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ABSTRACT. We give a linear time algorithm to compute the number of eigenvalues of any perturbed
Laplacian matrix of a tree in a given real interval. The algorithm can be applied to weighted or unweighted
trees. Using our method we characterize the trees that have up to 5 distinct eigenvalues with respect to a
family of perturbed Laplacian matrices that includes the adjacency and normalized Laplacian matrices as
special cases, among others.

Keywords: perturbed Laplacian matrix, eigenvalue location, trees.

1 INTRODUCTION

The Spectral Graph Theory studies the relations between the spectrum of matrices associated to

graphs and structural properties of the graphs. The most commonly used representation matrix of
a graph is the adjacency matrix. If G is a simple undirected graph with vertices v1, v2, . . . , vn ,
the adjacency matrix A = (ai j ) of G is the real symmetric matrix of order n with entries 0 or 1,

where ai j = 1 if and only if vertices vi and v j are adjacent.

A tree is a connected graph with no cycles. In 2011, Jacobs & Trevisan [7] gave a linear time
algorithm to compute the number of eigenvalues of a tree in a given real interval. Their method
has the important advantage of being executed directly on the tree so that the matrix is not needed

explicitly. The authors observed that the algorithm had potential to be adapted to other matrices,
for instance the Laplacian matrix, defined as the matrix L = DG − A, where DG is the diagonal
matrix whose diagonal entry ii is the degree di of vertex vi of a graph G and A is the adjacency

matrix of G.

In fact, the algorithm of Jacobs and Trevisan and the extensions that followed it became a prac-
tical and efficient tool in Spectral Graph Theory. We notice in particular the work of Fritscher
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et al. [5], where the original algorithm was adapted for the Laplacian matrix of a tree and ap-

plied to prove that among all trees with n vertices, the star Sn has the highest Laplacian energy,
which was conjectured by Radenković & Gutman in [8]. Besides, Braga et al. [3] adapted the
original algorithm for the normalized Laplacian matrix, introduced by Chung [4] as the matrix

L = (�i j ), where �i j = 1 if i = j and di > 0, �i j = − 1√
di ·d j

, if vertices vi and v j are adjacent,

and �i j = 0, otherwise. This variation of the algorithm was used to study the multiplicity of nor-
malized Laplacian eigenvalues of small diameter trees, which allowed the authors to characterize

the trees that have up to 5 distinct normalized Laplacian eigenvalues.

The results obtained with the localization algorithm for different representation matrices of trees
motivated the development of an algorithm to localize the eigenvalues of a tree for a more general
class of matrices, generalizing the previous algorithms, which is the aim of this work.

A weighted graph is a graph where a real number ω(ei j ) = ωi j is assigned to each edge ei j

connecting vertices vi and v j . We say that ωi j is the weight of edge ei j . An unweighted graph
can be considered as a graph where all edges have weight 1. In [1], Bapat et al. defined the
perturbed Laplacian matrix of a graph with positive weights, which encompasses the adjacency,

Laplacian and normalized Laplacian matrices, among others. Given a real diagonal matrix D,
the perturbed Laplacian matrix of G with respect to D, is the matrix

LD(G) = D − A,

where A = (ai j ) is the adjacency matrix of G, with ai j = ωi j if vertices vi and v j are adjacent,
and 0 otherwise.

The general idea of the localization algorithm for a perturbed Laplacian matrix of a weighted tree,
called DiagonalizeW, is the same of the previous algorithms: performing computations directly

on the tree, obtain a diagonal matrix Dα congruent to M + α I , where M is a representation
matrix of a tree.

Beyond preserving the practicality of the original algorithm and its extensions, our method has
the advantages of considering weighted trees and allowing to simultaneously derive results for

several representation matrices. In fact, the previous localization algorithms are special cases
of algorithm DiagonalizeW. For an unweighted tree, if D is the zero matrix then LD(G) = −A
and DiagonalizeW coincides with the algorithm given in [7]. If D is the diagonal matrix of the

degrees of the vertices of G, then LD(G) is the Laplacian matrix of G and DiagonalizeW coincides
with the algorithm applied in [5]. Besides, if D is the identity matrix and we take ωi j = 1√

di ·d j
,

DiagonalizeW is the algorithm for the normalized Laplacian matrix given in [3].

In Section 2 we present algorithm DiagonalizeW. In Section 3 we apply this method to character-
ize the trees that have up to 5 distinct eigenvalues with respect to a family of perturbed Laplacian
matrices that includes the adjacency and normalized Laplacian matrices as special cases, among

others.

Tend. Mat. Apl. Comput., 18, N. 3 (2017)
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2 LOCATING EIGENVALUES OF PERTURBED LAPLACIAN MATRICES

Taking as input a weighted tree T of order n, a scalar α ∈ R and a real diagonal matrix D, the
algorithm DiagonalizeW(T, α) that we present in this section diagonalizes the matrix LD(T )+α I ,

where LD(T ) is the perturbed Laplacian matrix of T with respect to D. The output is a diagonal
matrix Dα congruent to LD(T )+ α I . We recall that two square matrices of order n, A and B, are
congruent if there is an invertible matrix P such that A = PT B P.

Like the original algorithm of Jacobs and Trevisan for the adjacency matrix, our method is exe-

cuted directly on the tree T , so that the matrix is not needed explicitly.

The tree T is rooted at an arbitrary vertex and the vertices are ordered v1, . . . , vn , so that if v j is
a child of vk , then j > k. Thus the root is the vertex v1. Every vertex v of T , except for the root,
has a parent, which is the vertex adjacent to v that is not a child of v.

During the execution the algorithm DiagonalizeW(T, α) assigns, to each vertex vi of T , a real

value a(vi ) which at the end corresponds precisely to the entry ii of the diagonal matrix Dα.
We call a(vi ) the diagonal value of vertex vi . Initially, each vi receives the diagonal value
a(vi ) = δi +α, where δi is the entry ii of the diagonal matrix D. Then the vertices are processed

bottom-up, towards the root, as described below. For a vertex vk , we denote by Ck the set of all
children of vk . If vk is a leaf which is not the root, then Ck = ∅.

Algorithm 1 - DiagonalizeW(T, α).

Input: weighted tree T with ordered vertices v1, v2, . . . , vn , scalar α, diagonal matrix D.
Output: diagonal matrix Dα congruent to LD(T )+ α I .

Initialize a(vi ) := δi + α, for each vertex vi .
For k = n to 1

if vk is not a leaf then

1. if a(vi ) �= 0, for all vi ∈ Ck , then

a(vk )← a(vk)−
∑

vi∈Ck

(ωik )2

a(vi )
.

2. if a(vi ) = 0 for some vi ∈ Ck , then
select one vertex v j in Ck for which a(v j ) = 0;
a(vk )←−(ω jk )

2

2
; a(v j )← 2;

if vk has a parent v�, remove the edge vkv�.
Print a(v1), a(v2), . . . , a(vn).

Tend. Mat. Apl. Comput., 18, N. 3 (2017)
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To understand how the procedure above computes the diagonal values of a diagonal matrix con-

gruent to the matrix LD(T )+α I , let us consider a vertex vk of T with a child v j , which corresponds
to the entries in the matrix below:

k

j

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
...

· · · a(vk) . . . ωkj · · ·
...

. . .
...

· · · ω jk · · · a(v j ) · · ·
...

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

If a(v j ) �= 0, then the following row and column operations annihilate the entries k j and j k:

Rk ← Rk − ω jk

a(v j )
R j and Ck ← Ck − ω jk

a(v j )
C j .

After these two operations, the corresponding entries of the matrix are

k

j

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
...

· · · a(vk )− (ωk j )
2

a(v j )
. . . 0 · · ·

...
. . .

...

· · · 0 · · · a(v j ) · · ·
...

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Note that if vk has all children with nonzero diagonal values, each of them may be used to
annihilate the two off-diagonal entries that correspond to its connection with vk . Hence, after

performing the same operations for all children of vk , the diagonal value of vk becomes

a(vk)−
∑

vi∈Ck

(ωik )2

a(vi )
,

which corresponds to the value assigned by Algorithm 1 in this case (Step 1).

Suppose that vk has a child v j with a(v j ) = 0, as in the submatrix below. Then vertex v j may

be used to annihilate the two off-diagonal entries of any other child vi of vk , as well as the
two entries representing the edge between vk and its parent v�, in the case vk is not the root, as
follows. Note that at this point vk and v� still have their initial diagonal values, since the vertices

are processed bottom-up.

�

k
j
i

⎡
⎢⎢⎢⎣

δ� + α ω�k

ωk� δk + α ωkj ωki

ω jk 0
ωik a(vi )

⎤
⎥⎥⎥⎦ .

Tend. Mat. Apl. Comput., 18, N. 3 (2017)
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The operations

Ri ← Ri − ωik

ω jk
R j and Ci ← Ci − ωki

ωkj
C j ,

annihilate the entries ik and ki, while the operations below annihilate the entries �k and k�:

R� ← R� − ω�k

ω jk
R j and C� ← C� − ωk�

ωkj
C j .

Note that ω jk = ωkj �= 0, since v j is a child of vk .

These last two operations effectively remove the edge between vk and its parent v�, disconnecting
the graph, which is performed in Step 2 of Algorithm 1. At this point, the submatrix with rows

and columns i, j, k, � has been transformed as

�

k
j
i

⎡
⎢⎢⎢⎣

δ� + α 0

0 δk + α ωkj 0
ω jk 0

0 a(vi )

⎤
⎥⎥⎥⎦.

Next, the operations

Rk ← Rk − (δk + α)

2ω jk
R j and Ck ← Ck − (δk + α)

2ωkj
C j

annihilate the entry kk and the submatrix becomes

�

k
j

i

⎡
⎢⎢⎢⎣

δ� + α 0
0 0 ωkj 0

ω jk 0

0 a(vi )

⎤
⎥⎥⎥⎦.

Finally, the operations

R j ← R j + 1
ωk j

Rk , C j ← C j + 1
ω j k

Ck ,

Rk ← Rk − ωk j
2 R j , Ck ← Ck − ω j k

2 C j

yield the diagonalized form

�

k
j
i

⎡
⎢⎢⎢⎣

δ� + α 0

0 − (ωk j )
2

2 0 0
0 2
0 a(vi )

⎤
⎥⎥⎥⎦.

The diagonal values of v j and vk obtained after the operations above are exactly the values di-
rectly assigned by the algorithm in Step 2. We also note that all other children of vk are unaffected
by the operations above, including those that might have zero values.

Tend. Mat. Apl. Comput., 18, N. 3 (2017)
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Considering that the diagonal values computed by algorithm DiagonalizeW(T, α) were obtained

by elementary row and column operations, such that each operation performed in one row was
also performed in the corresponding column, it follows that the diagonal matrix Dα , whose
entries are the diagonal values assigned by the algorithm, is congruent to LD(T )+ α I . Therefore,

by Sylvester’s Law of Inertia (see [6, Theorem 4.5.8]), we have the next result.

Theorem 2.1. Given a real diagonal matrix D, let Dα be the diagonal matrix produced by the

algorithm DiagonalizeW(T,−α) for a weighted tree T and real number α. Then, the number of
positive, negative and zero diagonal entries in Dα is equal to the number of eigenvalues of the
perturbed Laplacian matrix of T with respect to D, LD(T ), which are greater, smaller and equal

to α, respectively.

Example 2.2. Let T be the weighted tree with vertices v1, v2, v3, v4 and v5 on the left side of
Figure 1, with weights represented on the edges. Suppose that the diagonal entries of matrix D
are δ1 = 1, δ2 = 2, δ3 = 1, δ4 = 1 and δ5 = 1.

Let us apply algorithm DiagonalizeW(T, α), with α = −2. The initial diagonal values assigned

to the vertices are a(vi ) = δi − 2, for i = 1, . . . , 5, which are represented on the vertices of T ,
on the left side of Figure 1.

−1 v1

0v2 −1 v3

−1v4 −1 v5

1 2

2 1

−1/2 v1

2v2 4 v3

−1v4 −1 v5

1 2

2 1

Figure 1: Algorithm DiagonalizeW(T, α) with α = −2.

Vertices v4 and v5 are the children of v3 and have nonzero values, hence the algorithm assigns

a(v3) = −1 − (ω34)
2

a(v4)
− (ω35)

2

a(v5)
= −1− 22

−1
− 12

−1
= 4.

Vertex v1 has a child with a zero value (vertex v2), then the algorithm assigns value 2 to v2,

whereas the diagonal value of v1 becomes

a(v1) = −(ω12)
2

2
= −12

2
= −1

2
.

Therefore, since the algorithm produced two positive and three negative diagonal values, it fol-
lows from Theorem 2.1 that the matrix LD(T ) has two eigenvalues greater than 2 and three eigen-
values smaller than 2. Applying the algorithm with α = 0, we obtain that LD(T ) has one negative

Tend. Mat. Apl. Comput., 18, N. 3 (2017)
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and four positive eigenvalues, while with α = −1 we get that LD(T ) has one eigenvalue equal to 1,

two eigenvalues smaller than 1 and two eigenvalues greater than 1. Hence, LD(T ) has one negative
eigenvalue, one eigenvalue in the interval (0, 1), one eigenvalue equal to 1 and two eigenvalues
greater than 2.

3 TREES WITH AT MOST FIVE DISTINCT EIGENVALUES WITH RESPECT
A FAMILY OF PERTURBED LAPLACIAN MATRICES

In this section we apply Algorithm DiagonalizeW(T, α) to study trees that have up to 5 distinct

perturbed Laplacian eigenvalues.

It follows from the Theorem below, whose proof can be found in [2, Proposition 1.3.3], that we
only need to consider trees with a small diameter. We recall that the diameter of a graph is the
maximum distance between any two vertices in the graph.

Theorem 3.1. If G is a connected graph with diameter d and M = (mi j ) is a nonnegative

symmetric matrix with rows and columns indexed by the vertices of G and such that for distinct
vertices vi , v j we have mi j > 0 if and only if vi and v j are adjacent, then G has at least d + 1
distinct eigenvalues with respect to M.

We show next that this property is more general. For that matter we apply a result due to Schur,

whose proof can be found in [6, Theorem 4.3.45].

Theorem 3.2 (Schur). Let A be a real symmetric matrix of order n with diagonal entries d1 �
d2 � . . . � dn and eigenvalues λ1 � λ2 � . . . � λn. Then

k∑
i=1

di �
k∑

i=1

λi , for k = 1, . . . , n − 1, and
n∑

i=1

di =
n∑

i=1

λi .

Theorem 3.3. If G is a connected graph with positive weights and diameter d, then any per-
turbed Laplacian matrix of G has at least d + 1 distinct eigenvalues.

Proof. Let G be a connected graph with order n, positive weights and diameter d . Let LD(G) =
D − A be the perturbed Laplacian matrix of G with respect to a diagonal matrix D = (di j ). Let
us denote the entries of the adjacency matrix of G by ai j , with i, j ∈ {1, . . . , n}. Let

m = 1+ max
1�k�n

{λk} ,

where λ1, . . . , λn are the eigenvalues of LD(G), and consider the matrix B = mI −LD(G) = mI −
D + A. Then, for all i, j ∈ {1, . . . , n} with i �= j , bi j = ai j � 0. Besides, for all i ∈ {1, . . . , n},
the diagonal entry bii = m − dii of B is positive. This follows from the fact that LD(G) is

symmetric and then, by Theorem 3.2, dii � max
1�k�n

{λk} < m. Therefore, by Theorem 3.1, B has

at least d+ 1 distinct eigenvalues. Since the eigenvalues of B are m−λ1, . . . , m−λn, it follows
that LD(G) has at least d + 1 distinct eigenvalues. �

Tend. Mat. Apl. Comput., 18, N. 3 (2017)
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The perturbed Laplacian matrix of a graph depends on an arbitrary diagonal matrix D. We con-

sider the case where D = μI , for some μ ∈ R, thus the perturbed Laplacian matrix of a graph
G is of the form

LD(G) = μI − A.

Note that, in particular, if μ = 0, LD(G) = −A. Besides, if G has no isolated vertices, μ = 1 and
the weights of G are

ωi j = 1√
di d j

,

then LD(G) is the normalized Laplacian matrix of G′, where G′ is an unweighted graph with
the same edges and vertices then G. Hence the adjacency matrix of a weighted graph and the

normalized Laplacian matrix of an unweighted graph with no isolated vertices are special cases
of a perturbed Laplacian matrix of the form LD(G) = μI − A.

It is known that the spectrum of the adjacency matrix of a connected graph G is symmetric if
and only if G is bipartite (see [2, Proposition 3.4.1]). The family of perturbed Laplacian matrices

that we are considering satisfies a similar result. It is easy to see that the spectrum of μI − A is
symmetric about μ ∈ R if and only if the spectrum of A is symmetric. In fact, if λ is an eigenvalue
of μI − A, then μ − λ is an eigenvalue of A. Hence, if the spectrum of A is symmetric, then
λ− μ is also an eigenvalue of A. Thus, μ− (λ−μ) = 2μ− λ is an eigenvalue of μI − A. The

converse is similar.

Theorem 3.4. Let G be a connected weighted graph of order n and μ ∈ R. Then G is bipartite
if and only if the spectrum of LD(G) = μI − A is symmetric about μ.

In order to characterize the trees that have at most five distinct eigenvalues for perturbed Lapla-

cian matrices of the form μI − A, for some μ ∈ R, by Theorem 3.3 it is enough to consider trees
with diameter smaller than five, since every tree is a connected graph. Besides, every tree T is a
bipartite graph, so the spectrum of LD(T ) = μI − A is symmetric about μ.

Let T be a tree with n vertices and diameter d less than or equal to 4. If d = 1, T is the complete

graph with two vertices and has two different eigenvalues: μ + ω and μ − ω, where ω is the
weight of the edge that connects the vertices.

In the case d = 2, T is the star Sn , that has exactly three distinct eigenvalues, symmetric
about μ, which is an eigenvalue with multiplicity to n − 2. To see that, we apply algorithm

DiagonalizeW(Sn, α), with α = −μ and the vertex with degree n− 1 as the root. Since all n− 1
pendants of Sn receive zero diagonal values, the algorithm assigns to the root v the diagonal value

− (ωvy∗ )2

2 , where y∗ is a pendant of v selected to receive value 2. Therefore, exactly n−2 vertices
have a zero diagonal value at the end of the execution, which implies that μ is an eigenvalue with

multiplicity to n − 2, by Theorem 2.1.

Now we consider the case d = 3. Note that any diameter 3 tree can be seen as two stars Sk+1

and S�+1, where k, � � 1, with an edge linking their centers, as illustrated in Figure 2.

Applying algorithm DiagonalizeW, we obtain the following result.

Tend. Mat. Apl. Comput., 18, N. 3 (2017)
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Figure 2: A diameter 3 tree.

Theorem 3.5. Let T be a diameter 3 tree. Then all eigenvalues of LD(T ) = μI − A, except
possibly for μ, are simple. Moreover, LD(T ) has exactly four eigenvalues if and only if T = P4,
the path with four vertices. Otherwise, LD(T ) has exactly five distinct eigenvalues.

Proof. Let T be a diameter 3 tree with n = k + � + 2 vertices, as shown in Figure 2. By
Theorem 3.3, LD(T ) = μI − A has at least four distinct eigenvalues. If n = 4, T is the path P4

and LD(T ) has exactly four distinct eigenvalues. Suppose that n > 4 and let us apply the algorithm
DiagonalizeW(T, α), with α = −μ and T rooted at the vertex with � pendants. Then all vertices

are initialized with a zero value. Since all k pendants of the vertex adjacent to the root have
zero values, when this vertex is processed its diagonal value becomes negative and one of its k
pendants receives a positive value. Besides, since � � 1, the root has at least one pendant with

a zero value. Hence, when the algorithm processes the root, its diagonal value becomes negative
and exactly one of its � pendants receives a positive value. Therefore, at the end of the execution
we obtain k + � − 2 = n − 4 zero values. By Theorem 2.1, it follows that μ is an eigenvalue

of LD(T ) with multiplicity n − 4. Then the other four eigenvalues of LD(T ) must be distinct since
it has at least four distinct eigenvalues and its spectrum is symmetric about μ. Hence, LD(T ) has
exactly five distinct eigenvalues if n > 4, which concludes the proof. �

If T has diameter d = 4, then LD(T ) has at least five distinct eigenvalues. Hence, the path P4

is the only tree with exactly four distinct eigenvalues. We want to characterize the trees, if any,
necessarily of diameter 4, that have exactly five distinct eigenvalues for the perturbed Laplacian
matrix μI − A. Every diameter 4 tree is of the form depicted in Figure 3: it contains a vertex v

adjacent to k � 2 vertices v1, . . . , vk , where vi has degree pi + 1, with pi � 1, for i = 1, . . . , k,
and each vi is adjacent to pi pendants, and v is also possibly adjacent to m � 0 pendants. In this
case, we write T = T (k, p1, p2, . . . , pk, m).

The following result gives the multiplicity of μ as an eigenvalue of LD(T ) = μI − A, where T is

a diameter 4 tree.

Theorem 3.6. For any diameter 4 tree of the form T = T (k, p1, p2, . . . , pk, m), the multiplicity
of μ as an eigenvalue of μI − A is 1−k+∑k

i=1 pi � 1, when m = 0, and m−1−k+∑k
i=1 pi ,

when m > 0.

Tend. Mat. Apl. Comput., 18, N. 3 (2017)
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Figure 3: A diameter 4 tree T (k, p1, p2, . . . , pk, m).

Proof. Let us apply the algorithm DiagonalizeW(T, α), with α = −μ, to T rooted at vertex v

of degree k + m, which is adjacent to the vertices v1, v2, . . . , vk of degree p1 + 1, . . . , pk + 1,
respectively.

Suppose that m = 0, that is, v has no pendants. Since μ+α = 0, initially all vertices are assigned
a zero diagonal value, as the left hand-side of Figure 4 shows. Next, for i = 1, . . . , k, the value of

vi becomes − (ωvi v
∗
i
)2

2 , where v∗i is a pendant of vi chosen to take value 2, and the edge connecting
vi to v is removed, so that the value of the root v remains 0. The other

∑
(pi − 1) pendants also

remain with a zero diagonal value, as illustrated in the right-hand side of Figure 4. Therefore, by
Theorem 2.1, the multiplicity of μ as an eigenvalue of LD(T ) = μI − A is exactly

k∑
i=1

(pi − 1)+ 1 =
(

k∑
i=1

pi

)
− k + 1 � 1.

0 v

0 0 0

0 0 0 0 0 0 0 0 0

· · ·

0 v

− − −

0 0 + 0 + 0 0 0 +

· · ·

Figure 4: A diameter 4 tree with m = 0.

Now suppose that m > 0. Figure 5 illustrates the execution the algorithm in this case. All the

edges connecting the vi ’s to v are also removed.

When the root v is processed, since it remains connected only to its m pendants, which have

value 0, the value assigned to v becomes − (ωvv∗ )2

2 , where v∗ is a pendant of v chosen to take
value 2. Hence, by Theorem 2.1, the multiplicity of μ as an eigenvalue of LD(T ) = μI − A is(

k∑
i=1

pi

)
− k + (m − 1). �

Tend. Mat. Apl. Comput., 18, N. 3 (2017)
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0 v

0 0 0

0 0 0 0 0 0 0 0 0

· · ·

0 0 0 0

− v

− − −

0 0 + 0 + 0 0 0 +

· · ·

0 0 0 +

Figure 5: A diameter 4 tree with m > 0.

The next result gives the multiplicity of the eigenvalues of LD(T ) = μI − A that are different
from μ for a diameter 4 tree T . For i = 1, . . . , k, let ωih be the weight of the edge that connects

vi to its pendant qih , for h = 1, . . . , pi , and let σi =∑pi
h=1(ωih )2.

Theorem 3.7. Let T = T (k, p1, p2, . . . , pk, m) be a diameter 4 tree. Then LD(T ) = μI − A has
an eigenvalue different from μ with multiplicity t � 2 if and only if t < k and exactly t + 1 σ ′i s

are equal. Moreover, λ1 = μ−√σ and λ2 = μ+√σ are eigenvalues of LD(T ) = μI − A with
multiplicity t � 1 if σi = σ for exactly t + 1 v′i s.

Proof. Let us suppose that λ �= μ is an eigenvalue of LD(T ) with multiplicity t � 2. Applying
algorithm DiagonalizeW(T,−λ) to T rooted at vertex v of degree k + m, each pendant of T

receives the initial diagonal value μ− λ �= 0. Hence,

a(vi ) = μ− λ−
pi∑

h=1

(ωih )2

μ− λ
= μ− λ− σi

μ− λ
,

for all 1 � i � k. Due to the multiplicity of λ, the algorithm produces exactly t zero diagonal
values. Considering that each pendant of T has a nonzero diagonal value and t � 2, then a(vi ) =
0 for at least one i, since otherwise the only possible zero diagonal value would be a(v), which

contradicts the fact that t � 2. Thus, the only way to obtain exactly t zero diagonal values at the
end of the algorithm is that a(vi ) = 0 for exactly t + 1 vi ’s, so that, after processing vertex v,
the diagonal value of v is negative and one of those t + 1 vi ’s has a positive diagonal value. This

implies that t + 1 � k. Besides, for 1 � i < j � k,

a(vi ) = a(v j ) ⇔ μ− λ− σi

μ− λ
= μ− λ− σ j

μ− λ
⇔ σi = σ j .

Without loss of generality, now let us suppose that for some t , 1 � t < k, there exists σ ∈ R
such that σi = σ , for all i, 1 � i � t + 1, and σi �= σ , for i > t + 1. We apply algorithm
DiagonalizeW(T, α) to T rooted at vertex v of degree k + m and α = −λ, where λ = μ−√σ .

Initially all pendants of T are assigned a diagonal value μ−λ = √σ , which is positive. Besides,
for each i, 1 � i � t + 1, vi is assigned a zero value, since

a(vi ) = μ− λ− σi

μ− λ
= (μ− λ)2 − σ

μ− λ
= 0.
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Therefore, when vertex v is processed, we obtain a(v j ) = 2, for exactly one j in {1, . . . , t + 1}
and a(v) = − (ωvv j )

2

2 < 0. Hence, at the end of the execution, there are exactly t zero diagonal
values, which implies that λ is an eigenvalue of LD(T ) with multiplicity t . The result for λ =
μ + √σ follows from the symmetry of the spectrum of LD(T ) = μI − A with respect to μ

(Theorem 3.4). �

Corollary 3.1. If σi �= σ j for all 1 � i < j � k, then, except possibly by μ, all eigenvalues of
LD(T ) = μI − A are simple.

The result below characterizes the diameter 4 trees for which the perturbed Laplacian matrix of
the form μI − A has exactly 5 distinct eigenvalues.

Theorem 3.8. Let T = T (k, p1, p2, . . . , pk, m) be a diameter 4 tree. If m = 0 and k = 2, or

m = 0, k � 3 and σi = σ j , for all 1 � i < j � k, then LD(T ) = μI − A has exactly 5 distinct
eigenvalues. Otherwise, LD(T ) has at least 6 distinct eigenvalues.

Proof. If m = 0, then, by Theorem 3.6, the multiplicity of μ as an eigenvalue of LD(T ) = μI−A

is 1 − k +∑k
i=1 pi � 1. Hence, LD(T ) has exactly 2k eigenvalues different from μ. If k = 2,

the result is clear, since T has at least 5 distinct eigenvalues by Theorem 3.3. Let us suppose
that k � 3. If σi = ∑pi

h=1(ωih )2 = σ, for all 1 � i � k, by Theorem 3.7, λ1 = μ + √σ

and λ2 = μ − √σ are eigenvalues of LD(T ) with multiplicity k − 1 � 1. Hence LD(T ) has
2k − (2(k − 1)) = 2 eigenvalues different from μ, λ1 and λ2. These two eigenvalues are simple,
since the spectrum of LD(T ) is symmetric about μ (Theorem 3.4), which shows that LD(T ) has
exactly 5 distinct eigenvalues.

However, if σi = σ , for all 1 � i � t , for some 2 � t < k, and σi �= σ , for all i > t , the
multiplicity of λ1 and λ2 is t − 1. Hence LD(T ) has 2(k − t + 1) � 4 eigenvalues different from
μ, λ1 and λ2, which implies that LD(T ) has at least 7 distinct eigenvalues. If σi �= σ j , for all
1 � i < j � k, by Corollary 3.1, LD(T ) has 2k � 6 simple eigenvalues different from μ, which

shows that LD(T ) has at least 7 distinct eigenvalues. Finally, if m > 0 and k � 2, by Theorem 3.6,
the multiplicity of μ is m− 1− k+∑k

i=1 pi � 0 and LD(T ) has 2k+ 2 � 6 eigenvalues different
from μ. By Theorems 3.4 and 3.7, it follows that LD(T ) has at least 6 distinct eigenvalues, since

in this case the multiplicity of μ can be zero. �

RESUMO. Nós apresentamos um algoritmo de tempo linear para calcular o número de au-

tovalores de uma matriz laplaciana perturbada qualquer associada a uma árvore, num dado

intervalo real. Este algoritmo pode ser aplicado a árvores com ou sem pesos. Utilizando este

procedimento, obtemos uma caracterização das árvores com até cinco autovalores distintos

para uma famı́lia de matrizes laplacianas perturbadas, que inclui a matriz de adjacências e a

matriz laplaciana normalizada como casos particulares, entre outras.

Palavras-chave: matriz laplaciana perturbada, localização de autovalores, árvores.
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