

Trabalho de Diplomação
Resumo

Dezembro de 2004

Título: Implementação de um co-processador RSA
Orientador: André Inácio Reis
Co-orientador: Renato Perez Ribas
Aluno: Alcides Silveira Costa
Matrícula: 0069/99-1

Nota

Este trabalho foi realizado no primeiro ano de existência do projeto BRAFITEC-PAGINER,
coordenado pelo Prof. Dr. Cláudio F. R. Geyer e com o objetivo de promover o intercâmbio
acadêmico entre alunos de engenharia de computação da UFRGS e estudantes de engenharia do INPG
– Institut National Polytechnique de Grenoble (França).

Durante o período de agosto de 2003 a junho de 2004, cursei o último ano do curso de Engenharia de
Telecomunicações em Grenoble, o qual é composto por duas etapas: um semestre de disciplinas e um
semestre de estágio em uma empresa ou laboratório da universidade.

Na segunda etapa, realizei meu estágio no laboratório de pesquisas TIMA, onde desenvolvi, durante
quatro meses, meu projeto de final de estudos. Regressando ao Brasil, propus continuar com meu
trabalho, realizando, assim, uma obra um pouco diferenciada. Logo, este trabalho divide-se em duas
partes: uma feita no Brasil e escrita em português (este resumo) e outra feita na França e escrita em
inglês. Além disso, no final da versão inglesa encontram-se as transparências e o código em VHDL
apresentado para a banca avaliadora do meu projeto no Brasil.

Porto Alegre, 05 de janeiro de 2005.

Alcides Silveira Costa.

Introdução à versão brasileira

O presente trabalho tem por finalidade continuar com o projeto de final de estudos desenvolvido na
França, INPG – Départment Télécommunications através do programa CAPES/BRAFITEC. Realizado
no TIMA Laboratory sob orientação do Professor Régis Leveugle (PhD em microeletrônica – INP
Grenoble) durante o período de fevereiro de 2004 até junho de 2004, foi avaliado por Jean-Louis Roch
(PhD em Matemática Aplicada - Université Joseph Fourrier de Grenoble), obtendo nota final 14/20.

O tema proposto era o desenvolvimento em VHDL de um coprocessador criptográfico utilizando o
algoritmo RSA [4]. Devido à complexidade do problema em manipular números de alta ordem, muito
tempo foi despendido em busca de uma arquitetura capaz de executar o algoritmo em um tempo
plausível. Várias arquiteturas foram estudadas e, após profunda análise, optamos por implementar
uma arquitetura com seu núcleo baseado em pipeline [26]. Ao final do tempo de projeto, terminamos
e validamos por meio de simulações a implementação de um módulo que realizava a multiplicação
Montgomery [18].

De volta à UFRGS, venho propor a implementação do algoritmo de cifragem/decifragem RSA, sem o
processo de geração de chaves. Isto foi definido pelo fato de sabermos que a geração de chaves pode
ser feita via software. Além do mais, o processo de geração de chaves é realizado apenas uma vez, não
havendo necessidade real de um hardware dedicado para isto. Logo, este documento relata o esforço
no desenvolvimento final do hardware, sem preocupar-se com o processo de geração de chaves.

A estrutura desse trabalho está organizada da seguinte forma: este resumo apresenta, na primeira
parte, uma síntese do trabalho realizado na França. Após, adicionou-se os resultados adquiridos na
UFRGS. A versão detalhada com conceitos sobre o RSA, algoritmos de implementação estudados,
diferentes arquiteturas e resultados anteriores está em inglês e anexada ao final deste documento.
Maiores detalhes podem ser encontrados e serão referenciados no decorrer do texto.

Resumo
Síntese da versão inglesa
O surgimento da internet mudou radicalmente a maneira pela qual as pessoas trocam informações.
Devido à sua crescente popularidade, aplicações como correio eletrônico, clientes de mensagens
instantâneas, comércio eletrônico, transações bancárias e compras on-line estão se tornando parte de
nossas vidas. Serviços como SMS e WAP estão crescendo em popularidade também. Entretanto, toda
essa informação está sujeita a escuta. Uma pessoa pode interceptar sua informação se o sistema não
prover mecanismos de segurança adequados para seus usuários. Tentando evitar problemas como
estes, criptosistemas devem ser usados quando uma comunicação segura for necessária.

Criptografia é muito mais que apenas codificar e decodificar mensagens. Quando analisamos o mundo
eletrônico, autenticação e identificação também são necessárias. Por exemplo, utilizamos autenticação
a cada dia em nossas vidas, assinando documentos, cheques, etc. Entretanto, quando movemos para
um mundo onde nossas decisões são tomadas eletronicamente, precisamos dispor de técnicas
apropriadas.

Observando esse problema, Ronald Rivest, Adi Shamir, and Leonard Adleman desenvolveram em
1978 o criptosistema RSA (Rivest, Shamir, Adleman) [4]: um sistema de chave pública que permite
tanto cifragem quanto assinaturas digitais (autenticação).

Em sistemas de chave pública, cada usuário possui um par de chaves. A chave pública é, obviamente,
deixada pública enquanto a chave privada é mantida em segredo. A cifragem é realizada com a chave
pública enquanto a decifragem é feita com a chave privada. A assinatura de um documento é realizada
com a chave privada enquanto a autenticação é feita com a chave pública. Melhores detalhes sobre o
funcionamento de sistemas de chave pública, como o RSA, podem ser encontrados na versão inglesa,
seção 2, Understanding Public-key Cryptosystems.

O algoritmo de cifragem RSA é simples e está descrito na seção 3, The RSA Cryptosystem. Sendo a
chave pública definida pelo par de números positivos (e, n) e, similarmente, a chave privada definida
pelo par (d, n), temos

para a cifragem de uma mensagem M e

para realizar a decifragem de uma mensagem cifrada C.

Apesar de simples, o algoritmo envolve números de altíssima ordem (atualmente, M, e, n e d devem
ser de, pelo menos, 1024 bits de tamanho, conforme [8]). Essa ordem de grandeza surge do fato que a
segurança do RSA está baseada na dificuldade de fatorar grandes números: as chaves são calculadas
matematicamente combinando dois números primos de alta ordem. Mesmo conhecendo-se o produto
desses números primos (que faz parte da chave pública divulgada, n), a segurança do algoritmo é
garantida pela complexidade de fatorar esse produto e se obter os valores secretos.

Sendo assim, a implementação desse algoritmo em hardware torna-se desafiadora, pois o problema
concentra-se em encontrar uma forma de realizar uma exponenciação modular rapidamente.

Para um melhor entendimento do algoritmo, robusteza, tamanho das chaves e um simples exemplo
mostrando sua funcionalidade, refira-se à versão inglesa, seção 3, The RSA Cryptosystem.

Vários algoritmos foram estudados para resolver esse problema [7, 14-18, 20, 24]. Dentre eles, foi
escolhido o método de exponenciação de Montgomery [7] (seção 4.1.2), utilizando o método de
multiplicação de Montgomery [18]. Mesmo assim, três arquiteturas diferentes também foram
analisadas, todas sugerindo maneiras diferentes de executar o RSA. Estas eram: arquiteturas em
pipeline [16], arquiteturas baseadas em CRT [15] e arquiteturas baseadas em RNS [17]. Após análise,
foram tiradas as seguintes conclusões.

)(mod)(nMMEC e{{

)(mod)(nCCDM d{{

Arquiteturas baseadas em CRT

Apresentam falha de segurança, deixando margem para o atacante. Como os fatores p e q, necessários
para a geração das chaves não são destruídos (são mantido dentro do chip), o atacante pode decifrá-los
através de um método de ataque por hardware [19]. Entretanto, essas arquiteturas são as que
apresentam a solução mais rápida atualmente, pois dividem o cálculo da execução do RSA em duas
unidades de processamento com tamanho de dados reduzidos pela metade.

Arquiteturas baseadas em RNS

Convertendo números binários para um sistema de números diferente (RNS), uma arquitetura
altamente paralelizada pode ser implementada. Entretanto, estas não são adequadas para tamanhos de
chave pequena, pois os passos de conversão de binário para RNS e vice-versa consomem muito tempo
de processamento. Além do mais, sua complexidade de implementação é a maior dentre as três
arquiteturas propostas. Apresenta resultados satisfatórios quando o tamanho de chave é maior que
2048 bits.

Arquiteturas baseadas em Pipeline

Apesar de não apresentarem a mesma taxa de cifragem que as duas arquiteturas propostas
anteriormente, não apresentam problemas de segurança em sua estrutura e não são tão complexas.
Além do mais, sua taxa de cifragem de dados é mais que suficiente para muitas aplicações.

Optamos por implementar a arquitetura em pipeline, devido a sua simplicidade e eficiência. Maiores
detalhes sobre os algoritmos e as arquiteturas estudadas podem ser encontrados na seção 4 da versão
inglesa, Design Methods.

Depois de escolhida a arquitetura, partimos para a especificação do sistema, a qual pode ser vista na
seção 5. Abaixo, temos a estrutura de blocos do sistema.

Figura 1 –Diagrama de Blocos

Cabe salientar que a idéia inicial era a de codificar todo o algoritmo RSA em VHDL. Entretanto, esse
trabalho requer muito mais tempo de projeto. Perceba que vários blocos precisam ser implementados,
cada um com características diferentes. Por exemplo, um bloco de geração de números aleatórios
exige um tratamento totalmente diferente do bloco de testes de números primos. Logo, percebendo a
inviabilidade de implementarmos todo o sistema em tempo hábil, decidimos concentrar nosso foco na
unidade de exponenciação modular.

No final de quatro meses de trabalho, conseguimos terminar e validar por simulações um submódulo
da unidade de exponenciação modular – a multiplicação de Montgomery – utilizando uma estrutura

RSA
Coprocessor

µProcessor

IO Interface

Random
Number

Generator

Primality Test
Unit

Modular
Exponentiator

Bank of
Registers Main

Control
Unit

Key Generation
Unit

em pipeline. Algoritmos, softwares utilizados e desenvolvidos para a validação do módulo podem ser
analisados na seção 6 do documento em anexo.

Ao término do tempo de projeto, obtivemos um módulo totalmente parametrizável, podendo realizar
a multiplicação de Montgomery com qualquer tamanho de operando, pois este seria quebrado em
palavras definidas pelo usuário. Além disso, o trabalho foi escrito de maneira a conter ótimas
referências, dando oportunidade para aqueles que querem conhecer a área de criptografia uma ótima
introdução ao assunto.

Continuação
Trabalho realizado no Brasil
Chegando ao Brasil, foi proposta a continuação do trabalho com algumas restrições. Não seria
implementada a parte de geração de chaves RSA no trabalho: apenas a continuação do algoritmo de
exponenciação modular. Logo, tínhamos como meta implementar todos os blocos referentes a
cifragem/decifragem.

Adaptação ao novo ambiente, reescrita de código e revalidação

A primeira dificuldade encontrada foi o novo ambiente de desenvolvimento utilizado. Todo o projeto
tinha sido desenvolvido no Modelsim e sintetizado utilizando o Leonardo Spectrum da Mentor
Graphics. Agora, estávamos utilizando o Quartus II Web edition da Altera. Houve necessidade de
reescrita de código em alguns trechos devido a incompatibilidades encontradas no momento da
síntese. Além do mais, test benches desenvolvidos em VHDL não eram mais necessários, desde que o
ambiente da Altera utiliza waveforms para obter resultados de simulações. Logo, um certo tempo
inicial foi despendido no aprendizado da nova ferramenta.

Passada esta etapa inicial, revalidamos o Módulo de multiplicação de Montgomery no Quartus II e
extraímos os seus resultados. Conferimos com os resultados já adquiridos com o ModelSim (seção
6.1.1.1, IP Implementation) e todos fecharam. Entretanto, o trabalho original não descreve a
arquitetura interna dos blocos PE (processing element), apenas mostra uma arquitetura básica do
módulo de multiplicação modular (figura 4-3, versão inglês). Logo, detalharemos um pouco mais a
arquitetura do coprocessador neste trabalho, começando pela a organização interna de um PE.

Processing Element (PE)

A figura 2 representa a implementação das linhas 3 a 14 do algoritmo da seção 6.1.1. Note que s_ff
mantém o resultado da primeira soma (linha 3), o qual é usado para decidir se m_i (módulo) será
somado ao resultado nas outras iterações ou não.

Figura 2 – Processing Element

s_i

m_i

y_i

x_i

en_i

 +

 +

 +

0

w+1

2

1
0

w

s_o

y_o

m_o

rdy_o

w

w

w
w+1

w+2

s_ff

Além disso, há necessidade de um contador para controle do for loop nas linhas 6 e 11, pois este é
controlado pelo sinal de habilitação (en_i), que permanece ativo enquanto os dados de entrada forem
válidos. As operações de deslocamento (linhas 8 a 13) são realizadas no registrador mais próximo da
saída s_o.

Entretanto, o algoritmo de multiplicação Montgomery ainda não está pronto, pois este deve utilizar
vários PE para ser construído, conforme explicado a seguir.

Montgomery Multiplication Unit (MM)

Figura abaixo mostra a maneira como foi implementado o multiplicador de Montgomery.

Figura 3 – Montgomery Pipeline

Salientamos que o pipeline mostrado na figura acima é realimentado e que sua saída é totalmente
dependentes dos parâmetros p (número de unidades paralelas) e m (tamanho do módulo em bits).
Logo, existe um controle especial para determinar quando o resultado do pipeline deve ser copiado
para os registradores de saída. Outro sinal importante é o shx_o. Este indica quando o registrador x
(figura 4-3, versão inglês) deve ser deslocado.

Escolha do algoritmo de exponenciação modular

Finalmente chegamos ao momento de implementar o RSA propriamente dito. Vários algoritmos
foram estudados (seção 4, Design Methods). Entretanto, o que melhor se adaptou às nossas
necessidades foi o algoritmo apresentado logo abaixo, estudado no Brasil e extraído de [16].

Exponenciação de Montgomery

Entradas: kneM ,,,

Saída: neM mod

1. :M MonPro � �kM ,

2. :x MonPro � �k,1

3 for 1: � ki down to 0 do

0

en_sig(m mod p)

w-1

x_i

PE0

y_i

rdy_o

y_o

m_o m_i

s_o s_i

en_i

1

0

0

0

xp-1 x1 x0
s_sig(m mod p)

w-1
0

0

s_o

rdy_o

shx_o

m_i

y_i

PE1

y_i

rdy_o

y_o

m_o m_i

s_o s_i

en_i

PEp-1

y_i

rdy_o

y_o

m_o m_i

s_o s_i

en_i

4 :x MonPro � �xx,

5. if 1 ie then :x MonPro � �xM ,

6 :x MonPro � �1,x

7. return x

O parâmetro k é uma constante e deve ser pré-calculado, assim como as chaves. Ele vale nm mod22 ,
onde m equivale ao tamanho do módulo n em bits. Perceba, também, que o algoritmo usa somente a
unidade de multiplicação de Montgomery, não havendo necessidade de uma unidade especial para o
cálculo do algoritmo de Euclides, como proposto no algoritmo da seção 4.1.2.

O Coprocessador RSA

O coprocessador RSA desenvolvido também possui uma interface parametrizável onde os dados de
entrada são quebrados em palavras. Dessa forma, podemos carregar os dados para dentro do
coprocessador com uma palavra de tamanho l. Este tamanho independe do tamanho das palavras
internas ao coprocessador (barramento interno), ou seja, os cálculos internos são realizados com um
tamanho de palavra w. A figura abaixo ilustra a arquitetura interna do coprocessador RSA.

Figura 4 – Coprocessador RSA

Os registradores dat_reg, m_reg, x_reg e n_reg possuem n+w bits de tamanho. Este requisito é
necessário para o funcionamento do algoritmo de multiplicação (capítulo 6). Os registradores m_reg e
x_reg são rotacionadores de w bits e acc_reg é um registrador de deslocamento de p bits controlado
pelo sinal shx_o (MM). Além disso, acc_reg também serve de acumulador para resultados
intermediários.

Note que essas características permitem, por exemplo, sintetizar um coprocessador com uma
quantidade mínima de pinos. Este é o caso de muitos Smart Cards que são utilizados em transações
bancárias, onde o número de pinos não passa de oito.

 dat_o

rdy_o

dat_i

acc_reg

MM

y_i

x_i

s_o

m_i rdy_o

n_reg

e_reg

x_reg

m_reg

l w

dat_reg

l

w

w

m+w-1

m+w-1

m+w-1

m+w-1

m+w-1

0

0

0

0

0

w-1 0

0

w-1

shx_o

Problemas com o algoritmo MWR2MM

O algoritmo proposto por [26] e apresentado no capítulo 6 apresenta algumas falhas. Na
implementação do coprocessador RSA, foram descobertos alguns erros. Por exemplo, suponha o
seguinte problema:

Sendo n=13, M=6 e=5, calcule neMC mod .

Substituindo os valores, temos 2 C . Entretanto, se encontrarmos 15 C , este resultado não está
totalmente errado, já que .213mod15 C Ou seja, a maneira como foi implementado o algoritmo
MWR2MM, retorna, em alguns casos, um resultado fora do intervalo [0, n). Logo, um bloco de
correção deve ser adicionado na figura 4. Sua arquitetura é mostrada na figura abaixo.

Figura 5 – Subtrator em pipeline

Note que a correção é uma subtração entre o resultado fora do intervalo [0, n) e n. Para isso, os dados
de entrada são calculados, palavra a palavra, da mesma maneira que o cálculo da multiplicação
Montgomery. A nova arquitetura da figura 4, então, é mostrada na figura 6.

Figura 6 – Coprocessador RSA com correções

carry_ff

dat_i
 -

dat_o

rdy_o

n_i

w-1

0

w-1

0

w

 dat_o

rdy_o

dat_i

acc_reg

MM

y_i

x_i

s_o

m_i rdy_o

n_reg

e_reg

x_reg

m_reg

l w

dat_reg

l

w

m+w-1

m+w-1

m+w-1

m+w-1

m+w-1

0

0

0

0

0

w-1 0

0

w-1

shx_o

Subtrator
dat_i

n_i

dat_o

Resultados da Simulação

Sendo m o número de bits dos operandos, w o tamanho de uma palavra interna e l o tamanho do
barramento de dados de entrada, analisamos os seguintes casos:

Caso I: 2,4,8 lwm e 2562 mr

Para os dados de entrada, temos:

221,55,199,200 nedM e 120221mod2256mod2 nrk

E, em binário:

M = 11 00 10 00

e = 00 11 01 11 d = 11 00 01 11

n = 11 01 11 01 k = 01 11 10 00

Os dados devem ser inseridos da palavra menos significativa à mais significativa, necessariamente. A
ordem dos operandos deve ser: M/C, e/d, n e k. A figura abaixo mostra M, e, n, e k sendo carregados,
respectivamente, no coprocessador (carregados aos pares de bits). Note que um sinal de reset foi
inserido para inicializar o sistema.

Figura 7 – Simulação (entradas - M, e, n e k)

Transcorrido certo tempo, obtivemos o seguinte resultado:

Figura 8 – Simulação (resultado - C)

Ou seja, 2100010101221mod20055 bC . Carregando C, d, n, e k novamente nas entradas do

coprocessador, devemos obter M, a mensagem cifrada. As figuras a seguir ilustram esse processo.

Figura 9 – Simulação (entradas – C, d, n e k)

Figura 10 – Simulação (resultado – M)

20011001000221mod21199 bM . Deciframos a mensagem.

Caso II: 2,4,16 lwm e 655362 mr

Entrada: 41989,503,31247,18001 nedM e 3845341989mod265536mod2 nrk

Seguindo os mesmos passos da sistemática de testes do caso I, temos:

Figura 11 – Simulação (entradas - M, e, n e k)

Figura 12 – Simulação (resultado - C)

Figura 13 – Simulação (entradas – C, d, n e k)

Figura 14 – Simulação (resultado – M)

Novamente, os resultados confirmam a funcionalidade do coprocessador desenvolvido.

Resultados da Síntese

Sendo 32,1024 wm e 8 l , obtemos os seguintes resultados utilizando o sintetizador XST da
Xilinx e codificação one-hot:

Total de Registradores: 373

91 Flip-flops
1 Registrador de 10 bits
256 Registradores de 32 bits
17 Registradores de 34 bits
2 Registradores de 6 bits
6 Registradores de 8 bits

Total de Multiplexadores: 165
1 Multiplexador de 1 bit de 1056-para-1
164 Multiplexadores 2-para-1

Total de Somadores/Subtratores: 57

1 subtrator de 10 bits
17 somadores de 32 bits
2 subtratores de 33 bits
34 somadores de 24 bits
2 somadores de 6 bits
1 somador de 8 bits

Total de Comparadores: 2

2 Comparadores de 9 bits (menor igual)

Total de pinos de IO: 20

O dispositivo selecionado foi um Virtex Pro II (2vp100ff1696-6). Abaixo segue um relatório sobre o
total de recursos utilizados:

Number of Slices : 12829 out of 44096 (29%)
Number of Slice Flip Flops : 8977 out of 88192 (10%)
Number of 4 input LUTs : 22562 out of 88192 (25%)
Number of bonded IOBs : 19 out of 1164 (1%)
Number of GCLKs : 1 out of 16 (6%)

Freqüência máxima de operação : 99.636MHz

Caminho Crítico:

mp_block/current_state_FFd4 (FF) -> mp_block/MP0/cs_reg1_33 (FF)
Tempo: 6.863ns lógica e 3.174ns roteamento (68.4% lógica e 31.6% roteamento)

Sabendo que a equação do número de ciclos para a cifragem de m bits é dada por:

� �
p
mem

l
m

mcN ��� 2 e (melhor caso)

� � ¸̧
¹

·
¨̈
©

§
�����
w
m

p
mem

l
m

pcN 22 , (pior caso)

podemos estimar a taxa média de bits cifrados por segundo, o qual pode ser aproximada por:

sbitsm
mcNpcN

freq
cifragemT /24

2
#

�
�

 .

Como m=1024 nos nossos testes, obtivemos uma taxa média de cifragem de 24Kbits/s.

Interface do Coprocessador RSA

Para o funcionamento do IP, as seguintes medidas devem ser tomadas’:

Durante processo de síntese

- A largura do barramento de dados de entrada deve ser menor ou igual à do barramento de
dados internos lw t .

Durante o funcionamento

- Mensagem a ser cifrada deve ser menor que o módulo n;

- Módulo n deve permanecer entre o intervalo � �mm 2,2 1� ;

- Parâmetro k deve ser pré-calculado;

Abaixo segue uma tabela com os pinos de entrada e saída do coprocessador recém desenvolvido:

Nome do Pino Tamanho Direção Ativo Descrição
clk 1 entrada borda de subida Relógio do Sistema
en_i 1 entrada 1 lógico Habilita dados de entrada
dat_i L entrada - Dados de entrada (mensagem)
rdy_o 1 saída 1 lógico Indica dados válidos na saída
dat_o L saída - Dados de saída (mensagem cifrada)

Tabela 1 – descrição dos pinos do coprocessador RSA

Conclusão da versão brasileira

O presente trabalho mostrou diversos passos considerados no desenvolvimento de um coprocessador
RSA. Do aprendizado de um novo assunto até o resultado final, muitas decisões foram tomadas.

Apesar de existirem soluções mais rápidas, esta implementação garante a segurança dos dados cifrados,
pois não mantém internamente os fatores primos intermediários para acelerar o seu cálculo (CRT).
Apresentando apenas uma unidade de cálculo, a arquitetura desenvolvida tem a grande vantagem de
consumir menos recursos da arquitetura alvo, fato não verdadeiro em arquiteturas RNS.

Muitas dificuldades foram encontradas no decorrer do caminho: um assunto novo, uma arquitetura
desafiadora, um algoritmo problemático e ferramentas de desenvolvimento não disponíveis para o
desenvolvimento. Entretanto, chegamos ao final do tempo de projeto com um IP funcional e
reutilizável para qualquer tamanho de chave, pelo menos enquanto o RSA existir e for considerado
seguro.

Mesmo assim, ainda podemos realizar algumas melhorias no coprocessador. Por exemplo, atualmente
o IP não suporta que a largura do barramento de dados externo seja maior ou igual do que a largura do
barramento de dados interno (l >= w). Leituras após a validação do projeto [16], constataram que uma
melhoria no algoritmo pode levar a taxas de 50 Kb/s, não importando se for o melhor ou o pior caso.
Esta melhoria aconteceria com a duplicação dos recursos utilizados do dispositivo alvo. Além disso, o
coprocessador não aceita mensagens maiores que n e menores que r, uma precaução ainda não
tomada.

E, finalmente, apesar de existirem soluções mais rápidas, a velocidade de cifragem atingida neste
trabalho é mais que suficiente para muitas aplicações. Por exemplo, alguém utilizando uma Smart
Card para autorizar o débito em sua conta bancária, com certeza, não se importaria em esperar cinco
centésimos de segundo para assinar uma mensagem digitalmente. Em outro exemplo, podemos citar o
envio de informações telefônicas no início de uma chamada por celular (código do aparelho e número
do telefone do assinante), onde este tempo gasto não faria a menor diferença para o usuário (e o
protegeria da clonagem de seu aparelho).

Projet de fin d’étude

Rapport final

Juin 2004

Sujet: Implémentation d'un co-processeur RSA

Nom et prénom du responsable: Leveugle, Régis

Nom et prénom du tuteur de l’INPG: Jean-Louis, Roch

Nom, prénom et option de l’étudiant: Costa, Alcides, Architecture des Equipements

2

3

Résumé
Ce travail décrit la conception d'un co-processeur RSA. Les fondements des cryptosystèmes à clef
publique sont présentés, en montrant leur importance et leurs applications. L'algorithme RSA est
ensuite présenté et expliqué. Trois architectures différentes utilisées aujourd'hui pour
l'implémentation matérielle de cet algorithme sont ensuite étudiées et analysées: CRT, RNS et
l'architecture basée sur un pipeline. Des algorithmes arithmétiques existants sont également détaillés.
Après l'analyse des avantages et des inconvénients de chaque solution, nous avons décidé
d'implémenter une architecture pipeline qui calcule l'algorithme de multiplication de Montgomery.

Le circuit correspondant a été décrit en VHDL et simulé avec ModelSim. Les résultats obtenus ont
montré que l'architecture développée est entièrement fonctionnelle. Elle peut manipuler des
nombres de taille quelconque simplement en choisissant la taille des données du pipeline.
Finalement, nous pouvons réaliser un taux d'encryptage/décryptage d'environ 25 Kbits/s avec une
horloge de 80,9 Mhz et des entrées de 1024 bits.

4

5

Abstract
This work describes the design of a scalable RSA coprocessor. By introducing the basics of public-key
cryptosystems we provide a good background in cryptography, showing its importance and
applications. The RSA algorithm is presented and explained. Three different architectures used today
are studied and analyzed: CRT, RNS and Pipelined-based architectures. Existing arithmetic
algorithms are also covered. After realizing advantages and disadvantages of each solution we decided
to implement a pipelined-based architecture which computes the Montgomery Multiplication
algorithm.

By doing this, we coded this architecture in VHDL and simulated it with ModelSim. The results
obtained proved that the developed architecture is fully functional. It can manipulate any number of
bits simply by selecting the pipeline word size. Finally, with an 80.9 MHz clock and 1024-bit inputs,
we can achieve an encryption/decryption rate of about 25 Kb/s.

6

7

Contents

Introduction .. 9

1. A Glance at Cryptography .. 11
1.1. Concepts .. 11
1.2. Cryptography Applications .. 12

1.2.1. Secure Communication... 12
1.2.2. Identification and Authentication ... 12
1.2.3. Secret Sharing ... 12
1.2.4. Electronic Commerce ... 13
1.2.5. Certification .. 13
1.2.6. Key Recovery ... 13
1.2.7. Remote Access ... 13
1.2.8. Other Applications .. 13

1.3. Importance of Cryptography ... 13
1.3.1. Cryptography on the Internet .. 14
1.3.2. Authentication .. 14
1.3.3. Access Control.. 14

2. Understanding Public-key Cryptosystems ... 17
2.1. Public-key Cryptosystems .. 17

2.1.1. Encryption .. 17
2.1.2. Digital Signatures ... 17

2.2. Systems related to Public-key Cryptosystems .. 18
2.2.1. Secret-key Cryptosystem .. 18
2.2.2. Hash functions .. 18

2.3. Advantages and disadvantages of public-key cryptosystems ... 19
2.4. Some applications liked to Public-key Cryptosystems ... 19

2.4.1. Authentication and Digital Signature ... 19
2.4.2. Key agreement protocol.. 21
2.4.3. Digital Envelope ... 21
2.4.4. Identification... 21

3. The RSA Cryptosystem .. 23
3.1. The RSA algorithm .. 23

3.1.1. Encryption .. 23
3.1.2. Digital Signature ... 24

3.2. RSA Speed .. 24
3.3. RSA Robustness ... 24
3.4. Key sizes .. 25
3.5. A Simple Example .. 26

4. Design Methods ... 29
4.1. Modular Exponentiation Algorithms ... 29

4.1.1. Binary Exponentiation Method... 29
4.1.1.1. Interleaving multiplication and reduction .. 30
4.1.1.2. Restoring Division Algorithm ... 30
4.1.1.3. Nonrestoring Division Algorithm .. 31
4.1.1.4. Montgomery’s Multiplication Algorithm .. 32

4.1.2. Montgomery Exponentiation .. 33
4.2. RSA Architectures .. 34

4.2.1. CRT Based Architecture ... 34

8

4.2.2. RNS Based Architecture ... 36
4.2.3. Pipelined Architecture .. 38

4.3. Conclusions ... 39

5. Coprocessor IP Specification ... 41
5.1. IO Interface ... 41
5.2. Bank of Registers ... 42
5.3. Random Number Generator .. 42
5.4. Primality Test Unit .. 43
5.5. Key Generation Unit .. 43
5.6. Modular Exponentiator ... 44
5.7. Main Control Unit ... 44

6. IP Implementation .. 45
6.1. Multiple Word Raidx-2 Montgomery Multiplication Algorithm .. 45
6.2. Simulation Results ... 48
6.3. Synthesis Results .. 56

7. Conclusion ... 57

8. Bibliography.. 59

9

Introduction
The advent of the Internet has radically changed the way people exchange information. Due to its
growing popularity, applications like electronic mail, instant messengers, electronic commerce,
electronic banking, and online shopping are becoming part of our lives. Cell phones services like SMS
and WAP are growing in their popularity as well. However, all this information is vulnerable to
eavesdropping. A third party group may tap your information if the system doesn’t provide adequate
security for users. To avoid this problem, cryptographic algorithms are used when secure
communication is needed.

Since ancient times, cryptography has been used mainly for military purposes. Its first use dates back
to 1900 BC, when a scribe in Egypt used a derivation of the standard hieroglyphic of the day to
communicate [12]. However, the Roman emperor Julius Caesar is considered to be one of the first
people to have employed encryption for securing messages [11]. Caesar decided his standard
algorithm would shift each letter of the Roman alphabet a predetermined number of places. He
informed all of his generals of his decision. By following this example and shifting the contemporary
English alphabet over 3 places, a message like ZEBRA would be ciphered as CHEUD. Despite of being
an unbreakable cryptography system at that time, this system can be currently broken in a few
seconds.

Today’s cryptography is concerned with more than just encrypting and decrypting messages. When
we move to an electronic world, authentication and identification schemas are needed. Whenever we
log on a remote computer to access our bank account, or we shop online using our credit card, we are
subjected to eavesdropping and possibly forgery.

By observing this problem, Ronald Rivest, Adi Shamir, and Leonard Adleman developed in 1978 the
RSA (Rivest, Shamir, Adleman) cryptosystem [4]: a public-key cryptosystem that offers both
encryption and digital signatures (authentication).

Public key cryptosystems are not the only ones used in applications. Secret key cryptosystems and
elliptic curve cryptosystems are largely exploited as well. However, a detailed explanation about these
last cryptosystems is outside the scope of this work. Only cryptography tools associated to the RSA
cryptosystem will be discussed.

It’s not the purpose of this work to write lines of codes or draw pages of logic schematics. The
purpose of this work is to present the design of a RSA coprocessor and give a theoretical base to the
reader in the cryptography field. This allows interested parties to understand the project and proceed
with the work, if necessary. For this reason, the first three sections are reserved to give a good
background to the reader. The other sections will be reserved for the project itself, detailed below.

Section 1 provides a basic introduction to the field of cryptography. It gives a brief explanation about its
main concepts, some applications where it can be found, and its importance to the electronic world.

In section 2 public-key cryptosystems are covered. Also, two systems related to public-key
cryptosystems are introduced: secret-key cryptosystems and hash functions.

Section 3 approaches the RSA cryptosystem, explaining its algorithm in a very practical way.

Section 4 introduces some modular exponentiation algorithms used to compute RSA and how they
can be applied in digital systems. It presents and compares the three most used architectures found in
the literature today: CRT, RNS and Pipelined based architectures.

Section 5 specifies our proposed coprocessor organization in a block diagram form and its related
pinout interface.

Finally, in section 6 we describe the techniques used to implement some blocks introduced in the
section 5 and its results.

10

11

1. A Glance at Cryptography
This section provides the reader a basic introduction to the field of cryptography. It gives a brief
explanation about its main concepts, some applications where it can be found, and its importance to
the electronic world. This chapter was extracted from [1].

1.1. Concepts
Cryptography today might be summed up as the study of techniques and applications that depend on
the existence of difficult problems. We should also say that it is the science of using mathematics to
secure information and create a high degree of trust. Cryptanalysis is the study of how to compromise
(defeat) cryptographic mechanisms, and cryptology (from the Greek kryptos logos, meaning ‘‘hidden
word’’) is the discipline of cryptography and cryptanalysis combined. To most people, cryptography is
concerned with keeping communications private. Indeed, the protection of sensitive communications
has been the emphasis of cryptography throughout much of its history. However, this is only one part
of today’s cryptography.

Encryption is the transformation of data into a form that is as close as possible to an understandable
form of reading without the appropriate knowledge (a key; see below). Its purpose is to ensure
privacy by keeping information hidden from anyone who it is not allowed, even those who have
access to the encrypted data. Decryption is the reverse of encryption; it is the transformation of
encrypted data back into an intelligible form.

Encryption and decryption generally require the use of some secret information, referred to as a key.
For some encryption mechanisms, the same key is used for both encryption and decryption; for other
mechanisms, the key used for encryption and decryption is different. Data to be encrypted is called
Plaintext. Ciphertext is the encrypted data.

Today’s cryptography is more than encryption and decryption. Authentication is as fundamental as
privacy. We use authentication throughout our everyday lives (when we sign our name to some
document, for instance). As we move to a world where our decisions and agreements are
communicated electronically, we need to have electronic techniques for providing authentication.

Cryptography provides mechanisms for such procedures. A digital signature binds a document to the
possessor of a particular key, while a digital timestamp binds a document to its creation at a particular
time. These cryptographic mechanisms can be used to control access to a shared disk drive, a high
security installation, or a pay-per-view TV channel.

The field of cryptography encompasses other uses as well. With just a few basic cryptographic tools, it
is possible to build elaborate schemes and protocols that allow us to pay using electronic money, to
prove we know certain information without revealing the information itself, and to share a secret
quantity in such a way that a subset of the shares can reconstruct the secret.

While modern cryptography is growing increasingly diverse, cryptography is fundamentally based on
problems that are difficult to solve. A problem may be difficult because its solution requires some
secret knowledge, such as decrypting an encrypted message or signing some digital document
without the key. The problem may also be hard because it is intrinsically difficult to complete, such
as finding a message that produces a given hash value (explained in section 3.2.2).

An encryption system together with a corresponding decryption system is a cryptosystem [2]. Two
classes of cryptosystems are secret-key and public-key cryptosystems. In secret-key cryptosystems,
also referred to as symmetric cryptography, the same key is used for both encryption and decryption.
The most popular secret-key cryptosystem in use today is the Data Encryption Standard, also known
as DES.

In public-key cryptosystems, each user has a public key and a private key. The public key is made
public while the private key remains secret. Encryption is performed with the public key while
decryption is done with the private key. The RSA public-key cryptosystem is the most popular form

12

of public-key cryptography. RSA stands for Rivest, Shamir, and Adleman, the inventors of the RSA
cryptosystem.

The Digital Signature Algorithm (DSA) is also a popular public-key technique, though it can only be
used only for signatures, not encryption. Elliptic curve cryptosystems (ECCs) are cryptosystems based
on mathematical objects known as elliptic curves. Elliptic curve cryptography has been gaining in
popularity recently. Lastly, the Diffie-Hellman key agreement protocol is a popular public-key
technique for establishing secret keys over an insecure channel.

1.2. Cryptography Applications
Privacy is perhaps the most obvious application of cryptography. Cryptography can be used to
implement privacy simply by encrypting the information intended to remain private. In order for
someone to read this private data, one must first decrypt it.

There are a large number of applications in which it is being currently in use. For example, simple
cryptography systems can be used for secure communication, identification, authentication, and
secret sharing. However, more complicated applications include systems for electronic commerce,
certification, secure electronic mail, key recovery, and secure computer access. A better explanation
of these applications can be read in the next lines below.

1.2.1. Secure Communication

Secure communication is the most straightforward use of cryptography. Two people may
communicate securely by encrypting the messages sent between them. This can be done in such a
way that a third party eavesdropping may never be able to decipher the messages. While secure
communication has existed for centuries, the key management1 problem has prevented it from
becoming commonplace. Thanks to the development of public-key cryptography, it is possible to
create a large-scale network of people who can communicate securely with one another even if they
had never communicated before.

1.2.2. Identification and Authentication

Identification and authentication are two widely used applications of cryptography. Identification is
the process of verifying someone’s or something’s identity. For example, when you withdraw some
money from a bank, a teller asks you to see your identification (a drive’s license, for instance). By
doing this, he or she verifies the identity of the owner’s account (your identity). This same process
can be done electronically by using cryptography. Every automatic teller machine (ATM) card is
associated with a ‘‘secret’’ personal identification number (PIN), which binds the owner to the card
and thus to the account. When the card is inserted into the ATM, the machine prompts the
cardholder for the PIN. If the correct PIN is entered, the machine identifies that person as the
rightful owner and it grants him access. Another important application of cryptography is
authentication. Authentication is similar to identification, in that both allow an entity access to
resources (such as an Internet account), but authentication is broader because it does not necessarily
involve identifying a person or entity. Authentication merely determines whether that person or
entity is authorized for whatever is in question.

1.2.3. Secret Sharing

Another application of cryptography, called secret sharing, allows the trust of a secret to be
distributed among a group of people. For example, in a (k, n)-threshold scheme, information about a
secret is distributed in such a way that k-out of n people (k ≤ n) have enough information to
determine the secret, but any set of k - 1 people do not. In any secret sharing scheme, there are
designated sets of people whose cumulative information suffices to determine the secret. In some

1 The various processes that deals with the creation, distribution, authentication, and storage of keys.

13

implementations of secret sharing schemes, each participant receives the secret after it has been
generated. In other implementations, the actual secret is never made visible to the participants,
although the purpose for which they sought the secret (for example, access to a building or
permission to execute a process) is allowed.

1.2.4. Electronic Commerce

Over the past few years there has been a growing amount of business conducted over the Internet.
This form of business is called electronic commerce or e-commerce. E-commerce is comprised of
online banking, online brokerage accounts, and Internet shopping, to name a few of the many
applications. One can book plane tickets, make hotel reservations, rent a car, transfer money from
one account to another, buy compact disks (CDs), clothes, books and so on all while sitting in front of
a computer. However, simply entering a credit card number on the Internet leaves one open to fraud.
One cryptographic solution to this problem is to encrypt the credit card number (or other private
information) when it is entered online, another is to secure the entire session. When a computer
encrypts this information and sends it out on the Internet, it is incomprehensible to a third party
viewer. The web server (‘‘Internet shopping center’’) receives the encrypted information, decrypts it,
and proceeds with the sale without fear that the credit card number (or other personal information)
slipped into wrong hands. As more and more business is conducted over the Internet, the need for
protection against fraud, theft, and corruption of vital information increases.

1.2.5. Certification

Another application of cryptography is certification. Certification is a scheme by which trusted
agents such as certifying authorities vouch for unknown agents, such as users. The trusted agents
issue vouchers called certificates which each have some inherent meaning. Certification technology
was developed to make identification and authentication possible on a large scale.

1.2.6. Key Recovery

Key recovery is a technology that allows a key to be revealed under certain circumstances without
the owner of the key revealing it. This is useful for two main reasons: first of all, if a user loses or
accidentally deletes his or her key, key recovery could prevent a disaster. Secondly, if a law
enforcement agency wishes to eavesdrop on a suspected criminal without the suspect’s knowledge
(akin to a wiretapping) the agency must be able to recover the key. Key recovery techniques are in
use in some instances. However, the use of key recovery as a law enforcement technique is somewhat
controversial.

1.2.7. Remote Access

Secure remote access is another important application of cryptography. The basic system of passwords
certainly gives a level of security for secure access, but it may not be enough in some cases. For
instance, passwords can be eavesdropped, forgotten, stolen, or guessed. Many products supply
cryptographic methods for remote access with a higher degree of security.

1.2.8. Other Applications

Cryptography is not confined to the world of computers. Cryptography is also used in cellular
(mobile) phones as a means of authentication, that is, it can be used to verify that a particular phone
has the right to bill to a particular phone number. This prevents people from stealing (‘‘cloning’’)
cellular phone numbers and access codes. Another application is to protect phone calls from
eavesdropping using voice encryption.

1.3. Importance of Cryptography
Cryptography allows people to transfer to an account the confidence found in the physical world to
the electronic world, thus allowing people to do business electronically without worries of deceit and

14

deception. Every day hundreds of thousands of people interact electronically, whether it is through
e-mail, e-commerce, ATM machines, or cellular phones. The constant increase of information
transmitted electronically has lead to an increased reliance on cryptography.

1.3.1. Cryptography on the Internet

The Internet, comprised of millions of interconnected computers, allows nearly instantaneous
communication and transfer of information, around the world. People use e-mail to correspond with
one another. The World Wide Web is used for online business, data distribution, marketing,
research, learning, and a myriad of other activities.

Cryptography makes secure web sites and electronic safe transmissions possible. For a web site to be
secure all of the data transmitted between the computers where the data is kept and where it is
received must be encrypted. This allows people to do online banking, online trading, and make
online purchases with their credit cards, without worrying that any of their account information is
being compromised. Cryptography is very important to the continued growth of the Internet and
electronic commerce.

E-commerce is increasing at a very rapid rate. By the turn of the century, commercial transactions on
the Internet are expected to total hundreds of billions of dollars a year. This level of activity could not
be supported without cryptographic security. It has been said that one is safer using a credit card over
the Internet than within a store or restaurant. It requires much more work to capture credit card
numbers over computer networks than it does to simply walk by a table in a restaurant and take a
credit card receipt. These levels of security, though not yet widely used, give the means to strengthen
the foundation with which e-commerce can grow.

People use e-mail to conduct personal and business matters on a daily basis. E-mail has no physical
form and may exist electronically in more than one place at a time. This poses a potential problem as
it increases the opportunity for an eavesdropper to catch the transmission. Encryption protects e-mail
by rendering it very difficult to read by any unintended party. Digital signatures can also be used to
authenticate the origin and the content of an e-mail message.

1.3.2. Authentication

In some cases cryptography allows you to have more confidence in your electronic transactions than
you do in real life transactions. For example, signing documents in real life still leaves one vulnerable
to the following scenario. After signing your will, agreeing to what is put forth in the document,
someone can change that document and your signature is still attached. In the electronic world this
type of falsification is much more difficult because digital signatures are built using the contents of
the document being signed.

1.3.3. Access Control

Cryptography is also used to regulate access to satellite and cable TV. Cable TV is set up so people can
watch only the channels they pay for. Since there is a direct line from the cable company to each
individual subscriber’s home, the Cable Company will only send those channels that are paid for.
Many companies offer pay-per-view channels to their subscribers. Pay-per-view cable allows cable
subscribers to ‘‘rent’’ a movie directly through the cable box. What the cable box does is decode the
incoming movie, but not until the movie has been ‘‘rented.’’ If a person wants to watch a pay-per-
view movie, he/she calls the cable company and requests it. In return, the Cable Company sends out a
signal to the subscriber’s cable box, which unscrambles (decrypts) the requested movie.

Satellite TV works slightly differently since the satellite TV companies do not have a direct
connection to each individual subscriber’s home. This means that anyone with a satellite dish can
pick up the signals. To alleviate the problem of people getting free TV, they use cryptography. The
trick is to allow only those who have paid for their service to unscramble the transmission; this is
done with receivers (‘‘unscramblers’’). Each subscriber is given a receiver; the satellite transmits

15

signals that can only be unscrambled by such a receiver. Pay-per-view works in essentially the same
way as it does for regular cable TV.

As seen, cryptography is widely used. Not only is it used over the Internet, but also it is used in
phones, televisions, and a variety of other common household items. Without cryptography, hackers
could get into our e-mail, listen in on our phone conversations, tap into our cable companies and
acquire free cable service, or break into our bank accounts.

16

17

2. Understanding Public-key Cryptosystems
This section gives more details about public-key cryptosystems, providing more information about
the concepts involved in cryptography. Two systems related to public-key cryptosystems are
introduced; secret-key cryptosystems and hash functions. These systems are introduced because they
can be found in many applications using public-key cryptosystems (section 3.4). Also, a comparison
between secret-key cryptosystems and public-key cryptosystem is written.

This chapter was extracted from [1].

2.1. Public-key Cryptosystems
In traditional cryptography, the sender and receiver of a message know and use the same secret key.
The sender uses the secret key to encrypt the message, and the receiver uses the same secret key to
decrypt the message. This method is known as secret key or symmetric cryptography. The main
challenge is getting the sender and receiver to agree on the secret key without anyone else finding
out. If they are in separate physical locations, they must trust a courier, a phone system, or some
other transmission medium to prevent the disclosure of the secret key. Anyone who overhears or
intercepts the key in transit can later read, modify, and forge all messages encrypted or authenticated
using that key. The generation, transmission and storage of keys is called key management. All
cryptosystems must deal with key management issues. Because all keys in a secret-key cryptosystem
must remain secret, secret-key cryptography often has difficulty providing secure key management,
especially in open systems with a large number of users.

In order to solve the key management problem, Whitfield Diffie and Martin Hellman introduced the
concept of public-key cryptosystems in 1976 [3]. Public-key cryptosystems have two primary uses,
encryption and digital signatures. In their system, each person gets a pair of keys, one called the
public key and the other called the private key. The public key is published, while the private key is
kept secret. The need for the sender and receiver to share secret information is eliminated: all
communications involve only public keys, and no private key is ever transmitted or shared. In this
system, it is no longer necessary to trust the security of some means of communications. The only
requirement is that public keys be associated with their users in a trusted (authenticated) manner (for
instance, in a trusted directory). Anyone can send a confidential message by just using public
information, but the message can only be decrypted with a private key, which is in the sole
possession of the intended recipient. Furthermore, public-key cryptography can be used not only for
privacy (encryption), but also for authentication (digital signatures) and other various techniques.

In a public-key cryptosystem, the private key is always linked mathematically to the public key.
Therefore, it is always possible to attack a public-key system by deriving the private key from the
public key. Typically, the defense against this is to make the problem of deriving the private key from
the public key as difficult as possible. For instance, some public-key cryptosystems are designed such
that deriving the private key from the public key requires the attacker to factor a large number, in
such a way that it is computationally infeasible to perform the derivation. This is the idea behind the
RSA public-key cryptosystem.

2.1.1. Encryption

When Alice wishes to send a secret message to Bob, she looks up Bob’s public key in a directory, uses
it to encrypt the message and sends it off. Bob then uses his private key to decrypt the message and
read it. No one listening in can decrypt the message. Anyone can send an encrypted message to Bob,
but only Bob can read it (because only Bob knows Bob’s private key).

2.1.2. Digital Signatures

To sign a message, Alice does a computation involving both her private key and the message itself.
The output is called a digital signature and is attached to the message. To verify the signature, Bob

18

does a computation involving the message, the purported signature, and Alice’s public key. If the
result is correct according to a simple, prescribed mathematical relation, the signature is verified to be
genuine; otherwise, the signature is fraudulent, or the message may have been altered.

2.2. Systems related to Public-key Cryptosystems

2.2.1. Secret-key Cryptosystem

Secret-key cryptosystems is sometimes referred to as symmetric cryptography. It is the more
traditional form of cryptography, in which a single key can be used to encrypt and decrypt a message.
Secret-key cryptography not only deals with encryption, but it also deals with authentication. One
such technique is called message authentication codes.

The main problem with secret-key cryptosystems is getting the sender and receiver to agree on the
secret key without anyone else finding out. This requires a method by which the two parties can
communicate without fear of eavesdropping.

Public-key cryptography has come to overcome this deficiency of secret-key cryptosystems by
establishing secure means for sending keys in a trusted way. Public-key cryptography is not meant to
replace secret-key cryptography, but rather to supplement it, to make it more secure (see key
agreement protocol, 3.4.2). Secret-key cryptography remains extremely important and is the subject
of much ongoing study and research.

2.2.2. Hash functions

A hash function H is a transformation that takes an input m and returns a fixed-size string, which is
called the hash value h (that is, h = H(m)). Hash functions with just this property have a variety of
general computational uses, but when employed in cryptography, the hash functions are usually
chosen to have some additional properties.

The basic requirements for a cryptographic hash function are as follows.

x The input can be of any length.

x The output has a fixed length.

x H(x) is relatively easy to compute for any given x.

x H(x) is one-way.

x H(x) is collision-free.

A hash function H is said to be one-way if it is hard to invert, where ‘‘hard to invert’’ means that
given a hash value h, it is computationally infeasible to find some input x such that H(x) = h. If, given
a message x, it is computationally infeasible to find a message y not equal to x such that H(x) = H(y),
then H is said to be a weakly collision-free hash function. A strongly collision-free hash function H is
one for which it is computationally infeasible to find any two messages x and y such that H(x) = H(y).

The hash value represents concisely the longer message or document from which it was computed;
this value is called the message digest. One can think of a message digest as a ‘‘digital fingerprint’’ of
the larger document. Examples of well known hash functions are MD2 and MD5 and SHA.

Perhaps the main role of a cryptographic hash function is in the provision of message integrity checks
and digital signatures. Since hash functions are generally faster than encryption or digital signature
algorithms, it is typical to compute the digital signature or integrity check to some document by
applying cryptographic processing to the document’s hash value, which is small compared to the
document itself. Additionally, a digest can be made public without revealing the contents of the
document from which it is derived.

Note that sometimes information is not supposed to be accessed by anyone, and in these cases, the
information may be stored in such a way that reversing the process is virtually impossible. For

19

instance, on a typical multi-user system, no one is supposed to know the list of passwords of everyone
on the system. Often hash values of passwords are stored instead of the passwords themselves. This
allows the users of the system to be confident their private information is actually kept private while
still enabling an entered password to be verified (by computing its hash and comparing that result
against a stored hash value). This scheme is applied in the widely used operating system UNIX [2]

2.3. Advantages and disadvantages of public-key cryptosystems
The primary advantage of public-key cryptography is increased security and convenience: private
keys never need to be transmitted or revealed to anyone. In a secret-key system, by contrast, the
secret keys must be transmitted (either manually or through a communication channel) since the
same key is used for encryption and decryption. A serious concern is that there may be a chance that
an enemy can discover the secret key during transmission.

Another major advantage of public-key systems is that they can provide digital signatures that cannot
be repudiated. Authentication via secret-key systems requires the sharing of some secret and
sometimes requires trust of a third party as well. As a result, a sender can repudiate a previously
authenticated message by claiming the shared secret was somehow compromised by one of the
parties sharing the secret. For example, there are secret-key authentication systems involving a
central database that keeps copies of the secret keys of all users; an attack on the database would
allow widespread forgery. Public-key authentication, on the other hand, prevents this type of
repudiation; each user has sole responsibility for protecting his or her private key. This property of
public-key authentication is often called non-repudiation.

A disadvantage of using public-key cryptography for encryption is speed. There are many secret-key
encryption methods that are significantly faster than any currently available public-key encryption
method. Nevertheless, public-key cryptography can be used with secret-key cryptography to get the
best of both worlds. For encryption, the best solution is to combine public- and secret-key systems in
order to get both the security advantages of public-key systems and the speed advantages of secret-
key systems. Such a protocol is called a digital envelope (section 3.4.3).

Public-key cryptography may be vulnerable to impersonation, even if users’ private keys are not
available. A successful attack on a certification authority will allow an adversary to impersonate
whomever he or she chooses by using a public-key certificate from the compromised authority to
bind a key of the adversary’s choice to the name of another user.

In some situations, public-key cryptography is not necessary and secret-key cryptography alone is
sufficient. These include environments where secure secret key distribution can take place, for
example, by users meeting in private. It also includes environments where a single authority knows
and manages all the keys, for example, a closed banking system. Since the authority knows everyone’s
keys already, there is not much advantage for some to be ‘‘public’’ and others to be ‘‘private.’’ Note,
however, that such a system may become impractical if the number of users becomes large; there are
not necessarily any such limitations in a public-key system.

Public-key cryptography is usually not necessary in a single-user environment. For example, if you
want to keep your personal files encrypted, you can do so with any secret key encryption algorithm
using, say, your personal password as the secret key. In general, public-key cryptography is best
suited for an open multi-user environment.

2.4. Some applications liked to Public-key Cryptosystems

2.4.1. Authentication and Digital Signature

Authentication is any process through which one proves and verifies certain information. Sometimes
one may want to verify the origin of a document, the identity of the sender, the time and date a
document was sent and/or signed, the identity of a computer or user, and so on. A digital signature is
a cryptographic means through which many of these may be verified. The digital signature of a

20

document is a piece of information based on both the document and the signer’s private key. It is
typically created through the use of a hash function and a private signing function (encrypting with
the signer’s private key), but there are other methods.

Every day, people sign their names to letters, credit card receipts, and other documents,
demonstrating they are in agreement with the contents. That is, they authenticate that they are in
fact the sender or originator of the item. This allows others to verify that a particular message did
indeed originate from the signer. However, this is not foolproof, since people can ’lift’ signatures off
one document and place them on another, thereby creating fraudulent documents. Written
signatures are also vulnerable to forgery because it is possible to reproduce a signature on other
documents as well as to alter documents after they have been signed.

Digital signatures and hand-written signatures both rely on the fact that it is very hard to find two
people with the same signature. People use public-key cryptography to compute digital signatures by
associating something unique with each person. When public-key cryptography is used to encrypt a
message, the sender encrypts the message with the public key of the intended recipient. When
public-key cryptography is used to calculate a digital signature, the sender encrypts the ‘‘digital
fingerprint’’ of the document with his or her own private key. Anyone with access to the public key
of the signer may verify the signature.

Suppose Alice wants to send a signed document or message to Bob. The first step is generally to apply
a hash function to the message, creating what is called a message digest. The message digest is usually
considerably shorter than the original message. In fact, the job of the hash function is to take a
message of arbitrary length and shrink it down to a fixed length. To create a digital signature, one
usually signs (encrypts) the message digest as opposed to the message itself. This saves a considerable
amount of time, though it does create a slight insecurity (addressed below). Alice sends Bob the
encrypted message digest and the message, which she may or may not encrypt. In order for Bob to
authenticate the signature he must apply the same hash function as Alice to the message she sent
him, decrypt the encrypted message digest using Alice’s public key and compare the two. If the two
are the same he has successfully authenticated the signature. If the two do not match there are a few
possible explanations. Either someone is trying to impersonate Alice, the message itself has been
altered since Alice signed it or an error occurred during transmission.

There is a potential problem with this type of digital signature. Alice not only signed the message she
intended to but also signed all other messages that happen to hash to the same message digest. When
two messages hash to the same message digest it is called a collision; the collision-free properties of
hash functions are a necessary security requirement for most digital signature schemes. A hash
function is secure if it is very time consuming to figure out the original message given its digest.
However, there is an attack called the birthday attack that relies on the fact that it is easier to find
two messages that hash to the same value than to find a message that hashes to a particular value. Its
name arises from the fact that for a group of 23 or more people the probability that two or more
people share the same birthday is better than 50%.

In addition, someone could pretend to be Alice and sign documents with a key pair he claims is
Alice’s. To avoid scenarios such as this, there are digital documents called certificates that associate a
person with a specific public key.

Digital timestamps may be used in connection with digital signatures to bind a document to a
particular time of origin. It is not sufficient to just note the date in the message, since dates on
computers can be easily manipulated. It is better that timestamping is done by someone everyone
trusts, such as a certifying authority. There have been proposals suggesting the inclusion of some
unpredictable information in the message such as the exact closing share price of a number of stocks;
this information should prove that the message was created after a certain point in time.

21

2.4.2. Key agreement protocol

A key agreement protocol, also called a key exchange protocol, is a series of steps used when two or
more parties need to agree upon a key to use for a secret-key cryptosystem. These protocols allow
people to share keys freely and securely over any insecure medium, without the need for a
previously-established shared secret.

Suppose Alice and Bob want to use a secret-key cryptosystem to communicate securely. They first
must decide on a shared key. Instead of Bob calling Alice on the phone and discussing what the key
will do, which would leave them vulnerable to an eavesdropper; they decide to use a key agreement
protocol. By using a key agreement protocol, Alice and Bob may securely exchange a key in an
insecure environment. One example of such a protocol is called the Diffie-Hellman key agreement.
In many cases, public-key cryptography is used in a key agreement protocol. Another example is the
use of digital envelopes for key agreement.

2.4.3. Digital Envelope

When we are using secret-key cryptosystems, users must first agree on a session key, that is, a secret
key to be used for the duration of one message or communication session. In completing this task
there is a risk the key will be intercepted during transmission. This is part of the key management
problem. Public-key cryptosystems offers an attractive solution to this problem within a framework
called a digital envelope.

The digital envelope consists of a message encrypted using secret-key cryptography and an encrypted
secret key. While digital envelopes usually use public-key cryptography to encrypt the secret key,
this is not necessary. If Alice and Bob have an established secret key, they could use this to encrypt
the secret key in the digital envelope.

Suppose Alice wants to send a message to Bob using secret-key cryptography for message encryption
and public-key cryptography to transfer the message encryption key. Alice chooses a secret key and
encrypts the message with it, then encrypts the secret key using Bob’s public key. She sends Bob both
the encrypted secret key and the encrypted message. When Bob wants to read the message he
decrypts the secret key, using his private key, and then decrypts the message, using the secret key. In
a multi-addressed communications environment such as e-mail, this can be extended directly and
usefully. If Alice’s message is intended for both Bob and Carol, the message encryption key can be
represented concisely in encrypted forms for Bob and for Carol, along with a single copy of the
message’s content encrypted under that message encryption key.

Alice and Bob may use this key to encrypt just one message or they may use it for an extended
communication. One of the nice features about this technique is they may switch secret keys as
frequently as they would like. Switching keys often is beneficial because it is more difficult for an
adversary to find a key that is only used for a short period of time.

Not only do digital envelopes help solve the key management problem; they increase performance
(relative to using a public-key system for direct encryption of message data) without sacrificing
security. The increase in performance is obtained by using a secret-key cryptosystem to encrypt the
large and variably sized amount of message data, reserving public-key cryptography for encryption of
short-length keys. In general, secret-key cryptosystems are much faster than public-key
cryptosystems.

The digital envelope technique is a method of key exchange, but not all key exchange protocols use
digital envelopes.

2.4.4. Identification

Identification is a process through which one ascertains the identity of another person or entity. In
our daily lives, we identify our family members, friends, and coworkers by their physical properties,
such as voice, face or other characteristics. These characteristics, called biometrics, can only be used

22

on computer networks with special hardware. Entities on a network may also identify one another
using cryptographic methods.

An identification scheme allows Alice to identify herself to Bob in such a way that someone listening
in cannot pose as Alice later. One example of an identification scheme is a zero-knowledge proof.
Zero knowledge proofs allow a person (or a server, web site, etc.) to demonstrate they have certain
piece of information without giving it away to the person (or entity) they are convincing. Suppose
Alice knows how to solve the Rubik’s cube and wants to convince Bob she can without giving away
the solution. They could proceed as follows. Alice gives Bob a Rubik’s cube which he thoroughly
messes up and then gives back to Alice. Alice turns away from Bob, solves the puzzle and hands it
back to Bob. This works because Bob saw that Alice solved the puzzle, but he did not see the solution.

This idea may be adapted to an identification scheme if each person involved is given a ‘‘puzzle’’ and
its answer. The security of the system relies on the difficulty of solving the puzzles. In the case above,
if Alice were the only person who could solve a Rubik’s cube, then that could be her puzzle. In this
scenario Bob is the verifier and is identifying Alice, the prover.

The idea is to associate with each person something unique; something only that person can
reproduce. This in effect takes the place of a face or a voice, which are unique factors allowing people
to identify one another in the physical world.

Authentication and identification are different. Identification requires that the verifier check the
information presented against all the entities it knows about, while authentication requires that the
information be checked for a single, previously identified, entity. In addition, while identification
must, by definition, uniquely identify a given entity, authentication does not necessarily require
uniqueness. For instance, someone logging into a shared account is not uniquely identified, but by
knowing the shared password, they are authenticated as one of the users of the account. Furthermore,
identification does not necessarily authenticate the user for a particular purpose.

23

3. The RSA Cryptosystem
The present section approaches the RSA cryptosystem, explaining its algorithm in a very practical
way. It also covers its main characteristics like its speed compared to other secret-key cryptosystems,
its strength against attacks, and its security closely related to the key sizes. At the end of this section,
we have solved a very simple example using the RSA algorithm. The contents of sections 3.1 to 3.4
were estracted from [1, 4-5, 8-10].

3.1. The RSA algorithm
The RSA cryptosystem is a public-key cryptosystem that offers both encryption and digital signatures
(authentication). Ronald Rivest, Adi Shamir, and Leonard Adleman developed the RSA system in
1978; RSA stands for the first letter in each of its inventors’ last names.

The RSA algorithm works as described below:

First, compute n, where

(3.1.1)

and p and q should be two large prime numbers chosen randomly. The number n is called modulus.

Then, pick up an integer d to be a large, random integer which is relatively prime to (p–1)(q–1). That
is, check that d satisfies:

(3.1.2)

Here, gcd means “greatest common divisor”. Finally, compute another number e from p, q, and d to
be the multiplicative inverse of d modulo (p-1).(q-1). Thus we have

(3.1.3)

The encryption key is thus the pair of positive integers (e, n). Similarly, the decryption key is the pair
of positive integers (d, n). Each user makes his encryption key public, and keeps the corresponding
decryption key private (these integers should properly be subscripted as in nA, eA, and dA, since each
user has his own set).

Now, to encrypt a message M using a public encryption key (e, n), proceed as follows:

Represent the message as an integer between 0 and n – 1. If necessary, break a long message into a
series of blocks, and represent each block as such an integer. The purpose here is not to encrypt the
message but only to get it into the numeric form necessary for encryption.

Then, encrypt the message by raising it to the eth power modulo n. That is, the result (the ciphertext
C) is the remainder when Me is divided by n.

To decrypt the ciphertext, raise it to another power d, again modulo n. The encryption and
decryption algorithms E and D are thus:

(3.1.4)

for a message M.

(3.1.5)

for a ciphertext C.

Note that encryption does not increase the size of a message. Both the message M and the ciphertext
C are integers in the range 0 to n-1.

3.1.1. Encryption

Suppose Alice wants to send a message M to Bob. Alice creates the ciphertext C by exponentiating C
= Me mod n, where e and n are Bob’s public key. She sends C to Bob. To decrypt, Bob also

pqn

.1))1()1(,gcd(��� qpd

)).1()1(mod(1 ���{ qped

),(mod)(nMMEC e{{

),(mod)(nCCDM d{{

24

exponentiates: M = Cd mod n; the relationship between e and d ensures that Bob correctly recovers
M. Since only Bob knows d, only Bob can decrypt this message.

3.1.2. Digital Signature

Suppose Alice wants to send a message M to Bob in such a way that Bob is assured the message is
both authentic, has not been tampered with, and from Alice. Alice creates a digital signature S by
exponentiating: S = Md mod n, where d and n are Alice’s private key. She sends M and S to Bob. To
verify the signature, Bob exponentiates and checks that the message M is recovered: M = Se mod n,
where e and n are Alice’s public key.

Thus encryption and authentication take place without any sharing of private keys: each person uses
only another’s public key or their own private key. Anyone can send an encrypted message or verify
a signed message, but only someone in possession of the correct private key can decrypt or sign a
message.

For interested readers, a formal proof and explanation of the RSA algorithm can be found in [4].

3.2. RSA Speed
An “RSA operation”, whether encrypting, decrypting, signing, or verifying is essentially a modular
exponentiation. This computation is performed by a series of modular multiplications.

In practical applications, it is common to choose a small public exponent for the public-key. In fact,
entire groups of users can use the same public exponent, each with a different modulus (there are
some restrictions on the prime factors of the modulus when the public exponent is fixed). This makes
encryption faster than decryption and verification faster than signing. With the typical modular
exponentiation algorithms used to implement the RSA algorithm, public-key operations take O(k2)
steps, private-key operations take O(k3) steps, and key generation takes O(k4) steps, where k is the
number of bits in the modulus. “Fast multiplication” techniques, such as methods based on the Fast
Fourier Transform (FFT), require asymptotically fewer steps. In practice, however, they are not as
common due to their greater software complexity and the fact that they may actually be slower for
typical key sizes.

By comparison, DES and other private-key cryptosystems are much faster than the RSA algorithm.
DES is generally at least 100 times faster in software and between 1,000 and 10,000 times faster in
hardware than RSA, depending on the implementation. Implementations of the RSA algorithm will
probably narrow the gap a bit in coming years, due to high demand, but private-key cryptosystems
will get faster as well.

3.3. RSA Robustness
There are a few possible interpretations of “breaking” the RSA system. The most damaging would be
for an attacker to discover the private key corresponding to a given public key; this would enable the
attacker both to read all messages encrypted with the public key and to forge signatures. The obvious
way to do this attack is to factor the public modulus, n, into its two prime factors, p and q. From p, q,
and e, the public exponent, the attacker can easily get d, the private exponent. The hard part is
factoring n; the security of RSA depends on factoring being difficult. In fact, the task of recovering
the private key is equivalent to the task of factoring the modulus: you can use d to factor n, as well as
use the factorization of n to find d.

It is not necessarily true that a large number is more difficult to factor than a smaller number. For
example, the number 101000 is easier to factor than the RSA-155. To keep abreast of the state of art in
factoring, RSA Security [13] administers with quarterly cash awards a challenge called RSA Factoring
Challenge, where the most important result thus far was the factorization of the RSA-155 (a number
with 155 digits). Its factorization was completed in August 1999, after seven months, by a group
performing the necessary computations on 300 workstations and PCs. The factorization of this 512-
bit number is crucial as 512 is the default key size used for the major part of the e-commerce on

25

Internet. The result indicates that a well-organized group of users using distributed systems might be
able to break a 512-bit key in just a couple of days.

As a curiosity, we mention that the RSA-155 factorization is

1094173864157052742180970732204035761200373294544920599091384213147634998428893478471
7997257891267332497625752899781833797076537244027146743531593354333897

=

102639592829741105772054196573991675900716567808038066803341933521790711307779

*

106603488380168454820927220360012878679207958575989291522270608237193062808643.

For more information about the RSA Factoring challenge, see [9].

What is true in general is that a number with large prime factors is more difficult to factor than a
number with small prime factors (still, the running time of some factoring algorithms depends on the
size of the number only and not on the size of its prime factors). This is why the size of the modulus
in the RSA algorithm determines how secure an actual use of the RSA cryptosystem is. Namely, an
RSA modulus is the product of two large primes; with a larger modulus, the primes become larger and
hence an attacker needs more time to factor it. Yet, remember that a number with large prime factors
might possess certain properties making it easy to factor. For example, this is the case if the prime
factors are very close to each other (see next section).

It has not been proven that factoring must be difficult, and there remains a possibility that a quick
and easy factoring method might be discovered, though factoring researchers consider this possibility
remote.

Another way to break the RSA cryptosystem is to find a technique to compute eth roots mod n. Since
C = Me mod n, the eth root of C mod n is the message M. This attack would allow someone to recover
encrypted messages and forge signatures even without knowing the private key. This attack is not
known to be equivalent to factoring. No general methods are currently known that attempt to break
the RSA system in this way. However, in special cases where multiple related messages are encrypted
with the same small exponent, it may be possible to recover the messages.

The attacks just mentioned are the only ways to break the RSA cryptosystem in such a way as to be
able to recover all messages encrypted under a given key. There are other methods, however, that
aim to recover single messages; success would not enable the attacker to recover other messages
encrypted with the same key. Some people have also studied whether part of the message can be
recovered from an encrypted message.

It should also be noted that hardware improvements alone will not weaken the RSA cryptosystem, as
long as appropriate key lengths are used. In fact, hardware improvements should increase the security
of the cryptosystem.

Of course, there are also attacks that aim not at the cryptosystem itself but at a given insecure
implementation of the system; these do not count as ‘‘breaking’’ the RSA system, because it is not any
weakness in the RSA algorithm that is exploited, but rather a weakness in a specific implementation.
For example, if someone stores a private key insecurely, an attacker may discover it. One cannot
emphasize strongly enough that to be truly secure, the RSA cryptosystem requires a secure
implementation; mathematical security measures, such as choosing a long key size, are not enough. In
practice, most successful attacks will likely be aimed at insecure implementations and at the key
management stages of an RSA system.

3.4. Key sizes
The size of a key in the RSA algorithm typically refers to the size of the modulus n. The two primes,
p and q, which compose the modulus, should be of roughly equal length; this makes the modulus

26

harder to factor than if one of the primes is much smaller than the other. If one chooses to use a 768-
bit modulus, the primes should each have length approximately 384 bits. If the two primes are
extremely close or their difference is close to any predetermined amount, then there is a potential
security risk, but the probability that two randomly chosen primes are so close is negligible.

The best size for a modulus depends on one’s security needs. The larger the modulus, the greater the
security, but also, the slower the RSA algorithm operations. One should choose a modulus length
upon consideration, first, of the value of the protected data and how long it needs to be protected,
and, second, of how powerful one’s potential threats might be.

As showed in the section 4.3, 512-bit RSA keys may be factored for less than $1,000,000 in cost and
eight months of effort. This means that 512-bit keys no longer provide sufficient security for
anything more than very short-term security needs.

Currently, it is recommended key sizes of 1024 bits for corporate use and 2048 bits for extremely
valuable keys like the root key pair used by a certifying authority.

Several recent standards specify a 1024-bit minimum for corporate use. Less valuable information
may well be encrypted using a 768-bit key, as such a key is still beyond the reach of all known key
breaking algorithms.

It is typical to ensure that the key of an individual user expires after a certain time, say, two years.
This gives an opportunity to change keys regularly and to maintain a given level of security. Upon
expiration, the user should generate a new key being sure to ascertain whether any changes in
cryptanalytic skills make a move to longer key lengths appropriate. Of course, changing a key does
not defend against attacks that attempt to recover messages encrypted with an old key, so key size
should always be chosen according to the expected lifetime of the data. The opportunity to change
keys allows one to adapt to new key size recommendations. RSA Laboratories [8] publishes
recommended key lengths on a regular basis.

Users should keep in mind that the estimated times to break the RSA system are averages only. A
large factoring effort, attacking many thousands of moduli, may succeed in factoring at least one in a
reasonable time. Although the security of any individual key is still strong, with some factoring
methods there is always a small chance the attacker may get lucky and factor some key quickly.

As for the slowdown caused by increasing the key size, doubling the modulus length will, on average,
increase the time required for public key operations (encryption and signature verification) by a
factor of four, and increase the time taken by private key operations (decryption and signing) by a
factor of eight. The reason public key operations are affected less than private key operations is that
the public exponent can remain fixed while the modulus is increased, whereas the length of the
private exponent increases proportionally. Key generation time would increase by a factor of 16 upon
doubling the modulus, but this is a relatively infrequent operation for most users.

It should be noted that the key sizes for the RSA system (and other public-key techniques) are much
larger than those for secret-key cryptosystems like DES, but the security of an RSA key cannot be
compared to the security of a key in another system purely in terms of length.

3.5. A Simple Example
After providing the reader with the basis of the RSA algorithm, let’s try a little example. Initially, we
should generate two random prime numbers required by the algorithm. Let p = 2 and q = 5. Though
these numbers are not used in practical applications, they serve as a good example.

From equation 4.1.1, we have,

To compute the private key, we should apply equation 4.1.2, as showed below:

.1052 � pqn

.71)4,gcd())15()12(,gcd())1()1(,gcd(� ��� ��� dddqpd

27

As may be seen, we chose d = 7. We could have chosen d = 3, d = 5, d = 9 and so on. However,
remember that d is an exponent and if we pick a big number we will deal with large computations.
Here, our goal is to show an example that can be performed using just paper and a pencil.

Our next step is to find the public key. This can be accomplished by solving equation 4.1.3. Then, we
have

Finally, we possess both keys: the private one (7, 10) and the public one (3, 10). For encrypting a
message, for instance, M=3, we proceed as described bellow.

By taking equation (4.1.4), we have,

Hence, our enciphered message C is

Now, to decrypt C, we apply,

Then, resulting in

Note that despite handling small key sizes and short messages we have reached results of the same
order of magnitude as 106 (77 = 823543)! This example has clearly demonstrated that the RSA
algorithm needs too much computation for encrypting/decrypting. Also, the public key was made
smaller than the private one. This reason is obvious: it makes encryption faster than decryption and
verification faster than signing. A better explanation can be found in section 4.2.

We didn’t choose p and q by chance. As a matter of fact, the product pq gave us as a result the
modulus n=10. There is no doubt that modulo10 operations are much easier to solve than any other
modulo operation. You should just take the least significant number of an integer to solve its modulo
(823543 mod 10 = 3). Of course, we still have modulo 1 and modulo 2 operations, but I couldn’t create
any practical examples with these operations.

You should also have perceived that p and q are picked randomly. But truly random numbers are
difficult to come by software. This poses a challenge for software developers implementing
cryptography as computers are logical and deterministics. For this reason, computer-generated
random numbers are sometimes called pseudorandom numbers. As an example we can refer to the
linear congruence method and the elementary cellular automaton method [5].

.3)4(mod17))15()12(mod(17))1()1(mod(1 �{�����{�����{ eeeqped

).10(mod3)(mod)(3{�{{ CnMMEC e

),10(mod7)(mod)(7�{{ nCCDM d

.7 C

.3 M

28

29

4. Design Methods
This section introduces some modular exponentiation algorithms used to compute RSA and how they
can be applied in digital systems. Also, it presents and briefly explains the three most used
architectures found in the literature nowadays: CRT, RNS and Pipelined based architectures. Finally,
at the end of the section a good comparison among these architectures is written, allowing us to
choose which type of implementation can bring us the best results.

4.1. Modular Exponentiation Algorithms
There are many arithmetic algorithms for implementing RSA in hardware in the technical literature.
Most of then are concerned in finding a fast way of solving the RSA algorithm. By being more
specific, these algorithms are centered in solving operations with large size operands, i.e.,

where M, e and n have more than 512 bits. As mentioned in section 3.3, 512-bit keys are not secure
enough and 1024-bit key sizes must be used to give a certain level of security to the user. That’s why
at the present moment various researchers are working on discovering a faster way to perform
operations with large size operands in hardware/software.

The modular exponentiation algorithm found in many articles is practically the same: the binary
method. It seems to be the most adequate. Others algorithms, e.g., m-ary method, factor method,
power three method, addition chains and recording binary method can also be found [6]. However,
they were not cited in the documentation researched [15-17]. Sections 4.1.1 and 4.1.2 were extracted
from [6].

4.1.1. Binary Exponentiation Method

The binary method scans the bits of the exponent either from left to right or from right to left. A
squaring is performed at each step, and depending on the scanned bit value, a subsequent
multiplication is performed. We explain the left-to-right binary method below. Interested readers
can find more information about the right-to-left binary method in [6].

Let k be the number of bits of e and the binary expansion of e be given by

for }1,0{�ie . The binary method for computing)(mod nMC e is given below (by scanning the
power bits from left to right):

The Binary Exponentiation Method LR

Inputs: neM ,,

Output:)(mod nMC e

1. if 11 �ke then MC : else 1: C

2. for 2� ki downto 0

2a.)(mod: nCCC �

2b. If 1 ie then)(mod: nMCC �

3. return C

)(mod nMC e{

¦
�

��

1

0
0121 2)(

k

i

i
ikk eeeeee �

30

Assuming 0!e , the total number of multiplications is:

x)1(2)1()1(� ��� kkk , (maximum)

x 10)1(� �� kk or (minimum)

x)1(23)1(21)1(� ��� kkk , (average)

where we assume that 11 �ke .

Steps 2a and 2b can be replaced by any modular multiplication algorithm.

4.1.1.1. Interleaving multiplication and reduction

Let iA and iB be the bits of the k-bits positive integers A and B, respectively. The product P can be
written as

� �¦¦ �

�

� � �

11
.22

k

oi
i

i
k

oi
i

i BABABAP

This formulation yields the shift-add multiplication algorithm. We also reduce the partial product
modulo n at each step:

The Interleaving Multiplication and Reduction Method

Inputs: BA,

Output: P

1. 0: P

2. for 0 i to 1�k

2a. ikBAPP ���� 12:

2b.)(mod: nPP

3. return P

In line 2b, we have a modular division. The multiplication step is then followed by a division
algorithm in order to compute the remainder. However, we are not interested in the quotient; we
only need the remainder.

Therefore, the steps of the division algorithm can somewhat be simplified in order to speed up the
process. The reduction step can be achieved by making one of the well-known sequential division
algorithms. In the following sections, we describe the restoring and the nonrestoring division
algorithms for computing the remainder of P when divided by n.

4.1.1.2. Restoring Division Algorithm

Let iR be the remainder obtained during the thi step of the division algorithm. Since we are not
interested in the quotient, we ignore the generation of the bits of the quotient in the following
algorithm. The procedure given below first left-aligns the operands P and n . Since P is 2k-bit
number and n is a k-bit number, the left alignment implies that n is shifted k bits to the left, i.e., we
start with nk2 . Furthermore, the initial value of R is taken to be P , i.e., PR 0 . We then subtract
the shifted n from P to obtain 1R ; if 1R is positive or zero, we continue to the next step. If it is
negative the remainder is restored to its previous value.

31

The Restoring Division Algorithm

Inputs: nP,

Output: nPR mod

1. PR :0

2. nn k2:

3. for 1 i to k

4. nRR ii � �1:

5. if 0�iR then 1: � ii RR

6. 2: nn

7. return kR

In Step 5 of the algorithm, we check the sign of the remainder; if it is negative, the previous
remainder is taken to be the new remainder, i.e., a restore operation is performed. If the remainder

iR is positive, it remains as the new remainder, i.e., we do not restore. The restoring division
algorithm performs k subtractions in order to reduce the 2k-bit number P modulo the k-bit number n .

4.1.1.3. Nonrestoring Division Algorithm

The nonrestoring division algorithm allows a negative remainder. In order to correct the remainder, a
subtraction or an addition is performed during the next cycle, depending on the whether the sign of
the remainder is positive or negative, respectively. This is based on the following observation:
Suppose 01 �� � nRR ii , then the restoring algorithm assigns 1: � ii RR and performs a subtraction
with the shifted n , obtaining

.22 11 nRnRR iii � � ��

However, if 01 �� � nRR ii , then one can instead let iR remain negative and add the shifted n in
the following cycle. Thus, one obtains

� � ,222 111 nRnnRnRR iiii � �� � ���

which would be the same value. The steps of the nonrestoring algorithm, which implements this
observation, are given below:

The Nonrestoring Division Algorithm

Inputs: nP,

Output: nPR mod

1. PR :0

2. nn k2:

3. for 1 i to k

4. if 01 !�iR then nRR ii � �1:

5. else nRR ii � �1:

6. 2: nn

7. if 0�kR then nRR � :

8. return kR

32

Note that the nonrestoring division algorithm requires a final restoration cycle in which a negative
remainder is corrected by adding the last value of n back to it.

4.1.1.4. Montgomery’s Multiplication Algorithm

In 1985, P. L. Montgomery introduced an efficient algorithm [18] for computing nbaR mod�
where a, b, and n are k-bit binary numbers. The algorithm is particularly suitable for implementation
on general-purpose computers (signal processors or microprocessors) which are capable of performing
fast arithmetic modulo a power of 2. The Montgomery reduction algorithm computes the resulting k-
bit number R without performing a division by the modulus n. Via an ingenious representation of the
residue class modulo n, this algorithm replaces division by n operation with division by a power of 2.
This operation is easily accomplished on a computer since the numbers are represented in binary
form. Assuming the modulus n is a k-bit number, i.e., kk n 22 1 ��� , let r be k2 . The Montgomery
reduction algorithm requires that r and n be relatively prime, i.e., gcd(r, n) = gcd(k2 , n) = 1. This
requirement is satisfied if n is odd. In the following we summarize the basic idea behind the
Montgomery reduction algorithm.

Given an integer a < n, we define its n-residue with respect to r as

.modnraa �

It is straightforward to show that the set

^ 1̀0|mod �dd� ninri

is a complete residue system, i.e., it contains all numbers between 0 and n-1. Thus, there is a one-to-
one correspondence between the numbers in the range 0 and n-1 and the numbers in the above set.
The Montgomery reduction algorithm exploits this property by introducing a much faster
multiplication routine which computes the n-residue of the product of the two integers whose n-
residues are given. Given two n-residues a and b , the Montgomery product is defined as the n-
residue

nrbaR mod1���

where 1�r is the inverse of r modulo n, i.e., it is the number with the property

.mod11 nrr ��

The resulting number R is indeed the n-residue of the product

nbaR mod�

since

.modmodmod 11 nrbanrrbranrbaR �� ���� �� ��

In order to describe the Montgomery reduction algorithm, we need an additional quantity, n’, which
is the integer with the property

.1'1 ��� � nnrr

The integers 1�r and 'n can both be computed by the extended Euclidean algorithm [14]. The
Montgomery product algorithm, which computes

� �nrbau mod1���

given a and b , is given next:

33

Montgomery Product

Inputs: rnnba ,',,,

Output: � �nrbau mod1���

1. bat � :

2. rntm mod': �

3. � � rnmtu ��

4. if nu t then return nu �

else return u

The most important feature of the Montgomery product algorithm is that the operations involved are
multiplications modulo r and divisions by r, both of which are intrinsically fast operations since r is a
power 2. The MonPro algorithm can be used to compute the product of a and b modulo n, provided
that n is odd.

Montgomery Multiplication

Inputs: rnba ,,,

Output: � �nbau mod�

1. Compute n’ using the extended Euclidean algorithm.

2. .mod: nraa �

3. .mod: nrbb �

4. :x MonPro � �rnnba ,,',, (montgomery product)

5. :x MonPro � �rnnx ,,',1, (montgomery product)

6. return x

However, the preprocessing operations, especially the computation of n’, are rather time-consuming.
Thus, it is not a good idea to use the Montgomery product computation algorithm when a single
modular multiplication is to be performed.

4.1.2. Montgomery Exponentiation

The Montgomery product algorithm is more suitable when several modular multiplications with
respect to the same modulus are needed. Such is the case when one needs to compute a modular
exponentiation, i.e., the computation of nM e mod . In the following we summarize the modular
exponentiation operation which makes use of the Montgomery product function MonPro. The
exponentiation algorithm uses the binary method showed in section 4.1.1.

Montgomery Exponentiation

Inputs: neM ,, {n is an odd number}

Output: nM e mod

1. Compute n’ using the extended Euclidean algorithm.

2. nrMM mod: �

3. nrx mod1: �

4. for 1: � ki down to 0 do

34

5. :x MonPro � �xx,

6. if 1 ie then :x MonPro � �xM ,

7. :x MonPro � �1,x

8. return x

Thus, we start with the ordinary residue M and obtain its n-residue M using a division-like
operation, which can be achieved, for example, by a series of shift and subtract operations.
Additionally, Steps 2 and 3 require divisions. However, once the preprocessing has been completed,
the inner-loop of the binary exponentiation method uses the Montgomery product operations which
performs only multiplications modulo k2 and divisions by k2 . When the binary method finishes, we
obtain the n-residue x of the quantity nMx e mod . The ordinary residue number is obtained from
the n-residue by executing the MonPro function with arguments x and 1. This is easily shown to be
correct since

� �nrxx mod�

immediately implies that

� � � � �� � �� nrxnrxx mod1mod 11 MonPro � �1,x .

The resulting algorithm is quite fast as was demonstrated by many researchers and engineers who
have implemented it. However, this algorithm can be refined and made more efficient, particularly
when the numbers involved are multi-precision integers [7].

4.2. RSA Architectures
By researching the technical literature [15-17, 20-23, 26], we can basically find three different
branches of study in the RSA architecture field: Chinese Remainder Theorem (CRT) based
architectures, Pipelined based architectures and Residue Number System (RNS) based architectures.
It should be mentioned that all of these architectures feature the Montgomery modular
multiplication algorithm in their implementation.

4.2.1. CRT Based Architecture

The Chinese Remainder Theorem technique is known to reduce the RSA computation by divide-and-
conquer method, i.e., by splitting the computation into two distinguished parts. Some studies have
proven that CRT can improve the overall throughput of the system up to 4 times when the factors p and
q have the same bit size [15]. However, to perform these steps, the factors of the modulus n, p and q, are
assumed to be known. The Chinese Remainder Theorem (CRT) can be stated as follows:

Let 110 ,,, �nmmm � be pairwise relatively prime positive integers and let 110 ,,, �nxxx � be any
integers which satisfy the linear congruence system in one variable given by [15]

� �00 modmxX {

� �11 modmxX {

�

� �11 mod ��{ nn mxX

has a unique solution modulo 110 �� nmmm � .

By CRT, the computation of nCM d mod can be partitioned into two parts:

� �pCM pd
pp mod (4.2.1.1)

35

� �qCM qd
qq mod

where

� � � �,1mod,mod � pddpCC pp

� � � �,1mod,mod � qddqCC qq

This reduces computation time since ddd qp �, and CCC qp �, . In fact, their sizes are about half

the original sizes. Finally, we compute M by CRT as follows:

� �� � � �� �� �� �npqpMqpqMM qp modmodmod 11 �� � .

Figure 4-1 shows a diagram of a CRT-based architecture. Notice that before applying the RSA
algorithm (equation 3.1.5) some pre-computation is required (Modular Units Blocks). These blocks
perform equations 4.2.1.4 and 4.2.1.3. Afterwards, the modular exponentiation units execute the RSA
algorithm on k/2 bits operands (equations 4.2.1.1 and 4.2.1.2). The Montgomery algorithm can be
applied to boost this module. At last, the post-processing unit converts the k/2-bits plaintext into a k
bit plaintext by CRT (equation 4.2.1.5).

Figure 4-1: CRT Based Architecture

The basic advantages of this architecture are that it can be easily parallelized due to the initial pre-
computation. Also, the exponentiation unit works on k/2-bit operands, boosting RSA computation in
4 times if p and q have half the size of the modulus n. Only in the last stage (post-processing unit) it
will be employed k-bit computations.

However, as demonstrated in [19], CRT-Based architectures are not secure since they can be attacked
by hardware (Bellcore Attacks), i.e., injecting spikes in the circuit when encrypting/decrypting a

(4.2.1.2)

(4.2.1.3)

(4.2.1.4)

(4.2.1.5)

Mq Mp

k/2-1 k/2-1 k/2-1 k/2-1

Post-processing Unit

n

k

q

k/2-1

p

k/2-1

Modular
Unit

C

k

p

k/2-1

Cp

k/2-1

Modular
Unit

C

k

q

k/2-1

Cq

k/2-1

Modular
Unit

d

k

p

k/2-1

dp

k/2-1

Modular
Unit

d

k

q

k/2-1

dq

k/2-1

 p-1

k/2-1

 q-1

k/2-1

Modular Exponentiation
Unit

Modular Exponentiation
Unit

 q p

k/2-1 k/2-1

k/2-1 k/2-1

M

k

36

message (by introducing any electrical noise during ciphering time). As an example, assume that
during the decryption of a C ciphertext a random error occurs during the computation of Mp
(equation 4.2.1.1). This yields a faulty decrypted message Mp*, whereas the computation of Mq is done
correctly (equation 4.2.1.2). The combination of Mp* and Mq via equation (4.2.1.5) will yield an
incorrect decrypted message M*. For M* it holds that M - M* ≠ 0 but M - M* ≡ 0 mod q. Therefore,
one obtains the factorization of n by computing

� �� �� � qnnMC e � ,mod*gcd .

Many researchers are trying to find a solution to this problem through different algorithms [20-24];
however, their solutions are still not secure. On average, CRT based architectures can encrypt 400
kbits/s [15].

4.2.2. RNS Based Architecture

In Residue Number System (RNS), an integer x is represented by > @ > @ > @^ `maxaxaxx ,,, 21 � , where
> @ ii axax mod . The set ^ `maaaa ,,, 21 � is called base and the number of elements m is its base

size. Each element inside the set a is also called modulus. The components in the base are required to
satisfy � � 1,gcd ji aa for ji z , i.e., they must be pairwise relative primes [17].

In RNS, the result of any arithmetic operation must be inside its dynamic range, i.e., it should be
within de legitimate interval [0, N-1], where

�

m

i
iaN

1

.

Within this dynamic range every number can be represented by a unique set of residues. Each integer
number x , in this dynamic range is mapped onto the legitimate range and represented as an m-tuple
of residue digits ^ `mrrr ,,, 21 � . RNS can also represent negative numbers, however, the dynamic
range changes. If N is odd, the range becomes � � � �> @21,21 ��� NN . Otherwise, the range is
> @12,2 �� NN . The example above is intended to show how to create a small residue number
system.

Let an RNS has 2 moduli: 31 a and 52 a . For this system, 1553
2

1
 � � i iaN . The

legitimate range of the system is > @ > @ > @14,0115,01,0 � �N for positive numbers and
� � � �> @ � � � �> @ > @7,72115,211521,21 � ��� ��� NN as the N is odd. The table below shows the

complete system:

Signed
Integer

Numbers

Unsigned
Integer

Numbers
Mod 3 Mod 5

Signed
Integer

Numbers

Unsigned
Integer

Numbers
Mod 3 Mod 5

0 0 0 0 -7 8 2 3
1 1 1 1 -6 9 0 4
2 2 2 2 -5 10 1 0
3 3 0 3 -4 11 2 1
4 4 1 4 -3 12 0 2
5 5 2 0 -2 13 1 3
6 6 0 1 -1 14 2 4
7 7 1 2 x x x x

Table 4-1: RNS representation

The number ^ 1̀,2 in this number system can represent either -4 or 11, depending on the
representation required (unsigned or signed representation). An operation like 4-2=2, using this
residue system, can be expressed either

37

^ ` ^ ` ^ ` ^ ` 22,25mod24,3mod212,24,124 �� � �

or

� � ^ ` ^ ` ^ ` ^ ` 22,25mod34,3mod113,14,124 �� � �� .

Also, we have

� � ^ ` ^ ` ^ ` ^ ` 64,05mod33,3mod103,13,023 � �� � �� .

Notice that addition, subtraction and multiplication are inherently carry-free, which means that each
digit of the result is a function of only one digit from each operand and independent of the others.
This is the most attractive feature of RNS that enables us to design highly parallel structure for
computation in order to gain high speed for DSP applications and large bit number operations.

For interested readers, a good tutorial on RNS can be found on the web [25].

Figure 4-2 shows a simple diagram of a RNS-based architecture.

Figure 4-2: RNS Based Architecture

Notice there is no operation on the factors p and q, which means that CRT can be applied. But
remember from section 4.2.1 that CRT is still insecure. Also, Montgomery’s algorithm may be
employed in the Modular Exponentiation Unit, improving the system performance.

unsigned
representation

signed
representation

signed
representation

Modular
Exponentiation

Unit

Modular
Exponentiation

Unit

Modular
Exponentiation

Unit

Binary-to-RNS Conversion Unit

 C

k

 n

k

 e

k

 C1

k1

 C2

k2

 Cm

km

 n1

k1

 n2

k2

 nm

km

k1

k1

 e

k k2

k2

 e

k km

km

RNS-to-Binary Conversion Unit

 M1

k1

 Mm

km

 M2

k2

k2

k1

km

 M

k

38

The main point of this architecture is to develop good conversion units. To do that, one should find
an appropriate base size m and its modulus. In figure 4-2, the base size was chosen to be m, having
each modulus ki bits. Also, the number of parallel units is identical to m. In this case, we have the
maximum parallelism. However, this is not necessary and the numbers of processing units can be
chosen to be less than the base size. Less hardware is used but time-sharing processing now is
required in each modular exponentiation unit. It should be mentioned the base set need to be
precomputed and stored in a ROM.

The great disadvantage of this architecture is that when the operand sizes are small, i.e., RSA key size
less than 1024 bits, the pre and post processing are very time-consuming, becoming this technique
inadequate. Its design is complex too. However, according to [17], this implementation becomes quite
good when involving large key sizes. On average, RNS based architectures can encrypt 300 kbits/s
[17].

4.2.3. Pipelined Architecture

The great advantage of this architecture is that there is no need to worry about the factors p and q. As
the modulus is not in its factored form (n=pq) the only way to discover them is through factorization,
something infeasible. Thus, these architectures are secure against Bellcore attacks.

The concern here is focused on developing a fast modular exponentiation unit where the operand
sizes X and Y have the same size of the modulus N. Futhermore, we can break up these operands into
several words and apply pipeline techniques. As an example of architectures featuring these
characteristics we can cite [16] and [26].

This architecture requires no pre and post processing. All the design effort is concentrated on the
modular exponentiation unit. As modular exponentiation operations perform a series of modular
multiplications only the modular multiplication unit is depicted in figure 4-3.

Figure 4-3: Pipeline Based Architecture

Notice that as data is transferred word-serially to the pipeline registers which store Y and N work as
rotators. The processing elements itself must relay the received words to the next units in the
pipeline. All paths are w bits wide, except for the xi (only 1 bit). The values of xi comes from a p-shift
register where p equals to the number of processing elements in the pipeline. The register for S can
be a shift register since its contents are not reused.

On average, pipeline based architectures can encrypt 40 kbits/s [16].

Processing
Element

Processing
Element

Processing
Element

Rotator

0 n-1

w

Shifter

0 n-1

N

X

w

w
Rotator

0 n-1

Y

w

x1 x2 xp
w

w
w

w

w
S

39

4.3. Conclusions
As could be seen in section 4.2.1, many documents showed that CRT-based architectures are still not
reliable. According to Aumüller [19] only sophisticated hardware countermeasures (sensors, filters,
etc.) in combination with software countermeasures will be able to provide security. Also, Aumüller
demonstrated that many current smartcards with RSA coprocessors are susceptible to Bellcore
attacks.

By trying to find a solution to this problem, other articles were studied [20-23] but none of them
showed to be trustworthy. As they are still looking for a solution to a recent discovered fault, they
couldn’t find a trusted method of encrypting using CRT (every new article points some errors to the
latest ones). These latest papers discouraged us to develop any CRT-based architecture until a secure
method be found.

Summarizing, the choice of a CRT-based architecture implies more control hardware and software
security schemes due to Bellcore attacks to the benefit of faster encryption.

RNS based-architectures demonstrated to be another efficient method to sign messages quickly
(section 4.2.2). By converting binary numbers to a different number system, a parallelized
architecture can be implemented, and high-speed data rates can be achieved. Also, these architectures
can be boosted with CRT techniques. However, they are not intended to RSA cryptosystems with
small key sizes, since the conversion steps from one number system to another are very time-
consuming.

RNS-based architectures seem to be more suitable when the key size is more than 2048 bits. But at
the present moment 1024-bit RSA key sizes are more than enough to secure data as explained in the
chart below:

Protection Lifetime of Data Present -2010 Present - 2030
Present – 2031

and beyond
Minimum RSA key size 1024 bits 2048 bits 3072 bits

Table 4-2: Recommended RSA keys sizes based on protection life [8]

In addition to that, as stated by [17], current 1024-bit CRT-based architectures have practically the
same performance of 1024-bit RNS-based architectures. Thus, we should either choose a very
complex architecture design or hardware and software countermeasures.

Pipelined architectures can also implement high-speed RSA encryption. In order to improve speed at
higher bit-lengths it is necessary to break the multiplication up into stages, and pipeline the
calculation. This improved performance significantly [16, 26]. Depite being up to 10 times slower
than RNS and CRT based architectures, pipelined-based architectures provide security and less area
occupied in the chip (they don’t need special hardware countermeasures or heavy pre and post
computations units). Furthermore, RSA applications are not intended to be used in a whole section of
a high-speed communication. We should use private-key cryptosystems instead. RSA applications are
more suitable to sign messages, verify authenticity or to begin a secure high-speed communication as
showed in section 2.4.3.

After analyzing each case separately we have chosen the pipelined-based architecture to design the
RSA coprocessor. It has the great advantage that there is no need to worry about security
countermeasures or a very complex design. Moreover, the throughput obtained for a typical 1024-bit
key size is approximately 40 kb/s [16], i.e., this rate is more than enough to sign messages with our
smart cards in our daily life. Therefore, our RSA system will be based on a pipelined modular
exponentiation unit. More details will be covered in the next sections.

40

41

5. Coprocessor IP Specification
In the previous section we presented specific arithmetic algorithms and three different
implementations of RSA systems used nowadays. After analyzing the advantages and disadvantages
among them we finally decided to implement a pipelined-based architecture.

Figure 5-1 shows our proposed block diagram. To avoid confusion in the schema, we preferred not to
include connections from the main control unit to other blocks. The vertical green line connecting all
the blocks is the system data bus. More details are covered in the next sections.

Figure 5-1: Block Diagram

5.1. IO Interface
This block connects the outside microprocessor interface to the IP. Many types of microprocessors
with different data bus sizes can be used to control it. So, this IP is adjustable in accordance with the
user’s need (parameterizable input/output data bus). Table 5-1 summarizes this cell.

Pin Name Size Direction Active Description
System Signals

Clock 1 input rising
System clock. Data is transferred on every
positive clock edge.

Reset 1 input high Asynchronous system reset.
Data Signals

DataBus[4x2n-1:0] S2
input

output
-

Data input and output. The parameter n must be
an integer in the range of {0, 1, 2, 3}, i.e., this IP
supports 4, 8, 16 and 32 bits input bus sizes. This
parameter must be defined before
synthetization.

Table 5-1: IO Interface cell pinout

Internal and external data buses have the same size.

2 S = Scalable

RSA
Coprocessor

µProcessor

IO Interface

Random
Number

Generator

Primality Test
Unit

Modular
Exponentiator

Bank of
Registers Main

Control
Unit

Key Generation
Unit

42

5.2. Bank of Registers
When the coprocessor is working (busy is high) the bank of registers is inaccessible and the operands
in it are organized depending on the value of Mode (see later section 5.7). Figure below illustrates this
organization.

Figure 5-2: Memory Organization

When Mode is set to ‘0’, the RSA coprocessor is working in key generation mode. No data is required
before computation since keys will be generated randomly. To start the key generation process, busy
must be set to high. After finishing, the memory will be arranged as shown in figure 5-2 on the left.

However, if Mode is set to ‘1’, the RSA coprocessor will work on encryption/decryption mode. Data
(M/C, e/d and n) must be loaded in memory before beginning the computation, and afterwards start
must be set to ‘1’. When start changes back to ‘0’, the computation is finished and the operands will
be arranged as showed in figure 5-2 on the right. The final result will be stored in C/M.

Cell input and output ports are described in table below (table 5-2).

Pin Name Size Direction Active Description
Clock 1 input Rising System clock

DataBus S
input

 output
- Connects system memory to systems bus.

Read 1 input high
Write contents of selected memory address to the
system bus.

Write 1 input high
Write contents of system bus to selected memory
address.

SelAdd 2 input -
Select one of the four possible 1024-bit registers
located in the bank of register to be written/read.

Table 5-2: Input and output port for the Bank of Register

5.3. Random Number Generator
This module generates 512-bit odd random numbers. It is nothing more than a counter which is
incremented every clock cycle. However, to guarantee 512-bit odd numbers in the output the first
and last bits are always set to 1. Figure 5-3 shows it.

Figure 5-3

d

n

Not used

e 0

1

2

3

e/d

n

C/M

M/C 0

1

2

3

Mode = 0 Mode = 1

Counter

0 511

1 1

RNGout
512

43

The module ports are described in the table below.

Pin Name Size Direction Active Description
Clock 1 input rising System clock
RNGout 512 output - Generator output

Table 5-3: port description for the Random Number Generator Unit

However, this module is very simple. Better random number generators can be found in [27] and
[28].

5.4. Primality Test Unit
It tests if a 512-bit number is prime or not. Its ports are described in the table below.

Pin Name Size Direction Active Description
Clock 1 input rising System clock

Start 1
input

output
high

Load input data and starts computation. It remains
high until the required operation is finished.

isPrime 1 output high
Indicates if the input data is a prime number or not.
Set to zero when detects a start rising edge.

DataIn 512 input - Input data
DataOut 1024 output - Output data

Table 5-4: port description for the Primality Test Unit

Since our RSA system needs always two 512-bit prime numbers to generate keys (p and q factors), the
output of this module gives p concatenated to q. The first found prime number is stored inside the
block while the second one is being tested. Thus, the output will only be available when two
consecutive prime numbers are found. This characteristic will be clarified to the reader in the next
section.

5.5. Key Generation Unit
By taking the two factors, p and q, this cell computes the pair of keys (e, n) and (d, n). The modulus,
the private and the public exponent have 1024 bits. Data input and data output ports are 1024 bit
wide. As both factors have the same size (512 bits), we send them to the input port as a concatenated
1024-bit number. Therefore, the input can be thought as a 1024-bit operand. This cell uses the
primality test unit since random prime numbers are required to accomplish its task.

After finishing the computation, all key operands will be stored in their respective memory addresses
and start will be set to ‘0’ (see section 5.2). In the following lines we summarize its ports.

Pin Name Size Direction Active Description
Clock 1 input rising System clock

Start 1
input

output
high

Load input data and starts computation. It remains
high until the operation required is finished.
Afterwards, all operands (e, d and n) are in their
respective memory addresses.

AskPQ 1
input

output
high

Ask two 512-bit random prime numbers to be
computed by the Primality Test Unit. It remains
high until pq are in its input port.

DataIn 1024 input - Input data
DataOut 1024 output - Output Data. Connected to system bus.

Table 5-5: port description for the Key Generator Unit

44

5.6. Modular Exponentiator
This module computes the RSA algorithm. All input operands (M/C, e/d and n) must be in their
respective addresses before starting. When computation is over the final result is stored in memory
(see figure 5.2).

Table 5-6 specifies its input and output ports.

Pin Name Size Direction Active Description
Clock 1 input rising System clock

Start 1
input

output
high

Load input data from memory and starts
computation. It remains high until the operation
required is finished. When start changes back to
zero, the final result (C/M) is stored in its
respective memory address.

IOData 1024 input
output

- Input/Output data. Connected to system bus.

Table 5-6: port description for the Modular Exponentiator

5.7. Main Control Unit
It controls all signals from later modules. These signals are divided by categories i.e, signals
coming/going from/to specific blocks. They are described in the table below.

Pin Name Size Direction Active Description
IO Interface Signals

Clock 1 input rising System clock.
Reset 1 input high Asynchronously system reset.
Mode 1 input - Change the operation mode.
Read 1 input high Transfer data from the address specified by AddI.
Write 1 input high Transfer data to the address specified by AddI.
Start 1 output - Interrupt signal for the microprocessor.

Bank of Registers Signals

ReadMemory 1 output high
Transfers contents from selected memory address
to interface shift register.

WriteMemory 1 output high
Transfers contents from interface shift register to
selected register.

Key Generation Unit Signals

StartKG 1 input
output

high

Start key generation process. It remains high
until the operation required is finished. When
operation is over then generated keys are stored
in their respective places (see figure 5-5).

Modular Exponentiator Signals

StartRSA 1
input

output
high

Start encryption/decryption process. It remains
high until the operation required is finished. The
result is stored in its respective place when
computation is over (see figure 5-5).

Table 5-7: port description for the Main Control Unit

Notice that Random Number Generator and Primality Test Unit are not controlled by this unit. They
have a local control performed by the Key Generation Unit.

45

6. IP Implementation
As could be seen in section 4.1.2, the Montgomery exponentiation algorithm is the most suitable
solution for implementing in digital systems. Furthermore, as it is cited in many articles nowadays [6-
7, 15-17, 26] we can consider it as trustworthy implementation.

From time to time, key sizes must be changed since computation power is always increasing. To avoid
rewrite code every time a key is broken a good solution is to write a scalable exponentiator
architecture. Since we chose a pipelined-based architecture (section 4.3) our goal here is to describe
the design of a scalable Montgomery Multiplier (MM) with no limitation on the maximum number of
bits manipulated by the multiplier. To do such an operation, we need to break up the operands into
small words according to the available area and/or desired performance.

6.1. Multiple Word Raidx-2 Montgomery Multiplication Algorithm
This section was was extracted from [26].

The use of short precision words reduces the broadcast problem in the circuit implementation. The
broadcast problem corresponds to the increase in the propagation delay of high-fanout signals. Also, a
word-oriented algorithm provides the support we need to develop scalable hardware units for the
MM. Next paragraphs explain the algorithm proposed by [26].

Let us consider w-bit words. For operands with n bits of precision, � �ª ºwne 1� words are required.
The extra bit used in the calculation of e is needed since it is known that S (internal variable of the
algorithm) is in the range > @12;0 �M , where M is the modulus. Thus the computations must be done
with an extra bit of precision. The input operands will need an extra 0 bit value at the leftmost bit
position in order to have the precision extended to the correct value.

The operand Y (multiplicand) is scanned word-by-word, and the operand X (multiplier) is scanned
bit-by-bit. We will make use of the following notation:

� � � � � �� �oe MMMM ,,, 11 �� ,

� � � � � �� �oe YYYY ,,, 11 �� ,

� �011 ,,, xxxX m �� ,

where the words are marked with superscripts and the bits are marked with subscripts. The
concatenation of vectors A and B is represented as (A, B). A particular range of bits in a vector A from
position i to position j, j > i, is represented as ijA . The bit position i of the kth word of A is represented

as � �k
iA . The algorithm is given below.

Multiple-Word Radix-2 Montgomery Multiplication Algorithm (MWR2MM)

Inputs: MYX ,,

Output: MrYXS mod1���

1. 0 S

2. for 0: i to 1�n do

3. � �� � � � � �000 :, SYxSC i �

4. if � � 10
0 S then

5. � �� � � �� � � �000 ,:, MSCSC �

6. for 1: j to 1�e do

46

7. � �� � � � � � � �jjj
i

j SMYxCSC ��� :,

8. � � � � � �� �1
1..10

1 ,: �
�

� j
w

jj SSS

9. � � � �� �1
1..1

1 ,: �
�

� e
w

e SCS

10. else

11. for 1: j to 1�e do

12. � �� � � � � �jj
i

j SYxCSC �� :,

13. � � � � � �� �1
1..10

1 ,: �
�

� j
w

jj SSS

14. � � � �� �1
1..1

1 ,: �
�

� e
w

e SCS

The MWR2MM algorithm computes a partial sum S for each bit of X, scanning the words of Y and M.
Once the precision is exhausted, another bit of X is taken, and the scan is repeated. Thus, the
algorithm imposes no constraints to the precision of operands. The arithmetic operations are
performed in precision w bits, and they are independent of the precision of operands. What varies is
the number of loop iterations required to accomplish the modular multiplication. The carry variable
C must be in the set {0, 1, 2}. This condition is imposed by the addition of the three vectors S, M and
xiY. To have containment in the addition of 3 w-bit words and a maximum carry value Cmax
(generated by previous word addition), the following equation must hold:

� � 122123 maxmax ���d��� www CC

which results in 2max tC . Thus, choosing 2max C is enough to satisfy the containment condition.

The dependency between operations within the loop for j restricts their parallel execution due to
dependency on the carry. However, parallelism is possible among instructions in different j loops. See
the dependency graph for the MWR2MM algorithm in figure 6-1.

Each circle in the graph represents an atomic computation and is labeled according to the type of
action performed. Task A corresponds from lines 3 to 5: test the least significant bit of S to determine
if M should be added to S during this and addition of words from S, xiY and M (depending on the test
performed). Task B corresponds to operations from 7 to 9. We observe from this graph that the
degree of parallelism and pipelining can be very high. Each column in the graph may be computed by
a separate processing element (PE), and the data generated from one PE may be passed to another PE
in a pipelined fashion.

47

Figure 6-1: dependency graph for the MWR2MM Algorithm [26]

An example of the computation executed for 5-bit operands is shown in Figure 6-2 for the word size
of w = 1 bit. Since the jth word of each input operand is used to compute word j-1 of S, the last B task
in each column must receive M(e) = Y(e) = 0 as inputs. This condition is enough to guarantee that M(e-1)

will be generated based only on the internal PE information. Note also that there is a delay of 2 clock
cycles between processing a column for xi and a column for xi+1. The total execution time for the
computation shown in Figure 6-2 is 14 clock cycles.

Figure 6-2: An example of computation for 5-bit operands, where w=1 bit [26]

48

Tasks A and B are performed on the same hardware module. The local control circuit of the module
must be able to read the least significant bit of S(0) at the beginning of the operation, and keep this
value for the entire operand scanning. Recall that the even condition of � �0

0S determines if the
processing unit should add M to the partial sum during the pipeline cycle. The pipeline cycle is the
sequence of steps that a PE needs to execute to process all words of the input operands.

The maximum degree of parallelism that can be attained with this organization is found as

»»
º

««
ª �

2

1
max

ep .

It is easy to see from Figure 6-2 that 3max p . When less than maxp units are available, the total
execution time will increase, but it is still possible to perform the full precision computation with the
smaller circuit.

Recall the modulus M must be a k-bit number. Also, r is k2 and gcd(r, n) = gcd(k2 , n) = 1 (see
section 4.1.1.4).

6.2. Simulation Results
Firstly, the processing element was coded and simulated. This is the basic block to build our pipeline
(see figure 4.3). Later, we designed the pipeline and tested it.

The processing element performs operations from lines 3 to 14 in the MWR2MM algorithm. It
computes only one interaction of the for-loop. Notice that we have two conditions: one condition
determines if � � 10

0 S (line 4) and another one decides if Y must be added to the partial result (C, S).
So, our test bench must be carefully chosen to certify it will execute all the lines of the algorithm.
Next lines describe our test bench:

- Test 1:

It executes lines 3, 4, 11, 12, 13 and 14. It adds Y to the partial result as well (can be thought as an if
statement).

x = 1

S = 255 = 00 11 11 11 11 Y = 109 = 00 01 10 11 01 M = 53 = 00 00 11 01 01

(C, S) = 182 = 00 10 11 01 10

- Test 2:

It executes lines 3, 4, 5, 6, 7, 8 and 9. It adds Y as well.

x = 1

S = 101 = 00 01 10 01 01 Y = 48 = 00 00 11 00 00 M = 56 = 00 00 11 10 00

(C, S) = 102 = 00 01 10 01 10

- Test 3:

It executes the same lines of test 1. It doesn’t add Y.

x = 0

S = 90 = 00 01 01 10 10 Y = 91 = 00 01 01 10 11 M = 87 = 00 01 01 01 11

(C, S) = 45 = 00 00 10 11 01

49

- Test 4:

It executes the same lines of test 2. It doesn’t add Y.

x = 0

S = 121 = 00 01 11 10 01 Y = 253 = 00 11 11 11 01 M = 52 = 00 00 11 01 00

(C, S) = 86 = 00 01 01 01 10

These results were compute by hand.

We simulated the VHDL source code in ModelSim and we got the same answers (see figure 6-3 and
6-5). We chose 2-bit processing element word-size (w) and 8-bit operand inputs (n). The order of
Sout is reversed (from the least to the most significant word). The partial answer is 10-bit wide as
explained in section 6.1.1

Figure 6-3: Processing element ModelSim simulation for w=2 and n=8

Data is valid only when ready is high. Notice that we need to wait one clock cycle until the first output is
ready. Also, the processing element is still computing when start is low (one more clock cycle).

We also developed simple a program to perform tests. The same answers were achieved as showed in
figure 6-4. The output is in decimal form and it has the same order of figure 6-3.

Figure 6-4: Processing Element test software for w=2 and n=8

Test 1 Test 2 Test 3

50

We also tested inputs when they have maximum values. Both methods (ModelSim simulation and
test software) got the same results. See figures 6-5 and 6-6.

Figure 6-5: Processing element ModelSim simulation for w=2 and n=8

Figure 6-6: Processing Element test software for w=2 and n=8

We also did many others different random tests by using both the software and ModelSim. We got
always the same answers. Thus, we prove the processing element is functional. Now, let’s analyze and
test the implementation of the Montgomery pipeline.

Since the Montgomery pipeline is scalable we will perform tests over its parameter (w and n) with
the same input vectors. By doing this we will assure the pipeline is functional. The following test
bench will be used. All the lines of the MWR2MM algorithm are covered.

- Test 1:

w =2 n = 8 e = 5 p = 3

X = 10 Y = 20 M = 247 r = 256

S = XY r-1 mod M = 132

Test 4

51

- Test 2:

w =1 n = 8 e = 9 p = 5

X = 10 Y = 20 M = 247 r = 256

S = XY r-1 mod M = 132

- Test 3:

w =4 n = 16 e = 5 p = 3

X = 10 Y = 20 M = 60001 r = 65536

S = XY r-1 mod M = 58646

- Test 4:

w =1 n = 16 e = 17 p = 9

X = 10 Y = 20 M = 60001 r = 65536

S = XY r-1 mod M = 58646

These results were compute by hand.

Figure 6-7 and 6-8 show the results obtained by test 1. The number of processing elements generate
in figure 6-7 matches with the result obtained (p = 3).

Figure 6-7: Generated architecture for w=2 and n=8 (Test 1)

The final result (Sout) is ready only in the last clock cycle of the signal Ready. Since we have a shift
register in the output of the pipeline, we need to wait each partial result be transferred to the output
register.

52

Figure 6-8: Montgomery Multiplicator ModelSim simulation for w=2 and n=8 (Test 1)

Next figures (6-9 and 6-10) are related to test 2. The same output is obtained. However, the word-size
now is changed.

Figure 6-9: Generated architecture for w=1 and n=8 (Test 2)

53

Figure 6-10: Multiplicator ModelSim simulation for w=1 and n=8 (Test 2)

Notice that when smaller word sizes are used more processing elements are necessary. Next examples
we will increase the operand sizes of the pipeline (16 bits).

Figure 6-11: Generated architecture for w=4 and n=16 (Test 3)

54

Figure 6-12: Multiplicator ModelSim simulation for w=4 and n=16 (Test 3)

Recall that the algorithm works only when kk M 22 1 ��� . This explains why we can’t use the
previous values of M for result comparison.

Figure 6-13: Generated architecture for w=4 and n=16 (Test 4)

55

Figure 6-14: Multiplicator ModelSim simulation for w=1 and n=16 (Test 4)

Also, the following tests were performed. In all of them we obtained the expected output.

- w =2, n = 8, e = 5, p = 3 and r = 256

X = 11, Y = 20, M = 247 S = XY r-1 mod M = 244

X = 12, Y = 20, M = 247 S = XY r-1 mod M = 109

X = 13, Y = 20, M = 247 S = XY r-1 mod M = 221

X = 10, Y = 21, M = 247 S = XY r-1 mod M = 188

X = 10, Y = 22, M = 247 S = XY r-1 mod M = 244

X = 10, Y = 23, M = 247 S = XY r-1 mod M = 53

X = 10, Y = 20, M = 249 S = XY r-1 mod M = 242

X = 1o, Y = 20, M = 251 S = XY r-1 mod M = 40

X = 11, Y = 20, M = 253 S = XY r-1 mod M = 151

Thus, we prove the Montgomery pipeline is functional.

56

6.3. Synthesis Results
We synthesized the Montgomery Pipeline in Leonardo. The target FPGA is Xilinx Virtex-II Pro
(Device 2VP7fg456). By changing the parameters in the VHDL code we performed the following
experimentations:

- Synthesis 1

n = 1024 w = 32 e = 33 p = 17

- Synthesis 2

n = 1024 w = 64 e = 17 p = 9

By doing this we obtained 1f =80.9 MHz and 2f =63.2 MHz for synthesis 1 and 2 respectively.

We can also estimate the encryption/decryption rate of the complete circuit (exponentiator). The
equation below was extracted from [26]. It means the total computation time T (in clock cycles) of
the Montgomery Pipeline.

� � � �12111
����»

»

º
«
«

ª �
 pe

p
nT

Thus, by solving equation above, we have:

Synthesis 1: T1 = 2105

Synthesis 2: T2 = 2067

Assuming we have an average number of multiplications (section 4.1.1) and an exponent of 1024 bits,
we have 5,3230122)1(231 �� kT and 5,3171811)1(232 �� kT .

These are the total number of cycles require for encrypting 1024 bits. Therefore, we can obtain the
encryption rate by

skbitsbitsk
T
f

R 05,25
1

1
1 �

skbitsbitsk
T
f

R 92,19
2

2
2 � .

57

7. Conclusion

The present work showed us all the steps to design a Montgomery multiplication unit adjustable to
work with large key sizes. Due to its pipelined characteristics there is no limitation on the maximum
number of bits manipulated, i.e., the Montgomery multiplication algorithm core is ready for future
changes. Also, we have specified a complete RSA system.

The total time to compute a Montgomery multiplication depends on the available area and the
pipeline configuration. Our final tests with Leonardo showed us that a multi-stage pipeline is faster
than a single unit working with a large word length. This interesting result demostrates that more
processing elements units decrease the amount of time to encrypt data. So, the desired performance is
made according to the available chip area.

Because of time constraints, only the Montgomery multiplication unit was finished. This is the core
of the modular exponentiation unit, and the core of the RSA coprocessor. Since good RSA
architectures are difficult to design most of the time was spent in research. It should be also kept in
mind that is not an easy task to implement a 1024-bit architecture or higher. However, we assure that
anyone with a background of algorithms, digital logic design and computer architecture will be able
to read this document and understand it quickly. Thus, by virtue of its contents anyone who wants to
continue this project has good references and information to study.

58

59

8. Bibliography
[1] RSA Laboratories, RSA Laboratories’ Frequently Asked Questions About Today’s
Cryptography, Version 4.1, RSA Security Inc., 2000.

[2] Bauer F.L., Decrypted Secrets: Methods and Maxims of Cryptology, third edition, Springer,
2002.

[3] Diffie W, Hellman M. E., New directions in cryptography (pp 644-654), IEEE Transactions
on Information Theory 22, 1976.

[4] R.L. Rivest, A. Shamir, L.M. Adleman, A method for obtaining digital signatures and public-
key cryptosystems (pp 120-126), Communications of the ACM (2) 21, 1978.

[5] http://mathworld.wolfram.com, concepts of math, March, 2004.

[6] Ç. K. Koç, RSA Hardware Implementation, RSA Laboratories Technical Report TR-801,
1996.

[7] Ç. K. Koç, High-Speed RSA Implementation, RSA Laboratories, 1994.

[8] http://www.rsasecurity.com/rsalabs/node.asp?id=2004, RSA secures key-sizes, March, 2004.

[9] http://www.rsascurity.com/rsalabas/challenges/, RSA factorization challenge, March, 2004.

[10] T. Matthews, RSA Laboratories Bulletin, RSA Laboratories, 1996.

[11] http://smartrust.com, history of cryptography, April, 2004.

[12] http://cybercrimes.net/Cryptography/Articles/Hebert.html, history of cryptography, April, 2004.

[13] http://www.rsasecurity.com/, cryptosystems, commercial solutions, applications, March of
2004.

[14] D. E. Knuth, The Art of Computer Programming: Seminumerical Algorithms, volume 2, third
edition, Addison-Wesley, 1997.

[15] C. H Wu, J. H. Hong, C. W. Wu, RSA cryptosystem design based on the Chinese remainder
theorem, Proceedings of the 2001 conference on Asia South Pacific design automation, January, 2001.

[16] A. Daly, W. Marnane, Efficient architectures for implementing montgomery modular
multiplication and RSA modular exponentiation on reconfigurable logic, Proceedings of the 2002
ACM/SIGDA tenth international symposium on Field-programmable gate arrays, February, 2002.

[17] H. Nozaki, M. Motiyama, A. Shimbo, S. Kawamura, Implementation of RSA Algorithm
Based on RNS Montgomery Multiplication, Lecture Notes in Computer Science, Springer-Verlag
Berlin Heidelberg, Volume 2162, 2001.

[18] P. L. Montgomery. Modular multiplication without trial division, Mathematics of
Computation, 44(170):519-521, April 1985.

[19] C. Aumüller, P. Bier, W. Fischer, P. Hofreiter, J.-P. Seifert, Fault Attacks on RSA with CRT:
Concrete Results and Practical Countermeasures, Lecture Notes in Computer Science, Springer-
Verlag Berlin Heidelberg, Volume 2523, 2003.

[20] S.-M. Yen, S. Kim, S. Lim, S. Moon., RSA Speedup with Residue Number System Immune
against Hardware Fault Cryptanalysis, Lecture Notes in Computer Science, Springer-Verlag Berlin
Heidelberg, Volume 2523, 2002.

[21] S.-M. Yen, S. Moon, J. Ha, Permanent Fault Attack on the Parameters of RSA with CRT,
Lecture Notes in Computer Science, Lecture Notes in Computer Science, Springer-Verlag Berlin
Heidelberg, Volume 2523, 2003.

[22] S.-M. Yen, S. Moon, J. Ha, Hardware Fault Attack on RSA with CRT Revisited*, Lecture
Notes in Computer Science, Springer-Verlag Berlin Heidelberg, Volume 2587, 2003.

http://mathworld.wolfram.com/
http://www.rsasecurity.com/rsalabs/technotes/twirl.html
http://www.rsascurity.com/rsalabas/challenges/
http://smartrust.com/
http://cybercrimes.net/Cryptography/Articles/Hebert.html
http://www.rsasecurity.com/
http://portal.acm.org/citation.cfm?id=370419&coll=ACM&dl=ACM&CFID=20199538&CFTOKEN=31879663
http://portal.acm.org/citation.cfm?id=370419&coll=ACM&dl=ACM&CFID=20199538&CFTOKEN=31879663
http://portal.acm.org/citation.cfm?id=503055&coll=ACM&dl=ACM&CFID=20199538&CFTOKEN=31879663
http://portal.acm.org/citation.cfm?id=503055&coll=ACM&dl=ACM&CFID=20199538&CFTOKEN=31879663
http://portal.acm.org/citation.cfm?id=370419&coll=ACM&dl=ACM&CFID=20199538&CFTOKEN=31879663
http://portal.acm.org/citation.cfm?id=370419&coll=ACM&dl=ACM&CFID=20199538&CFTOKEN=31879663
http://portal.acm.org/citation.cfm?id=370419&coll=ACM&dl=ACM&CFID=20199538&CFTOKEN=31879663
http://portal.acm.org/citation.cfm?id=503055&coll=ACM&dl=ACM&CFID=20199538&CFTOKEN=31879663
http://portal.acm.org/citation.cfm?id=370419&coll=ACM&dl=ACM&CFID=20199538&CFTOKEN=31879663
http://portal.acm.org/citation.cfm?id=370419&coll=ACM&dl=ACM&CFID=20199538&CFTOKEN=31879663
http://portal.acm.org/citation.cfm?id=370419&coll=ACM&dl=ACM&CFID=20199538&CFTOKEN=31879663

60

[23] S.-M. Yen, S. Kim, S. Lim, S.-J. Moon, RSA Speedup with Chinese Remainder Theorem
Immune against Hardware Fault Cryptanalysis, Lecture Notes in Computer Science, Springer-Verlag
Berlin Heidelberg, Volume 2228, 2002.

[24] J. Blömer, M. Otto, J.-P. Seifert, A New CRT-RSA Algorithm Secure Against Bellcore
Attacks,Conference on Computer and Communications Security, pages 311-320, 2003.

[25] http://people.atips.ca/~rahmanc/619.88/, RNS tutorial, May, 2004.

[26] Ç. K. Koç, C. Paar, A Scalable Architecture for Montgomery Multiplication, CHES'99, LNCS
1717, pp. 94-108, 1999.

[27] O. Goldreich, S. Goldwasser, S. Micali, How to construct random functions, Journal of the
ACM (JACM), Volume 33, Issue 4, August, 1986.

[28] A. Shamir, On the generation of cryptographically strong pseudorandom sequences , ACM
Transactions on Computer Systems (TOCS), Volume 1, Issue 1, February, 1983.

[29] J. P. Hayes, Computer Architecture and Organization, third edition, McGraw-Hill, 1998.

[30] S. Brown, Z. Vranesic, Fundamentals of Digital Logic with VHDL Design, McGraw-Hill,
2000.

http://people.atips.ca/~rahmanc/619.88/
../My%20Documents/Tudo/UFRGS/PDFs/ACM/Journal/citation.cfm
http://portal.acm.org/citation.cfm?id=357357&coll=ACM&dl=ACM&CFID=20011918&CFTOKEN=46792314
../My%20Documents/Tudo/UFRGS/PDFs/ACM/Journal/citation.cfm
../My%20Documents/Tudo/UFRGS/PDFs/ACM/Journal/citation.cfm
../My%20Documents/Tudo/UFRGS/PDFs/ACM/Journal/citation.cfm

1

Design of a scalable RSA
coprocessor

Alcides Silveira Costa
André Inácio Reis

Renato Perez Ribas

Introduction

• The RSA Cryptosystem
• Design Methods
• Coprocessor Design
• Simulation Results
• Synthesis Results
• New applications & Future Works
• Conclusion

2

2

The RSA Cryptosystem

• The RSA algorithm
)(mod)(nMMEC e{{

)(mod)(nCCDM d{{

3

Random Prime
Number Generator

p

q
n

(p-1)(q-1) d gcd(d, (p-1)(q-1)) = 1

(p-1)(q-1)

d
ed{1(mod(p-1)(q-1)) e

Private key

Public key

Design Methods

• CRT-based, RNS-based and Pipelined-based
architectures

Protection
Lifetime
of Data

Present
2010

Present
2030

Present
2031

and beyond
Minimum RSA
 key size 1024 bits 2048 bits 3072 bits

4

http://www.rsasecurity.com/rsalabs/technotes/twirl.html

http://www.rsasecurity.com/rsalabs/technotes/twirl.html

3

Design Methods

• CRT based Architecture

5

Mq Mp

k/2-1 k/2-1 k/2-1 k/2-1

Post-processing Unit

n

k

q

k/2-1

p

k/2-1

Modular
Unit

C

k

p

k/2-1

Cp

k/2-1

Modular
Unit

C

k

q

k/2-1

Cq

k/2-1

Modular
Unit

d

k

p

k/2-1

dp

k/2-1

Modular
Unit

d

k

q

k/2-1

dq

k/2-1

 p-

1
k/2-1

 q-

1
k/2-1

Modular
Exponentiation Unit

Modular
Exponentiation Unit

 q p

k/2-1 k/2-1

k/2-1 k/2-1

M

k

� �pCM pd
pp mod � �qCM qd

qq mod

� � � �1mod,mod � pddpCC pp

� � � �1mod,mod � qddqCC qq

� �� �
� �� � � �n

pqpM

qpqM
M

q

p mod
mod

mod
1

1

¸
¸

¹

·

¨
¨

©

§

�

�

�

Design Methods
• RNS based architecture

Signed
Integer

Numbers

Unsigned
Integer

Numbers
Mod 3 Mod 5

0 0 0 0

1 1 1 1

2 2 2 2

3 3 0 3

4 4 1 4

5 5 2 0

6 6 0 1

7 7 1 2

-7 8 2 3

-6 9 0 4

-5 10 1 0

-4 11 2 1

-3 12 0 2

-2 13 1 3

-1 14 2 4 6

Modular
Exponentiation

Unit

Modular
Exponentiation

Unit

Modular
Exponentiation

Unit

Binary-to-RNS Conversion Unit

 C

k

 n

k

 e

k

C1

k1

C2

k2

Cm

km

 n1

k1

 n2

k2

 nm

km

k1

k1

 e

k k2

k2

 e

k km

km

RNS-to-Binary Conversion Unit

M1

k1

 Mm

km

M2

k2

k2

k1

km

 M

k

^ ` ^ ` ^ ` ^ ` 72,15mod34,3mod013,04,134 �� � �

4

Design Methods

• Pipelined based architecture

7

Processing
Element

Processing
Element

Processing
Element

Rotator

0 n-1

w

Shifter

0 n-1

N

X

w
w

Rotator

0 n-1

Y

w

x1 x2 xp

w

w

w

w

w S

Design Methods

• CRT-based architectures
– Vulnerable (Fault Attacks)
– Fast

• RNS-based architectures
– Suitable when operand sizes are large
– Complex

• Pipelined-based architectures
– Secure
– Achieve good results

8

� �� �� � qnnMC e � ,mod'gcd

5

Design Methods

• Montgomery Exponentiation
 Entradas: M, e, n e k
 Saída: C = Me mod n
 1. M’ = MonPro(M, k)
 2. x’ = MonPro(1, k)
 3. for i = k-1 down to 0 do
 4. x’ = MonPro(x’, x’)
 5. if ei = 1 then x’ = MonPro(M’, x’)
 6. C = MonPro(x’, 1)
 7. return M

9

k = 22m mod n

Coprocessor Design

• Multiplication Core (France)

10

Processing
Element

Processing
Element

Processing
Element

Rotator

0 n-1

w

Shifter

0 n-1

N

X

w
w

Rotator

0 n-1

Y

w

x1 x2 xp

w

w

w

w

w S

6

Coprocessor Design

• Processing Element (PE)

11

s_i

m_i

y_i

x_i

en_i

+

+

+

0

w+1

2

1
0

w

s_o

y_o

m_o

rdy_o

w

w

w
w+1

w+2

s_ff

Coprocessor Design

• Montgomery Multiplication Unit (MM)

12

0

en_sig(m mod p)

w-1

x_i

PE0

y_i

rdy_o

y_o

m_o m_i

s_o s_i

en_
i

1

0

0

0

 xp-1 x1 x0

s_sig(m mod p)

w-1
0

0

s_o

rdy_o

shx_o

m_i

y_i

PE1

y_i

rdy_o

y_o

m_o m_i

s_o s_i

en_
i

PEp-1

y_i

rdy_o

y_o

m_o m_i

s_o s_i

en_
i

7

Coprocessor Design

• Modular Exponentiation Unit (Brazil)

13

w

dat_o

rdy_o

dat_i

acc_reg

MM

y_i

x_i

s_o
m_i rdy_o

n_reg

e_reg

x_reg

m_reg

l w

dat_reg

l

w

m+w-1

m+w-1

m+w-1

m+w-1

m+w-1
0

0

0

0

0

w-1 0

0

w-1

shx_o

Subtrator
dat_i

n_i

dat_o

Simulation Results

• Inputs: M, e, n and k

14

� Output: C = Me mod n

C=18011503 mod 41989 = 2430

8

Simulation Results

• Inputs: C, d, n and k

15

� Output: M = Cd mod n

M=243031247 mod 41989 = 18011

Synthesis Results

• Synthesis Tool
– Xilinx XST (ISE)

• Target device
– Xilinx Virtex Pro II (xc2vp100-ff1696-6)

• One-hot enconding

16

9

Synthesis Results

17

Data bus size: 1 bit
Key size: 1024 bits

0

20
40

60

80
100

120

4 8 16 32 64 128 256

w (bits)

f (MHz)

Synthesis Place&Route

Synthesis Results

18

Data bus size: 1 bit
Key size: 1024 bits

0

5

10

15

20

25

30

4 8 16 32 64 128 256

w (bits)

R (Kbits/s)

Synthesis Place&Route

10

Synthesis Results

19

Data bus size: 1 bit
Key size: 1024 bits

25

30

35

40

45

4 8 16 32 64 128 256

w (bits)

Slices (%)

New applications & Future work

• New applications
– Digital TV
– Cell phones
– Smart Cards

• Future work
– Best-case Architecture
– Usage of memories can improve performance
– Outside data bus < internal data bus

20

11

Conclusions

• A Scalable RSA coprocessor
• Fast RSA systems are a challenge
• Increasing research field

21

Design of a scalable RSA
cooprocessor

Alcides Silveira Costa
cids@inf.ufrgs.br

--
-- Autor : Alcides Silveira Costa
-- Bloco : RSA (Topo + Controle)
--
library ieee;
 use ieee.std_logic_1164.all;
 use ieee.std_logic_unsigned.all;
 use ieee.std_logic_arith.all;

entity rsa is
 generic(
 n : positive := 1024;
 w : positive := 2;
 l : positive := 1;
 e : positive := 513;
 p : positive := 257);
 port(
 -- Entradas
 clk : in std_logic;
 rst : in std_logic;
 en_i : in std_logic;
 dat_i : in std_logic_vector(l-1 downto 0);

 -- Saidas
 dat_o : out std_logic_vector(l-1 downto 0);
 rdy_o : out std_logic);
end rsa;

architecture rtl of rsa is
-- Tipos definidos
type shift_reg1 is array (w/l-1 downto 0) of std_logic_vector(l-1 downto 0);
type shift_reg2 is array ((n+w)/w-1 downto 0) of std_logic_vector(w-1 downto 0);

-- Componentes
component mp
 generic(
 n : positive := 16;
 w : positive := 4;
 e : positive := 5;
 p : positive := 3);
 port(
 clk : in std_logic;
 rst : in std_logic;
 en_i : in std_logic;
 m_i : in std_logic_vector(w-1 downto 0);
 y_i : in std_logic_vector(w-1 downto 0);
 x_i : in std_logic_vector(p-1 downto 0);
 rdy_o : out std_logic;
 shx_o : out std_logic;
 s_o : out std_logic_vector(w-1 downto 0));
end component;

component sub
 generic(w : positive := 1);
 port(
 clk : in std_logic;
 rst : in std_logic;
 en_i : in std_logic;
 a_i : in std_logic_vector(w-1 downto 0);
 n_i : in std_logic_vector(w-1 downto 0);
 s_o : out std_logic_vector(w-1 downto 0));
end component;

-- Funções

function log2(x: integer) return integer is
 -- Funciona apenas para numero base 2
 variable result : integer := 1;
 variable aux : integer;
 begin
 if x /= 1 then
 aux := x;
 while aux /= 2 loop
 aux := aux/2;
 result := result + 1;
 end loop;
 else
 result := 0;
 end if;
 return result;
end log2;

function array2vector(x: shift_reg2) return std_logic_vector is
 variable result : std_logic_vector((x'left+1)*(x(0)'left+1)-1 downto 0);
 begin
 for i in x'left downto 0 loop
 result((x(0)'left+1)*(i+1)-1 downto (x(0)'left+1)*i) := x(i);
 end loop;
 return result;
end array2vector;

function vector2array(x: std_logic_vector) return shift_reg2 is
 variable result : shift_reg2;
 begin
 for i in result'left downto 0 loop
 result(i) := x((result(0)'left+1)*(i+1)-1 downto (result(0)'left+1)*i);
 end loop;
 return result;
end vector2array;

function set_array(y, z: positive) return shift_reg2 is
 variable result : shift_reg2;
 variable aux : std_logic_vector(w-1 downto 0);

 begin
 aux := (others => '0');
 for i in y/z-1 downto 0 loop
 result(i) := aux;
 end loop;
 result(0)(0) := '1';
 return result;
end set_array;

function special_shift(
 y, z: positive;
 a : shift_reg2) return shift_reg2 is

 variable aux : std_logic_vector(y-1 downto 0);
 variable aux2 : std_logic_vector(z-1 downto 0);
 variable aux3 : std_logic_vector(z-1 downto 0);
 variable result : shift_reg2;

begin
 aux := array2vector(a);
 aux3:= (others => '0');

 if y mod z = 0 then
 -- Registrador homemgeneo
 for i in 1 to n/p-1 loop

 aux(z*i-1 downto z*(i-1)):= aux(z*(i+1)-1 downto z*i);
 end loop;
 else
 -- Registrador hetereogeneo
 if y/z = 1 then
 -- Apenas um shift
 aux(z-1 downto 0):= aux3&aux(y-1 downto z);
 else
 -- Varios shift
 for i in 1 to y/z loop
 if i < y/z then
 aux(z*i-1 downto z*(i-1)):= aux(z*(i+1)-1 downto z*i);
 else
 aux2(((y-1) mod z) downto 0) := aux(y-1 downto z*i);
-- aux2(p-1 downto (n mod p)) := (others => '0');
 aux2(z-1 downto (y mod z)) := aux3(z-1 downto (y mod z));
 aux(z*i-1 downto z*(i-1)):= aux2;
 end if;
 end loop;
 end if;
 end if;
 result := vector2array(aux);
 return result;
end special_shift;

function shift_byte(
 y, z: positive;
 a : std_logic_vector;
 b : shift_reg1) return shift_reg1 is

 variable result : shift_reg1;
begin
 result(y/z-1):=a;
 for i in y/z-1 downto 1 loop
 result(i-1):= b(i);
 end loop;
 return result;
end shift_byte;

function shift_byte(
 y, z: positive;
 a : shift_reg1;
 b : shift_reg2) return shift_reg2 is

 variable result : shift_reg2;
 variable aux : std_logic_vector(z-1 downto 0);
 variable l : positive := a(0)'left + 1;

begin
 for i in w/l downto 1 loop
 aux(l*i-1 downto l*(i-1)):= a(i-1);
 end loop;

 result(y/z-1):= aux;
 for i in y/z-1 downto 1 loop
 result(i-1):= b(i);
 end loop;

 return result;
end shift_byte;

function shift_byte(
 y: positive;
 x: shift_reg2) return shift_reg2 is

 variable aux : std_logic_vector((x'left+1)*(x(0)'left+1)-1 downto 0);
 variable zero : std_logic_vector(y-1 downto 0);
 variable result : shift_reg2;
begin
 zero := (others => '0');
 aux := array2vector(x);
 aux := zero & aux(aux'left downto y);
 result := vector2array(aux);

 return result;
end shift_byte;

function shift_byte(
 y, z: positive;
 a : std_logic_vector;
 b : shift_reg2) return shift_reg2 is

 variable result : shift_reg2;

begin
 result(y/z-1):= a;
 for i in y/z-1 downto 1 loop
 result(i-1):= b(i);
 end loop;

 return result;
end shift_byte;

function rotate_byte(
 y, z: positive;
 a : shift_reg2) return shift_reg2 is

 variable result : shift_reg2;
begin
 result(y/z-1):= a(0);

 for i in y/z-1 downto 1 loop
 result(i-1):= a(i);
 end loop;

 return result;
end rotate_byte;

-- FSM
type states is (m1_st, m2_st, e1_st, e2_st, n1_st, n2_st, k1_st, k2_st,
 op10_st, op11_st, op12_st, op13_st, op14_st,
 op21_st, op22_st, op23_st, op24_st, op25_st,
 op31_st, op32_st, op33_st, op34_st,
 op41_st, op42_st, op43_st, op44_st, op45_st,
 op51_st, op52_st, op53_st, op54_st, op55_st,
 op61_st);
signal current_state, next_state: states;

signal en_mp : std_logic;
signal en_sub : std_logic;
signal s_sub : std_logic_vector(w-1 downto 0);
signal sel_fsm : std_logic;

-- Registradores de deslocamento
signal dat_reg : shift_reg1;
signal m_reg : shift_reg2;
signal e_reg : shift_reg2;
signal n_reg : shift_reg2;

signal acc_reg : shift_reg2;
signal x_reg : shift_reg2;

signal s_reg : std_logic_vector(l-1 downto 0);

-- Flip-flops
signal rdy_ff : std_logic;

-- Counters
signal a_cnt : std_logic_vector(log2(n/l) downto 0);
signal b_cnt : std_logic_vector(log2(n)-1 downto 0);

-- Sinais intertos
signal y_sig : std_logic_vector(w-1 downto 0);
signal s_sig : std_logic_vector(w-1 downto 0);
signal x_sig : std_logic_vector(p-1 downto 0);
signal zero_sig : std_logic_vector(w-1 downto 0);
signal shx_sig : std_logic;
signal rdy_sig : std_logic;
signal e_bit : std_logic;
signal e_sig : std_logic_vector(n+w-1 downto 0);

begin
e_sig <= array2vector(e_reg);
e_bit <= e_sig(conv_integer(unsigned(b_cnt)));

process (current_state, rst, en_i, a_cnt, b_cnt, rdy_sig, e_reg, m_reg, x_reg)
begin
 if (rst = '1') then
 sel_fsm <= '0';
 en_mp <= '0';
 en_sub <= '0';
 next_state <= m1_st;
 else
 case current_state is
 when m1_st =>
 sel_fsm <= '0';
 en_mp <= '0';
 en_sub <= '0';
 if (en_i = '0') then
 next_state <= m1_st;
 else
 next_state <= m2_st;
 end if;

 when m2_st =>
 sel_fsm <= '0';
 en_mp <= '0';
 en_sub <= '0';
 if (en_i = '1') then
 next_state <= m2_st;
 else
 next_state <= e1_st;
 end if;

 when e1_st =>
 sel_fsm <= '0';
 en_mp <= '0';
 en_sub <= '0';
 if (en_i = '0') then
 next_state <= e1_st;
 else
 next_state <= e2_st;
 end if;

 when e2_st =>
 sel_fsm <= '0';
 en_mp <= '0';
 en_sub <= '0';
 if (en_i = '1') then
 next_state <= e2_st;
 else
 next_state <= n1_st;
 end if;

 when n1_st =>
 sel_fsm <= '0';
 en_mp <= '0';
 en_sub <= '0';
 if (en_i = '0') then
 next_state <= n1_st;
 else
 next_state <= n2_st;
 end if;

 when n2_st =>
 sel_fsm <= '0';
 en_mp <= '0';
 en_sub <= '0';
 if (en_i = '1') then
 next_state <= n2_st;
 else
 next_state <= k1_st;
 end if;

 when k1_st =>
 sel_fsm <= '0';
 en_mp <= '0';
 en_sub <= '0';
 if (en_i = '0') then
 next_state <= k1_st;
 else
 next_state <= k2_st;
 end if;

 when k2_st =>
 sel_fsm <= '0';
 en_mp <= '0';
 en_sub <= '0';
 if (en_i = '1') then
 next_state <= k2_st;
 else
 next_state <= op10_st;
 end if;

 when op10_st =>
 sel_fsm <= '0';
 en_mp <= '0';
 en_sub <= '0';
 next_state <= op11_st;

 when op11_st =>
 sel_fsm <= '1';
 en_mp <= '1';
 en_sub <= '0';
 if a_cnt /= n/w then
 next_state <= op11_st;

 else
 next_state <= op12_st;
 end if;

 when op12_st =>
 sel_fsm <= '1';
 en_mp <= '0';
 en_sub <= '0';
 if rdy_sig = '0' then
 next_state <= op12_st;
 else
 next_state <= op13_st;
 end if;

 when op13_st =>
 sel_fsm <= '1';
 en_mp <= '0';
 en_sub <= '0';
 if rdy_sig = '1' then
 next_state <= op13_st;
 else
 if m_reg(n/w) = 0 then
 next_state <= op21_st;
 else
 -- Correcao
 next_state <= op14_st;
 end if;
 end if;

 when op14_st =>
 sel_fsm <= '0';
 en_mp <= '0';
 if a_cnt < n/w + 1 then
 en_sub <= '1';
 next_state <= op14_st;
 else
 en_sub <= '0';
 if a_cnt < n/w + 2 then
 next_state <= op14_st;
 else
 next_state <= op21_st;
 end if;
 end if;

 when op21_st =>
 sel_fsm <= '1';
 en_mp <= '0';
 en_sub <= '0';
 next_state <= op22_st;

 when op22_st =>
 sel_fsm <= '1';
 en_mp <= '1';
 en_sub <= '0';
 if a_cnt /= n/w then
 next_state <= op22_st;
 else
 next_state <= op23_st;
 end if;

 when op23_st =>
 sel_fsm <= '1';
 en_mp <= '0';
 en_sub <= '0';

 if rdy_sig = '0' then
 next_state <= op23_st;
 else
 next_state <= op24_st;
 end if;

 when op24_st =>
 sel_fsm <= '1';
 en_mp <= '0';
 en_sub <= '0';
 if rdy_sig = '1' then
 next_state <= op24_st;
 else
 if x_reg(n/w) = 0 then
 next_state <= op31_st;
 else
 -- Correcao
 next_state <= op25_st;
 end if;
 end if;

 when op25_st =>
 sel_fsm <= '1';
 en_mp <= '0';
 if a_cnt < n/w + 1 then
 en_sub <= '1';
 next_state <= op25_st;
 else
 en_sub <= '0';
 if a_cnt < n/w + 2 then
 next_state <= op25_st;
 else
 next_state <= op31_st;
 end if;
 end if;

 when op31_st =>
 sel_fsm <= '1';
 en_mp <= '1';
 en_sub <= '0';
 if a_cnt /= n/w then
 next_state <= op31_st;
 else
 next_state <= op32_st;
 end if;

 when op32_st =>
 sel_fsm <= '1';
 en_mp <= '0';
 en_sub <= '0';
 if rdy_sig = '0' then
 next_state <= op32_st;
 else
 next_state <= op33_st;
 end if;

 when op33_st =>
 sel_fsm <= '1';
 en_mp <= '0';
 en_sub <= '0';
 if rdy_sig = '1' then
 next_state <= op33_st;
 else
 if x_reg(n/w) = 0 then

 if e_bit = '1' then
 next_state <= op41_st;
 else
 next_state <= op45_st;
 end if;
 else
 -- Correcao
 next_state <= op34_st;
 end if;
 end if;

 when op34_st =>
 sel_fsm <= '1';
 en_mp <= '0';
 if a_cnt < n/w + 1 then
 en_sub <= '1';
 next_state <= op34_st;
 else
 en_sub <= '0';
 if a_cnt < n/w + 2 then
 next_state <= op34_st;
 else
 if e_bit = '1' then
 next_state <= op41_st;
 else
 next_state <= op45_st;
 end if;
 end if;
 end if;

 when op41_st =>
 sel_fsm <= '0';
 en_mp <= '1';
 en_sub <= '0';
 if a_cnt /= n/w then
 next_state <= op41_st;
 else
 next_state <= op42_st;
 end if;

 when op42_st =>
 sel_fsm <= '0';
 en_mp <= '0';
 en_sub <= '0';
 if rdy_sig = '0' then
 next_state <= op42_st;
 else
 next_state <= op43_st;
 end if;

 when op43_st =>
 sel_fsm <= '0';
 en_mp <= '0';
 en_sub <= '0';
 if rdy_sig = '1' then
 next_state <= op43_st;
 else
 if x_reg(n/w) = 0 then
 next_state <= op45_st;
 else
 -- Correcao
 next_state <= op44_st;
 end if;
 end if;

 when op44_st =>
 sel_fsm <= '1';
 en_mp <= '0';
 if a_cnt < n/w + 1 then
 en_sub <= '1';
 next_state <= op44_st;
 else
 en_sub <= '0';
 if a_cnt < n/w + 2 then
 next_state <= op44_st;
 else
 next_state <= op45_st;
 end if;
 end if;

 when op45_st =>
 sel_fsm <= '0';
 en_mp <= '0';
 en_sub <= '0';
 if b_cnt /= 0 then
 next_state <= op31_st;
 else
 next_state <= op51_st;
 end if;

 when op51_st =>
 sel_fsm <= '1';
 en_mp <= '0';
 en_sub <= '0';
 next_state <= op52_st;

 when op52_st =>
 sel_fsm <= '1';
 en_mp <= '1';
 en_sub <= '0';
 if a_cnt /= n/w then
 next_state <= op52_st;
 else
 next_state <= op53_st;
 end if;

 when op53_st =>
 sel_fsm <= '1';
 en_mp <= '0';
 en_sub <= '0';
 if rdy_sig = '0' then
 next_state <= op53_st;
 else
 next_state <= op54_st;
 end if;

 when op54_st =>
 sel_fsm <= '1';
 en_mp <= '0';
 en_sub <= '0';
 if rdy_sig = '1' then
 next_state <= op54_st;
 else
 if m_reg(n/w) = 0 then
 next_state <= op61_st;
 else
 -- Correcao
 next_state <= op55_st;

 end if;
 end if;

 when op55_st =>
 sel_fsm <= '0';
 en_mp <= '0';
 if a_cnt < n/w + 1 then
 en_sub <= '1';
 next_state <= op55_st;
 else
 en_sub <= '0';
 if a_cnt < n/w + 2 then
 next_state <= op55_st;
 else
 next_state <= op61_st;
 end if;
 end if;

 when op61_st =>
 sel_fsm <= '0';
 en_mp <= '0';
 en_sub <= '0';
 if a_cnt /= n/l-1 then
 next_state <= op61_st;
 else
 next_state <= m1_st;
 end if;

 when others =>
 sel_fsm <= '0';
 en_mp <= '0';
 en_sub <= '0';
 next_state <= m1_st;
 end case;
 end if;
end process;

process (clk)
begin
 if clk'event and clk = '1' then
 case current_state is
 when m1_st =>
 rdy_ff <= '0';
 dat_reg(w/l-1) <= dat_i;
 a_cnt <= (others => '0');
 s_reg <= (others => '0');

 when m2_st =>
 dat_reg <= shift_byte(w, l, dat_i, dat_reg);
 if a_cnt =w/l - 1 then
 a_cnt <= (others => '0');
 acc_reg <= shift_byte(n+w, w, dat_reg, acc_reg);
 else
 a_cnt <= a_cnt + 1;
 end if;

 when e1_st =>
 dat_reg(w/l-1) <= dat_i;

 when e2_st =>
 dat_reg <= shift_byte(w, l, dat_i, dat_reg);
 if a_cnt =w/l - 1 then
 a_cnt <= (others => '0');
 e_reg <= shift_byte(n+w, w, dat_reg, e_reg);

 else
 a_cnt <= a_cnt + 1;
 end if;

 when n1_st =>
 dat_reg(w/l-1) <= dat_i;

 when n2_st =>
 dat_reg <= shift_byte(w, l, dat_i, dat_reg);
 if a_cnt =w/l - 1 then
 a_cnt <= (others => '0');
 n_reg <= shift_byte(n+w, w, dat_reg, n_reg);
 else
 a_cnt <= a_cnt + 1;
 end if;

 when k1_st =>
 dat_reg(w/l-1)<= dat_i;

 when k2_st =>
 dat_reg <= shift_byte(w, l, dat_i, dat_reg);
 if a_cnt = w/l - 1 then
 a_cnt <= (others => '0');
 x_reg <= shift_byte(n+w, w, dat_reg, x_reg);
 else
 a_cnt <= a_cnt + 1;
 end if;

-- Até aqui la legal!!!

 when op10_st =>
 m_reg <= shift_byte(n+w, w, zero_sig , m_reg);
 e_reg <= shift_byte(n+w, w, zero_sig , e_reg);
 n_reg <= shift_byte(n+w, w, zero_sig , n_reg);
 x_reg <= shift_byte(n+w, w, zero_sig , x_reg);
 acc_reg <= shift_byte(n+w, w, zero_sig , acc_reg);

 when op11_st =>
 a_cnt <= a_cnt + 1;
 n_reg <= rotate_byte(n+w, w, n_reg);
 x_reg <= rotate_byte(n+w, w, x_reg);

 when op12_st =>
 if rdy_sig = '1' then
 m_reg <= shift_byte(n+w, w, s_sig, m_reg);
 else
 if shx_sig = '1' then
 acc_reg <= special_shift(n+w, p, acc_reg);
 end if;
 end if;

 when op13_st =>
 if rdy_sig = '1' then
 m_reg <= shift_byte(n+w, w, s_sig, m_reg);
 else
 a_cnt <= (others => '0');
 end if;

 when op14_st =>
 a_cnt <= a_cnt + 1;
 m_reg <= shift_byte(n+w, w, s_sub, m_reg);
 if a_cnt < n/w + 1 then
 n_reg <= rotate_byte(n+w, w, n_reg);
 elsif a_cnt = n/w + 2 then

 a_cnt <= (others => '0');
 end if;

 when op21_st =>
 acc_reg <= set_array(n+w, w);

 when op22_st =>
 a_cnt <= a_cnt + 1;
 n_reg <= rotate_byte(n+w, w, n_reg);
 x_reg <= rotate_byte(n+w, w, x_reg);

 when op23_st =>
 if rdy_sig = '1' then
 x_reg <= shift_byte(n+w, w, s_sig, x_reg);
 acc_reg <= shift_byte(n+w, w, s_sig, acc_reg);
 else
 if shx_sig = '1' then
 acc_reg <= special_shift(n+w, p, acc_reg);
 end if;
 end if;

 when op24_st =>
 if rdy_sig = '1' then
 x_reg <= shift_byte(n+w, w, s_sig, x_reg);
 acc_reg <= shift_byte(n+w, w, s_sig, acc_reg);
 else
 a_cnt <= (others => '0');
 b_cnt <= (others => '1');
 end if;

 when op25_st =>
 a_cnt <= a_cnt + 1;
 x_reg <= shift_byte(n+w, w, s_sub, x_reg);
 acc_reg <= shift_byte(n+w, w, s_sub, acc_reg);
 if a_cnt < n/w + 1 then
 n_reg <= rotate_byte(n+w, w, n_reg);
 elsif a_cnt = n/w + 2 then
 a_cnt <= (others => '0');
 end if;

 when op31_st =>
 a_cnt <= a_cnt + 1;
 n_reg <= rotate_byte(n+w, w, n_reg);
 x_reg <= rotate_byte(n+w, w, x_reg);

 when op32_st =>
 if rdy_sig = '1' then
 x_reg <= shift_byte(n+w, w, s_sig, x_reg);
 acc_reg <= shift_byte(n+w, w, s_sig, acc_reg);
 else
 if shx_sig = '1' then
 acc_reg <= special_shift(n+w, p, acc_reg);
 end if;
 end if;

 when op33_st =>
 if rdy_sig = '1' then
 x_reg <= shift_byte(n+w, w, s_sig, x_reg);
 acc_reg <= shift_byte(n+w, w, s_sig, acc_reg);
 else
 a_cnt <= (others => '0');
 end if;

 when op34_st =>

 a_cnt <= a_cnt + 1;
 x_reg <= shift_byte(n+w, w, s_sub, x_reg);
 acc_reg <= shift_byte(n+w, w, s_sub, acc_reg);
 if a_cnt < n/w + 1 then
 n_reg <= rotate_byte(n+w, w, n_reg);
 elsif a_cnt = n/w + 2 then
 a_cnt <= (others => '0');
 end if;

 when op41_st =>
 a_cnt <= a_cnt + 1;
 n_reg <= rotate_byte(n+w, w, n_reg);
 m_reg <= rotate_byte(n+w, w, m_reg);

 when op42_st =>
 if rdy_sig = '1' then
 x_reg <= shift_byte(n+w, w, s_sig, x_reg);
 acc_reg <= shift_byte(n+w, w, s_sig, acc_reg);
 else
 if shx_sig = '1' then
 acc_reg <= special_shift(n+w, p, acc_reg);
 end if;
 end if;

 when op43_st =>
 if rdy_sig = '1' then
 x_reg <= shift_byte(n+w, w, s_sig, x_reg);
 acc_reg <= shift_byte(n+w, w, s_sig, acc_reg);
 else
 a_cnt <= (others => '0');
 end if;

 when op44_st =>
 a_cnt <= a_cnt + 1;
 x_reg <= shift_byte(n+w, w, s_sub, x_reg);
 acc_reg <= shift_byte(n+w, w, s_sub, acc_reg);
 if a_cnt < n/w + 1 then
 n_reg <= rotate_byte(n+w, w, n_reg);
 elsif a_cnt = n/w + 2 then
 a_cnt <= (others => '0');
 end if;

 when op45_st =>
 b_cnt <= b_cnt - 1;

 when op51_st =>
 acc_reg <= set_array(n+w, w);

 when op52_st =>
 a_cnt <= a_cnt + 1;
 n_reg <= rotate_byte(n+w, w, n_reg);
 x_reg <= rotate_byte(n+w, w, x_reg);

 when op53_st =>
 if rdy_sig = '1' then
 m_reg <= shift_byte(n+w, w, s_sig, m_reg);
 else
 if shx_sig = '1' then
 acc_reg <= special_shift(n+w, p, acc_reg);
 end if;
 end if;

 when op54_st =>
 if rdy_sig = '1' then

 m_reg <= shift_byte(n+w, w, s_sig, m_reg);
 else
 a_cnt <= (others => '0');
 end if;

 when op55_st =>
 a_cnt <= a_cnt + 1;
 m_reg <= shift_byte(n+w, w, s_sub, x_reg);
 if a_cnt < n/w + 1 then
 n_reg <= rotate_byte(n+w, w, n_reg);
 elsif a_cnt = n/w + 2 then
 a_cnt <= (others => '0');
 end if;

 when op61_st =>
 a_cnt <= a_cnt + 1;
 m_reg <= shift_byte(l, m_reg);
 s_reg <= m_reg(0)(l-1 downto 0);
 rdy_ff <= '1';

 when others =>
 null;
 end case;
 current_state <= next_state;
 end if;
end process;

zero_sig<= (others => '0');
x_sig <= array2vector(acc_reg)(p-1 downto 0);

mp_block: mp
 generic map(
 n => n,
 w => w,
 e => e,
 p => p)
 port map(
 clk => clk,
 rst => rst,
 en_i => en_mp,
 m_i => n_reg(0),
 y_i => y_sig,
 x_i => x_sig,
 rdy_o => rdy_sig,
 shx_o => shx_sig,
 s_o => s_sig);

sub_blk: sub
 generic map(w => w)
 port map(
 clk => clk,
 rst => rst,
 en_i => en_sub,
 a_i => y_sig,
 n_i => n_reg(0),
 s_o => s_sub);

y_sig <= m_reg(0) when (sel_fsm = '0') else
 x_reg(0);

rdy_o <= rdy_ff;
dat_o <= s_reg;
end rtl;

--
-- Autor : Alcides Silveira Costa
-- Bloco : Montgomery Pipeline
--
library ieee;
 use ieee.std_logic_1164.all;
 use ieee.std_logic_unsigned.all;

entity mp is
 generic(
 n : positive := 16;
 w : positive := 8;
 e : positive := 3;
 p : positive := 2);
 port(
 -- Entradas
 clk : in std_logic;
 rst : in std_logic;
 en_i : in std_logic;
 m_i : in std_logic_vector(w-1 downto 0);
 y_i : in std_logic_vector(w-1 downto 0);
 x_i : in std_logic_vector(p-1 downto 0);

 -- Saidas
 rdy_o : out std_logic;
 shx_o : out std_logic;
 s_o : out std_logic_vector(w-1 downto 0));
end mp;

architecture rtl of mp is
-- Componentes
component pe is
 generic(w : positive := 1);
 port(
 clk : in std_logic;
 rst : in std_logic;
 en_i : in std_logic;
 s_i : in std_logic_vector(w-1 downto 0);
 m_i : in std_logic_vector(w-1 downto 0);
 y_i : in std_logic_vector(w-1 downto 0);
 x_i : in std_logic;
 rdy_o : out std_logic;
 s_o : out std_logic_vector(w-1 downto 0);
 m_o : out std_logic_vector(w-1 downto 0);
 y_o : out std_logic_vector(w-1 downto 0));
end component;

-- Funções
function log2(x: integer) return integer is
 -- Funciona apenas para numero base 2
 variable result : integer := 1;
 variable aux : integer;
 begin
 aux := x;
 if aux /= 1 then
 while aux /= 2 loop
 aux := aux/2;
 result := result + 1;
 end loop;
 else
 result := 0;
 end if;
 return result;
end log2;

-- FSM
type states is (a_st, b_st, d_st, f_st, g_st);
signal current_state, next_state: states;

-- Registradores de amostragem, retardo e saida
signal m_reg : std_logic_vector(w-1 downto 0);
signal y_reg : std_logic_vector(w-1 downto 0);
signal s_reg : std_logic_vector(w-1 downto 0);

-- Registradores internos
signal a_cnt : std_logic_vector(log2(n)-log2(p-1)-1 downto 0);
signal b_cnt : std_logic_vector(log2(e-1) downto 0);

-- Fios internos
type array_of_wires is array (p downto 0) of std_logic_vector(w-1 downto 0);
signal s_int : array_of_wires;
signal m_int : array_of_wires;
signal y_int : array_of_wires;
signal en_int : std_logic_vector(p downto 0);

-- Flip-flops
signal rdy_ff : std_logic;
signal shx_ff : std_logic;

-- Sinais de selecao de multiplexadores
signal sel_fsm : std_logic_vector(1 downto 0);
signal zero_sig : std_logic_vector(w-1 downto 0);

begin
zero_sig <= (others => '0');

type1_fsm: if n/w > 2 generate
 process (current_state, rst, en_i, a_cnt, en_int(n mod p))
 begin
 if (rst = '1') then
 sel_fsm <= "00";
 next_state <= a_st;
 else
 case current_state is
 when a_st =>
 sel_fsm <= "00";
 if (en_i = '0') then
 next_state <= a_st;
 else
 next_state <= b_st;
 end if;

 when b_st =>
 sel_fsm <= "01";
 if (en_i = '1') then
 next_state <= b_st;
 else
 if ((n/p - 1)/= 0) then
 next_state <= d_st;
 else
 next_state <= f_st;
 end if;
 end if;

 when d_st =>
 sel_fsm <= "10";
 if (a_cnt /= (n/p)- 1) then
 next_state <= d_st;

 else
 next_state <= f_st;
 end if;

 when f_st =>
 sel_fsm <= "10";
 if (en_int(n mod p) = '1') then
 next_state <= f_st;
 else
 next_state <= g_st;
 end if;

 when g_st =>
 sel_fsm <= "10";
 if (en_int(n mod p) = '1') then
 next_state <= g_st;
 else
 next_state <= a_st;
 end if;

 when others =>
 sel_fsm <= "00";
 next_state <= a_st;
 end case;
 end if;
 end process;
end generate;

--

type2_fsm: if n/w = 2 generate
 process (current_state, rst, en_i, a_cnt, en_int(n mod p))
 begin
 if (rst = '1') then
 sel_fsm <= "00";
 next_state <= a_st;
 else
 case current_state is
 when a_st =>
 sel_fsm <= "00";
 if (en_i = '0') then
 next_state <= a_st;
 else
 next_state <= b_st;
 end if;

 when b_st =>
 sel_fsm <= "01";
 if (en_i = '1') then
 next_state <= b_st;
 else
 if ((n/p - 1)/= 0) then
 next_state <= d_st;
 else
 next_state <= f_st;
 end if;
 end if;

 when d_st =>
 sel_fsm <= "10";
 if (a_cnt /= (n/p)- 2) then
 next_state <= d_st;
 else
 next_state <= f_st;

 end if;

 when f_st =>
 sel_fsm <= "10";
 if (en_int(n mod p) = '1') then
 next_state <= f_st;
 else
 next_state <= g_st;
 end if;

 when g_st =>
 sel_fsm <= "10";
 if (en_int(n mod p) = '1') then
 next_state <= g_st;
 else
 next_state <= a_st;
 end if;

 when others =>
 sel_fsm <= "00";
 next_state <= a_st;
 end case;
 end if;
 end process;
end generate;

--

 process (clk)
 begin
 if clk'event and clk = '1' then
 case current_state is
 when a_st =>
 m_reg <= m_i;
 y_reg <= y_i;
 a_cnt <= (others => '0');
 b_cnt <= (others => '0');
 s_reg <= (others => '0');
 shx_ff <= '0';
 rdy_ff <= '0';

 when b_st =>
 m_reg <= m_i;
 y_reg <= y_i;
 if (en_i = '0') then
 shx_ff <= '1';
 end if;

 when d_st =>
 if (b_cnt /= e) then
 b_cnt <= b_cnt + 1;
 shx_ff <= '0';
 else
 a_cnt <= a_cnt + 1;
 b_cnt <= (others => '0');
 shx_ff <= '1';
 end if;

 when f_st =>
 a_cnt <= (others => '0');
 b_cnt <= (others => '0');
 shx_ff <= '0';

 when g_st =>

 m_reg <= m_i;
 y_reg <= y_i;
 s_reg <= s_int(n mod p);
 rdy_ff <= en_int(n mod p);

 when others =>
 null;
 end case;
 current_state <= next_state;
 end if;
 end process;

MontgomeryPipeline: for k in 0 to p-1 generate
 MP: pe
 generic map(w)
 port map(
 clk => clk,
 rst => rst,
 en_i => en_int(k),
 s_i => s_int(k),
 m_i => m_int(k),
 y_i => y_int(k),
 x_i => x_i(k),
 rdy_o => en_int(k+1),
 s_o => s_int(k+1),
 m_o => m_int(k+1),
 y_o => y_int(k+1));
end generate;

 en_int(0) <= '0' when (sel_fsm = "00") else
 '1' when (sel_fsm = "01") else
 en_int(p);

 s_int(0) <= zero_sig when (sel_fsm = "00") else
 zero_sig when (sel_fsm = "01") else
 s_int(p);

 m_int(0) <= zero_sig when (sel_fsm = "00") else
 m_reg when (sel_fsm = "01") else
 m_int(p);

 y_int(0) <= zero_sig when (sel_fsm = "00") else
 y_reg when (sel_fsm = "01") else
 y_int(p);

shx_o <= shx_ff;
rdy_o <= rdy_ff;
s_o <= s_reg;
end rtl;

--
-- Autor : Alcides Silveira Costa
-- Bloco : Processing Element
--
library ieee;
 use ieee.std_logic_1164.all;
 use ieee.std_logic_unsigned.all;

entity pe is
 generic(w : positive := 4);
 port(
 -- Entradas
 clk : in std_logic;
 rst : in std_logic;

 en_i : in std_logic;
 s_i : in std_logic_vector(w-1 downto 0);
 m_i : in std_logic_vector(w-1 downto 0);
 y_i : in std_logic_vector(w-1 downto 0);
 x_i : in std_logic;

 -- Saidas
 rdy_o : out std_logic;
 s_o : out std_logic_vector(w-1 downto 0);
 m_o : out std_logic_vector(w-1 downto 0);
 y_o : out std_logic_vector(w-1 downto 0));
end pe;

architecture rtl of pe is
-- FSM
type states is (A, B);
signal current_state, next_state: states;

-- Registradores de amostragem, retardo e/ou saida
signal m_reg1 : std_logic_vector(w-1 downto 0);
signal y_reg1 : std_logic_vector(w-1 downto 0);

signal m_reg2 : std_logic_vector(w-1 downto 0);
signal y_reg2 : std_logic_vector(w-1 downto 0);

-- Registradores internos
signal cs_reg1: std_logic_vector(w+1 downto 1);
signal cs_reg2: std_logic_vector(w-1 downto 0);

-- Fios internos
signal wire_int1: std_logic_vector(w+1 downto 0);
signal wire_int2: std_logic_vector(w+1 downto 0);

-- Flip-flops
signal s_ff : std_logic;
signal x_ff : std_logic;
signal en_ff1 : std_logic;
signal en_ff2 : std_logic;

-- Sinais de selecao de multiplexadores
signal sel_a : std_logic;
signal sel_b : std_logic;
signal sel_c : std_logic;
signal sel_x : std_logic;

begin

process (current_state, rst, en_i)
begin
 if (rst = '1') then
 sel_b <= '0';
 sel_x <= '0';
 next_state <= A;
 else
 case current_state is
 when A =>
 sel_b <= '0';
 sel_x <= '0';
 if (en_i = '0') then
 next_state <= A;
 else
 next_state <= B;
 end if;

 when B =>
 sel_b <= '1';
 sel_x <= '1';
 if (en_i = '1') then
 next_state <= B;
 else
 next_state <= A;
 end if;

 when others =>
 sel_b <= '0';
 sel_x <= '0';
 next_state <= A;
 end case;
 end if;
end process;

process (clk)
begin
 if clk'event and clk = '1' then
 cs_reg1 <= wire_int2(w+1 downto 1);
 m_reg1 <= m_i;
 y_reg1 <= y_i;
 en_ff1 <= en_i;

 case current_state is
 when A =>
 x_ff <= x_i;
 s_ff <= wire_int1(0);
 cs_reg2 <= (others => '0');
 m_reg2 <= (others => '0');
 y_reg2 <= (others => '0');
 en_ff2 <= '0';

 when B =>
 cs_reg2 <= wire_int2(0) & cs_reg1(w-1 downto 1);
 m_reg2 <= m_reg1;
 y_reg2 <= y_reg1;
 en_ff2 <= en_ff1;

 when others =>
 null;

 end case;
 current_state <= next_state;
 end if;
end process;

Mux_X:
with sel_x select
 sel_a <= x_i when '0',
 x_ff when '1',
 x_i when others;

Mux_A:
with sel_a select
 wire_int1<= "00"&s_i when '0',
 ("00"&s_i) + ("00"&y_i) when '1',
 "00"&s_i when others;

Mux_B:
with sel_b select
 sel_c <= wire_int1(0 when '0',
 s_ff when '1',

 wire_int1(0) when others;

Mux_C:
with sel_c select
 wire_int2<= wire_int1 + cs_reg1(w+1 downto w) when '0',
 wire_int1 + cs_reg1(w+1 downto w) + ("00"&m_i) when '1',
 wire_int1 + cs_reg1(w+1 downto w) when others;

rdy_o <= en_ff2;
s_o <= cs_reg2;
m_o <= m_reg2;
y_o <= y_reg2;
end rtl;

--
-- Autor : Alcides Silveira Costa
-- Bloco : Subtrator em pipeline
--
library ieee;
 use ieee.std_logic_1164.all;
 use ieee.std_logic_unsigned.all;

entity sub is
 generic(w : positive := 8);
 port(
 -- Entradas
 clk : in std_logic;
 rst : in std_logic;
 en_i : in std_logic;
 a_i : in std_logic_vector(w-1 downto 0);
 n_i : in std_logic_vector(w-1 downto 0);

 -- Saidas
 s_o : out std_logic_vector(w-1 downto 0));
end sub;

architecture rtl of sub is
-- FSM
type states is (a_st, b_st);
signal current_state, next_state: states;

-- Registradores internos
signal a_reg : std_logic_vector(w-1 downto 0);
signal n_reg : std_logic_vector(w-1 downto 0);
signal s_reg : std_logic_vector(w-1 downto 0);
signal carry_ff : std_logic;

-- Sinais internos
signal s_sig : std_logic_vector(w downto 0);
signal carry_sig: std_logic_vector(w-1 downto 1);

begin

process (current_state, rst, en_i)
begin
 if (rst = '1') then
 next_state <= a_st;
 else
 case current_state is
 when a_st =>
 if (en_i = '0') then
 next_state <= a_st;
 else

 next_state <= b_st;
 end if;

 when b_st =>
 if (en_i = '1') then
 next_state <= b_st;
 else
 next_state <= a_st;
 end if;

 when others =>
 next_state <= a_st;
 end case;
 end if;
end process;

process (clk)
begin
 if clk'event and clk = '1' then
 a_reg <= a_i;
 n_reg <= n_i;
 case current_state is
 when a_st =>
 carry_ff <= '0';
 s_reg <= (others => '0');

 when b_st =>
 carry_ff <= s_sig(w);
 s_reg <= s_sig(w-1 downto 0);

 when others =>
 null;

 end case;
 current_state <= next_state;
 end if;
end process;

carry_sig <= (others => '0');
s_sig <= ('0'&a_reg) - ('0'&n_reg) - ('0'&carry_sig&carry_ff);
s_o <= s_reg;
end rtl;

