
Automatic Communication Optimization
of Parallel Applications in Public Clouds

Emmanuell D. Carreño, Matthias Diener, Eduardo H. M. Cruz, Philippe O. A. Navaux

Informatics Institute, Federal University of Rio Grande do Sul, Porto Alegre, Brazil

{edcarreno,mdiener,ehmcruz,navaux}@inf.ufrgs.br

Abstract—One of the most important aspects that influences
the performance of parallel applications is the speed of commu-
nication between their tasks. To optimize communication, tasks
that exchange lots of data should be mapped to processing units
that have a high network performance. This technique is called
communication-aware task mapping and requires detailed infor-
mation about the underlying network topology for an accurate
mapping. Previous work on task mapping focuses on network
clusters or shared memory architectures, in which the topology
can be determined directly from the hardware environment.
Cloud computing adds significant challenges to task mapping,
since information about network topologies is not available to
end users. Furthermore, the communication performance might
change due to external factors, such as different usage patterns
of other users.

In this paper, we present a novel solution to perform
communication-aware task mapping in the context of commer-
cial cloud environments with multiple instances. Our proposal
consists of a short profiling phase to discover the network
topology and speed between cloud instances. The profiling can
be executed before each application start as it causes only a
negligible overhead. This information is then used together with
the communication pattern of the parallel application to group
tasks based on the amount of communication and to map groups
with a lot of communication between them to cloud instances
with a high network performance. In this way, application
performance is increased, and data traffic between instances is
reduced. We evaluated our proposal in a public cloud with a
variety of MPI-based parallel benchmarks from the HPC domain,
as well as a large scientific application. In the experiments, we
observed substantial performance improvements (up to 11 times
faster) compared to the default scheduling policies.

Index Terms—Task mapping, communication, network perfor-
mance, scheduling, public clouds

I. INTRODUCTION

Running large parallel applications in the cloud has been a

major research topic in recent years. For such applications,

the cloud is an attractive platform since it offers a higher

flexibility and lower up-front costs compared to traditional

cluster systems [1]. Despite considerable research efforts in

assessing and improving the viability of parallel applications in

different cloud environments, in terms of porting, performance,

and cost efficiency [2], several important issues for an efficient

execution remain, especially regarding the interconnections

of different cloud instances and network congestion [3], [4],

which determine the performance with which parallel ap-

plications communicate. Additionally, inter-tenant traffic can

amount up to 35% of the total datacenter traffic [5]. One of

the aspects of cloud systems that has a high influence on

the communication performance is the heterogeneity of the

network throughput. As applications also present heterogeneity

in the amount of communication among their tasks, it is

possible to make use of these different communication patterns

and network throughputs to improve performance [6].

In cluster systems, a common technique to improve commu-

nication of applications from the HPC domain is to perform

a communication-aware task mapping [7], in which tasks that

communicate a lot are mapped to cluster nodes that are near

each other. In this way, the overall locality of communication is

improved, reducing the execution time of the application [8].

Task mapping requires knowledge about the communication

pattern of the tasks of the parallel application, as well as

knowledge about the network topology. The communication

pattern is usually gathered from an analysis of the applica-

tion [9], while the network topology is determined directly

from the interconnection hierarchy in the cluster.

Task mapping in the context of public cloud environments

presents additional challenges over traditional cluster environ-

ments, mostly related to the lack of information and sharing

of the platform. First, there is very little information about

the underlying network, hardware and topology [1]. The user

has no control over where instances will be allocated, and has

no possibility to find out the topology directly. Second, the

network hardware is shared between multiple users, without

a direct way for the user to discover or influence the sharing.

Finally, the cloud environment is dynamic: interference from

other users might change, VMs might be migrated between the

hardware, and new allocations might affect communication,

among others [10]. For an effective task mapping, these issues

need to be taken into account.

Most related work on task mapping focuses on improv-

ing MPI communication in traditional clusters [11], [12] or

improving memory access locality in shared memory [13],

[14]. These techniques require an in-depth knowledge of the

network topology and hardware architecture. In the context of

cloud computing, most task mapping solutions focus on the

provider side of the networking [15], [16], [17], improving

bandwidth allocation by modifying scheduling policies, mi-

grating VMs to increase usage density or capping bandwidth

to maintain the offered SLA.

In this paper, we present a novel solution for

communication-aware task mapping in public cloud

environments, called CloudMap. Our proposal improves

two aspects of the communication of parallel applications.

2016 16th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing

978-1-5090-2453-7/16 $31.00 © 2016 IEEE

DOI 10.1109/CCGrid.2016.59

1

First, it optimizes the communication by grouping tasks

that communicate a lot. These groups are mapped to

the same cloud instance, using the faster intra-instance

interconnection instead of the slower inter-instance network

to speed up communication. Second, CloudMap improves

inter-instance communication by mapping the groups of

tasks that communicate a lot (the same groups described in

the first aspect) to instances that are close to each other in

the network topology. For the second aspect, we discover

the network topology using a light-weight profiling of the

interconnection between cloud instances. The topology is

used together with the communication pattern of the parallel

application to calculate an optimized task mapping, which is

then applied in the execution of the application. Since the

profiling phase is very short, it can be executed before each

application run with a negligible overhead.

In contrast to previous proposals, CloudMap can be ex-

ecuted by a standard cloud tenant and requires no special

privileges to run. We evaluated our proposal using a variety

of MPI-based parallel applications in a commercial cloud

environment using different instance sizes and numbers of

instances. Our results show that there is substantial heterogene-

ity in communication performance between cloud instances,

leading to high performance improvements from the improved

task mapping compared to the default scheduler of the MPI

runtime environment.

II. HETEROGENEITY OF COMMUNICATION IN THE CLOUD

Task mapping is based on two sources of heterogeneity that

affect the communication performance of parallel applications

in the cloud. First, the hardware topology is heterogeneous,

that is, some elements of the environment can communicate

faster than others. Second, the communication behavior is

heterogeneous, which means that some pairs of tasks perform

more communication between them than to other tasks. These

aspects are evaluated in this section.

A. Network Interconnections in Cloud Environments

In this section, we discuss the heterogeneity of the network

performance in cloud systems.

1) Methodology: For the analysis of the interconnection

performance in the cloud, we use 4 Microsoft Azure instances

with the A7 instance size, which is one of the sizes that will

be used in our performance evaluation in Section VI. For a

continuous period of 24 hours, we measured the point-to-point

latency and bandwidth between all 4 instances with the help

of the MPIBench tool [18] with a message size of 4 KByte.

This message size was chosen as many MPI applications use

message sizes between 1 KByte and 16 KByte [19], [20].

We average the results over time intervals of 1 minute. More

details regarding the cloud environment and the methodology

will be given in Section V. With the generated information, we

analyze how heterogeneous the interconnection performance

is, as well as how this heterogeneity changes over time.

12:00
AM

6:00
AM

12:00
PM

6:00
PM

12:00
AM

0
10
20
30
40
50
60

La
te

nc
y

(m
s)

Latency Bandwidth

0

1

2

3

B
an

dw
id

th
(G

bi
t/s

)

(a) Instance pair (1,4).

12:00
AM

6:00
AM

12:00
PM

6:00
PM

12:00
AM

0
10
20
30
40
50
60

La
te

nc
y

(m
s)

0

1

2

3

B
an

dw
id

th
(G

bi
t/s

)

(b) Instance pair (2,3).

12:00
AM

6:00
AM

12:00
PM

6:00
PM

12:00
AM

0
10
20
30
40
50
60

La
te

nc
y

(m
s)

0

1

2

3

B
an

dw
id

th
(G

bi
t/s

)

(c) Instance pair (2,4).

12:00
AM

6:00
AM

12:00
PM

6:00
PM

12:00
AM

0
10
20
30
40
50
60

La
te

nc
y

(m
s)

0

1

2

3

B
an

dw
id

th
(G

bi
t/s

)

(d) Instance pair (3,4).

Fig. 1: Network interconnection speed (latency and bandwidth)

between four pairs of cloud instances. The three dotted vertical

lines indicate the approximate times at which the interconnec-

tion matrices shown in Figure 2 were generated.

1

2

3

4

1 2 3 4

(a) Interconnection
matrix at 07:00 AM.

1

2

3

4

1 2 3 4

(b) Interconnection
matrix at 01:00 PM.

1

2

3

4

1 2 3 4

(c) Interconnection
matrix at 07:00 PM.

Fig. 2: Interconnection matrices. Axes show instance IDs.

Darker cells indicate lower latency between pairs.

2) Results: Figure 1 shows the results of the communi-

cation performance over time for selected instance pairs in

the cloud system. In the figures, we show both the latency

and the bandwidth of communication between each pair. We

did not notice any asymmetry in the performance, that is,

performance is the same in both communication directions.

Several important results can be seen in the figure. First, of

all, performance changes drastically multiple times a day. Most

instance pairs quadruple their communication latency during

the 24 hours at various times. Bandwidth is also changing,

though to a smaller degree.

Despite the changing behavior, networking performance

remains stable in most cases for some hours at a time. This

has a significant impact on the task mapping. For the shown

behavior, it is better to map tasks that communicate a lot on

pair (2,4) during the beginning of the experiment, while at the

end of the shown time period, placing the tasks on pair (2,3)

would result in a higher communication performance.

The communication performance between all pairs of in-

stances can be expressed with an interconnection matrix,

where each cell contains the communication latency (or

2

(1
,2

)

(1
,3

)

(1
,4

)

(2
,3

)

(2
,4

)

(3
,4

)0
10
20
30
40
50
60
70

La
te

nc
y

(m
s)

(1
,2

)

(1
,3

)

(1
,4

)

(2
,3

)

(2
,4

)

(3
,4

)0

1

2

3

4

B
an

dw
id

th
(G

bi
t/s

)

Fig. 3: Overall communication performance during the

24 hours, for all instance pairs in our 4-instance cloud.

bandwidth) between a pair of instances. The axes contain

the instance IDs. We visualize this matrix as a heatmap,

where darker cells indicate higher communication performance

(lower latency). We do not show the diagonal of the matrix,

since communication within each instance was always much

faster in our tests than the communication between instances.

Figure 2 shows three examples of latency-based intercon-

nection matrices for our experiment at different times during

the day, at approximately 07:00 AM, 01:00 PM, and 07:00 PM.

The matrices confirm that the overall communication behavior

between the instances is highly heterogeneous, with several in-

stance pairs that can communicate much faster than other pairs.

The figures also show that the heterogeneity changes over

time. For example, while instances (1,2) communicate very

fast at 07:00 AM, they are the slowest pair at 01:00 PM. This

indicates that performing the characterization too infrequently

might lead to wrong conclusions regarding the communication

performance and an ineffective task mapping.

To show the amount of differences that can be exploited

by task mapping, Figure 3 shows box plots of the latency

and bandwidth between all instance pairs during the whole

24 hours of the experiment. Although the median values are

relatively similar for all pairs, there is a considerable variance

of performance during the execution, which suggests that task

mapping can have a significant impact on the overall execution

time in the cloud system.

B. Communication Patterns of Parallel Applications

Parallel applications communicate to perform their work.

Most APIs for distributed memory systems, including MPI,

use explicit functions to exchange messages. These messages

can be point-to-point, between pairs of tasks, or broadcast

operations between multiple tasks. Communication is detected

by monitoring these functions and building a communication
matrix, whose cells contain the amount of communication

between all pairs of tasks, measured as the number of mes-

sages or number of bytes transmitted. This matrix can be

visualized with a heatmap, where darker cells indicate more

communication between the task IDs shown in the axes.

Most parallel applications have a highly heterogeneous

pattern, with a clearly visible structure of task pairs that

communicate more than other pairs. A comparison of commu-

nication matrices for two applications from the NAS Parallel

Benchmarks [21] (bt and ft) is shown in Figure 4, using

0

10

20

30

40

50

60

0 10 20 30 40 50 60

(a) bt.

0

10

20

30

40

50

60

0 10 20 30 40 50 60

(b) ft.
Fig. 4: Examples of communication matrices with high and

low heterogeneity for applications running with 64 tasks.

the number of messages as the metric. Each application is

executed with 64 tasks and the B input size. It is important

to note that most MPI applications (including all of the

NAS applications) have a very stable communication behavior,

that is, the pattern remains the same throughout the entire

execution, as well as between repeated runs.

bt has large amounts of communication between task pairs

that are direct neighbors (such as 0 and 1), and pairs that

are farther apart (such as 0 and 8). Due to this structure, bt is

highly heterogeneous and is very suitable for task mapping. On

the other hand, ft consists mostly of collective communication

between all tasks [19], and has therefore a very homogeneous

pattern as shown in Figure 4b. ft is much less suitable for

task mapping than bt, because, regardless of where each task

is mapped, the amounts of intra-instance and inter-instance

communication would be very similar. However, the majority

of NAS applications are highly heterogeneous.

C. Summary

Our discussion in this section showed that the network per-

formance of cloud instances and the communication structure

of parallel applications are highly heterogeneous and are suit-

able for communication-aware task mapping. In Section IV,

we will present our mechanism that exploits this heterogeneity

to calculate an optimized task mapping, taking into account

the changing network performance in the cloud.

III. RELATED WORK

Traditionally, task mapping was performed mostly in clus-

ters, as well as shared memory architectures. With the in-

troduction of cloud computing, the interest in task mapping

also grew in this area, since network performance remains

an important bottleneck for large parallel applications in the

cloud [3].

A. Task Mapping in Clusters and Shared Memory Systems

Task mapping in network clusters and grids is a well known

problem and have been studied for a long time. Programming

paradigms used in these environments are mostly based on

message passing, such as MPI, where the communication

pattern can be detected by monitoring the messages sent

between the tasks, using tools such as EZTrace [22]. Since

communication events themselves are relatively easy to detect,

most challenges lie in an efficient storage and analysis of

3

communication [9], optimized mapping algorithms [23], [24],

as well as reduction of communication [25]. The hardware

topology for mapping is usually discovered directly from the

network structure. Examples of task mapping mechanisms

include MPIPP [11], which consists of a message tracer and a

custom mapping algorithm, as well as a technique to reorder

MPI ranks to match the communication pattern with the

hardware topology [26].

In shared memory architectures, most communication is

implicit and happens when tasks perform memory accesses

to shared data. In these architectures, communication-based

task mapping can improve usage of caches and intra-system

interconnections. The main challenge in shared memory is to

detect the implicit communication. Most previous work uses

statistics from the virtual memory subsystem [13] or from

hardware counters [14] for the detection. The hardware hi-

erarchy is generally discovered with tools such as hwloc [27].

B. Task Mapping in Cloud Computing

Gupta et al. [28] propose a technique to improve the perfor-

mance of HPC applications in the cloud with task mapping.

The authors map the tasks according to the interference be-

tween different applications by analyzing their cache memory

usage, and from a description provided by the user, but do

not use the communication pattern of applications. Sonnek

et al. [29] detect the communication pattern by monitoring

the messages, and migrate the virtual memories to nodes in a

way that optimizes communication. Both proposals were not

evaluated in a commercially available cloud, and it may not be

possible to do so due to the lack of control over the contracted

service. Similar work includes [8], [6].

Saad and El-Mahdy [1] propose an analytical model that

describes the physical placement of virtual machines in the

communication hierarchy. They use a set of experiments that

measure the point-to-point communication performance of vir-

tual machines, providing an overview of the network in a cloud

environment. However, they do not detect the communication

between the tasks of the parallel application to be able to

improve performance in an automated way. Task placement of

applications based on profiling network traffic was proposed

by LaCurts et al. [30]. While their work has some common

goals with ours, their measurement mechanism is slow, taking

3 minutes for 90 VMs, and they have to measure throughput

every 10 seconds for half an hour for accuracy. Also, they do

not take intra-instance communication into account, assuming

that only profiling the complete node includes the required

communication data.

Bassem et al. [17] developed a technique to improve per-

formance of applications by optimizing the resource alloca-

tion of VMs. They use network traffic profiling to generate

traffic matrices. Using this information, they map processing

jobs to VMs. This work differs from ours because their

solution focuses on optimizing resource allocations, reducing

the price of the deployment over improving performance of

the application. Chen et al. [16] designed a VM allocation

mechanism to reduce the number of physical machines and

VM migrations, designing an algorithm to detect utilization

patterns from groups of VMs. Those utilization patterns allow

them to establish VM allocation policies based on the most

used resources on every group of VMs. Their evaluation with

MapReduce jobs showed that improving the VM consolidation

using spatial awareness allows the reduction of the completion

time of those jobs. The focus of their work is to keep the SLAs

in compliance.

Xie et al. [15] developed a system that profiles network

demands of applications. Their main concern is to provide

more bandwidth for each job, without wasting resources.

Their mechanism allows providing performance guarantees by

asking for network resources as needed. While this work iden-

tifies networking problems, the solution uses job scheduling

and bandwidth capping, and does not consider intra-instance

communication. All analyzed cloud-based solutions focus on

improvements from the point of view of the provider, or

they target private clouds. In both cases, implementing the

mechanisms is straightforward for the provider, but it is not

possible for the user due to the requirement of a privileged

control level. From the user side, public clouds are very

restricted, but the users have more information about the

application, which can lead to better mechanisms.

C. Summary of Related Work

Previous work in cluster systems require information that

is not available in public cloud environments, such as infor-

mation about the network and contention from other users.

Existing solutions that target the cloud also require features

that are usually not provided by public clouds and are therefore

not applicable for the large majority of users. To the best of

our knowledge, there is no previous work that performs task

mapping of large parallel applications in commercial clouds

in an automated way.

IV. CLOUDMAP: TASK MAPPING IN THE CLOUD

This section presents our proposal for automatic task map-

ping in cloud environments. In the implementation, we focus

on parallel applications based on MPI, but our proposal can

be easily ported to other parallelization APIs. A high-level

overview of our mechanism is shown in Figure 5. It consists of

four parts, three of which are executed online, since the com-

munication performance in the cloud might change frequently.

The communication detection of most MPI applications can

be performed offline, since communication patterns usually

do not change between multiple executions. Our description

in this section follows the four parts outlined in the figure.

A. Gathering Network Information

Determining the network topology and communication per-

formance of the cloud environment is the most critical step

of our proposal, as it determines the overhead on the par-

allel application (since this profiling is performed for every

execution), as well as the performance benefits that can be

achieved. We created a custom, optimized MPI application

for the network performance characterization, based on the

4

Determine network topology
(Section IV-A)

Generate communication
matrix (Section IV-B)

Calculate task mapping
(Section IV-C)

Execute application with task
mapping (Section IV-D)

Offline

Online

Fig. 5: Overview of CloudMap.

MPIBench [18] code. To minimize the overhead, we limit our

profiling to a single message size common in MPI applications

(1 KByte) [19], [20], in contrast to previous solutions that

perform a more extensive (offline) characterization [1].

We measure the round-trip latency and bandwidth of 1000

messages for each pair of instances. Higher numbers of

messages did not improve accuracy while increasing the over-

head slightly. To further reduce the overhead, the profiling is

performed in parallel, but only one measurement is performed

on each instance at a time. Only one communication direction

is measured for each pair of nodes, since the performance

was identical in our tests. In this way, the overhead of the

profiling is minimized. From the statistics gathered during

the profiling, we create two interconnection matrices, which

contain the measured latency and bandwidth metrics.

B. Generating the Communication Matrix

To generate the communication matrix of a parallel appli-

cation, we use EZTrace [22], which automatically instruments

MPI-based applications to detect their communication. After

execution, it outputs the communication patterns of the appli-

cation based on two metrics. The first metric is the amount of

data (in bytes) exchanged by the tasks, while the second metric

contains the number of messages that were exchanged between

tasks. We evaluate both metrics in our experiments. Only

point-to-point communication is taken into account, collective

communication is discarded as it does not impact the task

mapping.

In our current implementation, the communication detection

is the only part that is run offline, before the actual execution of

the application. However, it is simple to extend our mechanism

to also perform this detection as part of the online charac-

terization (for example, by tracing just a small part of the

application) and cache the result for future executions. In our

experiments as well as previous studies [31] with MPI-based

applications, communication patterns from repeated executions

of an application remained the same, and can therefore be

reused for multiple executions.

C. Calculating the Optimized Task Mapping

To calculate the optimized task mapping, we use the dual

recursive bipartitioning algorithm of the Scotch graph li-

brary [24], version 6.0. It receives as input the communication

matrix and the network interconnection matrix, and outputs

the mapping of tasks to cloud instances. Scotch calculates

the minimum edge cut in the graph, such that tasks that

communicate a lot are kept in the same subset. It repeats this

procedure recursively for each graph subset.

We used Scotch because it has a short execution time (less

than 1ms to map 64 tasks), while providing good results [32].

Scotch has a complexity of O(T 3), where T is the number of

tasks to be mapped [33], but scales well up to 10,000 tasks

even with the sequential algorithm [23]. The authors of Scotch

mention that the parallel implementation of Scotch scales up

to 2.4 billion nodes (tasks and instances in our case)1. This

can be a viable option in case the number of tasks increases

beyond 10,000. Scotch outputs the cloud instance on which

each task should run such that the overall communication is

optimized.

D. Running the Application

As the final step, the application is executed with the

optimized task mapping. Since our experiments are run with

the OpenMPI [34] MPI runtime environment, our mechanism

creates a rankfile [35], which specifies the assignment of MPI

tasks to hosts. Similar assignment mechanisms exist for most

other MPI environments, such as MPICH [36]. This rankfile

is used as an argument in the application execution via the

mpirun command. The online parts of our proposal are

packaged in a single shell script, that allows the user to run

a parallel application by only specifying its name and param-

eters. The script performs the characterization and mapping

without user intervention and executes the application.

E. Overhead

Our proposal causes an overhead for the application, since

the network characterization and mapping are performed for

each execution. The characterization of interconnection per-

formance has a complexity of O(I2), where I is the number

of cloud instances that are characterized. The task mapping

algorithm has a complexity of O(T 3), where T is the number

of tasks, as mentioned before. This runtime overhead will be

measured in Section VI.

V. METHODOLOGY OF EXPERIMENTS

This section provides an overview of our experimental

methodology, including the cloud environment, parallel appli-

cations, and mapping mechanisms.

A. Cloud Instances

All our experiments were performed in Microsoft Azure

(West US) cloud instances. Azure was chosen because it has

shown a high suitability to run HPC applications in terms

of performance and price [2], [37]. Our solution is platform-

independent however and can be easily applied to other service

providers. We evaluated several instance sizes and numbers of

instances. Table I shows an overview of the instance types.

The A7 instance is our baseline system, as it represents a

typical cloud instance size. Each instance consists of 8 cores,

and we experiment with both 8 and 32 A7 instances, for 64

or 256 tasks per application, respectively. The A8 size is very

1http://www.labri.fr/perso/pelegrin/scotch/

5

TABLE I: Properties of the cloud instances used for evaluation.

Instance Number Cores / Number of Memory Network
size of instances instance tasks per instance speed

A7 8 / 32 8 64 / 256 56 GByte 2 Gbps
A8 32 8 256 56 GByte 10 Gbps
G5 8 32 256 448 GByte 8 Gbps

similar to A7, with the same processing power, but it has very

fast interconnections of up to 10 Gbps, which is the fastest

network performance offered on Azure. The G5 instance size

focuses explicitly on HPC, with 32 cores per instance and a

network performance of up to 8 Gbps.

B. Parallel Applications

For the evaluation, we use the NAS Parallel Bench-

marks (NPB) [21], version 3.3.1, which are implemented

with MPI. We present results for the B and C input sizes,

which represent medium and large input sets, respectively.

Absolute execution times vary between several seconds to

several minutes, depending on the application and mapping

strategy. As an example of a large scientific application, we

use the BRAMS weather prediction model [38], version 5.0,

with the light1gr input set. BRAMS also uses MPI.

C. Task Mapping Mechanisms

We compare the following task mapping mechanisms.

Baseline. As the baseline, we use the default scheduler of

OpenMPI [34], version 1.6.5. In our experiments, the default

scheduler used an interleave policy to assign tasks to nodes,

that is, the first task is executed on the first node, the second

task on the second node, etc.

RoundRobin. in the RoundRobin scheduler, tasks are mapped

consecutively to instances and cores within the instances.

For example, the first task is mapped to the first core of

the first instance, the second task to the second core of the

first instance, and so on. In this way, communication can

be optimized if mostly neighboring tasks communicate and

neighboring cloud instances have the highest communication

performance. This mapping is similar to options available in

some MPI environments [36].

Random. In the Random mapping, we assign tasks randomly

to instances and cores, while ensuring that the same number

of tasks gets mapped to each instance. This mapping is used

to verify the impact of mapping.

CloudMapbw and CloudMaplat represent two versions of

our proposed task mapping mechanism, using bandwidth and

latency based metrics, respectively. For the bandwidth version,

we calculate the task mapping with the communication matrix

that uses the number of bytes as metric, together with the in-

terconnection matrix based on bandwidth. The latency version

uses the communication matrix with the number of messages

and the latency-based interconnection matrix as inputs.

All experiments on all cloud environments and mapping

mechanisms were performed at least 10 times. Since absolute

execution times vary widely, we normalize all results to

our baseline and show the performance gains of the other

mechanisms compared to the baseline. We show average

values, as well as the standard deviation. Cloud instances were

only allocated once for the experiments, without reallocation

between executions. To further increase the fairness of the

comparison, we execute the mapping mechanisms in an in-

terleaved way, such that each mechanism was executed under

similar conditions in the cloud.

D. Analysis of Improvements

To compare the quality of different task mappings, we com-

pare the amount of intra- and inter-instance communication as

well as the communication speed with the following equations.

Equations 1 and 2 calculate the amount of inter-instance com-

munication. Equation 1 evaluates if tasks i and j are executed

in the same instance, where the function Instance(x) returns

the cloud instance of task x. Comm(i, j) is a function that

returns the amount of communication between tasks i and j.

DiffInst(i, j) =

{
1 if Instance(i) �= Instance(j)

0 otherwise
(1)

Inter =

T−1∑
i=1

T∑
j=i+1

DiffInst(i, j)× Comm(i, j) (2)

To calculate the amount of intra-instance communication, we

subtract the amount of inter-instance communication from the

total amount of communication, as in Equation 3.

Intra =

⎛
⎝T−1∑

i=1

T∑
j=i+1

Comm(i, j)

⎞
⎠− Inter (3)

We also evaluate the time an application spends communicat-

ing in Equation 4. To calculate that we only consider inter-

instance communication, since intra-instance communication

has a much lower overhead compared to inter-instance.

CommTime =

T−1∑
i=1

T∑
j=i+1

Comm(i, j)

Bandwidth(i, j)
×DiffInst(i, j)

(4)

VI. RESULTS

This section presents and discusses the results of our exper-

iments.

A. Main Performance Results

We begin the discussion with the results of the performance

experiments, separated by cloud instances.

1) A7: 8 instances, 64 tasks: For the 8 A7 instance cloud,

performance results (normalized to the baseline) are shown in

Figures 6 and 7 for the B and C input sizes, respectively. Three

benchmarks, bt, lu, and sp, have significant performance gains

with our proposal, reaching up to 35% in the case of sp with

input size B. These applications are highly heterogeneous with

significant amounts of communication. The other benchmarks

show no difference in execution time or increase it slightly.

ep, ft, and is are not suitable for mapping, since they use

mostly collective communication [19], and have therefore

6

bt cg ep ft is lu mg sp
−50%
−40%
−30%
−20%
−10%

0%
10%
20%
30%
40%

Pe
rfo

rm
an

ce
ga

in
s

CloudMapbw CloudMaplat RoundRobin Random

Fig. 6: Performance gains on 8 A7 instances (64 tasks),

normalized to the default mapping policy, with input size B.

bt cg ep ft is lu mg sp
−60%
−50%
−40%
−30%
−20%
−10%

0%
10%
20%
30%

Pe
rfo

rm
an

ce
ga

in
s

CloudMapbw CloudMaplat RoundRobin Random

Fig. 7: Performance gains on 8 A7 instances (64 tasks),

normalized to the default mapping policy, with input size C.

little heterogeneity in the communication behavior that can

be exploited. is also has a very short execution time, and

therefore suffers from the overhead of the profiling phase. cg
and mg with 64 tasks do not benefit from the task mapping,

since their communication patterns results in very little inter-

instance communication for most mechanisms.

The results for the larger input size C are qualitatively

almost identical to B, with slightly lower absolute gains. For

example, sp’s gains were 31% with C. The reason for this

reduction is the fact that with larger inputs, comparatively

less communication is performed, reducing the gains from

task mapping slightly. In these configurations, focusing on the

latency or bandwidth results in very similar gains. We can

also see that the Random policy results in large performance

losses in many cases, while the RoundRobin mapping has

only very small performance differences compared to the

baseline. This shows that simple mapping policies are not

sufficient to perform a successful task mapping. RoundRobin

has no improvements even for applications with a nearest-

neighbor communication pattern, for which it represents a

perfect communication-aware mapping within each instance.

This means that it is very important to consider the inter-

instance communication performance for the task mapping, as

done by our proposal. This will be evaluated in more detail in

Section VI-C.

2) A7: 32 instances, 256 tasks: For the A7 cloud with 32

instances, results are shown in Figures 8 and 9. Due to the

higher task count, the amount of communication per task is

increasing [20], and the importance of task mapping rises, as

evidenced by the generally higher performance improvements.

For the same reason, two benchmarks (cg and is) that did

not have gains in the previous experiment now show modest

bt cg ep ft is lu mg sp
−20%

0%
20%
40%
60%
80%

100%

Pe
rfo

rm
an

ce
ga

in
s

CloudMapbw CloudMaplat RoundRobin Random

Fig. 8: Performance gains on 32 A7 instances (256 tasks),

normalized to the default mapping policy, with input size B.

bt cg ep ft is lu mg sp
−40%
−20%

0%
20%
40%
60%
80%

100%
120%

Pe
rfo

rm
an

ce
ga

in
s

CloudMapbw CloudMaplat RoundRobin Random

Fig. 9: Performance gains on 32 A7 instances (256 tasks),

normalized to the default mapping policy, with input size C.

bt cg ep ft is lu mgsp

0%
50%

100%
150%
200%
250%
300%

Pe
rfo

rm
an

ce
ga

in
s

CloudMapbw CloudMaplat

(a) B input size.

bt cg ep ft is lu mgsp
−10%

0%
10%
20%
30%
40%
50%
60%
70%
80%

Pe
rfo

rm
an

ce
ga

in
s

(b) C input size.

Fig. 10: Performance gains on 32 A8 instances (256 tasks),

normalized to the default mapping policy.

improvements with the B input. The other applications show

similar behaviors as before.

3) A8: 32 instances, 256 tasks: The A8 instances have

high-speed interconnections, which are 5× faster than those

of A7. Figures 10a and 10b contain the performance results

for this experiment with 256 tasks for each benchmark.

Due to space limitations, we do not show the Random and

RoundRobin results in the figures, but they are very similar

to the results for the A7 instances. Despite the faster inter-

connection, task mapping is still very important to reduce

the communication costs. As before, applications with a high

heterogeneity benefit much more from mapping, with slightly

lower gains with larger input sizes.

4) G5: 8 instances, 256 tasks: The G5 instance size focuses

on High-Performance Computing and has large instances with

32 cores each. Its interconnection speed is between the A7

and A8 instances. The results of this experiment are shown

in Figures 11a and 11b. For both input sizes, the highest

overall improvements of all our experiments were achieved,

with cg-B increasing performance by up to 11×. As previously,

heterogeneous benchmarks profit more from task mapping.

7

bt cg ep ft is lu mgsp
0%

200%
400%
600%
800%

1,000%
1,200%

Pe
rfo

rm
an

ce
ga

in
s

CloudMapbw CloudMaplat

(a) B input size.

bt cg ep ft is lu mgsp
0%

25%
50%
75%

100%
125%
150%
175%
200%

Pe
rfo

rm
an

ce
ga

in
s

(b) C input size.

Fig. 11: Performance gains on 8 G5 instances (256 tasks),

normalized to the default mapping policy.

0
20
40
60
80

100
120
140
160
180
200

Runs

E
xe

cu
tio

n
tim

e
(s

)

Baseline CloudMapbw CloudMaplat

Fig. 12: Execution time of multiple cg (C input size) runs on

32 A8 instances over 2 days.

B. Performance Improvements over Time

In order to show how the gains of our mechanism change

over time, we performed a long-term experiment with the

cg benchmark on 32 A8 instances, continually executing the

application during two days. We measured execution time

with the default mapping, CloudMapbw, and CloudMaplat,

interleaving execution of the various mechanisms as before to

maximize the fairness of the evaluation. The execution times

of ∼600 runs are shown in Figure 12. Several interesting

conclusions can be drawn from these results.

First, the baseline results were very stable. This indicates

that despite the changing communication behavior, the overall

communication performance remains very similar over time, as

indicated by our analysis in Section II-A. Second, considering

the communication bandwidth leads to the highest gains, but

in some cases latency achieves similar gains. Finally, despite

these changes, overall performance improvements remain sta-

ble during the whole two days.

C. Improvements from Intra- and Inter-Instance Task Mapping

Communication-aware task mapping improves performance

in two ways. By grouping tasks that communicate a lot

on the same instance, which we refer to as intra-instance
mapping, and by mapping the groups of tasks that have a lot

of communication between groups to instances with a high

interconnection speed, which we call inter-instance mapping.

The impact of these two types of mapping is evaluated here.

1) Methodology: The two mapping policies, intra-instance
only and inter-instance only, were evaluated separately. For

intra-instance only, we use the Scotch mapping algorithm

to divide the tasks of each application into groups with

lots of communication within the groups. The size of the

bt cg ep ft is lu mg sp
−20%
−10%

0%
10%
20%
30%
40%

Pe
rfo

rm
an

ce
ga

in
s

Full Intra-instance only Inter-instance only

Fig. 13: Separate mapping using CloudMapbw on 8 A7 in-

stances (64 tasks), normalized to the default mapping policy.

group is equal to the number of tasks that each instance can

execute, 8 in our case. Then, we map each group randomly

to the instances. In this way, intra-instance communication is

optimized, but communication between instances is not. For

this mapping, no network profiling is necessary.

For the inter-instance only mapping, we first map the tasks

randomly to instances, and then create a new communication

matrix for the communication between instances using the

random assignment. This communication matrix is then used

with Scotch to create an optimized mapping of the task groups

to instances that optimizes the communication performance.

In this way, the two mapping types form opposites and can

be used to determine the importance of each optimization.

We compare both mappings to our proposal, which performs

both types of task mapping, and the default mapping policy.

Results are shown for the 8 A7 instances system, but results

are qualitatively similar on the other instance sizes.
2) Results: The results of this experiment are shown in

Figure 13. For most benchmarks, running only 1 type of

mapping has significantly lower gains than performing both

types jointly. As mentioned before, the short execution time

of is results in an overhead due to the network profiling,

which is avoided by the intra-instance only mapping. All other

applications benefit much more from the joint mapping. These

results show that it is important to consider the intra- and

inter-instance traffic for optimal improvements. In particular,

most applications benefit from the network characterization to

perform the inter-instance mapping.

D. The BRAMS Application

To show the benefits of our proposal for a large scientific

application, we evaluate the BRAMS application on the three

instance sizes with 256 tasks. The results of this experiment

are shown in Figure 14. For the instance sizes with 8 cores

per instance, A7 and A8, our proposal only results in modest

speedups, while performance improvements are much higher

for the G5 instance size with 32 cores per instance. This

indicates that BRAMS is sensitive mostly to the intra-instance

mapping, similar to the cg benchmark. As in most of the

previous experiments, improvements are very similar with the

bandwidth and latency metrics.

E. Communication Improvements

The results showing the amount of inter-instance traffic,

calculated as described in Equation 2 (Section V-D), are

8

A7 A8 G5
0%

10%
20%
30%
40%
50%
60%

Pe
rfo

rm
an

ce
ga

in
s

CloudMapbw CloudMaplat

Fig. 14: BRAMS results with 256 tasks, normalized to the

default mapping policy.

bt cg ep ft is lu mg sp
−90%
−80%
−70%
−60%
−50%
−40%
−30%
−20%
−10%

0%

A
m

ou
nt

(a) Amount of traffic.

bt cg ep ft is lu mg sp
−90%
−80%
−70%
−60%
−50%
−40%
−30%
−20%
−10%

0%

Ti
m

e

(b) Time spent to communicate.

Fig. 15: Inter-instance traffic improvements of CloudMap

(64 tasks), normalized to a Random mapping.

shown in Figure 15a. The time required to send the messages

between the instances, calculated using Equation 4, is shown

in Figure 15b. Both types of values are normalized to the

Random mapping. We do not show the amount of intra-

instance communication as it is directly related to the amount

of intra-instance communication (inversely proportional). We

can observe that there is a very good correlation between the

reduction of the amount of inter-instance traffic and the time

spent sending the messages between the instances, explaining

the performance gains of our proposal.

F. Overhead

Since we execute the profiling and task mapping algorithm

on each execution, our proposal has a small runtime over-

head before starting the parallel application. We discuss this

overhead for the A7 cloud instances with 8 and 32 instances,

which presented the highest overhead of the instance types that

we evaluated, since the machines have a lower performance

(both in terms of processing and network interconnection) than

the A8 and G5 instances.

Table II contains the overhead of the profiling and mapping

phases in seconds. The overhead of the profiling phase depends

on the number of instances that are characterized. The profiling

makes up the main part of the total overhead. The time it takes

to calculate the task mapping is independent of the actual

communication or interconnection matrices, as well as the

number of instances. It only depends on the number of tasks

that need to be mapped.

The results show that the overhead only has a small

impact on the execution time of the parallel application, if

the application takes at least several seconds to execute. In

our experiments, this overhead affected the ft, is, and mg
benchmarks, which have execution times of 5–10 seconds with

TABLE II: Overhead of our proposal, in seconds.

Phase A7-8 instances (64 tasks) A7-32 instances (256 tasks)

Profiling 0.69 s 1.67 s
Task mapping 0.005 s 0.028 s

the C input size. All other applications have higher execution

times and the overhead is negligible.

G. Summary

Our results have shown that on all instance sizes, our

proposal achieved significant speedups compared to the default

scheduler and to simple mapping techniques. As expected,

applications with a heterogeneous communication behavior

benefited much more from the task mapping than those with

homogeneous communication. Furthermore, we have seen that

when increasing the number of instances and tasks, gains are

increasing as the importance of task mapping is rising. In most

cases, considering bandwidth achieved slightly higher gains

than considering latency.

VII. CONCLUSIONS

One of the main aspects affecting the viability of cloud

computing for large parallel applications is the network per-

formance between the cloud instances, which impacts the

performance of the communication in parallel applications. To

improve communication performance, we can use a technique

called communication-aware task mapping, which was tradi-

tionally employed in network clusters and parallel machines

to improve communication efficiency. In cloud systems, the

lack of information regarding the technical aspects of the

underlying network structure represents a challenge for task

mapping, as most solutions require such information and are

therefore difficult to apply in commercial clouds.

In this paper, we presented a novel solution that performs

a short profiling phase to analyze the network topology of

the cloud instances, and uses the information together with

the communication pattern to execute the parallel application

with an optimized task mapping2. In this way, our mechanism

allows users of commercial clouds to perform communication-

aware task mapping with a minimal overhead, which is able

to react to the changing usage patterns and network speeds

common in cloud environments. We evaluated our proposal

with a set of MPI-based parallel benchmarks and a large

scientific application in several instance sizes and numbers

in a public cloud. Results showed large performance gains

of our proposal, with speedups of up to 11× compared to

the default MPI scheduler. Our experiments showed that our

proposal is an effective and practical solution to alleviate the

network bottleneck in cloud environments.

For the future, we will evaluate extending our proposal

to handle network performance changes during application

execution, possibly with runtime environments that directly

support task migration between cloud instances. We also

2CloudMap is available at https://github.com/ediazc/CloudMap.

9

intend to further analyze communication performance and

improve the task mapping within each instance.

ACKNOWLEDGMENTS

The authors thank Emmanuel Jeannot and the anonymous

reviewers for their comments regarding the paper. This work

was developed in the context of the HPC4E project of RNP/EU

and was supported by CNPq and CAPES. Microsoft provided

free Azure instances for the experiments.

REFERENCES

[1] A. Saad and A. El-Mahdy, “Network Topology Identification for Cloud
Instances,” in International Conference on Cloud and Green Computing,
2013, pp. 92–98.

[2] E. Roloff, M. Diener, A. Carissimi, and P. O. A. Navaux, “High
Performance Computing in the Cloud: Deployment, Performance and
Cost Efficiency,” in IEEE International Conference on Cloud Computing
Technology and Science (CloudCom), 2012, pp. 371–378.

[3] A. Iosup, S. Ostermann, and M. Yigitbasi, “Performance analysis of
cloud computing services for many-tasks scientific computing,” IEEE
Transactions on Parallel and Distributed Systems, vol. 22, no. June, pp.
931–945, 2011.

[4] A. Bhatele, A. R. Titus, J. J. Thiagarajan, N. Jain, T. Gamblin, P.-T.
Bremer, M. Schulz, and L. V. Kale, “Identifying the Culprits Behind
Network Congestion,” in IEEE International Parallel and Distributed
Processing Symposium (IPDPS), 2015, pp. 113–122.

[5] H. Ballani, K. Jang, and T. Karagiannis, “Chatty Tenants and the Cloud
Network Sharing Problem,” in Nsdi, 2013, pp. 171–184.

[6] J. Slawinski, U. Villa, T. Passerini, A. Veneziani, and V. Sunderam,
“Issues in Communication Heterogeneity for Message-Passing Concur-
rent Computing,” in 2013 IEEE International Symposium on Parallel &
Distributed Processing, Workshops and Phd Forum, 2013, pp. 93–102.

[7] M. Deveci, K. Kaya, B. Ucar, and U. V. Catalyurek, “Fast and High
Quality Topology-Aware Task Mapping,” in IEEE International Parallel
and Distributed Processing Symposium (IPDPS), 2015, pp. 197–206.

[8] L. Yin, J. Sun, L. Zhao, C. Cui, J. Xiao, and C. Yu, “Joint Scheduling
of Data and Computation in Geo-Distributed Cloud Systems,” in 2015
15th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, 2015, pp. 657–666.

[9] J. Zhai, T. Sheng, and J. He, “Efficiently Acquiring Communication
Traces for Large-Scale Parallel Applications,” IEEE Transactions on
Parallel and Distributed Systems (TPDS), vol. 22, no. 11, pp. 1862–
1870, 2011.

[10] I. Pagliai, “Azure Network Latency & SQL Server Optimization,” 2013.
[Online]. Available: http://blogs.msdn.com/b/igorpag/archive/2013/12/
15/azure-network-latency-test-and-sql-server-optimization.aspx

[11] H. Chen, W. Chen, J. Huang, B. Robert, and H. Kuhn, “MPIPP: An
Automatic Profile-guided Parallel Process Placement Toolset for SMP
Clusters and Multiclusters,” in International Conference on Supercom-
puting (SC), 2006, pp. 353–360.

[12] E. R. Rodrigues, F. L. Madruga, P. O. A. Navaux, and J. Panetta,
“Multi-core aware process mapping and its impact on communication
overhead of parallel applications,” in IEEE Symposium on Computers
and Communications (ISCC), 2009, pp. 811–817.

[13] M. Diener, E. H. M. Cruz, and P. O. A. Navaux, “Communication-
Based Mapping Using Shared Pages,” in IEEE International Parallel &
Distributed Processing Symposium (IPDPS), 2013, pp. 700–711.

[14] R. Azimi, D. K. Tam, L. Soares, and M. Stumm, “Enhancing Operating
System Support for Multicore Processors by Using Hardware Perfor-
mance Monitoring,” ACM SIGOPS Operating Systems Review, vol. 43,
no. 2, pp. 56–65, apr 2009.

[15] D. Xie and Y. C. Hu, “The Only Constant is Change : Incorporating
Time-Varying Network Reservations in Data Centers,” Sigcomm, no. Vc,
pp. 199–210, 2012.

[16] L. Chen and H. Shen, “Consolidating complementary VMs with
spatial/temporal-awareness in cloud datacenters,” in INFOCOM, 2014,
pp. 1033–1041.

[17] C. Bassem and A. Bestavros, “Network-Constrained Packing of Bro-
kered Workloads in Virtualized Environments,” in 15th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing, 2015.

[18] D. Grove and P. Coddington, “Precise MPI performance measurement
using MPIBench,” in Proceedings of HPC Asia, 2001, pp. 24–28.

[19] R. Riesen, “Communication Patterns,” in IEEE International Parallel &
Distributed Processing Symposium (IPDPS), 2006.

[20] F. Wong, R. Martin, R. Arpaci-Dusseau, and D. Culler, “Architectural
Requirements and Scalability of the NAS Parallel Benchmarks,” in
ACM/IEEE Conference on Supercomputing (SC), 1999, pp. 1–18.

[21] D. H. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum,
S. Fineberg, P. Frederickson, T. Lasinski, R. Schreiber, H. Simon,
V. Venkatakrishnan, and S. Weeratunga, “The NAS Parallel Bench-
marks,” International Journal of High Performance Computing Appli-
cations, vol. 5, no. 3, pp. 66–73, 1991.

[22] F. Trahay, F. Rue, M. Faverge, Y. Ishikawa, R. Namyst, and J. Dongarra,
“EZTrace: a generic framework for performance analysis,” in Interna-
tional Symposium on Cluster, Cloud and Grid Computing (CCGrid),
2011, pp. 618–619.

[23] E. Jeannot, G. Mercier, and F. Tessier, “Process Placement in Multicore
Clusters: Algorithmic Issues and Practical Techniques,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 25, no. 4, pp. 993–1002,
apr 2014.

[24] F. Pellegrini, “Static Mapping by Dual Recursive Bipartitioning of
Process and Architecture Graphs,” in Scalable High-Performance Com-
puting Conference (SHPCC), 1994, pp. 486–493.

[25] G. Ballard, E. Carson, J. Demmel, M. Hoemmen, N. Knight, and
O. Schwartz, “Communication lower bounds and optimal algorithms
for numerical linear algebra,” Acta Numerica, vol. 23, pp. 1–155, 2014.

[26] G. Mercier and E. Jeannot, “Improving MPI Applications Performance
on Multicore Clusters with Rank Reordering,” in European MPI Users’
Group Conference on Recent Advances in the Message Passing Interface
(EuroMPI), 2011.

[27] F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento, B. Goglin,
G. Mercier, S. Thibault, and R. Namyst, “hwloc: A Generic Framework
for Managing Hardware Affinities in HPC Applications,” in Euromicro
Conference on Parallel, Distributed and Network-based Processing
(PDP), 2010, pp. 180–186.

[28] A. Gupta, L. V. Kalé, D. Milojicic, P. Faraboschi, and S. M. Balle, “HPC-
aware VM placement in infrastructure clouds,” in IEEE International
Conference on Cloud Engineering (IC2E), 2013, pp. 11–20.

[29] J. Sonnek, J. Greensky, R. Reutiman, and A. Chandra, “Starling:
Minimizing Communication Overhead in Virtualized Computing Plat-
forms Using Decentralized Affinity-Aware Migration,” in International
Conference on Parallel Processing (ICPP), sep 2010, pp. 228–237.

[30] K. LaCurts, S. Deng, A. Goyal, and H. Blakrishnan, “Choreo: network-
aware task placement for cloud applications,” in Internet Measurement
Conference (IMC), 2013, pp. 191–203.

[31] F. Cappello, A. Guermouche, and M. Snir, “On Communication De-
terminism in Parallel HPC Applications,” in International Conference
onComputer Communications and Networks (ICCCN), 2010, pp. 1–8.

[32] M. J. Rashti, J. Green, P. Balaji, A. Afsahi, and W. Gropp, “Multi-core
and Network Aware MPI Topology Functions,” in Recent Advances in
the Message Passing Interface, 2011.

[33] T. Hoefler and M. Snir, “Generic Topology Mapping Strategies for
Large-scale Parallel Architectures,” in International Conference on Su-
percomputing (ICS), 2011, pp. 75–85.

[34] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra,
J. M. Squyres, V. Sahay, P. Kambadur, B. Barrett, and A. Lumsdaine,
“Open MPI: Goals, concept, and design of a next generation MPI
implementation,” in Recent Advances in Parallel Virtual Machine and
Message Passing Interface, 2004.

[35] The Open MPI project, “mpirun man page,” 2013. [Online]. Available:
http://www.open-mpi.de/doc/v1.6/man1/mpirun.1.php#sect9

[36] Argonne National Laboratory, “Using the Hydra Process Manager,”
2014. [Online]. Available: http://wiki.mpich.org/mpich/index.php/
Using the Hydra Process Manager

[37] B. E. Zant and M. Gagnaire, “Performance and Price Analysis for Cloud
Service Providers,” in Science and Information Conference (SAI), 2015,
pp. 816–822.

[38] S. R. Freitas, K. M. Longo, M. A. F. Silva Dias, R. Chatfield, P. Silva
Dias, P. Artaxo, M. O. Andreae, G. Grell, L. F. Rodrigues, A. Fazenda,
and J. Panetta, “The Coupled Aerosol and Tracer Transport model
to the Brazilian developments on the Regional Atmospheric Modeling
System (CATT-BRAMS) – Part 1: Model description and evaluation,”
Atmospheric Chemistry and Physics, vol. 9, no. 8, pp. 2843–2861, 2009.

10

