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Abstract—Optimizing the communication behavior of parallel
applications has emerged as an important topic in parallel pro-
cessing. In shared memory architectures, threads communicate
implicitly through memory accesses to shared memory areas. The
communication behavior can be improved by mapping threads
that communicate a lot to processing units that are close to each
other in the memory hierarchy, such that they can benefit from
shared caches and faster interconnections. An important aspect of
such a communication-aware thread mapping is the accurate and
efficient detection of communication in shared memory. Previous
work used impromptu definitions, without an evaluation of the
complexities of different communication types. In this paper, we
perform an in-depth, systematic evaluation of communication in
shared memory, focusing on its architectural effects. We present
an efficient way to detect communication, which is orders of
magnitude faster than a cache simulator, while maintaining a
high accuracy.

Index Terms—Communication, thread mapping, cache hierar-
chy, interconnections

I. INTRODUCTION

Due to the large increase of parallelism, communication
represents one of the main challenges for the efficiency of
parallel applications. Parallel applications need to exchange
data to perform their work, which can have a higher impact on
the performance and energy consumption than the computation
itself [1], [2]. Two basic strategies can be adopted to reduce
this impact. First, by reducing the amount of communica-
tion (communication avoidance [3]) Second, by performing
an assignment of threads to processing units that takes the
inter-thread communication into account, communication can
be optimized [4]. We refer to this second technique as
communication-aware thread mapping. Most thread mapping
proposals focus on improving locality, where threads that
communicate a lot are mapped close to each other in the
system, to make use of faster interconnections and shared
cache memories.

An improved thread mapping impacts the hardware ar-
chitecture, reducing the number of cache misses, due to
more available cache space and less invalidations [5]. Such
a mapping also results in less traffic on inter- and intra-
chip interconnections, due to fewer cache-to-cache transfers
and invalidation messages [6]. These optimizations result
in improved performance and energy efficiency of parallel
applications. For this reason, it is necessary to describe and
evaluate the architectural effects of communication in order to
perform an optimized thread mapping.

A critical step of thread mapping is the analysis of the
structure of communication, which we call the communi-
cation pattern, since it determines the mapping that should
be applied, as well as the gains that can be achieved. In
shared memory architectures and programming models, such
as OpenMP and Pthreads, communication is implicit and hap-
pens through memory accesses to shared data. This presents
additional challenges compared to message-passing models
such as MPI, because the communication behavior depends
on many architectural parameters, such as the cache line size
and cache organization. Furthermore, memory accesses are
generally hard to study with an acceptable overhead. For these
reasons, communication in shared memory is usually described
with impromptu definitions, with various granularities [7],
sampling strategies [8], or without a focus on the architectural
impacts of communication [9]. This can lead to incorrect
thread mapping decisions that do not result in optimal gains
for many applications.

For a correct and efficient way to detect the communication
of parallel applications based on shared memory, this paper
makes two main contributions, discussing how communication
can be defined and detected efficiently. We first present a
systematic description of communication behavior in shared
memory, focusing on the various types of communication
and their architectural effects. We introduce a method to
accurately describe communication, which requires a cache
simulator for detection. By relaxing this accurate definition, we
construct a new technique that provides a very high accuracy
while drastically reducing the overhead of the communication
detection. We evaluate the techniques with applications from
two parallel benchmark suites.

II. RELATED WORK

Related work that characterizes communication mostly fo-
cuses on applications that use explicit message passing frame-
works, such as MPI. Examples include [10], [11], [12]. A
characterization methodology for explicit communication is
presented in [13], [14], where communication is described
with temporal, spatial and volume components. We use similar
components to describe communication, but apply them in the
context of shared memory, where communication is performed
implicitly through memory accesses to memory areas that
are shared between different threads. Barrow-Williams et
al. [9] perform a communication analysis of the PARSEC and
Splash2 benchmark suites. They focus on communication on



the logical level and therefore only count memory accesses that
really represent communication, filtering out memory accesses
that occur due to register pressure for example. As we are
interested in the architectural effects of communication, we
take into account all memory accesses for the characterization.

Most mechanisms that perform communication-aware
thread mapping use an informal definition of communication,
use hardware or software based memory access sampling with
varying granularities, or use other indirect metrics that do not
accurately represent communication [7], [8]. Some automatic
tools, such as BlackBox [15], perform thread mapping by
measuring the IPC of various mappings and selecting the
mapping with the highest performance. A related type of pro-
posal that affects communication is based on communication
avoidance [3]. Such proposals focus on reducing the impact of
communication by reducing the amount of data that needs to
be communicated. Even a reduced amount of communication
can be optimized with a better thread mapping.

In this work, we introduce a mechanism to describe com-
munication with a higher accuracy as well as a lower detection
overhead, leading to better thread mapping solutions.

III. COMMUNICATION IN SHARED MEMORY

Describing the communication behavior presents several
challenges that need to be addressed. In this section, we will
present definitions of communication in shared memory archi-
tectures and discuss their impact on the behavior detection, as
well as the thread mapping.

A. Explicit and Implicit Communication

Parallel programming models use different forms of com-
munication. Communication can be explicit, where send()
and receive() functions exchange messages between
threads, as shown in Figure 1a. In implicit communication,
communication is performed directly through memory ac-
cesses to shared variables, without using explicit functions to
communicate, as shown in Figure 1b. Explicit communication
supports communication in distributed environments through
message transmission over network protocols, such as TCP/IP
for nodes interconnected via Ethernet. Implicit communication
requires that threads share a physical address space and is
therefore limited to shared memory architectures. However,
implicit communication has a lower overhead than explicit
communication, since it only requires a memory access, while
explicit communication has the additional overhead of the
socket and packet encapsulation, among others [16].

res=calc()
send(T1,res)

Thread 0 (T0)

r=recv(T0)
print(r)

Thread 1 (T1)

(a) Explicit communication.

res=calc()

Thread 0 (T0)

print(res)

Thread 1 (T1)

(b) Implicit communication.

Fig. 1: Explicit and implicit communication between two
threads T0 and T1. Arrows indicate communication.

Programming APIs for explicit communication include the
Message Passing Interface (MPI) [17] and Charm++ [18],
while OpenMP [19] and Pthreads [20] use implicit communi-
cation. Since communication via shared memory has a lower
overhead [21], many implementations of MPI contain exten-
sions to communicate via shared memory within cluster nodes,
such as Nemesis [16] for MPICH2. The extensions allocate a
shared memory segment for communication and transform the
MPI function calls such that they access these shared segments
for communication, bypassing the network layer [16]. For
this reason, both explicit and implicit communication can be
optimized by improving memory accesses in shared memory
architectures [22].

B. True/False Communication and Communication Events

In explicit communication, all communication is true, that
is, every call to a communication function represents an
intention to exchange data between threads. In implicit com-
munication however, not every memory access to shared data
by different threads necessarily implies an intention to commu-
nicate. We refer to this unintentional communication as false
communication, which can be further divided into spatial,
temporal, and logical false communication. All types of false
communication are caused by the way that the hardware
architecture, especially the caches and interconnections, work.
An overview of the true and false communication types is
shown in Figure 2 for two threads T0 and T1 that access the
same cache line (gray box). The line consists of 4 words.

When two threads access the same word in the same cache
line while the line is not evicted and the second access is not
an unnecessary reload, we call this access true communica-
tion (Figure 2a).

Spatial false communication happens because the granu-
larity of cache lines and interconnections is larger than the
granularity of memory accesses, similar to the classic false
sharing problem [23]. As an example, consider that two
threads perform memory accesses to the same cache line, but
at different offsets within the same line, as shown in Figure 2b.
This access is not true communication, as it does not represent
an intention to transfer data. However, the architecture treats
this access in exactly the same way as it would treat an
access to the same offset, in terms of the cache coherence
protocol, invalidation and transfer of cache lines. Since we are
mostly interested in the architectural effects of communication,
we include spatial false communication on the cache line
granularity in our definition of communication. In this way,
communication-aware mapping can improve accesses to truly
shared data, and can reduce the negative impact of false
sharing.

Temporal false communication happens when two threads
access the same memory address, but at different times during
the execution, such that at the time of the second access, the
cache line is not in the caches anymore and needs to be fetched
from the main memory. This situation is shown in Figure 2c.
This type of false communication is very dependent on the
configuration and size of the caches. It can present difficulties



for communication detection mechanisms that rely on memory
traces and do not have a way to filter communication with
a low temporal locality. Since temporal false communication
affects the architectural impact of communication, we will
reduce its impact by taking into account the temporal locality
in our mechanisms.

Logical false communication happens due restrictions of the
hardware architecture, especially due to the limited number
of registers. For example, if an application requires more
registers at the same time than the hardware provides, the
compiler needs to spill a register to the memory and re-
read the value at a later time. Since this behavior does not
constitute an exchange of data, this second access is logical
false communication. However, similarly to the spatial false
communication, it also affects the architecture. Therefore, we
also consider these accesses as communication, in contrast
to previous work that focuses on the logical communication
behavior [9].

Summarizing this discussion, we will consider spatial and
logical false communication in the same way as true com-
munication in this paper, and will filter temporal false com-
munication in our mechanisms. With these considerations, we
introduce the concept of a communication event, which we
define as two memory accesses from different threads to the
same cache line while the cache line is not evicted. Some
of our mechanisms will relax this definition, by increasing
the granularity of the detection to a value that is larger
than the cache line size, and by using simpler definitions

T0

tim
e T1

(a) True communication. Both
threads access the same word in
the same cache line while the line
is not evicted.

T0

tim
e T1

(b) Spatial false communication.
Both threads access the same
cache line, but access different
words within the same line.

T0

cache line
is evictedtim

e

T1

(c) Temporal false communica-
tion. Both threads access the
same word in the same cache
line, but the line is evicted be-
tween accesses.

T0,T1

T1 spills
value, rereads ittim

e

T1

(d) Logical false communication.
Both threads communicate, but
T1 reloads the same value at a
later time due to high register
pressure.

Fig. 2: Comparison between true and false communication.
Consider that two threads T0 and T1 access the same cache
line (gray box), which consists of 4 words.

of temporal false communication that are independent of the
cache configuration.

C. Read and Write Memory Accesses

Write operations are generally more expensive than reads,
since they imply the invalidation of cache lines in remote
caches, requiring more traffic on on-chip interconnections than
the cache-to-cache transfers that are caused by read operations.
However, read memory accesses are much more numerous
than writes. For example, 71.1% of memory transactions in
the (sequential) SPEC CPU 2006 benchmark suite [24] are
read operations, while they make up 78.1% in the PARSEC
suite [25]. Read accesses also have higher chances to stall the
pipeline, since they generate more dependencies.

Moreover, the processor needs to wait for a read operation
to finish in order to be able to continue operating with the just
loaded cache line, which might involve waiting for the main
memory. This latency can not always be hidden with Out-of-
Order (OoO) execution. On the other hand, write operations
are mostly asynchronous. After issuing the write, the processor
only needs to wait for an acknowledgment from the L1 data
cache to be able to continue with the next instruction. For these
reasons, we consider both read and write memory accesses
equivalently for the description of communication.

D. Communication Direction and Communication Matrix

In explicit communication, each communication operation
has a well-defined sender and receiver (or a group of mul-
tiple receivers), in other words, communication is directed.
In implicit communication however, determining the sender
and receiver of communication is much more difficult. Three
types of communication events can be defined for implicit
communication, depending on whether data is read or written
by two threads. These types are read/read, read/write, and
write/write. In the read/read case, both threads perform read
memory accesses to the same cache line, in order to read
input data for example. No thread can be identified as the
sender/receiver as they perform the same operation. In the
read/write case, one thread writes data which is read by
the other thread. In this case, the writing thread can be
considered the sender, and the reading thread the receiver. In
the write/write case, similar to the read/read case, sender and
receiver can also not be identified. Since direction can not be
determined in the majority of cases, we treat communication
in shared memory as undirected in this paper.

With the information about the communication events, it
is possible to create an undirected communication graph,
where nodes represent threads and edges the number of
communication events between each pair of threads. An ex-
ample of such a graph is shown in Figure 3a for a parallel
application consisting of five threads. This type of graph
is also referred to as a Task Interaction Graph (TIG) in
the literature [26]. In practice, this communication graph is
represented as a matrix, which we call communication matrix
or communication pattern. An example communication matrix
for the previous graph is shown in Figure 3b. Each cell of
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Fig. 3: Three representations of undirected communication for
a parallel application consisting of five threads, T0 – T4.

the matrix contains the number of communication events for
the thread pairs, while the axes contain the thread IDs. Since
we consider that communication is undirected, the matrix is
symmetric. Furthermore, the diagonal of the matrix is kept
zero for the discussion in the paper, as memory accesses by
the same thread do not constitute communication. Finally, to
analyze and discuss the communication patterns, we generally
normalize the matrices to their maximum value, to limit the
range of values between 0 and 100, for example. To better
visualize the communication pattern, we depict the normalized
matrix in the form of a heat map, where darker cells indicate
more communication. An example of this visualization is
shown in Figure 3c.

E. Comparing Communication Patterns
An important aspect of communication is the question of

how to compare different communication behaviors. Since a
communication matrix can be thought of as a grayscale image,
we use a concept from image comparison to compare different
matrices. To compare two normalized communication matrices
A and B that have the same numbers of threads, we calculate
the Mean Squared Error (MSE) [27] with Equation 1, where
N is the number of threads of each matrix. If A and B are
equal, the MSE is equal to zero. The MSE is maximized when
only a single pair of threads communicates in one matrix and
all threads except that pair communicate equally in the other
matrix. In that case, the MSE is given by N2−N

N2 ×max(M)2,
where max(M) is the maximum value of both matrices (the
value that the matrices are normalized to).

MSE (A,B) =
1

N2

N−1∑
i=0

N−1∑
j=0

(
A[i][j]−B[i][j]

)2
(1)

With the MSE, it is possible to compare different commu-
nication behaviors with each other, as well as to measure the
accuracy of different communication detection mechanisms.

IV. A RELAXED DEFINITION OF COMMUNICATION

The definition of communication presented in Section III-B
is the most accurate definition to analyze the architectural

impact of communication, but it has three disadvantages.
First, since it is based directly on the size and configuration
of the cache levels, different cache configurations might re-
sult in a different communication behavior, making it less
useful to describe the application behavior itself. Second,
determining the communication behavior with the accurate
definition requires either analyzing the application in a full
cache simulator, which has a high overhead, or access to the
contents of the cache on real hardware, which is not possible
on most modern architectures. Third, storing and analyzing
communication on the cache line granularity (64 bytes in most
current architectures) has a high storage overhead due to the
need to save large amounts of data. This overhead can be
reduced by increasing the granularity of the analysis to large
sizes than the cache line size. For these reasons, we present
a relaxed definition of communication and compare it to the
accurate definition in this section.

We relax the accurate definition of communication in the
following ways. First, we remove the requirement on the
cache hierarchy and consider all accesses to memory addresses
on a granularity derived by a common cache line size as
communication events. To reduce the impact of temporal
false communication, we maintain a small queue of the two
most recent threads that accessed each cache line. Second,
we increase the granularity to a higher value than the cache

Algorithm 1: The relaxed definition of communication.
Input: address: memory address that was accessed;

tid: thread ID of the thread that performed the access;
g: granularity of detection, number bits to shift

Output: updates communication events
// memory block of the address, contains a

queue of up to 2 threads:
1 block = address >> g;
// number of threads that accessed the

block; can be 0, 1 or 2:
2 nthreads = block.size();
3 if nthreads == 0 then

// no previous access
4 block.push back(tid);
5 if nthreads == 1 && block.front() != tid then

// 1 previous access
6 communication event(block.front(), tid);
7 block.push back(tid);
8 if nthreads == 2 then

// 2 previous accesses
9 t1 = block.front();

10 t2 = block.back();
11 if t1 != tid && t2 != tid then
12 communication event(t1, tid);
13 communication event(t2, tid);
14 block.pop front();
15 block.push back(tid);
16 else if t1 == tid then
17 communication event(t2, tid);
18 else if t2 == tid then
19 communication event(t1, tid);
20 block.pop front();
21 block.push back(tid);



line size, separating the memory address space into memory
blocks. Algorithm 1 shows the function that is executed on
each memory access. The memory block is calculated by bit
shifting the address with the chosen granularity. The block
contains a queue that stores the ID of the previously accessing
threads. Then, the number of threads that previously accessed
the block are counted. If other threads had accessed the block
before, communication events are recorded and the queue is
updated.

V. METHODOLOGY

This section presents the experimental methodology.

A. Simulation Environments
1) Simulated Machine: We simulate a machine consisting

of 64 PUs with a cache hierarchy inspired by the Intel Nehalem
microarchitecture [28], which is the base of our real evaluation
system. 32 L1 caches (size: 32 KByte) and L2 caches (size:
256 KByte) are shared between pairs of PUs, while the L3
cache (size: 18 MByte) is shared between 16 PUs.

2) Accurate Definition of Communication: The accurate
communication is generated with a full cache simulator1 based
on the Pin dynamic binary instrumentation tool [29]. The
tool traces all memory accesses of a parallel application
and simulates a 64-core architecture with a 3-level cache
hierarchy. We evaluate true, spatial false and temporal false
communication. We did not find an automated way to measure
logical false communication, and therefore do not consider
it separately in this discussion. Depending on its particular
form, the logical false communication is included in one of the
other three communication types. We calculate the temporal
false communication by simulating an infinite last level cache.
In this way, repeated accesses to the same cache line from
different threads will always be counted as communication.
The difference between amounts of communication with the
limited and infinite cache is the temporal false communication.

3) Relaxed Definition of Communication: For the relaxed
definition of communication, we developed a custom memory
tracer based on Pin, for the application characterization as
part of this paper2. The tool records all memory accesses
of all threads, storing the address and thread ID of each
memory access. For each access, an analysis routine for the
relaxed definition of communication is executed, as described
in Section IV.

B. Real Machine
We use a real machine to compare the overhead of com-

munication detection with the proposed methods and to eval-
uate the performance gains of thread mapping. This machine
consists of four 8-core Intel Xeon processors (Nehalem mi-
croarchitecture [28]) that support 2-way SMT. The L1 and
L2 caches are private to each core, while the L3 caches are
shared among all the cores on each processor. The machine can
execute up to 64 threads in total. Table I contains an overview
of the configuration parameters of the real machine.

1The simulator is available at https://github.com/matthiasdiener/CacheSim
2The tracer is available at https://github.com/matthiasdiener/numalize

TABLE I: Overview of the real machine used in the evaluation.

Property Value

Processors 4× Intel Xeon X7550, 2.0 GHz, 8 cores, 2-way SMT
Caches per proc. 8× 32 KB+32 KB L1, 8× 256 KB L2, 18 MB L3
Memory 128 GB DDR3-1066, page size 4 KB
Operating system Ubuntu 12.04, Linux kernel 3.8 (CFS scheduler), 64 bit

C. Parallel Applications

For the experiments, we selected five applications from two
different parallel benchmark suites, which have communica-
tion behaviors that are representative for all other applications
in these two suites. From the OpenMP implementation of
the NAS Parallel Benchmarks [30] (NAS-OMP), we selected
the LU and UA benchmarks. Both were executed with the
A input size. We also selected Blackscholes, Ferret, and
Swaptions from the PARSEC benchmark suite [25], which are
applications implemented with Pthreads. PARSEC applications
were executed with the simlarge input size. All benchmarks
have a stable communication behavior, with only minimal
changes between or during executions.

VI. EXPERIMENTAL EVALUATION

This section presents the results of our experiments, dis-
cussing the communication behavior, accuracy of the com-
munication definitions, detection overheads, as well as perfor-
mance gains from thread mapping.

A. Communication Behavior of the Benchmarks

We begin with an evaluation of the communication behavior
of the benchmarks, discussing the amount of different types
of communication as well as the patterns.

1) Communication Statistics: Figure 4 presents the commu-
nication statistics of the benchmarks running with 64 threads,
calculated with the cache simulator. We show the number of
communication events for true, spatial false, and temporal false
communication, as well as the number of memory accesses to
cache lines that were only accessed by a single thread during
the whole execution, labeled Private in the graph. The y-axis
is scaled logarithmically.

Several important conclusions can be drawn from these
results. First of all, the amount of communication is widely
different between benchmarks. For example, although LU and
UA have the same amount of private memory accesses, UA
has several orders of magnitude more communication events,
which can indicate that thread mapping is more beneficial for
this benchmark. All applications have significant amounts of
spatial false communication, similar but slightly lower than the
true communication. Moreover, temporal false communication
is the highest form of communication in all benchmarks. This
indicates that it is important to filter this communication type
in order not to reach wrong conclusions regarding the behavior
and the thread mapping.
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Fig. 4: Communication behavior of the benchmarks, measured
with the cache simulator, showing the number of communi-
cation events (for true, spatial false, and temporal false com-
munication), as well as private memory accesses (accesses to
cache lines that were never accessed by more than one thread).
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Fig. 5: Communication patterns of the benchmarks, calculated
with the accurate definition (top row). The bottom row of pat-
tens includes temporal false communication.

2) Communication Patterns: The detected communication
patterns are shown in Figure 5. The top row shows the
patterns of the true and spatial false communication (which
are relevant for the mapping), while the bottom row includes
the temporal false communication as well. The figure also
shows the MSE between both patterns for all benchmarks,
as introduced in Section III-D. As indicated by the commu-
nication statistics, temporal false communication can change
the detected communication behavior substantially, resulting in
potentially wrong mapping decisions. All applications except
Swaptions show significant differences and have high MSEs.

The nearest-neighbor communication pattern of LU, where
thread pairs with close thread IDs (0,1), (1,2), ..., communicate
a lot, has additional false temporal communication between
threads that are far apart, such as pairs (0,63). UA has a less
pronounced nearest-neighbor pattern, where also threads that
are not direct neighbors communicate. With the temporal false
communication, this general pattern remains similar, but the
differences between neighboring threads and threads that are
farther apart increase, which can result in an overestimation
of the benefits of mapping.

Blackscholes’ communication structure is completely mod-
ified by the temporal false communication. The Ferret bench-
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Fig. 6: Comparison of the communication matrices of the UA
benchmark, generated with the accurate (a) and relaxed (b) –
(h) definitions of communication with different detection gran-
ularities. The MSE is calculated with the accurate matrix (a).

mark consists of four pipeline stages, where the last two
stages perform most of the communication. When considering
temporal false communication, only the third phase appears
to communicate, potentially resulting in a not optimal thread
mapping. Swaptions has similar amounts of communication
between most thread pairs. This pattern changes only slightly
when including temporal false communication, indicated by
the low MSE.

3) Summary: Communication behaviors differ consider-
ably between applications. We expect more gains from
communication-aware thread mapping with patterns that have
a clearer structure. We also conclude that temporal false
communication has a high impact on the communication
pattern, due to its high amount and different structure than true
and spatial false communication. Therefore, reducing temporal
false communication is important when performing thread
mapping in order to apply the correct mapping.

B. Accuracy of the Relaxed Communication Detection

We compare the accurate and relaxed definitions of commu-
nication by measuring the MSE of the generated communica-
tion matrices. We also evaluate the impact of various detection
granularities (larger than the cache line size) on the accuracy
of the detection.

1) UA Benchmark: As an example, we analyze the behavior
of the UA benchmark from NAS-OMP, which has a high
sensitivity to these characteristics. For a better visualization,
we show the results with 8 threads.

In Figure 6, the communication matrices of the different
detection mechanisms are shown. The baseline of our evalua-
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ferent granularities) compared to the accurate definition, con-
sidering 64 threads. Lower values are better.

tion, the matrix generated with the cache simulator (including
true and spatial false communication) is shown in Figure 6a.
Figures 6b – 6h show the matrices generated with the relaxed
definition and increasing granularity of memory blocks. The
figure also contains the values of the MSE, calculated between
the baseline and each matrix generated with the relaxed
definition. Higher MSEs indicate a higher inaccuracy of the
detected communication. In this configuration with 8 threads,
the maximum possible MSE is 8750.

The results show that the communication detected with the
relaxed definition remains very accurate up to a granularity
of 1 KB, with low values for the MSE and matrices that
are visually similar to the baseline. When increasing the
granularity to values above 1 KB, the MSE keeps rising
and the matrices lose their similarity to the baseline, with a
complete divergence starting at about 1 MB.

2) All Benchmarks: Figure 7 presents the MSE of the
relaxed definition for all benchmarks, varying the granularity
of detection, considering an execution with 64 threads. Similar
to the results of UA, we find that detection accuracy remains
good with granularities of up to 1–16 KByte. Ferret is the least
sensitive to the block size. These results show that the relaxed
definition successfully filters the temporal false communica-
tion, indicated by the fact that the MSE is substantially lower
than the MSE of the accurate+temporal false communication
discussed in Section VI-A2.

C. Overhead of Communication Detection

Table II shows the overhead of both communication de-
tection mechanisms, presented as the number of times ap-
plication execution is slower compared to execution without

TABLE II: Overhead of the communication detection mech-
anisms. Increase in execution time compared to the non-
instrumented execution. Lower values are better.

Mechanism LU UA Blackscholes Ferret Swaptions

Accurate 5944× 2860× 1771× 5304× 6157×
Relaxed 49× 72× 113× 39× 148×

detection. As expected, generating the communication with
the relaxed definition is much faster than the cache simulator
that is needed for the accurate measurement. In some cases,
such as LU and Ferret, the relaxed detection results in an
execution more than 100 times faster than the cache simulator.
These results also show that communication detection can
be reasonably performed even for large applications with the
relaxed detection, since the detection has to be run only once.

D. Application Performance with Thread Mapping

We evaluate the performance impact of mapping using the
communication behavior detected with the mechanisms.

1) Methodology: Performance improvements of thread
mapping were measured on the real machine presented in
Section V-B. The baseline for the experiments is the default
thread mapping by the Linux Completely Fair Scheduler (CFS)
of kernel 3.8. We calculate optimized mappings from the de-
tected communication behaviors with the EagerMap mapping
algorithm [31]. EagerMap receives the communication matrix
and a description of the hardware hierarchy as input, and out-
puts a thread mapping that optimizes overall communication
locality. We evaluate the communication matrix detected by
the accurate definition (with and without temporal false com-
munication) and various granularities of the relaxed definition.
For each mapping, we measured the average execution time
of 10 executions, and present the performance gains compared
to the OS mapping.

2) Results: The performance gains are shown in Figure 8.
All benchmarks except Swaptions have significant gains from
mapping, reaching up to 37% in the case of LU. Swaptions
can not benefit from mapping due to its unstructured com-
munication behavior, where all pairs of threads have similar
amounts of communication. It is important to mention that
taking temporal false communication into account results in
substantially lower performance improvements, as already
indicated by our accuracy measurements. In several cases,
performance is reduced compared to the OS mapping.

Regarding the performance improvements with the relaxed
definition communication behavior, we find that with the
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Fig. 8: Performance gains of thread mapping with various de-
tected communication behaviors, compared to the OS. Higher
values are better.



64 bytes and 256 bytes granularities, gains are very similar to
the improvements with the accurate detection. For most bench-
marks, increasing the granularity reduces gains, as expected.
For the three PARSEC applications, the high granularities
(starting from 1 KB) result in performance losses, while the
NAS-OMP remain more stable. These results indicate that
communication can be analyzed with the relaxed definition
and a granularity of less than 1 KByte with a high accuracy.

VII. CONCLUSIONS

Improving the communication behavior of parallel applica-
tions is one of the main challenges for optimal performance.
In shared-memory architectures, communication can be opti-
mized by mapping threads that communicate a lot to cores that
are close to each other in the memory hierarchy, improving
the usage of caches and interconnections. For a successful
mapping, it is important to determine the communication
behavior in an accurate and efficient way. In this paper, we
performed an in-depth investigation of the types of communi-
cation, as well as their impact on the hardware architecture and
the performance improvements. We introduced an optimized,
tracing-based mechanism to detect communication that is
orders of magnitude faster than a full cache simulator but
maintains a very high level of accuracy.
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