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Differential-drive mobile robot control
using a cloud of particles approach

Walter Fetter Lages1 and Jorge Augusto Vasconcelos Alves2

Abstract
Common control systems for mobile robots include the use of some deterministic control law coupled with some pose
estimation method, such as the extended Kalman filter, by considering the certainty equivalence principle. Recent
approaches consider the use of partially observable Markov decision process strategies together with Bayesian estimators.
These methods are well suited to handle the uncertainty in pose estimation but demand significant processing power. In
order to reduce the required processing power and still allow for multimodal or non-Gaussian uncertain distributions,
we propose a scheme based on a particle filter and a corresponding cloud of control signals. The approach avoids the use
of the certainty equivalence principle by postponing the decision on the optimal estimate to the control stage. As the
mapping between the pose space and the control action space is nonlinear and the best estimation of robot pose is
uncertain, postponing the decision to the control space makes it possible to select a better control action in the presence
of multimodal and non-Gaussian uncertainty models. Simulation results are presented.
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Introduction

Mobile robots are known to be subject to uncertainty in both

the robot behavior and the environment where the robot navi-

gates. Additionally, the availability of sensors capable of

characterizing the environment is, in general, an unsolved

problem. These issues can be modeled by a stochastic system.

The classic approach for state estimation and control of sto-

chastic systems is to consider the expected value of the system

state variables and the certainty equivalence principle.1,2

Expected value approaches, however, cannot be used when

multimodal (or even skewed) distributions are present. On the

other hand, skewed or multimodal distributions can arise due

to sensor fusion and other typical mobile robotics problems.3

Also, nonlinear dynamics often generate multimodal or

skewed distributions from normal or uniform distributions.

The current state-of-the-art approach to cope with uncertain-

ties, especially those with non-Gaussian probability distribu-

tions, is to use Bayesian filters to estimate the system state and

then compute a control signal based on the result of the

estimation procedure, which is a probability density, a histo-

gram, or a set of particles or probabilities over a topological

map. This signal can be obtained from a mode or through

optimization, such as partially observable Markov decision

processes (POMDP) approaches.4,5 The use of POMDP for

systems with continuous states demands approximations, or

the problem becomes intractable.3

This article proposes a control scheme for a differential-

drive mobile robot that maps a set of possible states into a

space of control signals. Both the state transition and
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observations are subject to uncertainty. Hence, a particle

filter is proposed for state estimation. However, contrariwise

to the usual approach, the resulting state estimate is not taken

to be a single point in the state space, but the full cloud of

particles which represents the probability of each estimated

particle to be the true state. Then, a globally stable control

law is considered for the mapping of the cloud of particles in

state space into a cloud of particles in control space. Then,

the control signal to be applied to the robot is chosen as one

of those in the most populated regions in the control space.

In other words, the proposed method avoids to decide

the robot pose and then compute the control signal to cor-

rect it, but instead, postpones the decision to the control

stage. The traditional approach (at least for low-level con-

trol) is to use the particle filter to solve the localization

problem which gives a best estimation of the robot pose

and then use this pose to compute the control action. As the

mapping between the pose space and the control action

space is nonlinear and the best estimation of robot pose is

uncertain, postponing the decision to the control space

makes it possible to select a better control action as many

not-so-good pose estimatives could be mapped to the same

control action giving it a higher probability to be a better

control action. This capability is important in the case of

multimodal and non-Gaussian uncertainty models.

Furthermore, the sensor observations are restricted in

sampling frequency, in the sense that an absolute pose

measurement, which was assumed to be obtained from a

GPS, is only available on same control cycles, while dead-

reckoning information from encoder measurements is

available in all control cycles.

A description of the robot is presented in section ‘‘Robot

model.’’ The proposed control method is explained in sec-

tions ‘‘Pose estimation by particle filter’’ and ‘‘Control using

a cloud of particles.’’ More specifically, section ‘‘Pose esti-

mation by particle filter’’ explains the pose estimation based

on a particle filter and section ‘‘Control using a cloud of

particles’’ presents the control method based on the cloud

of particles. Results are presented in section ‘‘Simulation

results’’ and final remarks and suggestions for future devel-

opment are presented in section ‘‘Conclusions.’’

Robot model

Consider a differential-drive mobile robot, with the coor-

dinate systems shown in Figure 1, where the ðXc1
;Xc2
Þ

coordinate system is attached to the robot and ðX1;X2Þ is

the inertial coordinate system. In continuous time, the kine-

matic model of the mobile robot, moving on a horizontal

plane, is described by

_x ¼ f ðx; uÞ ¼
cos x3 0

sin x3 0

0 1

2
64

3
75u (1)

where x ¼ ½ x1 x2 x3 �T is the state vector and

u ¼ ½ u1 u2 �T is the control vector. The state variables

x1 and x2 are the position coordinates, x3 is the orientation

angle, and the control variables u1 and u2 are the linear and

angular velocities.

By supposing a zero-order holder on the control inputs,

the trajectories of the discretized version of equation (1) are

circumference arcs and the robot orientation is tangent to

the arc as shown in Figure 1 and given by

xðk þ 1Þ ¼ fd

�
xðkÞ; uðkÞ

�
¼ xðkÞ þ

Tu1ðkÞ sync
Tu2ðkÞ

2

0
@

1
A cos x3ðkÞ þ

Tu2ðkÞ
2

0
@

1
A

2
4

3
5

Tu1ðkÞ sync
Tu2ðkÞ

2

0
@

1
A sin x3ðkÞ þ

Tu2ðkÞ
2

0
@

1
A

2
4

3
5

Tu2ðkÞ

2
6666666664

3
7777777775

(2)

where syncðxÞb sinðxÞ
x

and T is the sampling period.

However, imperfections due to the type of terrain, dif-

ferences in wheel sizes, geometry of the robot, wheel

slipping, and others affect the actual trajectory, which dif-

fers from the ones described by either equation (1) or (2).

Furthermore, common assumptions such as that the
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Figure 1. Differential-drive mobile robot coordinates.
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velocity is known with absolute accuracy, instantaneous

computation of control signals, and constant sampling

period do not actually hold. Hence, the robot behavior can

be better described by stochastic models, as proposed by

Thrun et al.5 and Rekleitis.6 These models account for two

types of errors, in fact: systematic errors and nonsystematic

errors. Systematic errors can be compensated for by appro-

priately calibrating the parameters of the model.6,7 How-

ever, nonsystematic errors are due to stochastic effects and

cannot be compensated for by calibrating.

The stochastic effects can be observed in the robot

motion by drifting robot with respect to the nominal trajec-

tory in both traveled distance and orientation. By drifting,

those errors increase with time, and therefore, they are

modeled as uncertainty in linear and angular velocities of

the robot. Furthermore, the stochastic effects are closely

related to the linear velocity of the model.6 Hence, the

stochastic version of equation (1) is

_xðtÞ ¼ f
�

xðtÞ; uðtÞ þ wðtÞ
�

(3)

with wðtÞ ¼ u1ðtÞ½wtðtÞ wDðtÞ�T , where wtðtÞ*Nð0; �2
t Þ

and wDðtÞ*Nð0; �2
DÞ are Gaussian processes representing

the uncertainty in linear and angular speeds, respectively.

It must be noted that while wðtÞ are read as addends in

equation (3), it is not an additive uncertainty, since it depends

on the linear speed u1 and f ð�; �Þ is nonlinear. Also, even

though wtðtÞ and wDðtÞ are assumed to be Gaussian, the

resulting state xðtÞ is not Gaussian, due to nonlinearities.

An equivalent discrete model could be obtained by con-

sidering a discrete uncertainty wðkÞ similar to wðtÞ added to

uðkÞ in equation (2). However, that would lead to a model

where, even under uncertainty in uðkÞ, the orientation at

k þ 1 would remain tangent to the trajectory of the robot.

Therefore, that model would not be able to properly repre-

sent uncertainty in orientation at k þ 1, which could be

nontangent to the robot trajectory as shown in Figure 2(a).

In order to obtain a discrete model that can properly rep-

resent the orientation uncertainty at k þ 1, it can be assumed6

that half of the effects of the uncertain angular velocity acts

through the state transition, therefore affecting both position

and orientation at k þ 1, and the other half acts directly on the

orientation at k þ 1. Hence, the uncertainty wDðtÞ in the con-

tinuous model is represented by two uncertainties in the dis-

crete model wd1
ðkÞ*Nð0; �2

dÞ, which acts through the state

transition and wd2
ðkÞ*Nð0; �2

dÞ, which acts directly on state

at k þ 1. The effects of wtðtÞ can be directly mapped in

wtðkÞ*Nð0; �2
t Þ. Then, the discrete model can be written as

xðk þ 1Þ ¼ fd

�
xðkÞ; uðkÞ þ w1ðkÞ

�
þ w2ðkÞ (4)

where the state transition fdð�; �Þ is given by equation (2) and

w1ðkÞbu1ðkÞ
wtðkÞ
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Since wd1
ðkÞ and wd2

ðkÞ are assumed to represent half of

the effects of wDðtÞ, their variances should be the half of�2
D or

�d ¼
�Dffiffiffi

2
p

The state transition is illustrated in Figure 2(a), where

both the arc distance and angle are affected by w1ðkÞ and

the final orientation is also affected by w2ðkÞ (compare to

Figure 2(b)). It must be noted that while w1ðkÞ and w2ðkÞ
are read as addends in equation (4), they are not actually

additive uncertainty, since they depend on the linear speed

u1ðkÞ and fdð�; �Þ is nonlinear.

As Figure 2(a) shows, the model (equation (4))

describes the state transition as circumference arcs with

stochastic length and angle, with an added orientation

uncertainty. This model will be used for estimating the

state transitions for a set of possible values for the state

vector, as explained in detail in section ‘‘Pose estimation

by particle filter.’’ It is important to note that even though

wtðkÞ, wd1
ðkÞ, and wd2

ðkÞ are assumed to be Gaussian, the

resulting state xðk þ 1Þ is not Gaussian, due to nonlinea-

rities. The equation (3) is used to simulate the robot in

section ‘‘Simulation results,’’ while equation (4) is used

for state estimation.
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Figure 2. Discrete-time system transition. (a) Deterministic
system and (b) stochastic system.
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Pose estimation by particle filter

Mobile robots suffer from several sources of uncertainty.

Their sense of awareness of the surrounding environment is

limited not only by the sensors it is equipped with but also

by its ability to process and act based on the information

provided by the observations from these sensors.5,7 These

are also limited in the sense that not all sensors can return

an observation at the same rate.

The state of a mobile robot is not readily available and

must be estimated from sensor observations. In general, the

observation vector, yðkÞ, is corrupted by noise vðkÞ, that is

yðkÞ ¼ h
�

xðkÞ; vðkÞ
�

(5)

In this article, we consider digital incremental encoders

on the wheels and a GPS sensor. The method, however,

could be extended to consider more and other types of

sensors, just by considering them in the definition of

h
�

xðkÞ; vðkÞ
�

. The measurements from the incremental

encoders provide information about the robot current pose

(i.e. position and orientation) relative to its previous one,

while the observation from GPS provides a measurement

with respect to an inertial reference frame. Encoder obser-

vations are angular displacements of the wheels which are

measured at each sampling instant. These are mapped to

relative linear and angular position displacements, which in

turn are mapped to linear and angular velocities, assumed

to be constant between sampling instants. Thus, we assume

that uðkÞ can be measured from the encoder observations,

while other sensors are used to form the system observation

equation (5). For the sake of simplicity, we assume here

that only a GPS is used in addition to incremental encoders.

The GPS system gives sparse (time wise) information about

global positioning through the observation vector yðkÞ, but

it is corrupted by observation noise vðkÞ

yðkÞ ¼ CxðkÞ þ vðkÞ (6)

with C ¼ I, the identity matrix.

Note that for other types of sensors, the mapping from

xðkÞ and vðkÞ to yðkÞ can be nonlinear and that when

redundant sensors are used, the dimension of yðkÞ may be

greater than that of xðkÞ.
Data from sensors are integrated by a particle filter for a

pose estimate represented by a set of particles. Particle

filters belong to a family of estimation methods known as

Bayesian estimators. Bayesian estimators aim to consider

the uncertainty of both state transition and system observa-

tions in order to provide a realistic result. In accordance

with the uncertainty approach in metrology,8 the estimation

result is extended so as to include information other than a

single value, to be attributed to the quantity being mea-

sured. The most comprehensive result of an estimation is

a (joint) probability distribution function of the state vector,

considered at each sampling instant. These have either one

of two disadvantages: requiring an analytic solution of the

Bayes filter equations or requiring an infinite number of

parameters to be fully described. Kalman filters are able to,

under appropriate assumptions, generate an analytic solu-

tion in the form of a multivariate Gaussian distribution.

This makes it possible to summarize the data as a mean

vector and a covariance matrix. Therefore, the resulting

probability density can be finitely parameterized. However,

for nonlinear systems or uncertainties that cannot be

expressed as a Gaussian parcel added to the state transition,

such analytic solution cannot be obtained and the estima-

tion result cannot be expressed using a finite set of para-

meters. General Bayesian estimators provide a density

function or an approximation of it but require high process-

ing power and memory. Particle filters are an efficient

approximation which returns a set of particles as possible

values for the state vector at each sampling instant, instead

of an analytic function.

As is the case for many Bayesian filter techniques, par-

ticle filter algorithms can be viewed as composed of two

stages called prediction and update. This last step is also

called resampling or importance sampling.

The particle filter scheme is summarized below. A more

detailed presentation is available in the work done by Thrun

et al.5

At each sampling instant, possible values for the state

vector xiðkÞ, i 2 ½1;M �, are considered, based on the pre-

vious observations from the system. Each vector xiðkÞ is

called a particle and M is the total number of particles. The

state belief belp

�
xðkÞ

�
is given by the set of all such par-

ticles, that is

belp

�
xðkÞ

�
¼ fx1ðkÞ; x2ðkÞ; . . . ; xM ðkÞg (7)

The state belief is an approximation of a probability den-

sity function in the following sense: State space regions with

a relatively large number of particles have high probability

density values, while regions with relatively few particles

are supposed to have low density values. Figure 3 shows an

x1(k)

x2(k)

O1

O2

Figure 3. Example of state belief for a second-order system and
two regions O1 and O2 with different probabilities of containing
the state.
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example of a state belief given by particles for a second-

order system, where the region O1 has a high probability of

containing the system state and a region O2 has a relatively

low probability of containing the state of the system.

The prediction step of the algorithm takes the state belief

and the system input (control) vector as arguments to gen-

erate the prior state belief belp

�
xðk þ 1Þ

�
. For each par-

ticle, a new one is generated, according to the state

transition function of the system equation (4), with the

uncertain terms obtained from pseudo-random number gen-

erators with the appropriate distributions. Note that this can

be done for any distribution. The prior state belief is

belp

�
xðk þ 1Þ

�
¼ fx1ðk þ 1Þ; x2ðk þ 1Þ; . . . ; xM ðk þ 1Þg

(8)

where each particle xiðk þ 1Þ, i 2 ½1;M �, is obtained as

xiðk þ 1Þ ¼ fd

�
xiðkÞ; uðkÞ þ w1i

ðkÞ
�
þ w2i

ðkÞ (9)

Figure 4 shows three prediction steps from a set of 50

particles with input u ¼ ½ 2 0:8 �T , with the initial set of

particles at the origin. It can be observed that the particles move

apart in fan shape, which results from the uncertain terms.

The set of particles belp

�
xðk þ 1Þ

�
is obtained without

information from the system observation at k þ 1: It takes

only the set of particles belp

�
xðkÞ

�
and the input signal as

arguments. This set of particles should be updated with the

information from the observations, returning the updated

state belief belp

�
xðk þ 1Þ

�
at k þ 1. This is accomplished

by obtaining the importance factor �iðk þ 1Þ for each par-

ticle xiðk þ 1Þ according to

�iðkÞ ¼ fy

�
yðkÞjxiðkÞ

�
where fy

�
yðkÞjxðkÞ

�
is the conditional probability density

function of yðkÞ based on the knowledge of the state vector

xðkÞ.
In this article, it was assumed that the GPS observation noise

vðkÞ is jointly normally distributed, with zero mean and covar-

iance matrix P. Since yðkÞ ¼ CxðkÞ þ vðkÞ, we have that

fy

�
yðkÞjxðkÞ

�
¼ e

�1

2
½yðkÞ�CxðkÞ�T P½yðkÞ�CxðkÞ�

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�ÞnjPj

p

where n is the number of rows of yðkÞ.
The observation yðkÞ and the particles xiðkÞ are known,

therefore, �iðkÞ can be computed as a deterministic number.

The importance factor is proportional to the likelihood of

the robot being at a neighborhood of the respective particle.

Then, the updated state belief belp

�
xðk þ 1Þ

�
is obtained

by selecting in belp

�
xðk þ 1Þ

�
the particles with a prob-

ability P
�

xiðk þ 1Þjyðk þ 1Þ
�

proportional to its impor-

tance factor, according to

P
�

xiðk þ 1Þjyðk þ 1Þ
�
¼ �iðk þ 1ÞXM

j¼1
�jðk þ 1Þ

until M particles are selected. Each particle selection is

independent of the previous one. Hence, some particles

from the prior state belief are not included in the current

belief, while others, usually those with higher importance

factors, are included more than once.

The belief update demands an observation to take place.

In this article, a GPS was considered to have a sampling

period larger than that of the incremental encoders. As a

result, the update step does not occur at every sampling

instant, but only when the observation from the GPS is

available.

Control using a cloud of particles

Differential-drive mobile robots are nonholonomic sys-

tems.9 For this type of system, it is hard to steer the state

to any fixed point in the space due to limited state manip-

ulability from the inputs. This is easy to verify by inspect-

ing equation (1), taking the inputs to be either u1 ¼ 1 and

u2 ¼ 0 or u1 ¼ 0 and u2 ¼ 1. The first situation has the

robot moving in the same direction of the wheels, which

affects the first two state variables, while the second one

results in a pure rotation around its axis, which affects the

third one. These cannot be combined to obtain instant velo-

city that is not also along the direction of Xc1
ðkÞ (see Figure

1). In spite of this, the system is controllable.10 It can be

shown that as a consequence of the Brockett conditions,11 it

is not possible to asymptotically stabilize the system at an

arbitrary point through a time-invariant, smooth state

feedback.

Ways around Brockett’s conditions to obtain asymptotic

stability are time-variant control,12–15 nonsmooth con-

trol,10,16,17 and hybrid control laws.18 These can be used

for low-level control, which is the task of moving a robot

either to a location or along a defined trajectory, with no

consideration about why it should do so. In this article, we

will obtain a set of possible control signals based on a

nonsmooth control law. A general way of designing control

laws for nonholonomic systems through nonsmooth coor-

dinate transformations was presented by Astolfi.10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.05

0.1

0.15

0.2

x1 (m)

x 2
 (m

)

Figure 4. Predicted particles for three steps with null initial
conditions and u¼ ½2 0:8�T .
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The mappings from the system state to the control space

which are used for point stabilization are such that the state

space origin is made asymptotically stable. If we represent

the mapping as g : X! U, x 2 X, and u 2 U, then the

autonomous system

_x ¼ f
�

x; gðxÞ
�

where f ð�; �Þ described by equation (1) is asymptotically

stable at the origin. However, it is desired to stabilize the

robot at any point xr, which means any given position and

orientation ðxr1
; xr2

; xr3
Þ. This can be done by the coordi-

nate change xðx; xrÞ, obtained by setting a new reference

frame Xr1
Xr2

at the reference position ðxr1
; xr2
Þ with an

angle xr3
, as shown in Figure 5. Thus, the coordinate

change from X1X2 to Xr1
Xr2

consists of a translation and

a rotation of angle xr3
. It is readily verified that

x3 ¼ x3 � xr3
. Therefore, the coordinate change xð�; �Þ is

given by the transformation

x ¼
Rðxr3

Þ 0

0 1

� �
ðx� xrÞ (10)

where Rðxr3
Þ is a 2-D rotation matrix, that is

Rðxr3
Þ ¼

cos xr3
sin xr3

� sin xr3
cos xr3

� �

Hence, if the system _x ¼ f
�

x; gðxÞ
�

is stable at x ¼ 0,

then _x ¼ f
�

x; gðxÞ
�

is stable at x ¼ 0. Therefore, in order

to stabilize the system at any arbitrary point xr based on a

control law g that leads the state to the origin, it suffices to

use gðxÞ.
Low-level mobile robot control schemes usually take

the state vector as input. However, here, the estimation

result is a set of particles. This resulting estimation may

have points grouped around different regions, as a result of

multimodal beliefs. As a consequence, either a mean

squared estimation or the expected value is not an appro-

priate estimation result, and the certainty equivalence prin-

ciple cannot be applied. We present a way of generating a

control signal from the current belief by considering the

resulting signal from each of the belief particles and ver-

ifying their distribution in the space of the control inputs.

This way, not only an appropriate action can be found, but

it can be reasoned whether an action is appropriate at a

given instant, depending on the resulting set of control

particles.

At each sampling instant k, the current belief

belp

�
xðkÞ

�
represents possible values for the state vector

– the particles. For each particle xiðkÞ, a control signal

uiðkÞ is obtained as

uiðkÞ ¼ g
�

xiðkÞ
�

with xiðkÞ computed by equation (10), leading to

belp

�
uðkÞ

�
¼ fu1ðkÞ; u2ðkÞ; . . . ; uM ðkÞg (11)

where g
�

xiðkÞ
�

is an appropriate mapping from the state

space to the space of control inputs.

For each particle, a coordinate change given by Barros

and Lages19,20 is considered

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ x2
2

q
(12)

 ¼ atan2ðx2; x1Þ (13)

� ¼ x3 �  (14)

Then, the equation (1) can be rewritten as

_e ¼ ui1
cos�

_ ¼ ui1

sin�

e

_� ¼ �ui1

sin�

e
þ ui2

8>>>>>><
>>>>>>:

(15)

Given a Lyapunov candidate function

V ¼ 1

2
�e2 þ 1

2
ð�2 þ h 2Þ

it can be shown that the input signal uiðkÞ

ui1
¼ �g1 e cos� (16)

ui2
¼ �g2�� g1cos�

sin�

�
ð�� h Þ (17)

with h, g1, and g2 > 0, makes equation (15) asymptotically

stable.19,20 As a consequence, the input belief contains con-

trol signals related to point stabilization of the state parti-

cles under no state transition uncertainty, that is to say,

assuming a deterministic system with known parameters.

O X 1

X 2

X c1 , u1

X c2

x1

x2

X

x3, u2

1

2

2

x̄

x̄

x̄

x̄

3

xr1

xr2

xr3

xr3

X r1

X r2

X r

Figure 5. Robot coordinates with respect to the reference
frame.
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Note that even though equation (15) is discontinuous at the

origin, due to e in the denominator, the closed loop system

is not. The term in the denominator is canceled in closed

loop because equation (16) contains e as a factor. For sim-

plicity and easy of analysis, in this article, only the kine-

matic model of the robot was used. However, the control

law equations (16) and (17) can be extended to include the

dynamics of the mobile robots. See the work done by Bar-

ros and Lages19,20 for details.

The input belief, obtained by computing equations (16)

and (17) for each state particle, cannot be considered a

result of the control scheme the way the state belief can

for estimation, as it is obvious that the system takes a single

two-dimensional vector as input. On the other hand, while

an appropriate input vector could be any at a neighborhood

of the input particles, we have the input belief as a discre-

tization of an infinite set of possible inputs in a fashion

similar to the state belief as a simplification for an infinite

set of possible state vectors. As a result, it makes sense to

restrict the search and decision regarding an input vector

among the ones which belong to belp

�
uðkÞ

�
.

The criterion for choosing an input vector among

belp

�
uðkÞ

�
considered in this article is to select the one

with most local support. This means choosing the one

whose neighborhood contains the most values also among

belp

�
uðkÞ

�
. The neighborhood of each input vector uiðkÞ

was chosen as an ellipsoidal region Si, centered at uiðkÞ,
given by

Si ¼ uðkÞ :
ðu1 � ui1

Þ2

a2
1

þ ðu2 � ui2
Þ2

a2
2

< 1

( )

where a1 and a2 are the ellipsoid radii.

The ellipsoid form is based on input limits for wheel

velocities. As the input selection happens in the control input

space, a particle is selected based on locally supported con-

trol signals in that space. That is, regardless of where the

respective state particles are located in the state space.

The input restrictions are defined based on the limits for

the speed of each of the wheels, as in Alves and Lages.21

The set of possible input signals is illustrated in Figure 6.

Simulation results

The simulated robot was modeled as the continuous-time

stochastic system equation (3), with the state evolution

obtained by a fourth-order Runge–Kutta with four steps

at each sampling instant. For the particle filter prediction

step, the robot was modeled as a discrete-time stochastic

(nonlinear) system, described by equation (4). The values

of the noise parameters �t and �D were set as 0:005 and

0.1745 rad/m, respectively. The observation covariance

matrix is P ¼ diagð�y1
; �y2

; �y2
Þ, with �y1

¼ �y2
¼ 0:1 m,

and �y3
¼ 1�. The maximum speed the wheels can achieve

is 0.471 m/s. The control sampling period T is 50 ms and

the GPS output period is 200 ms. A total of 900 particles

were used for the estimation and the initial set is composed

by equally spaced particles inside a square of 1 m2 centered

at xð0Þ. The controller parameters were g1 ¼ 0:5, g2 ¼ 0:5,

and h ¼ 1:0. The ellipsoid radii related to u1 and u2 are

0:05 and 0:2, respectively. The initial position is

xð0Þ ¼ ½ 4 0 � �T and the reference pose xr is

½ 1:0 3:0 ��=2 �T .

At each sampling instant, the state belief is predicted. In

the initial state belief, the particles are uniformly distribu-

ted in space.

The belief update is done when the observation from the

GPS is available. Else, there is no further information and

the prior belief is taken as the current belief. The first

update takes place in k ¼ 3. A plot of the prior belief

belp

�
xð3Þ

�
in the X1 � X2 plane is shown in Figure 7.

Again, orientation is omitted for the sake of clearness. A

careful inspection will reveal that the particles are not

0, 471

3, 31

−0, 471

−3, 31

u1

u2

Figure 6. Input restrictions. The hatched region is the set of
possible input signals so as to satisfy wheel speed limits.
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Figure 7. Predicted state belief at k ¼ 3 in the X1 � X2 plane.
Orientation is omitted.
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exactly uniformly spaced as in the initial belief. This hap-

pens because the particles are predicted through the model

equation (4), including a simulation of the uncertainties.

The updated state belief at k ¼ 3 is shown in Figure 8(a)

and a plot of updated belief in the X1 � X2 plane is pre-

sented in Figure 8(b) for easier comparison with Figure 7.

A number of particles present in belp

�
xð3Þ

�
(Figure 7)

are not included in belp

�
xð3Þ

�
(Figure 8(b)) due to resam-

pling. However, some other particles present in

belp

�
xð3Þ

�
(probably those with higher importance factor)

are repeated, also due to resampling.

It has been observed that the update step demands sig-

nificantly more time (see Table 1) than the prediction. This

happens because the prediction model equation (4) is rela-

tively simple, hence the prediction is a straightforward step:

a single action is required for each particle. On the other

hand, the update is done in two separate steps: the calcula-

tion of the importance factors, which has a computational

complexity that is proportional to the number of particles,

and a further resampling, which requires ordering a vector

and finding the position index of values inside it. However,

those timings were obtained in a Matlab implementation

running in a single core computer. A proper implementa-

tion in C or C++ using a multicore machine would be

much faster. The calculations have been carried out in

Matlab release 2010bSP1 running on an AMD Athlon

64 machine at 3.0 GHz running the Linux operating sys-

tem. Matlab has to interpret code before executing it and

the implemented algorithm was not implemented with

parallelization in mind.

The set of control signal particles is obtained from the

current belief. This has a much different shape than the

state belief, as the mapping from states to control signals

is done through a discontinuous coordinate transformation,

which then is subject to a nonlinear control law.

The control belief at k ¼ 0 is presented in Figure 9(a).

As the particles from the initial state belief are uniformly

distributed in space, the resulting control belief keeps part

of that structure. At the next sampling instant (k ¼ 1), the

new state belief, which resulted from the stochastic model

assumed for the state transition, is used to compute a new

control belief, shown in Figure 9(b).

The state belief at k ¼ 50 is presented in Figure 10(a).

Figure 10(b) shows its plot in the X1 � X2 plane with orien-

tation omitted. The corresponding input belief is shown in

Figure 11. Note that the particles are concentrated in

smaller regions.

A control signal is selected as the particle that maxi-

mizes the number of other particles in its neighborhood,

as explained in section ‘‘Control using a cloud of parti-

cles.’’ While most of them are related to state particles

inside a neighborhood of each other, this is not always true

as g
�

xðkÞ
�

is nonlinear and discontinuous. This action can

be understood as maximizing the number of vector states

that would be driven similarly to the behavior of a deter-

ministic system. Also note that this is an approximation of

taking a value related to a region of high probability den-

sity, as the particles are an approximation of a continuous

joint probability density function by random sparse values.

Figure 12 shows the control signals with respect to time.

The trajectory of the robot on the plane is presented in

Figure 13(a). The state-input mapping is such that the robot

approaches the reference with small angle error and

negative linear speed (see Figure 12). This happens due

to equations (12) and (13), which forces e > 0 and given

that the Lyapunov function has a quadratic term in �.

The final position of the robot in Figure 13(a) is

xðkÞ ¼ ½ 1:044 3:090 �1:571 �T . Figure 13(b) displays

the orientation angle with respect to time.
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Figure 8. Updated state belief at k ¼ 3. (a) 3-D view and (b)
X1 � X2 plane. Orientation is omitted.

Table 1. Average computation time for each control method
steps.

Prediction (ms) Update (ms) Control selection (ms)

70 360 940
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The experiment has been repeated in order to verify the

stochastic effects in steady state. Particularly, the experi-

ment has been reproduced 50 times and the final state

position has been recorded. The mean and standard devia-

tion of the state at the last sampling instant are presented

in Table 2.

Finally, a number of initial conditions have been con-

sidered. The trajectories for eight different initial condi-

tions, given by

xð0Þ ¼ ½4 2 2:5�T xð0Þ ¼ ½4 4 3�T

xð0Þ ¼ ½2 6 1:9�T xð0Þ ¼ ½0 6 2:9�T

xð0Þ ¼ ½�2 4 ��T xð0Þ ¼ ½�2 2 0�T

xð0Þ ¼ ½0 0 2�T xð0Þ ¼ ½2 0 1�T

are shown in Figure 14(a), and a detail around the reference

position is shown in Figure 14(b). The � denotes the final

point of the trajectory at k ¼ 1400. It can be observed

that the asymptotic convergence which exists in the
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Figure 9. Input belief. (a) k ¼ 0 and (b) k ¼ 1.
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Figure 10. (a) State belief at k ¼ 50 and (b) its projection in the
X1 � X2 plane. Orientation is omitted.
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Figure 11. Input belief at k ¼ 50.
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deterministic and observable case is downgraded to con-

vergence to points in a neighborhood of the reference in

the presence of noise and with limited observations.

Note, however, that the standard deviation of the final

point is consistent with those of the uncertainties, given

by �t and �D.

The control signals with respect to time for the eight

cases are shown in Figure 15. It can be seen that there are

a few peaks. These occur due to the state belief update,
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Figure 12. Control signals with respect to time.
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Figure 13. (a) Robot trajectory on the horizontal plane and (b)
orientation angle with respect to time.

Table 2. Final position mean and standard deviation for
xð0Þ ¼ ½4 0 ��T and xr ¼ ½1 3� �=2�T.

State Mean Standard deviation

x1 (m) 0:9973 0:0203
x2 (m) 3:0027 0:0139
x3 (rad) �1:5708 0:0014
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Figure 14. Trajectories for eight different initial conditions. (a)
Trajectory and (b) detail around the final reference point.
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which sometimes selects particles from some other region,

depending on the last observation.

Again, the experiment has been repeated many times to

verify the consistence of the results despite the stochastic

effects. The experiment for each initial condition was

repeated five times for a total of 40 different trajectories.

The final poses have been recorded, and their mean and

standard deviation at the last sampling instant are presented

in Table 3.

Conclusions

A method for controlling a differential-drive mobile robot

through output feedback has been proposed. While only

simulation results have been presented, a realistic model

for the robot has been used. The system behavior and the

information that can be obtained from sensors are subject to

uncertainties which are present in mobile robot applica-

tions. Furthermore, there are the natural difficulty of con-

trolling nonholonomic systems. In order to overcome these

problems, a pose estimation scheme that uses a particle

filter was employed, and the full cloud of state particles

was used combined with a nonsmooth state feedback law to

generate a cloud of possible control signals. A single con-

trol signal was chosen and an appropriate way of dealing

with control saturation was employed to preserve the

expected behavior of the system.

The calculations have been carried out in Matlab which

has to interpret code before executing it and the

implemented algorithm was not implemented with paralle-

lization in mind. However, most algorithms which have

been used in this work can be adapted to multicore

machines. Particularly, particle filters are well suited for

parallelization. The control signals can also be computed at

different cores, and the input selection algorithm can also

be broken into parallelized code. In addition to this, the

Matlab code can be ported to another programming lan-

guage to obtain a compiled code, which of course, means

that it will demand much less time to run. Therefore, the

scheme which was presented can be readily employed in

real time.
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properties and classification of kinematic and dynamical

models of wheeled mobile robots. IEEE Trans Robot Autom

1996; 12(1): 47–62.

10. Astolfi A. On the stabilization of nonholonomic systems. In:

Proceedings of the 33 rd IEEE American conference on deci-

sion and control, Lake Buena Vista, FL, December 1994, pp.

3481–3486. Piscataway: IEEE Press.

11. Brockett RW. New Directions in applied mathematics. New

York: Springer-Verlag, 1982.

12. Pomet J-B, Thuilot B, Bastin G, et al. A hybrid strategy for

the feedback stabilization of nonholonomic mobile robots. In:

Proceedings of the IEEE international conference on robotics

and automation, Nice, France, May 1992, pp. 129–134. Pis-

cataway: IEEE Press.

13. Teel AR, Murray RM, and Walsh GC. Non-holonomic con-

trol systems: from steering to stabilization with sinusoids. Int

J Control 1995; 62(4): 849–870.

14. Godhavn J-M and Egeland O. A Lyapunov approach to expo-

nential stabilization of nonholonomic systems in power form.

IEEE Trans Autom Control 1997; 42(7): 1028–1032.

15. Rehman F-u, Rafiq M, and Raza Q. Time-varying stabilizing

feedback control for a sub-class of nonholonomic systems.

Eur J Sci Res 2011; 53(3): 346–358.

16. Sørdalen OJ. Feedback control of nonholonomic mobile

robots. Dr. ing Thesis, The Norwegian Institute of Technol-

ogy, Trondheim, Norway, 1993.

17. de Wit CC and Sørdalen OJ. Exponential stabilization of

mobile robots with nonholonomic constraints. IEEE Trans

Autom Control 1992; 37(11): 1791–1797.

18. Lucibello P and Oriolo G. Robust stabilization via iterative

state steering with an application to chained-form systems.

Automatica 2001; 37(1): 71–79.

19. Barros TTT and Lages WF. A backstepping non-linear con-

troller for a mobile manipulator implemented in the ROS. In:

Proceedings of the 12th IEEE international conference on

industrial informatics, Porto Alegre, RS, Brazil, July 2014.

Piscataway: IEEE Press.

20. Barros TTT and Lages Walter F. A mobile manipulator con-

troller implemented in the robot operating system. In: Pro-

ceedings for the joint conference of 45th international

symposium on robotics and 8th German conference on

robotics, Munich, Germany, 2014, pp. 121–128. VDE Ver-

lag. ISBN 978-3-8007-3601-0.

21. Alves JAV and Lages WF. Real-time point stabilization of a

mobile robot using model predictive control. In: Proceedings of

the 13th IASTED international conference robotics and appli-

cation, Würzburg, Germany, 2007, pp. 115–121. ACTA Press.

12 International Journal of Advanced Robotic Systems



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 266
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 175
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50286
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 266
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 175
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50286
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 900
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 175
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50286
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 9
      /MarksWeight 0.125000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
  /SyntheticBoldness 1.000000
>> setdistillerparams
<<
  /HWResolution [288 288]
  /PageSize [612.000 792.000]
>> setpagedevice


