplications with 
respect to the same modulus are needed. Such is the case when one needs to compute a modular 
exponentiation, i.e., the computation of nM e mod . In the following we summarize the modular 
exponentiation operation which makes use of the Montgomery product function MonPro. The 
exponentiation algorithm uses the binary method showed in section 4.1.1. 

Montgomery Exponentiation 

Inputs: neM ,,  {n is an odd number} 

Output: nM e mod  

1.  Compute n’ using the extended Euclidean algorithm. 

2.  nrMM mod: �  

3.  nrx mod1: �  

4.  for 1: � ki  down to 0 do 
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5.    :x MonPro � �xx,  

6.   if 1 ie  then  :x MonPro � �xM ,  

7.   :x MonPro � �1,x  

8.  return x  

Thus, we start with the ordinary residue M  and obtain its n-residue M  using a division-like 
operation, which can be achieved, for example, by a series of shift and subtract operations. 
Additionally, Steps 2 and 3 require divisions. However, once the preprocessing has been completed, 
the inner-loop of the binary exponentiation method uses the Montgomery product operations which 
performs only multiplications modulo k2  and divisions by k2 . When the binary method finishes, we 
obtain the n-residue x  of the quantity nMx e mod . The ordinary residue number is obtained from 
the n-residue by executing the MonPro function with arguments x  and 1. This is easily shown to be 
correct since 

� �nrxx mod�  

immediately implies that 

� � � �  �� � �� nrxnrxx mod1mod 11  MonPro � �1,x . 

The resulting algorithm is quite fast as was demonstrated by many researchers and engineers who 
have implemented it. However, this algorithm can be refined and made more efficient, particularly 
when the numbers involved are multi-precision integers [7]. 

4.2. RSA Architectures 
By researching the technical literature [15-17, 20-23, 26], we can basically find three different 
branches of study in the RSA architecture field: Chinese Remainder Theorem (CRT) based 
architectures, Pipelined based architectures and Residue Number System (RNS) based architectures. 
It should be mentioned that all of these architectures feature the Montgomery modular 
multiplication algorithm in their implementation. 

4.2.1. CRT Based Architecture 

The Chinese Remainder Theorem technique is known to reduce the RSA computation by divide-and-
conquer method, i.e., by splitting the computation into two distinguished parts. Some studies have 
proven that CRT can improve the overall throughput of the system up to 4 times when the factors p and 
q have the same bit size [15]. However, to perform these steps, the factors of the modulus n, p and q, are 
assumed to be known.  The Chinese Remainder Theorem (CRT) can be stated as follows: 

Let  110 ,,, �nmmm �  be pairwise relatively prime positive integers and let 110 ,,, �nxxx �  be any 
integers which satisfy the linear congruence system in one variable given by [15] 

� �00 modmxX {  

� �11 modmxX {  

�  

� �11 mod ��{ nn mxX  

has a unique solution modulo 110 �� nmmm � . 

By CRT, the computation of nCM d mod  can be partitioned into two parts: 

� �pCM pd
pp mod  (4.2.1.1) 
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� �qCM qd
qq mod  

where 

� � � �,1mod,mod �  pddpCC pp  

� � � �,1mod,mod �  qddqCC qq  

 

This reduces computation time since ddd qp �,  and CCC qp �, . In fact, their sizes are about half 

the original sizes. Finally, we compute M by CRT as follows: 

� �� � � �� �� �� �npqpMqpqMM qp modmodmod 11 �� � . 

Figure 4-1 shows a diagram of a CRT-based architecture. Notice that before applying the RSA 
algorithm (equation 3.1.5) some pre-computation is required (Modular Units Blocks). These blocks 
perform equations 4.2.1.4 and 4.2.1.3. Afterwards, the modular exponentiation units execute the RSA 
algorithm on k/2 bits operands (equations 4.2.1.1 and 4.2.1.2). The Montgomery algorithm can be 
applied to boost this module. At last, the post-processing unit converts the k/2-bits plaintext into a k 
bit plaintext by CRT (equation 4.2.1.5). 

Figure 4-1: CRT Based Architecture 

The basic advantages of this architecture are that it can be easily parallelized due to the initial pre-
computation. Also, the exponentiation unit works on k/2-bit operands, boosting RSA computation in 
4 times if p and q have half the size of the modulus n. Only in the last stage (post-processing unit) it 
will be employed k-bit computations. 

However, as demonstrated in [19], CRT-Based architectures are not secure since they can be attacked 
by hardware (Bellcore Attacks), i.e., injecting spikes in the circuit when encrypting/decrypting a 
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message (by introducing any electrical noise during ciphering time). As an example, assume that 
during the decryption of a C ciphertext a random error occurs during the computation of Mp 
(equation 4.2.1.1). This yields a faulty decrypted message Mp*, whereas the computation of Mq is done 
correctly (equation 4.2.1.2). The combination of Mp* and Mq via equation (4.2.1.5) will yield an 
incorrect decrypted message M*. For M* it holds that M - M* ≠ 0 but M - M* ≡ 0 mod q. Therefore, 
one obtains the factorization of n  by computing 

� �� �� � qnnMC e  � ,mod*gcd . 

Many researchers are trying to find a solution to this problem through different algorithms [20-24]; 
however, their solutions are still not secure. On average, CRT based architectures can encrypt 400 
kbits/s [15]. 

4.2.2. RNS Based Architecture 

In Residue Number System (RNS), an integer x  is represented by > @ > @ > @^ `maxaxaxx ,,, 21 � , where 
> @ ii axax mod . The set ^ `maaaa ,,, 21 � is called base and the number of elements m  is its base 

size. Each element inside the set a  is also called modulus. The components in the base are required to 
satisfy � � 1,gcd  ji aa  for ji z , i.e., they must be pairwise relative primes [17]. 

In RNS, the result of any arithmetic operation must be inside its dynamic range, i.e., it should be 
within de legitimate interval [0, N-1], where 

�
 

 
m

i
iaN

1

. 

Within this dynamic range every number can be represented by a unique set of residues. Each integer 
number x , in this dynamic range is mapped onto the legitimate range and represented as an m-tuple 
of residue digits ^ `mrrr ,,, 21 � . RNS can also represent negative numbers, however, the dynamic 
range changes. If N is odd, the range becomes � � � �> @21,21 ��� NN . Otherwise, the range is 
> @12,2 �� NN . The example above is intended to show how to create a small residue number 
system. 

Let an RNS has 2 moduli: 31  a  and 52  a . For this system, 1553
2

1
 �  � i iaN . The 

legitimate range of the system is > @ > @ > @14,0115,01,0  � �N  for positive numbers and 
� � � �> @ � � � �> @ > @7,72115,211521,21 � ��� ��� NN  as the N is odd. The table below shows the 

complete system: 

Signed 
Integer 

Numbers 

Unsigned 
Integer 

Numbers 
Mod 3 Mod 5 

Signed 
Integer 

Numbers 

Unsigned 
Integer 

Numbers 
Mod 3 Mod 5 

0 0 0 0 -7 8 2 3 
1 1 1 1 -6 9 0 4 
2 2 2 2 -5 10 1 0 
3 3 0 3 -4 11 2 1 
4 4 1 4 -3 12 0 2 
5 5 2 0 -2 13 1 3 
6 6 0 1 -1 14 2 4 
7 7 1 2 x x x x 

Table 4-1: RNS representation 

The number ^ 1̀,2  in this number system can represent either -4 or 11, depending on the 
representation required (unsigned or signed representation). An operation like 4-2=2, using this 
residue system, can be expressed either 
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^ ` ^ ` ^ ` ^ ` 22,25mod24,3mod212,24,124   �� � �  

or 

� � ^ ` ^ ` ^ ` ^ ` 22,25mod34,3mod113,14,124   �� � �� . 

Also, we have 

� � ^ ` ^ ` ^ ` ^ ` 64,05mod33,3mod103,13,023 �  �� � �� . 

Notice that addition, subtraction and multiplication are inherently carry-free, which means that each 
digit of the result is a function of only one digit from each operand and independent of the others. 
This is the most attractive feature of RNS that enables us to design highly parallel structure for 
computation in order to gain high speed for DSP applications and large bit number operations.  

For interested readers, a good tutorial on RNS can be found on the web [25]. 

Figure 4-2 shows a simple diagram of a RNS-based architecture. 

Figure 4-2: RNS Based Architecture 

Notice there is no operation on the factors p and q, which means that CRT can be applied. But 
remember from section 4.2.1 that CRT is still insecure. Also, Montgomery’s algorithm may be 
employed in the Modular Exponentiation Unit, improving the system performance. 
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The main point of this architecture is to develop good conversion units. To do that, one should find 
an appropriate base size m and its modulus. In figure 4-2, the base size was chosen to be m, having 
each modulus ki bits. Also, the number of parallel units is identical to m. In this case, we have the 
maximum parallelism. However, this is not necessary and the numbers of processing units can be 
chosen to be less than the base size. Less hardware is used but time-sharing processing now is 
required in each modular exponentiation unit. It should be mentioned the base set need to be 
precomputed and stored in a ROM. 

The great disadvantage of this architecture is that when the operand sizes are small, i.e., RSA key size 
less than 1024 bits, the pre and post processing are very time-consuming, becoming this technique 
inadequate. Its design is complex too. However, according to [17], this implementation becomes quite 
good when involving large key sizes. On average, RNS based architectures can encrypt 300 kbits/s 
[17]. 

4.2.3. Pipelined Architecture 

The great advantage of this architecture is that there is no need to worry about the factors p and q. As 
the modulus is not in its factored form (n=pq) the only way to discover them is through factorization, 
something infeasible. Thus, these architectures are secure against Bellcore attacks. 

The concern here is focused on developing a fast modular exponentiation unit where the operand 
sizes X and Y have the same size of the modulus N. Futhermore, we can break up these operands into 
several words and apply pipeline techniques. As an example of architectures featuring these 
characteristics we can cite [16] and [26]. 

This architecture requires no pre and post processing. All the design effort is concentrated on the 
modular exponentiation unit. As modular exponentiation operations perform a series of modular 
multiplications only the modular multiplication unit is depicted in figure 4-3.  

Figure 4-3: Pipeline Based Architecture 

Notice that as data is transferred word-serially to the pipeline registers which store Y and N work as 
rotators. The processing elements itself must relay the received words to the next units in the 
pipeline. All paths are w bits wide, except for the xi (only 1 bit). The values of xi comes from a p-shift 
register where p equals to the number of processing elements in the pipeline. The register for S  can 
be a shift register since its contents are not reused. 

On average, pipeline based architectures can encrypt 40 kbits/s [16]. 
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4.3. Conclusions 
As could be seen in section 4.2.1, many documents showed that CRT-based architectures are still not 
reliable. According to Aumüller [19] only sophisticated hardware countermeasures (sensors, filters, 
etc.) in combination with software countermeasures will be able to provide security. Also, Aumüller 
demonstrated that many current smartcards with RSA coprocessors are susceptible to Bellcore 
attacks. 

By trying to find a solution to this problem, other articles were studied [20-23] but none of them 
showed to be trustworthy. As they are still looking for a solution to a recent discovered fault, they 
couldn’t find a trusted method of encrypting using CRT (every new article points some errors to the 
latest ones). These latest papers discouraged us to develop any CRT-based architecture until a secure 
method be found. 

Summarizing, the choice of a CRT-based architecture implies more control hardware and software 
security schemes due to Bellcore attacks to the benefit of faster encryption. 

RNS based-architectures demonstrated to be another efficient method to sign messages quickly 
(section 4.2.2). By converting binary numbers to a different number system, a parallelized 
architecture can be implemented, and high-speed data rates can be achieved. Also, these architectures 
can be boosted with CRT techniques. However, they are not intended to RSA cryptosystems with 
small key sizes, since the conversion steps from one number system to another are very time-
consuming. 

RNS-based architectures seem to be more suitable when the key size is more than 2048 bits. But at 
the present moment 1024-bit RSA key sizes are more than enough to secure data as explained in the 
chart below: 

Protection Lifetime of Data Present -2010 Present - 2030 
Present – 2031 

and beyond 
Minimum RSA key size 1024 bits 2048 bits 3072 bits 

Table 4-2: Recommended RSA keys sizes based on protection life [8] 

In addition to that, as stated by [17], current 1024-bit CRT-based architectures have practically the 
same performance of 1024-bit RNS-based architectures. Thus, we should either choose a very 
complex architecture design or hardware and software countermeasures. 

Pipelined architectures can also implement high-speed RSA encryption. In order to improve speed at 
higher bit-lengths it is necessary to break the multiplication up into stages, and pipeline the 
calculation. This improved performance significantly [16, 26]. Depite being up to 10 times slower 
than RNS and CRT based architectures, pipelined-based architectures provide security and less area 
occupied in the chip (they don’t need special hardware countermeasures or heavy pre and post 
computations units). Furthermore, RSA applications are not intended to be used in a whole section of 
a high-speed communication. We should use private-key cryptosystems instead. RSA applications are 
more suitable to sign messages, verify authenticity or to begin a secure high-speed communication as 
showed in section 2.4.3. 

After analyzing each case separately we have chosen the pipelined-based architecture to design the 
RSA coprocessor. It has the great advantage that there is no need to worry about security 
countermeasures or a very complex design. Moreover, the throughput obtained for a typical 1024-bit 
key size is approximately 40 kb/s [16], i.e., this rate is more than enough to sign messages with our 
smart cards in our daily life. Therefore, our RSA system will be based on a pipelined modular 
exponentiation unit. More details will be covered in the next sections. 
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5. Coprocessor IP Specification 
In the previous section we presented specific arithmetic algorithms and three different 
implementations of RSA systems used nowadays. After analyzing the advantages and disadvantages 
among them we finally decided to implement a pipelined-based architecture. 

Figure 5-1 shows our proposed block diagram. To avoid confusion in the schema, we preferred not to 
include connections from the main control unit to other blocks. The vertical green line connecting all 
the blocks is the system data bus. More details are covered in the next sections. 

Figure 5-1: Block Diagram 

5.1. IO Interface 
This block connects the outside microprocessor interface to the IP. Many types of microprocessors 
with different data bus sizes can be used to control it. So, this IP is adjustable in accordance with the 
user’s need (parameterizable input/output data bus). Table 5-1 summarizes this cell. 

Pin Name Size Direction Active Description 
System Signals 

Clock 1 input rising 
System clock. Data is transferred on every 
positive clock edge. 

Reset 1 input high Asynchronous system reset. 
Data Signals 

DataBus[4x2n-1:0] S2 
input 

output 
- 

Data input and output. The parameter n must be 
an integer in the range of {0, 1, 2, 3}, i.e., this IP 
supports 4, 8, 16 and 32 bits input bus sizes. This 
parameter must be defined before 
synthetization. 

Table 5-1: IO Interface cell pinout 

Internal and external data buses have the same size. 

                                                           
2 S = Scalable 
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5.2. Bank of Registers 
When the coprocessor is working (busy is high) the bank of registers is inaccessible and the operands 
in it are organized depending on the value of Mode (see later section 5.7). Figure below illustrates this 
organization. 

 

Figure 5-2: Memory Organization 

When Mode is set to ‘0’, the RSA coprocessor is working in key generation mode. No data is required 
before computation since keys will be generated randomly. To start the key generation process, busy 
must be set to high. After finishing, the memory will be arranged as shown in figure 5-2 on the left. 

However, if Mode is set to ‘1’, the RSA coprocessor will work on encryption/decryption mode. Data 
(M/C, e/d and n) must be loaded in memory before beginning the computation, and afterwards start 
must be set to ‘1’. When start changes back to ‘0’, the computation is finished and the operands will 
be arranged as showed in figure 5-2 on the right. The final result will be stored in C/M. 

Cell input and output ports are described in table below (table 5-2). 

Pin Name Size Direction Active Description 
Clock 1 input Rising System clock 

DataBus S 
input 

 output 
- Connects system memory to systems bus. 

Read 1 input high 
Write contents of selected memory address to the 
system bus. 

Write 1 input high 
Write contents of system bus to selected memory 
address. 

SelAdd 2 input - 
Select one of the four possible 1024-bit registers 
located in the bank of register to be written/read. 

Table 5-2: Input and output port for the Bank of Register 

5.3. Random Number Generator 
This module generates 512-bit odd random numbers. It is nothing more than a counter which is 
incremented every clock cycle. However, to guarantee 512-bit odd numbers in the output the first 
and last bits are always set to 1. Figure 5-3 shows it. 

 

Figure 5-3 
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The module ports are described in the table below. 

Pin Name Size Direction Active Description 
Clock 1 input rising System clock 
RNGout 512 output - Generator output 

Table 5-3: port description for the Random Number Generator Unit 

However, this module is very simple. Better random number generators can be found in [27] and 
[28]. 

5.4. Primality Test Unit 
It tests if a 512-bit number is prime or not. Its ports are described in the table below. 

Pin Name Size Direction Active Description 
Clock 1 input rising System clock 

Start 1 
input 

output 
high 

Load input data and starts computation. It remains 
high until the required operation is finished. 

isPrime 1 output high 
Indicates if the input data is a prime number or not. 
Set to zero when detects a start rising edge. 

DataIn 512 input - Input data 
DataOut 1024 output - Output data  

Table 5-4: port description for the Primality Test Unit 

Since our RSA system needs always two 512-bit prime numbers to generate keys (p and q factors), the 
output of this module gives p concatenated to q. The first found prime number is stored inside the 
block while the second one is being tested. Thus, the output will only be available when two 
consecutive prime numbers are found. This characteristic will be clarified to the reader in the next 
section. 

5.5. Key Generation Unit 
By taking the two factors, p and q, this cell computes the pair of keys (e, n) and (d, n). The modulus, 
the private and the public exponent have 1024 bits. Data input and data output ports are 1024 bit 
wide. As both factors have the same size (512 bits), we send them to the input port as a concatenated 
1024-bit number. Therefore, the input can be thought as a 1024-bit operand. This cell uses the 
primality test unit since random prime numbers are required to accomplish its task. 

After finishing the computation, all key operands will be stored in their respective memory addresses 
and start will be set to ‘0’ (see section 5.2). In the following lines we summarize its ports. 

Pin Name Size Direction Active Description 
Clock 1 input rising System clock 

Start 1 
input 

output 
high 

Load input data and starts computation. It remains 
high until the operation required is finished. 
Afterwards, all operands (e, d and n) are in their 
respective memory addresses. 

AskPQ 1 
input 

output 
high 

Ask two 512-bit random prime numbers to be 
computed by the Primality Test Unit. It remains 
high until pq are in its input port.  

DataIn 1024 input - Input data 
DataOut 1024 output - Output Data. Connected to system bus. 

Table 5-5: port description for the Key Generator Unit 



 

 

 
44 

5.6. Modular Exponentiator 
This module computes the RSA algorithm. All input operands (M/C, e/d and n) must be in their 
respective addresses before starting. When computation is over the final result is stored in memory 
(see figure 5.2). 

Table 5-6 specifies its input and output ports. 

Pin Name Size Direction Active Description 
Clock 1 input rising System clock 

Start 1 
input 

output 
high 

Load input data from memory and starts 
computation. It remains high until the operation 
required is finished. When start changes back to 
zero, the final result (C/M) is stored in its 
respective memory address. 

IOData 1024 input 
output 

- Input/Output data. Connected to system bus. 

Table 5-6: port description for the Modular Exponentiator 

5.7. Main Control Unit 
It controls all signals from later modules. These signals are divided by categories i.e, signals 
coming/going from/to specific blocks. They are described in the table below. 

Pin Name Size Direction Active Description 
IO Interface Signals 

Clock 1 input rising System clock. 
Reset 1 input high Asynchronously system reset. 
Mode 1 input - Change the operation mode. 
Read 1 input high Transfer data from the address specified by AddI.  
Write 1 input high Transfer data to the address specified by AddI. 
Start 1 output - Interrupt signal for the microprocessor. 

Bank of Registers Signals 

ReadMemory 1 output high 
Transfers contents from selected memory address 
to interface shift register. 

WriteMemory 1 output high 
Transfers contents from interface shift register to 
selected register. 

Key Generation Unit Signals 

StartKG 1 input 
output 

high 

Start key generation process. It remains high 
until the operation required is finished. When 
operation is over then generated keys are stored 
in their respective places (see figure 5-5). 

Modular Exponentiator Signals 

StartRSA 1 
input 

output 
high 

Start encryption/decryption process. It remains 
high until the operation required is finished. The 
result is stored in its respective place when 
computation is over (see figure 5-5). 

Table 5-7: port description for the Main Control Unit 

Notice that Random Number Generator and Primality Test Unit are not controlled by this unit. They 
have a local control performed by the Key Generation Unit. 
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6. IP Implementation 
As could be seen in section 4.1.2, the Montgomery exponentiation algorithm is the most suitable 
solution for implementing in digital systems. Furthermore, as it is cited in many articles nowadays [6-
7, 15-17, 26] we can consider it as trustworthy implementation. 

From time to time, key sizes must be changed since computation power is always increasing. To avoid 
rewrite code every time a key is broken a good solution is to write a scalable exponentiator 
architecture. Since we chose a pipelined-based architecture (section 4.3) our goal here is to describe 
the design of a scalable Montgomery Multiplier (MM) with no limitation on the maximum number of 
bits manipulated by the multiplier. To do such an operation, we need to break up the operands into 
small words according to the available area and/or desired performance. 

6.1. Multiple Word Raidx-2 Montgomery Multiplication Algorithm 
This section was was extracted from [26]. 

The use of short precision words reduces the broadcast problem in the circuit implementation. The 
broadcast problem corresponds to the increase in the propagation delay of high-fanout signals. Also, a 
word-oriented algorithm provides the support we need to develop scalable hardware units for the 
MM. Next paragraphs explain the algorithm proposed by [26]. 

Let us consider w-bit words. For operands with n bits of precision, � �ª ºwne 1�  words are required. 
The extra bit used in the calculation of e is needed since it is known that S (internal variable of the 
algorithm) is in the range > @12;0 �M , where M is the modulus. Thus the computations must be done 
with an extra bit of precision. The input operands will need an extra 0 bit value at the leftmost bit 
position in order to have the precision extended to the correct value. 

The operand Y (multiplicand) is scanned word-by-word, and the operand X (multiplier) is scanned 
bit-by-bit. We will make use of the following notation: 

� � � � � �� �oe MMMM ,,, 11 �� , 

� � � � � �� �oe YYYY ,,, 11 �� , 

� �011 ,,, xxxX m �� , 

where the words are marked with superscripts and the bits are marked with subscripts. The 
concatenation of vectors A and B is represented as (A, B). A particular range of bits in a vector A from 
position i to position j, j > i, is represented as ijA . The bit position i of the kth word of A is represented 

as � �k
iA . The algorithm is given below. 

Multiple-Word Radix-2 Montgomery Multiplication Algorithm (MWR2MM) 

Inputs: MYX ,,  

Output: MrYXS mod1���  

 

1.  0 S  

2.  for 0: i  to 1�n  do 

3.   � �� � � � � �000 :, SYxSC i �  

4.   if � � 10
0  S  then 

5.    � �� � � �� � � �000 ,:, MSCSC �  

6.    for 1: j  to 1�e  do 
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7.     � �� � � � � � � �jjj
i

j SMYxCSC ��� :,  

8.     � � � � � �� �1
1..10

1 ,: �
�

�  j
w

jj SSS  

9.   � � � �� �1
1..1

1 ,: �
�

�  e
w

e SCS  

10.  else 

11.    for 1: j  to 1�e  do 

12.     � �� � � � � �jj
i

j SYxCSC �� :,  

13.     � � � � � �� �1
1..10

1 ,: �
�

�  j
w

jj SSS  

14.   � � � �� �1
1..1

1 ,: �
�

�  e
w

e SCS  

 

The MWR2MM algorithm computes a partial sum S for each bit of X, scanning the words of Y and M. 
Once the precision is exhausted, another bit of X is taken, and the scan is repeated. Thus, the 
algorithm imposes no constraints to the precision of operands. The arithmetic operations are 
performed in precision w bits, and they are independent of the precision of operands. What varies is 
the number of loop iterations required to accomplish the modular multiplication. The carry variable 
C must be in the set {0, 1, 2}. This condition is imposed by the addition of the three vectors S, M and 
xiY. To have containment in the addition of 3 w-bit words and a maximum carry value Cmax 
(generated by previous word addition), the following equation must hold: 

 

� � 122123 maxmax ���d��� www CC  

 

which results in 2max tC . Thus, choosing 2max  C  is enough to satisfy the containment condition. 

The dependency between operations within the loop for j restricts their parallel execution due to 
dependency on the carry. However, parallelism is possible among instructions in different j loops. See 
the dependency graph for the MWR2MM algorithm in figure 6-1. 

Each circle in the graph represents an atomic computation and is labeled according to the type of 
action performed. Task A corresponds from lines 3 to 5: test the least significant bit of S to determine 
if M should be added to S during this and addition of words from S, xiY and M (depending on the test 
performed). Task B corresponds to operations from 7 to 9. We observe from this graph that the 
degree of parallelism and pipelining can be very high. Each column in the graph may be computed by 
a separate processing element (PE), and the data generated from one PE may be passed to another PE 
in a pipelined fashion. 
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Figure 6-1: dependency graph for the MWR2MM Algorithm [26] 

An example of the computation executed for 5-bit operands is shown in Figure 6-2 for the word size 
of w = 1 bit. Since the jth word of each input operand is used to compute word j-1 of S, the last B task 
in each column must receive M(e) = Y(e) = 0 as inputs. This condition is enough to guarantee that M(e-1) 

will be generated based only on the internal PE information. Note also that there is a delay of 2 clock 
cycles between processing a column for xi and a column for xi+1. The total execution time for the 
computation shown in Figure 6-2 is 14 clock cycles. 

 
Figure 6-2: An example of computation for 5-bit operands, where w=1 bit [26] 
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Tasks A and B are performed on the same hardware module. The local control circuit of the module 
must be able to read the least significant bit of S(0) at the beginning of the operation, and keep this 
value for the entire operand scanning. Recall that the even condition of � �0

0S  determines if the 
processing unit should add M to the partial sum during the pipeline cycle. The pipeline cycle is the 
sequence of steps that a PE needs to execute to process all words of the input operands. 

The maximum degree of parallelism that can be attained with this organization is found as 

»»
º

««
ª �

 
2

1
max

ep . 

It is easy to see from Figure 6-2 that 3max  p . When less than maxp units are available, the total 
execution time will increase, but it is still possible to perform the full precision computation with the 
smaller circuit. 

Recall the modulus M must be a k-bit number.  Also, r is k2  and gcd(r, n) = gcd( k2 , n) = 1 (see 
section 4.1.1.4).  

6.2. Simulation Results 
Firstly, the processing element was coded and simulated. This is the basic block to build our pipeline 
(see figure 4.3). Later, we designed the pipeline and tested it. 

The processing element performs operations from lines 3 to 14 in the MWR2MM algorithm. It 
computes only one interaction of the for-loop. Notice that we have two conditions: one condition 
determines if � � 10

0  S  (line 4) and another one decides if Y must be added to the partial result (C, S).  
So, our test bench must be carefully chosen to certify it will execute all the lines of the algorithm. 
Next lines describe our test bench: 

- Test 1: 

It executes lines 3, 4, 11, 12, 13 and 14. It adds Y to the partial result as well (can be thought as an if 
statement). 

x = 1 

S = 255 = 00 11 11 11 11  Y = 109 = 00 01 10 11 01  M = 53 = 00 00 11 01 01 

(C, S) = 182 = 00 10 11 01 10 

 

- Test 2: 

It executes lines 3, 4, 5, 6, 7, 8 and 9. It adds Y as well. 

x = 1 

S = 101 = 00 01 10 01 01  Y = 48 = 00 00 11 00 00  M = 56 = 00 00 11 10 00 

(C, S) = 102 = 00 01 10 01 10 

 

- Test 3: 

It executes the same lines of test 1. It doesn’t add Y. 

x = 0 

S = 90 = 00 01 01 10 10  Y = 91 = 00 01 01 10 11  M = 87 = 00 01 01 01 11 

(C, S) = 45 = 00 00 10 11 01 
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- Test 4: 

It executes the same lines of test 2. It doesn’t add Y. 

x = 0 

S = 121 = 00 01 11 10 01  Y = 253 = 00 11 11 11 01  M = 52 = 00 00 11 01 00 

(C, S) = 86 = 00 01 01 01 10 

These results were compute by hand. 

We simulated the VHDL source code in ModelSim and we got the same answers (see figure 6-3 and 
6-5). We chose 2-bit processing element word-size (w) and 8-bit operand inputs (n). The order of 
Sout is reversed (from the least to the most significant word). The partial answer is 10-bit wide as 
explained in section 6.1.1 

 
Figure 6-3: Processing element ModelSim simulation for w=2 and n=8 

Data is valid only when ready is high. Notice that we need to wait one clock cycle until the first output is 
ready. Also, the processing element is still computing when start is low (one more clock cycle). 

We also developed simple a program to perform tests. The same answers were achieved as showed in 
figure 6-4. The output is in decimal form and it has the same order of figure 6-3. 

 

Figure 6-4: Processing Element test software for w=2 and n=8  

Test 1 Test 2 Test 3 
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We also tested inputs when they have maximum values. Both methods (ModelSim simulation and 
test software) got the same results. See figures 6-5 and 6-6. 

 

Figure 6-5: Processing element ModelSim simulation for w=2 and n=8 

 

Figure 6-6: Processing Element test software for w=2 and n=8 

We also did many others different random tests by using both the software and ModelSim. We got 
always the same answers. Thus, we prove the processing element is functional. Now, let’s analyze and 
test the implementation of the Montgomery pipeline. 

Since the Montgomery pipeline is scalable we will perform tests over its parameter (w and n) with 
the same input vectors. By doing this we will assure the pipeline is functional. The following test 
bench will be used. All the lines of the MWR2MM algorithm are covered. 

 

- Test 1: 

w =2   n = 8  e = 5  p = 3 

X = 10  Y = 20  M = 247  r = 256 

S = XY r-1 mod M = 132 

 

Test 4 
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- Test 2: 

w =1   n = 8  e = 9  p = 5 

X = 10  Y = 20  M = 247  r = 256 

S = XY r-1 mod M = 132 

 

- Test 3: 

w =4   n = 16  e = 5  p = 3 

X = 10  Y = 20  M = 60001 r = 65536 

S = XY r-1 mod M = 58646 

 

- Test 4: 

w =1   n = 16  e = 17  p = 9 

X = 10  Y = 20  M = 60001 r = 65536 

S = XY r-1 mod M = 58646 

 

These results were compute by hand.  

 

Figure 6-7 and 6-8 show the results obtained by test 1. The number of processing elements generate 
in figure 6-7 matches with the result obtained (p = 3).  

 

Figure 6-7: Generated architecture for w=2 and n=8 (Test 1) 

The final result (Sout) is ready only in the last clock cycle of the signal Ready. Since we have a shift 
register in the output of the pipeline, we need to wait each partial result be transferred to the output 
register. 
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Figure 6-8:  Montgomery Multiplicator ModelSim simulation for w=2 and n=8 (Test 1) 

 

Next figures (6-9 and 6-10) are related to test 2. The same output is obtained. However, the word-size 
now is changed. 

 
Figure 6-9: Generated architecture for w=1 and n=8 (Test 2) 
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Figure 6-10: Multiplicator ModelSim simulation for w=1 and n=8 (Test 2) 

 

Notice that when smaller word sizes are used more processing elements are necessary. Next examples 
we will increase the operand sizes of the pipeline (16 bits). 

 
Figure 6-11: Generated architecture for w=4 and n=16 (Test 3) 
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Figure 6-12: Multiplicator ModelSim simulation for w=4 and n=16 (Test 3) 

 

Recall that the algorithm works only when kk M 22 1 ��� . This explains why we can’t use the 
previous values of M for result comparison. 

 

Figure 6-13: Generated architecture for w=4 and n=16 (Test 4) 
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Figure 6-14: Multiplicator ModelSim simulation for w=1 and n=16 (Test 4) 

Also, the following tests were performed. In all of them we obtained the expected output. 

 

- w =2, n = 8, e = 5, p = 3 and r = 256 

X = 11, Y = 20, M = 247   S = XY r-1 mod M = 244 

X = 12, Y = 20, M = 247   S = XY r-1 mod M = 109 

X = 13, Y = 20, M = 247   S = XY r-1 mod M = 221 

X = 10, Y = 21, M = 247   S = XY r-1 mod M = 188 

X = 10, Y = 22, M = 247   S = XY r-1 mod M = 244 

X = 10, Y = 23, M = 247   S = XY r-1 mod M = 53 

X = 10, Y = 20, M = 249   S = XY r-1 mod M = 242 

X = 1o, Y = 20, M = 251   S = XY r-1 mod M = 40 

X = 11, Y = 20, M = 253   S = XY r-1 mod M = 151 

Thus, we prove the Montgomery pipeline is functional. 
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6.3. Synthesis Results 
We synthesized the Montgomery Pipeline in Leonardo. The target FPGA is Xilinx Virtex-II Pro 
(Device 2VP7fg456). By changing the parameters in the VHDL code we performed the following 
experimentations: 

 

- Synthesis 1 

n = 1024   w = 32   e = 33   p = 17 

 

- Synthesis 2 

n = 1024   w = 64   e = 17   p = 9 

 

By doing this we obtained 1f =80.9 MHz and 2f =63.2 MHz for synthesis 1 and 2 respectively.  

We can also estimate the encryption/decryption rate of the complete circuit (exponentiator). The 
equation below was extracted from [26]. It means the total computation time T (in clock cycles) of 
the Montgomery Pipeline. 

� � � �12111
����»

»

º
«
«

ª �
 pe

p
nT  

Thus, by solving equation above, we have: 

 

Synthesis 1: T1 = 2105 

Synthesis 2: T2 = 2067 

 

Assuming we have an average number of multiplications (section 4.1.1) and an exponent of 1024 bits, 
we have 5,3230122)1(231  �� kT  and 5,3171811)1(232  �� kT . 

These are the total number of cycles require for encrypting 1024 bits. Therefore, we can obtain the 
encryption rate by 

skbitsbitsk
T
f

R 05,25
1

1
1  �  

skbitsbitsk
T
f

R 92,19
2

2
2  � . 
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7. Conclusion 
 

  

  
 

 

 

 

 

 

 

The present work showed us all the steps to design a Montgomery multiplication unit adjustable to 
work with large key sizes. Due to its pipelined characteristics there is no limitation on the maximum 
number of bits manipulated, i.e., the Montgomery multiplication algorithm core is ready for future 
changes. Also, we have specified a complete RSA system. 

The total time to compute a Montgomery multiplication depends on the available area and the 
pipeline configuration. Our final tests with Leonardo showed us that a multi-stage pipeline is faster 
than a single unit working with a large word length. This interesting result demostrates that more 
processing elements units decrease the amount of time to encrypt data. So, the desired performance is 
made according to the available chip area. 

Because of time constraints, only the Montgomery multiplication unit was finished. This is the core 
of the modular exponentiation unit, and the core of the RSA coprocessor. Since good RSA 
architectures are difficult to design most of the time was spent in research. It should be also kept in 
mind that is not an easy task to implement a 1024-bit architecture or higher. However, we assure that 
anyone with a background of algorithms, digital logic design and computer architecture will be able 
to read this document and understand it quickly. Thus, by virtue of its contents anyone who wants to 
continue this project has good references and information to study. 
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Design Methods 
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Design Methods 

• Montgomery Exponentiation 
 Entradas: M, e, n e k 
 Saída: C = Me mod n 
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  5.   if  ei = 1 then x’ = MonPro(M’, x’) 
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Coprocessor Design 

• Modular Exponentiation Unit (Brazil) 
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� Output: C = Me mod n 

C=18011503 mod 41989 = 2430 
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Simulation Results 

• Inputs: C, d,  n and k 

15 

� Output: M = Cd mod n 

M=243031247 mod 41989 = 18011 

Synthesis Results 

• Synthesis Tool 
– Xilinx XST (ISE) 

• Target device 
– Xilinx Virtex Pro II (xc2vp100-ff1696-6) 

• One-hot enconding 
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Conclusions 

• A Scalable RSA coprocessor 
• Fast RSA systems are a challenge 
• Increasing research field 
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------------------------------------------------------------------------------ 
-- Autor  : Alcides Silveira Costa 
-- Bloco  : RSA (Topo + Controle) 
------------------------------------------------------------------------------ 
library ieee; 
 use ieee.std_logic_1164.all; 
 use ieee.std_logic_unsigned.all; 
 use ieee.std_logic_arith.all; 
  
entity rsa is 
 generic( 
  n : positive := 1024; 
  w : positive := 2; 
  l : positive := 1; 
  e : positive := 513; 
  p : positive := 257); 
 port( 
  -- Entradas 
  clk : in std_logic; 
  rst : in std_logic; 
  en_i : in std_logic; 
  dat_i : in std_logic_vector(l-1 downto 0); 
   
  -- Saidas 
  dat_o : out std_logic_vector(l-1 downto 0); 
  rdy_o : out std_logic); 
end rsa; 
 
architecture rtl of rsa is 
-- Tipos definidos 
type shift_reg1 is array (w/l-1 downto 0) of std_logic_vector(l-1 downto 0); 
type shift_reg2 is array ((n+w)/w-1 downto 0) of std_logic_vector(w-1 downto 0); 
 
-- Componentes 
component mp 
 generic( 
  n : positive := 16; 
  w : positive := 4; 
  e : positive := 5; 
  p : positive := 3); 
 port( 
  clk : in std_logic; 
  rst : in std_logic; 
  en_i : in std_logic; 
  m_i : in std_logic_vector(w-1 downto 0); 
  y_i : in std_logic_vector(w-1 downto 0); 
  x_i : in std_logic_vector(p-1 downto 0); 
  rdy_o : out std_logic; 
  shx_o : out std_logic; 
  s_o : out std_logic_vector(w-1 downto 0)); 
end component; 
 
component sub 
 generic(w : positive := 1); 
 port( 
  clk : in std_logic; 
  rst : in std_logic; 
  en_i : in std_logic; 
  a_i : in std_logic_vector(w-1 downto 0); 
  n_i : in std_logic_vector(w-1 downto 0); 
  s_o : out std_logic_vector(w-1 downto 0)); 
end component; 
 
-- Funções 



function log2(x: integer) return integer is 
 -- Funciona apenas para numero base 2 
 variable result : integer := 1; 
 variable aux : integer; 
 begin 
  if x /= 1 then 
   aux := x; 
   while aux /= 2 loop 
    aux := aux/2; 
    result := result + 1;   
   end loop; 
  else 
   result := 0; 
  end if; 
 return result; 
end log2; 
 
function array2vector(x: shift_reg2) return std_logic_vector is 
 variable result : std_logic_vector((x'left+1)*(x(0)'left+1)-1 downto 0); 
 begin 
  for i in x'left downto 0 loop 
   result((x(0)'left+1)*(i+1)-1 downto (x(0)'left+1)*i) := x(i); 
  end loop; 
 return result; 
end array2vector; 
 
function vector2array(x: std_logic_vector) return shift_reg2 is 
 variable result : shift_reg2; 
 begin 
  for i in result'left downto 0 loop 
   result(i) := x((result(0)'left+1)*(i+1)-1 downto (result(0)'left+1)*i); 
  end loop; 
 return result; 
end vector2array; 
 
function set_array(y, z: positive) return shift_reg2 is 
 variable result : shift_reg2; 
 variable aux : std_logic_vector(w-1 downto 0); 
 
 begin 
  aux := (others => '0'); 
  for i in y/z-1 downto 0 loop 
   result(i) := aux; 
  end loop; 
 result(0)(0) := '1'; 
 return result; 
end set_array; 
 
function special_shift( 
 y, z: positive; 
 a : shift_reg2) return shift_reg2 is 
  
 variable aux : std_logic_vector(y-1 downto 0); 
 variable aux2 : std_logic_vector(z-1 downto 0); 
 variable aux3 : std_logic_vector(z-1 downto 0); 
 variable result : shift_reg2; 
 
begin 
 aux := array2vector(a); 
 aux3:= (others => '0'); 
  
 if y mod z = 0 then 
  -- Registrador homemgeneo 
  for i in 1 to n/p-1 loop 



   aux(z*i-1 downto z*(i-1)):= aux(z*(i+1)-1 downto z*i); 
  end loop; 
 else 
  -- Registrador hetereogeneo 
  if y/z = 1 then 
   -- Apenas um shift 
   aux(z-1 downto 0):= aux3&aux(y-1 downto z); 
  else  
   -- Varios shift 
   for i in 1 to y/z loop 
    if i < y/z then 
     aux(z*i-1 downto z*(i-1)):= aux(z*(i+1)-1 downto z*i); 
    else 
     aux2(((y-1) mod z) downto 0) := aux(y-1 downto z*i); 
--     aux2(p-1 downto (n mod p)) := (others => '0'); 
     aux2(z-1 downto (y mod z)) := aux3(z-1 downto (y mod z)); 
     aux(z*i-1 downto z*(i-1)):= aux2; 
    end if; 
   end loop; 
  end if; 
 end if; 
 result := vector2array(aux); 
 return result; 
end special_shift; 
 
function shift_byte( 
 y, z: positive; 
 a : std_logic_vector; 
 b : shift_reg1) return shift_reg1 is 
  
 variable result : shift_reg1; 
begin 
 result(y/z-1):=a; 
 for i in y/z-1 downto 1 loop 
  result(i-1):= b(i); 
 end loop; 
 return result; 
end shift_byte; 
 
function shift_byte( 
 y, z: positive; 
 a : shift_reg1; 
 b : shift_reg2) return shift_reg2 is 
  
 variable result : shift_reg2; 
 variable aux : std_logic_vector(z-1 downto 0); 
 variable l  : positive := a(0)'left + 1; 
 
begin 
 for i in w/l downto 1 loop 
  aux(l*i-1 downto l*(i-1)):= a(i-1); 
 end loop; 
 
 result(y/z-1):= aux; 
 for i in y/z-1 downto 1 loop 
  result(i-1):= b(i); 
 end loop; 
  
 return result; 
end shift_byte; 
 
function shift_byte( 
  y: positive; 
  x: shift_reg2) return shift_reg2 is 



 variable aux : std_logic_vector((x'left+1)*(x(0)'left+1)-1 downto 0); 
 variable zero : std_logic_vector(y-1 downto 0); 
 variable result : shift_reg2; 
begin 
 zero := (others => '0'); 
 aux  := array2vector(x); 
 aux  := zero & aux(aux'left downto y); 
 result := vector2array(aux); 
  
 return result; 
end shift_byte; 
 
function shift_byte( 
 y, z: positive; 
 a : std_logic_vector; 
 b : shift_reg2) return shift_reg2 is 
  
 variable result : shift_reg2; 
 
begin 
 result(y/z-1):= a; 
 for i in y/z-1 downto 1 loop 
  result(i-1):= b(i); 
 end loop; 
  
 return result; 
end shift_byte; 
 
 
function rotate_byte( 
 y, z: positive; 
 a : shift_reg2) return shift_reg2 is 
  
 variable result : shift_reg2; 
begin 
 result(y/z-1):= a(0); 
 
 for i in y/z-1 downto 1 loop 
  result(i-1):= a(i); 
 end loop; 
  
 return result; 
end rotate_byte; 
 
-- FSM 
type states is (m1_st, m2_st, e1_st, e2_st, n1_st, n2_st, k1_st, k2_st,  
    op10_st, op11_st, op12_st, op13_st, op14_st, 
    op21_st, op22_st, op23_st, op24_st, op25_st, 
    op31_st, op32_st, op33_st, op34_st, 
    op41_st, op42_st, op43_st, op44_st, op45_st, 
    op51_st, op52_st, op53_st, op54_st, op55_st, 
    op61_st); 
signal current_state, next_state: states; 
 
signal en_mp  : std_logic; 
signal en_sub  : std_logic; 
signal s_sub  : std_logic_vector(w-1 downto 0); 
signal sel_fsm  : std_logic; 
 
-- Registradores de deslocamento 
signal dat_reg : shift_reg1; 
signal m_reg : shift_reg2; 
signal e_reg : shift_reg2; 
signal n_reg : shift_reg2; 



signal acc_reg : shift_reg2; 
signal x_reg : shift_reg2; 
 
signal s_reg : std_logic_vector(l-1 downto 0); 
 
-- Flip-flops 
signal rdy_ff : std_logic; 
 
-- Counters 
signal a_cnt : std_logic_vector(log2(n/l) downto 0); 
signal b_cnt : std_logic_vector(log2(n)-1 downto 0); 
 
-- Sinais intertos 
signal y_sig : std_logic_vector(w-1 downto 0); 
signal s_sig : std_logic_vector(w-1 downto 0); 
signal x_sig : std_logic_vector(p-1 downto 0); 
signal zero_sig : std_logic_vector(w-1 downto 0); 
signal shx_sig : std_logic; 
signal rdy_sig : std_logic; 
signal e_bit : std_logic; 
signal e_sig : std_logic_vector(n+w-1 downto 0); 
 
begin 
e_sig <= array2vector(e_reg); 
e_bit <= e_sig(conv_integer(unsigned(b_cnt))); 
 
process (current_state, rst, en_i, a_cnt, b_cnt, rdy_sig, e_reg, m_reg, x_reg) 
begin 
 if (rst = '1') then 
  sel_fsm <= '0'; 
  en_mp  <= '0'; 
  en_sub  <= '0'; 
  next_state  <= m1_st; 
 else 
  case current_state is 
   when m1_st => 
    sel_fsm  <= '0'; 
    en_mp   <= '0'; 
    en_sub   <= '0';   
    if (en_i = '0') then 
     next_state <= m1_st; 
    else     
     next_state <= m2_st; 
    end if; 
 
   when m2_st => 
    sel_fsm  <= '0'; 
    en_mp   <= '0'; 
    en_sub   <= '0'; 
    if (en_i = '1') then 
     next_state <= m2_st; 
    else     
     next_state <= e1_st; 
    end if; 
 
   when e1_st => 
    sel_fsm  <= '0'; 
    en_mp   <= '0'; 
    en_sub   <= '0'; 
    if (en_i = '0') then 
     next_state <= e1_st; 
    else     
     next_state <= e2_st; 
    end if; 



 
   when e2_st => 
    sel_fsm  <= '0'; 
    en_mp   <= '0'; 
    en_sub   <= '0'; 
    if (en_i = '1') then 
     next_state <= e2_st; 
    else 
     next_state <= n1_st; 
    end if; 
 
 
   when n1_st => 
    sel_fsm  <= '0'; 
    en_mp   <= '0'; 
    en_sub   <= '0'; 
    if (en_i = '0') then 
     next_state <= n1_st; 
    else     
     next_state <= n2_st; 
    end if; 
 
   when n2_st => 
    sel_fsm  <= '0'; 
    en_mp   <= '0'; 
    en_sub   <= '0'; 
    if (en_i = '1') then 
     next_state <= n2_st; 
    else 
     next_state <= k1_st; 
    end if; 
 
   when k1_st => 
    sel_fsm  <= '0'; 
    en_mp   <= '0'; 
    en_sub   <= '0'; 
    if (en_i = '0') then 
     next_state <= k1_st; 
    else     
     next_state <= k2_st; 
    end if; 
 
   when k2_st => 
    sel_fsm  <= '0'; 
    en_mp   <= '0'; 
    en_sub   <= '0'; 
    if (en_i = '1') then 
     next_state <= k2_st; 
    else 
     next_state <= op10_st; 
    end if; 
 
   when op10_st => 
    sel_fsm  <= '0'; 
    en_mp   <= '0'; 
    en_sub   <= '0'; 
    next_state <= op11_st; 
 
   when op11_st => 
    sel_fsm  <= '1'; 
    en_mp   <= '1'; 
    en_sub   <= '0'; 
    if a_cnt /= n/w then  
     next_state <= op11_st; 



    else 
     next_state <= op12_st; 
    end if; 
    
   when op12_st => 
    sel_fsm  <= '1'; 
    en_mp   <= '0'; 
    en_sub   <= '0'; 
    if rdy_sig = '0' then  
     next_state <= op12_st; 
    else 
     next_state <= op13_st; 
    end if; 
   
   when op13_st => 
    sel_fsm  <= '1'; 
    en_mp   <= '0'; 
    en_sub   <= '0'; 
    if rdy_sig = '1' then  
     next_state <= op13_st; 
    else 
     if m_reg(n/w) = 0 then 
      next_state <= op21_st; 
     else 
      -- Correcao 
      next_state <= op14_st; 
     end if; 
    end if; 
     
   when op14_st => 
    sel_fsm  <= '0'; 
    en_mp   <= '0'; 
    if a_cnt < n/w + 1 then  
     en_sub  <= '1'; 
     next_state <= op14_st; 
    else 
     en_sub  <= '0'; 
     if a_cnt < n/w + 2 then  
      next_state <= op14_st; 
     else 
      next_state <= op21_st; 
     end if; 
    end if; 
 
   when op21_st => 
    sel_fsm  <= '1'; 
    en_mp   <= '0'; 
    en_sub   <= '0'; 
    next_state <= op22_st; 
 
   when op22_st => 
    sel_fsm  <= '1'; 
    en_mp   <= '1'; 
    en_sub   <= '0'; 
    if a_cnt /= n/w then  
     next_state <= op22_st; 
    else 
     next_state <= op23_st; 
    end if; 
    
   when op23_st => 
    sel_fsm  <= '1'; 
    en_mp   <= '0'; 
    en_sub   <= '0'; 



    if rdy_sig = '0' then  
     next_state <= op23_st; 
    else 
     next_state <= op24_st; 
    end if; 
   
   when op24_st => 
    sel_fsm  <= '1'; 
    en_mp   <= '0'; 
    en_sub   <= '0'; 
    if rdy_sig = '1' then  
     next_state <= op24_st; 
    else 
     if x_reg(n/w) = 0 then 
      next_state <= op31_st; 
     else 
      -- Correcao 
      next_state <= op25_st; 
     end if; 
    end if; 
 
   when op25_st => 
    sel_fsm  <= '1'; 
    en_mp   <= '0'; 
    if a_cnt < n/w + 1 then  
     en_sub  <= '1'; 
     next_state <= op25_st; 
    else 
     en_sub  <= '0'; 
     if a_cnt < n/w + 2 then  
      next_state <= op25_st; 
     else 
      next_state <= op31_st; 
     end if; 
    end if; 
 
   when op31_st => 
    sel_fsm  <= '1'; 
    en_mp   <= '1'; 
    en_sub   <= '0'; 
    if a_cnt /= n/w then  
     next_state <= op31_st; 
    else 
     next_state <= op32_st; 
    end if; 
 
   when op32_st => 
    sel_fsm  <= '1'; 
    en_mp   <= '0'; 
    en_sub   <= '0'; 
    if rdy_sig = '0' then  
     next_state <= op32_st; 
    else 
     next_state <= op33_st; 
    end if; 
   
   when op33_st => 
    sel_fsm  <= '1'; 
    en_mp   <= '0'; 
    en_sub   <= '0'; 
    if rdy_sig = '1' then  
     next_state <= op33_st; 
    else 
     if x_reg(n/w) = 0 then 



      if e_bit = '1' then 
       next_state <= op41_st; 
      else 
       next_state <= op45_st; 
      end if; 
     else 
      -- Correcao 
      next_state <= op34_st; 
     end if; 
    end if; 
 
   when op34_st => 
    sel_fsm  <= '1'; 
    en_mp   <= '0'; 
    if a_cnt < n/w + 1 then  
     en_sub  <= '1'; 
     next_state <= op34_st; 
    else 
     en_sub  <= '0'; 
     if a_cnt < n/w + 2 then  
      next_state <= op34_st; 
     else 
      if e_bit = '1' then 
       next_state <= op41_st; 
      else 
       next_state <= op45_st; 
      end if; 
     end if; 
    end if; 
 
   when op41_st => 
    sel_fsm  <= '0'; 
    en_mp   <= '1'; 
    en_sub   <= '0'; 
    if a_cnt /= n/w then  
     next_state <= op41_st; 
    else 
     next_state <= op42_st; 
    end if; 
    
   when op42_st => 
    sel_fsm  <= '0'; 
    en_mp   <= '0'; 
    en_sub   <= '0'; 
    if rdy_sig = '0' then  
     next_state <= op42_st; 
    else 
     next_state <= op43_st; 
    end if; 
   
   when op43_st => 
    sel_fsm  <= '0'; 
    en_mp   <= '0'; 
    en_sub   <= '0'; 
    if rdy_sig = '1' then  
     next_state <= op43_st; 
    else 
     if x_reg(n/w) = 0 then 
      next_state <= op45_st; 
     else 
      -- Correcao 
      next_state <= op44_st; 
     end if; 
    end if; 



 
   when op44_st => 
    sel_fsm  <= '1'; 
    en_mp   <= '0'; 
    if a_cnt < n/w + 1 then  
     en_sub  <= '1'; 
     next_state <= op44_st; 
    else 
     en_sub  <= '0'; 
     if a_cnt < n/w + 2 then  
      next_state <= op44_st; 
     else 
      next_state <= op45_st; 
     end if; 
    end if; 
 
   when op45_st => 
    sel_fsm  <= '0'; 
    en_mp   <= '0'; 
    en_sub   <= '0'; 
    if b_cnt /= 0 then  
     next_state <= op31_st; 
    else 
     next_state <= op51_st; 
    end if; 
 
   when op51_st => 
    sel_fsm  <= '1'; 
    en_mp   <= '0'; 
    en_sub   <= '0'; 
    next_state   <= op52_st; 
 
   when op52_st => 
    sel_fsm  <= '1'; 
    en_mp   <= '1'; 
    en_sub   <= '0'; 
    if a_cnt /= n/w then  
     next_state <= op52_st; 
    else 
     next_state <= op53_st; 
    end if; 
    
   when op53_st => 
    sel_fsm  <= '1'; 
    en_mp   <= '0'; 
    en_sub   <= '0'; 
    if rdy_sig = '0' then  
     next_state <= op53_st; 
    else 
     next_state <= op54_st; 
    end if; 
   
   when op54_st => 
    sel_fsm  <= '1'; 
    en_mp   <= '0'; 
    en_sub   <= '0'; 
    if rdy_sig = '1' then  
     next_state <= op54_st; 
    else 
     if m_reg(n/w) = 0 then 
      next_state <= op61_st; 
     else 
      -- Correcao 
      next_state <= op55_st; 



     end if; 
    end if; 
 
   when op55_st => 
    sel_fsm  <= '0'; 
    en_mp   <= '0'; 
    if a_cnt < n/w + 1 then  
     en_sub  <= '1'; 
     next_state <= op55_st; 
    else 
     en_sub  <= '0'; 
     if a_cnt < n/w + 2 then  
      next_state <= op55_st; 
     else 
      next_state <= op61_st; 
     end if; 
    end if; 
 
   when op61_st => 
    sel_fsm  <= '0'; 
    en_mp   <= '0'; 
    en_sub   <= '0'; 
    if a_cnt /= n/l-1 then  
     next_state <= op61_st; 
    else 
     next_state <= m1_st; 
    end if; 
 
   when others => 
    sel_fsm  <= '0'; 
    en_mp   <= '0'; 
    en_sub   <= '0'; 
    next_state <= m1_st;    
  end case; 
 end if; 
end process; 
 
process (clk) 
begin 
 if clk'event and clk = '1' then   
  case current_state is 
   when m1_st => 
    rdy_ff   <= '0'; 
    dat_reg(w/l-1) <= dat_i; 
    a_cnt   <= (others => '0'); 
    s_reg   <= (others => '0'); 
     
   when m2_st => 
    dat_reg   <= shift_byte(w, l, dat_i, dat_reg); 
    if a_cnt =w/l - 1 then 
     a_cnt  <= (others => '0'); 
     acc_reg  <= shift_byte(n+w, w, dat_reg, acc_reg); 
    else 
     a_cnt  <= a_cnt + 1; 
    end if; 
     
   when e1_st => 
    dat_reg(w/l-1) <= dat_i; 
 
   when e2_st => 
    dat_reg   <= shift_byte(w, l, dat_i, dat_reg); 
    if a_cnt =w/l - 1 then 
     a_cnt  <= (others => '0'); 
     e_reg  <= shift_byte(n+w, w, dat_reg, e_reg); 



    else 
     a_cnt  <= a_cnt + 1; 
    end if; 
 
   when n1_st => 
    dat_reg(w/l-1) <= dat_i; 
 
   when n2_st => 
    dat_reg <= shift_byte(w, l, dat_i, dat_reg); 
    if a_cnt =w/l - 1 then 
     a_cnt <= (others => '0'); 
     n_reg <= shift_byte(n+w, w, dat_reg, n_reg); 
    else 
     a_cnt <= a_cnt + 1; 
    end if; 
     
   when k1_st => 
    dat_reg(w/l-1)<= dat_i; 
 
   when k2_st => 
    dat_reg <= shift_byte(w, l, dat_i, dat_reg); 
    if a_cnt = w/l - 1 then 
     a_cnt <= (others => '0'); 
     x_reg <= shift_byte(n+w, w, dat_reg, x_reg); 
    else 
     a_cnt <= a_cnt + 1; 
    end if; 
 
-- Até aqui la legal!!! 
 
   when op10_st => 
    m_reg  <= shift_byte(n+w, w, zero_sig , m_reg); 
    e_reg  <= shift_byte(n+w, w, zero_sig , e_reg); 
    n_reg  <= shift_byte(n+w, w, zero_sig , n_reg); 
    x_reg  <= shift_byte(n+w, w, zero_sig , x_reg); 
    acc_reg <= shift_byte(n+w, w, zero_sig , acc_reg); 
     
   when op11_st => 
    a_cnt  <= a_cnt + 1; 
    n_reg  <= rotate_byte(n+w, w, n_reg); 
    x_reg  <= rotate_byte(n+w, w, x_reg); 
 
   when op12_st => 
    if rdy_sig = '1' then 
     m_reg <= shift_byte(n+w, w, s_sig, m_reg);   
    else 
     if shx_sig = '1' then  
      acc_reg <= special_shift(n+w, p, acc_reg); 
     end if; 
    end if; 
 
   when op13_st => 
    if rdy_sig = '1' then 
     m_reg <= shift_byte(n+w, w, s_sig, m_reg); 
    else 
     a_cnt <= (others => '0'); 
    end if; 
 
   when op14_st => 
    a_cnt  <= a_cnt + 1; 
    m_reg  <= shift_byte(n+w, w, s_sub, m_reg); 
    if a_cnt < n/w + 1 then  
     n_reg <= rotate_byte(n+w, w, n_reg); 
    elsif a_cnt = n/w + 2 then  



     a_cnt <= (others => '0'); 
    end if; 
     
   when op21_st => 
    acc_reg <= set_array(n+w, w); 
 
   when op22_st => 
    a_cnt  <= a_cnt + 1; 
    n_reg  <= rotate_byte(n+w, w, n_reg); 
    x_reg  <= rotate_byte(n+w, w, x_reg); 
 
   when op23_st => 
    if rdy_sig = '1' then 
     x_reg  <= shift_byte(n+w, w, s_sig, x_reg); 
     acc_reg <= shift_byte(n+w, w, s_sig, acc_reg); 
    else 
     if shx_sig = '1' then  
      acc_reg <= special_shift(n+w, p, acc_reg); 
     end if; 
    end if; 
 
   when op24_st => 
    if rdy_sig = '1' then 
     x_reg  <= shift_byte(n+w, w, s_sig, x_reg);   
     acc_reg  <= shift_byte(n+w, w, s_sig, acc_reg); 
    else 
     a_cnt   <= (others => '0'); 
     b_cnt   <= (others => '1'); 
    end if; 
 
   when op25_st => 
    a_cnt   <= a_cnt + 1; 
    x_reg   <= shift_byte(n+w, w, s_sub, x_reg); 
    acc_reg   <= shift_byte(n+w, w, s_sub, acc_reg); 
    if a_cnt < n/w + 1 then  
     n_reg  <= rotate_byte(n+w, w, n_reg); 
    elsif a_cnt = n/w + 2 then  
     a_cnt  <= (others => '0'); 
    end if; 
 
   when op31_st => 
    a_cnt   <= a_cnt + 1; 
    n_reg   <= rotate_byte(n+w, w, n_reg); 
    x_reg   <= rotate_byte(n+w, w, x_reg); 
     
   when op32_st => 
    if rdy_sig = '1' then 
     x_reg  <= shift_byte(n+w, w, s_sig, x_reg); 
     acc_reg  <= shift_byte(n+w, w, s_sig, acc_reg); 
    else 
     if shx_sig = '1' then  
      acc_reg <= special_shift(n+w, p, acc_reg); 
     end if; 
    end if; 
 
   when op33_st => 
    if rdy_sig = '1' then 
     x_reg  <= shift_byte(n+w, w, s_sig, x_reg);   
     acc_reg  <= shift_byte(n+w, w, s_sig, acc_reg); 
    else 
     a_cnt  <= (others => '0'); 
    end if; 
 
   when op34_st => 



    a_cnt   <= a_cnt + 1; 
    x_reg   <= shift_byte(n+w, w, s_sub, x_reg); 
    acc_reg   <= shift_byte(n+w, w, s_sub, acc_reg); 
    if a_cnt < n/w + 1 then  
     n_reg  <= rotate_byte(n+w, w, n_reg); 
    elsif a_cnt = n/w + 2 then  
     a_cnt  <= (others => '0'); 
    end if; 
 
   when op41_st => 
    a_cnt   <= a_cnt + 1; 
    n_reg   <= rotate_byte(n+w, w, n_reg); 
    m_reg   <= rotate_byte(n+w, w, m_reg); 
 
   when op42_st => 
    if rdy_sig = '1' then 
     x_reg  <= shift_byte(n+w, w, s_sig, x_reg); 
     acc_reg  <= shift_byte(n+w, w, s_sig, acc_reg); 
    else 
     if shx_sig = '1' then  
      acc_reg <= special_shift(n+w, p, acc_reg); 
     end if; 
    end if; 
 
   when op43_st => 
    if rdy_sig = '1' then 
     x_reg  <= shift_byte(n+w, w, s_sig, x_reg);   
     acc_reg  <= shift_byte(n+w, w, s_sig, acc_reg); 
    else 
     a_cnt  <= (others => '0'); 
    end if; 
 
   when op44_st => 
    a_cnt   <= a_cnt + 1; 
    x_reg   <= shift_byte(n+w, w, s_sub, x_reg); 
    acc_reg   <= shift_byte(n+w, w, s_sub, acc_reg); 
    if a_cnt < n/w + 1 then  
     n_reg  <= rotate_byte(n+w, w, n_reg); 
    elsif a_cnt = n/w + 2 then  
     a_cnt  <= (others => '0'); 
    end if; 
 
   when op45_st => 
    b_cnt  <= b_cnt - 1; 
      
   when op51_st => 
    acc_reg   <= set_array(n+w, w); 
 
   when op52_st => 
    a_cnt   <= a_cnt + 1; 
    n_reg   <= rotate_byte(n+w, w, n_reg); 
    x_reg   <= rotate_byte(n+w, w, x_reg); 
 
   when op53_st => 
    if rdy_sig = '1' then 
     m_reg  <= shift_byte(n+w, w, s_sig, m_reg); 
    else 
     if shx_sig = '1' then  
      acc_reg <= special_shift(n+w, p, acc_reg); 
     end if; 
    end if; 
 
   when op54_st => 
    if rdy_sig = '1' then 



     m_reg  <= shift_byte(n+w, w, s_sig, m_reg);   
    else 
     a_cnt  <= (others => '0'); 
    end if; 
 
   when op55_st => 
    a_cnt   <= a_cnt + 1; 
    m_reg   <= shift_byte(n+w, w, s_sub, x_reg); 
    if a_cnt < n/w + 1 then  
     n_reg  <= rotate_byte(n+w, w, n_reg); 
    elsif a_cnt = n/w + 2 then  
     a_cnt  <= (others => '0'); 
    end if; 
 
   when op61_st => 
    a_cnt <= a_cnt + 1; 
    m_reg  <= shift_byte(l, m_reg); 
    s_reg <= m_reg(0)(l-1 downto 0); 
    rdy_ff <= '1';   
    
   when others => 
    null; 
  end case; 
  current_state <= next_state; 
 end if; 
end process; 
 
zero_sig<= (others => '0'); 
x_sig <= array2vector(acc_reg)(p-1 downto 0); 
 
mp_block: mp 
 generic map( 
  n => n, 
  w => w, 
  e => e, 
  p => p) 
 port map( 
  clk  => clk, 
  rst  => rst, 
  en_i => en_mp, 
  m_i  => n_reg(0), 
  y_i  => y_sig, 
  x_i  => x_sig, 
  rdy_o => rdy_sig, 
  shx_o => shx_sig, 
  s_o  => s_sig); 
 
sub_blk: sub 
 generic map(w => w) 
 port map( 
  clk  => clk, 
  rst  => rst, 
  en_i => en_sub, 
  a_i  => y_sig, 
  n_i  => n_reg(0), 
  s_o  => s_sub); 
 
y_sig <= m_reg(0) when (sel_fsm = '0') else 
            x_reg(0); 
 
rdy_o <= rdy_ff; 
dat_o <= s_reg; 
end rtl; 
 



-------------------------------------------------------------------------------- 
-- Autor  : Alcides Silveira Costa 
-- Bloco  : Montgomery Pipeline 
-------------------------------------------------------------------------------- 
library ieee; 
 use ieee.std_logic_1164.all; 
 use ieee.std_logic_unsigned.all; 
 
entity mp is 
 generic( 
  n : positive := 16; 
  w : positive := 8; 
  e : positive := 3; 
  p : positive := 2); 
 port( 
  -- Entradas 
  clk : in std_logic; 
  rst : in std_logic; 
  en_i : in std_logic; 
  m_i : in std_logic_vector(w-1 downto 0); 
  y_i : in std_logic_vector(w-1 downto 0); 
  x_i : in std_logic_vector(p-1 downto 0); 
   
  -- Saidas 
  rdy_o : out std_logic; 
  shx_o : out std_logic; 
  s_o : out std_logic_vector(w-1 downto 0)); 
end mp; 
 
architecture rtl of mp is 
-- Componentes 
component pe is 
 generic(w : positive := 1); 
 port( 
  clk : in std_logic; 
  rst : in std_logic; 
  en_i : in std_logic; 
  s_i : in std_logic_vector(w-1 downto 0); 
  m_i : in std_logic_vector(w-1 downto 0); 
  y_i : in std_logic_vector(w-1 downto 0); 
  x_i : in std_logic; 
  rdy_o : out std_logic; 
  s_o : out std_logic_vector(w-1 downto 0); 
  m_o : out std_logic_vector(w-1 downto 0); 
  y_o : out std_logic_vector(w-1 downto 0)); 
end component; 
 
-- Funções 
function log2(x: integer) return integer is 
 -- Funciona apenas para numero base 2 
 variable result : integer := 1; 
 variable aux : integer; 
 begin 
  aux := x; 
  if aux /= 1 then 
   while aux /= 2 loop 
    aux := aux/2; 
    result := result + 1;   
   end loop; 
  else 
   result := 0; 
  end if; 
 return result; 
end log2; 



 
-- FSM 
type states is (a_st, b_st, d_st, f_st, g_st); 
signal current_state, next_state: states; 
 
-- Registradores de amostragem, retardo e saida 
signal m_reg : std_logic_vector(w-1 downto 0); 
signal y_reg : std_logic_vector(w-1 downto 0); 
signal s_reg : std_logic_vector(w-1 downto 0); 
 
-- Registradores internos 
signal a_cnt : std_logic_vector(log2(n)-log2(p-1)-1 downto 0); 
signal b_cnt : std_logic_vector(log2(e-1) downto 0); 
 
-- Fios internos 
type array_of_wires is array (p downto 0) of std_logic_vector(w-1 downto 0); 
signal s_int : array_of_wires; 
signal m_int : array_of_wires; 
signal y_int : array_of_wires; 
signal en_int : std_logic_vector(p downto 0); 
 
-- Flip-flops 
signal rdy_ff : std_logic; 
signal shx_ff : std_logic; 
 
-- Sinais de selecao de multiplexadores 
signal sel_fsm  : std_logic_vector(1 downto 0); 
signal zero_sig : std_logic_vector(w-1 downto 0); 
 
begin 
zero_sig <= (others => '0'); 
 
type1_fsm: if n/w > 2 generate 
 process (current_state, rst, en_i, a_cnt, en_int(n mod p)) 
 begin 
  if (rst = '1') then 
   sel_fsm  <= "00"; 
   next_state  <= a_st; 
  else 
   case current_state is 
    when a_st => 
     sel_fsm  <= "00"; 
     if (en_i = '0') then 
      next_state <= a_st; 
     else     
      next_state <= b_st; 
     end if; 
 
    when b_st => 
     sel_fsm  <= "01"; 
     if (en_i = '1') then 
      next_state <= b_st; 
     else     
      if ((n/p - 1)/= 0) then 
       next_state <= d_st; 
      else     
       next_state <= f_st; 
      end if; 
     end if; 
 
    when d_st => 
     sel_fsm  <= "10"; 
     if (a_cnt /= (n/p)- 1) then 
      next_state <= d_st; 



     else     
      next_state <= f_st; 
     end if; 
 
    when f_st => 
     sel_fsm  <= "10"; 
     if (en_int(n mod p) = '1') then 
      next_state <= f_st; 
     else 
      next_state <= g_st; 
     end if;      
 
    when g_st => 
     sel_fsm  <= "10"; 
     if (en_int(n mod p) = '1') then 
      next_state <= g_st; 
     else 
      next_state <= a_st; 
     end if;      
 
    when others => 
     sel_fsm  <= "00"; 
     next_state <= a_st;    
   end case; 
  end if; 
 end process; 
end generate; 
 
------------------------------------------------------------------------------ 
 
type2_fsm: if n/w = 2 generate 
 process (current_state, rst, en_i, a_cnt, en_int(n mod p)) 
 begin 
  if (rst = '1') then 
   sel_fsm  <= "00"; 
   next_state  <= a_st; 
  else 
   case current_state is 
    when a_st => 
     sel_fsm  <= "00"; 
     if (en_i = '0') then 
      next_state <= a_st; 
     else     
      next_state <= b_st; 
     end if; 
 
    when b_st => 
     sel_fsm  <= "01"; 
     if (en_i = '1') then 
      next_state <= b_st; 
     else     
      if ((n/p - 1)/= 0) then 
       next_state <= d_st; 
      else     
       next_state <= f_st; 
      end if; 
     end if; 
 
    when d_st => 
     sel_fsm  <= "10"; 
     if (a_cnt /= (n/p)- 2) then 
      next_state <= d_st; 
     else     
      next_state <= f_st; 



     end if; 
 
    when f_st => 
     sel_fsm  <= "10"; 
     if (en_int(n mod p) = '1') then 
      next_state <= f_st; 
     else 
      next_state <= g_st; 
     end if;      
 
    when g_st => 
     sel_fsm  <= "10"; 
     if (en_int(n mod p) = '1') then 
      next_state <= g_st; 
     else 
      next_state <= a_st; 
     end if;      
 
    when others => 
     sel_fsm  <= "00"; 
     next_state <= a_st;    
   end case; 
  end if; 
 end process; 
end generate; 
 
------------------------------------------------------------------------------ 
 
 process (clk) 
 begin 
  if clk'event and clk = '1' then   
   case current_state is 
    when a_st => 
     m_reg  <= m_i; 
     y_reg  <= y_i; 
     a_cnt   <= (others => '0'); 
     b_cnt   <= (others => '0'); 
     s_reg  <= (others => '0'); 
     shx_ff  <= '0'; 
     rdy_ff  <= '0'; 
      
    when b_st => 
     m_reg <= m_i; 
     y_reg <= y_i; 
     if (en_i = '0') then 
      shx_ff <= '1'; 
     end if; 
 
    when d_st => 
     if (b_cnt /= e) then 
      b_cnt  <= b_cnt + 1; 
      shx_ff <= '0'; 
     else     
      a_cnt  <= a_cnt + 1; 
      b_cnt  <= (others => '0'); 
      shx_ff <= '1'; 
     end if; 
 
    when f_st => 
     a_cnt  <= (others => '0'); 
     b_cnt  <= (others => '0'); 
     shx_ff <= '0'; 
 
    when g_st => 



     m_reg <= m_i; 
     y_reg <= y_i; 
     s_reg <= s_int(n mod p); 
     rdy_ff <= en_int(n mod p); 
 
    when others => 
     null; 
   end case; 
   current_state <= next_state; 
  end if; 
 end process; 
 
MontgomeryPipeline: for k in 0 to p-1 generate 
 MP: pe 
 generic map(w) 
 port map( 
  clk => clk, 
  rst => rst, 
  en_i => en_int(k), 
  s_i => s_int(k), 
  m_i => m_int(k), 
  y_i => y_int(k), 
  x_i => x_i(k), 
  rdy_o => en_int(k+1), 
  s_o => s_int(k+1), 
  m_o => m_int(k+1), 
  y_o => y_int(k+1)); 
end generate; 
 
 en_int(0) <= '0'  when (sel_fsm = "00") else 
    '1'  when (sel_fsm = "01") else 
              en_int(p); 
 
 s_int(0) <= zero_sig when (sel_fsm = "00") else 
              zero_sig when (sel_fsm = "01") else 
              s_int(p); 
       
 m_int(0) <= zero_sig when (sel_fsm = "00") else 
              m_reg  when (sel_fsm = "01") else 
              m_int(p); 
 
 y_int(0) <= zero_sig when (sel_fsm = "00") else 
              y_reg  when (sel_fsm = "01") else 
              y_int(p); 
 
shx_o <= shx_ff; 
rdy_o <= rdy_ff; 
s_o <= s_reg;  
end rtl; 
 
-------------------------------------------------------------------------------- 
-- Autor  : Alcides Silveira Costa 
-- Bloco  : Processing Element 
-------------------------------------------------------------------------------- 
library ieee; 
 use ieee.std_logic_1164.all; 
 use ieee.std_logic_unsigned.all; 
 
entity pe is 
 generic(w : positive := 4); 
 port( 
  -- Entradas 
  clk : in std_logic; 
  rst : in std_logic; 



  en_i : in std_logic; 
  s_i : in std_logic_vector(w-1 downto 0); 
  m_i : in std_logic_vector(w-1 downto 0); 
  y_i : in std_logic_vector(w-1 downto 0); 
  x_i : in std_logic; 
   
  -- Saidas 
  rdy_o : out std_logic; 
  s_o : out std_logic_vector(w-1 downto 0); 
  m_o : out std_logic_vector(w-1 downto 0); 
  y_o : out std_logic_vector(w-1 downto 0)); 
end pe; 
 
architecture rtl of pe is 
-- FSM 
type states is (A, B); 
signal current_state, next_state: states; 
 
-- Registradores de amostragem, retardo e/ou saida 
signal m_reg1 : std_logic_vector(w-1 downto 0);  
signal y_reg1 : std_logic_vector(w-1 downto 0);  
 
signal m_reg2 : std_logic_vector(w-1 downto 0);  
signal y_reg2 : std_logic_vector(w-1 downto 0);  
 
-- Registradores internos 
signal cs_reg1: std_logic_vector(w+1 downto 1);  
signal cs_reg2: std_logic_vector(w-1 downto 0);  
 
-- Fios internos 
signal wire_int1: std_logic_vector(w+1 downto 0);  
signal wire_int2: std_logic_vector(w+1 downto 0);  
 
-- Flip-flops 
signal s_ff : std_logic; 
signal x_ff : std_logic; 
signal en_ff1 : std_logic; 
signal en_ff2 : std_logic; 
 
-- Sinais de selecao de multiplexadores 
signal sel_a : std_logic;  
signal sel_b : std_logic;  
signal sel_c : std_logic;  
signal sel_x : std_logic;  
 
begin 
 
process (current_state, rst, en_i) 
begin 
 if (rst = '1') then 
  sel_b <= '0'; 
  sel_x <= '0'; 
  next_state  <= A; 
 else 
  case current_state is 
   when A => 
    sel_b <= '0'; 
    sel_x <= '0'; 
    if (en_i = '0') then 
     next_state <= A; 
    else     
     next_state <= B; 
    end if; 
 



   when B => 
    sel_b <= '1'; 
    sel_x <= '1'; 
    if (en_i = '1') then 
     next_state <= B; 
    else     
     next_state <= A; 
    end if; 
 
   when others => 
    sel_b <= '0'; 
    sel_x <= '0'; 
    next_state <= A;    
  end case; 
 end if; 
end process; 
 
process (clk) 
begin 
 if clk'event and clk = '1' then 
  cs_reg1 <= wire_int2(w+1 downto 1); 
  m_reg1 <= m_i; 
  y_reg1 <= y_i; 
  en_ff1 <= en_i; 
   
  case current_state is 
   when A => 
    x_ff <= x_i; 
    s_ff <= wire_int1(0); 
    cs_reg2 <= (others => '0'); 
    m_reg2 <= (others => '0'); 
    y_reg2 <= (others => '0'); 
    en_ff2 <= '0'; 
     
   when B => 
    cs_reg2 <= wire_int2(0) & cs_reg1(w-1 downto 1); 
    m_reg2 <= m_reg1; 
    y_reg2 <= y_reg1; 
    en_ff2 <= en_ff1; 
 
   when others => 
    null; 
     
   end case; 
  current_state <= next_state; 
 end if; 
end process; 
 
Mux_X: 
with sel_x select 
 sel_a <=  x_i when '0', 
             x_ff when '1', 
             x_i when others; 
 
Mux_A: 
with sel_a select 
 wire_int1<=  "00"&s_i       when '0', 
              ("00"&s_i) + ("00"&y_i) when '1', 
              "00"&s_i       when others; 
 
Mux_B: 
with sel_b select 
 sel_c <=  wire_int1(0 when '0', 
             s_ff  when '1', 



             wire_int1(0) when others; 
 
Mux_C: 
with sel_c select 
 wire_int2<= wire_int1 + cs_reg1(w+1 downto w)      when '0', 
             wire_int1 + cs_reg1(w+1 downto w) + ("00"&m_i) when '1', 
             wire_int1 + cs_reg1(w+1 downto w)      when others; 
 
 
rdy_o <= en_ff2; 
s_o  <= cs_reg2; 
m_o  <= m_reg2; 
y_o  <= y_reg2; 
end rtl; 
 
-------------------------------------------------------------------------------- 
-- Autor  : Alcides Silveira Costa 
-- Bloco  : Subtrator em pipeline 
-------------------------------------------------------------------------------- 
library ieee; 
 use ieee.std_logic_1164.all; 
 use ieee.std_logic_unsigned.all; 
 
entity sub is 
 generic(w : positive := 8); 
 port( 
  -- Entradas 
  clk : in std_logic; 
  rst : in std_logic; 
  en_i : in std_logic; 
  a_i : in std_logic_vector(w-1 downto 0); 
  n_i : in std_logic_vector(w-1 downto 0); 
   
  -- Saidas 
  s_o : out std_logic_vector(w-1 downto 0)); 
end sub; 
 
architecture rtl of sub is 
-- FSM 
type states is (a_st, b_st); 
signal current_state, next_state: states; 
 
-- Registradores internos 
signal a_reg : std_logic_vector(w-1 downto 0); 
signal n_reg : std_logic_vector(w-1 downto 0); 
signal s_reg : std_logic_vector(w-1 downto 0); 
signal carry_ff : std_logic; 
 
-- Sinais internos 
signal s_sig : std_logic_vector(w downto 0); 
signal carry_sig: std_logic_vector(w-1 downto 1); 
 
begin 
 
process (current_state, rst, en_i) 
begin 
 if (rst = '1') then 
  next_state  <= a_st; 
 else 
  case current_state is 
   when a_st => 
    if (en_i = '0') then 
     next_state <= a_st; 
    else 



     next_state <= b_st; 
    end if; 
 
   when b_st => 
    if (en_i = '1') then 
     next_state <= b_st; 
    else 
     next_state <= a_st; 
    end if; 
 
   when others => 
    next_state <= a_st;    
  end case; 
 end if; 
end process; 
 
process (clk) 
begin 
 if clk'event and clk = '1' then 
  a_reg  <= a_i; 
  n_reg  <= n_i; 
  case current_state is 
   when a_st => 
    carry_ff <= '0'; 
    s_reg  <= (others => '0'); 
         
   when b_st => 
    carry_ff <= s_sig(w); 
    s_reg   <= s_sig(w-1 downto 0); 
     
   when others => 
    null; 
     
   end case; 
  current_state <= next_state; 
 end if; 
end process; 
 
carry_sig <=  (others => '0'); 
s_sig   <=  ('0'&a_reg) - ('0'&n_reg) - ('0'&carry_sig&carry_ff); 
s_o   <= s_reg; 
end rtl; 
 


