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Abstract

Ascertaining which patients are at highest risk of poor postoperative outcomes could

improve care and enhance safety. This study aimed to construct and validate a propensity

index for 30-day postoperative mortality. A retrospective cohort study was conducted at

Hospital de Clı́nicas de Porto Alegre, Brazil, over a period of 3 years. A dataset of 13524

patients was used to develop the model and another dataset of 7254 was used to validate it.

The primary outcome was 30-day in-hospital mortality. Overall mortality in the development

dataset was 2.31% [n = 311; 95% confidence interval: 2.06–2.56%]. Four variables were

significantly associated with outcome: age, ASA class, nature of surgery (urgent/emergency

vs elective), and surgical severity (major/intermediate/minor). The index with this set of vari-

ables to predict mortality in the validation sample (n = 7253) gave an AUROC = 0.9137,

85.2% sensitivity, and 81.7% specificity. This sensitivity cut-off yielded four classes of death

probability: class I, <2%; class II, 2–5%; class III, 5–10%; class IV, >10%. Model application

showed that, amongst patients in risk class IV, the odds of death were approximately fivefold

higher (odds ratio 5.43, 95% confidence interval: 2.82–10.46) in those admitted to intensive

care after a period on the regular ward than in those sent to the intensive care unit directly

after surgery. The SAMPE (Anaesthesia and Perioperative Medicine Service) model accu-

rately predicted 30-day postoperative mortality. This model allows identification of high-risk

patients and could be used as a practical tool for care stratification and rational postopera-

tive allocation of critical care resources.
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Introduction

Perioperative risk is multifactorial. It depends on the interaction between anaesthetic, surgi-

cal, and patient-specific aspects. The perioperative period can be particularly hazardous to

patients because it involves several transfers of care [1,2]. Such fragmentation and disconti-

nuity of care might lead to a system-wide fragility that compromises patient safety, especially

in high-risk cases[3].To mitigate this, patients at heightened risk of poor outcomes should be

as visible as possible; labelling them as such throughout their hospitalization could improve

the process and safety of care as a whole, including human resources and technical–adminis-

trative aspects. Furthermore, in the context of limited healthcare resources, utilization of

critical care resources in the postoperative period is amongst the costliest components of

care. This gives rise to several questions: for whom should such specialized care be provided?

How can this selection process be made clearer in increasingly crowded and complex health

systems?

In recent years, risk management has become a key institutional goal centred on the quality

of care, and many surgical risk models and scores have been developed[4]. The ideal stratifica-

tion tool should be constructed with easily collected preoperative variables that reflect both

patient health status and the risk inherent to the surgical procedure. Loss of physiological

reserve should also be recognized as a predictor of perioperative vulnerability, and it is essen-

tial that the broader characteristics of the patient population of interest be taken into account.

The Surgical Risk Scale[5] and de Surgical Mortality Probability model [6] are the proposed

indices that come closest to achieving these goals; however, they do not include age as an

explanatory variable.

The aim of the present study was to develop a practical approach for stratification of

patients undergoing elective or emergent procedures, with satisfactory accuracy, and using fea-

sible, independent preoperative variables. This model would classify patients into risk groups

to predict the level of postoperative care required, specifically by making the high-surgical risk

group more visible.

Materials and methods

Data source and study population

This study was conducted at Hospital de Clı́nicas de Porto Alegre (HCPA), an 842-bed teach-

ing hospital and referral centre that provides tertiary and quaternary care to patients from

across Southern Brazil through the national Unified Health System. Ethical approval for this

study was provided by the Ethical Comittee of Postgraduate and Research Group from Hospi-

tal de Clı́nicas de Porto Alegre–Brazil (Chairperson Prof. Eduardo P Passos) on the 13th of

June 2014 (CAAE 30776914.1.0000.5327).

Written informed consent was not required, but the authors signed a confidentiality agree-

ment to assess information from institution’s database.

We analysed data from all consecutive surgeries performed from January 1, 2012 to Decem-

ber 31, 2013. We first identified 40,505 records from patients who underwent any form of

surgery. We excluded those who received only local anaesthesia by the surgeon or whose pro-

cedures were diagnostic rather than therapeutic (26,981). Also when more than one surgical

procedure was performed during the same hospital admission, only the major procedure was

taken into account for analysis. The final study cohort consisted of 13,524 patients. The data-

base included information on patient demographics, functional status (ASA Physical Status

classification), nature of surgery (emergency or elective), and degree of surgery (major, inter-

mediate, or minor; detailed definition provided below), as well as postoperative allocation, e.g.,
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regular ward versus intensive care unit. The final outcome during hospitalization was death or

survival at hospital discharge. Therefore, the data of the patients who were still in hospital after

30 days or who were discharged before the study period were not followed beyond this point.

Model development

We used a subsequent approach to select the variables and refine the risk model for surgical

mortality. Firstly, only preoperative clinical and surgical routinely available variables with

proven accuracy in existing perioperative risk models [5,6] were used. The surgical variables

selected were the degree (major, intermediate, or minor) and nature (elective or non-elective)

of the procedure. To define surgical severity, we grouped 1200 current terminology codes for

similar procedures into subtypes (e.g., bile duct surgery, pulmonary resection). Then, we clas-

sified these procedures into major, intermediate, or minor degree, using a categorization

scheme based on literature review [6,7] and expert opinions, who considered surgical time,

trauma, and predicted bleeding. (S1 Table). The nature of the procedures was categorized as

elective or non-elective (urgent and emergency cases).

Variables related to patient physiological reserve included age and ASA Physical Status

(ASA-PS) score. As this model was constructed on the basis of institutional data, other clinical

predictors, such as cardiac comorbidities, could not be recovered.

A logistic regression model was adjusted to these four independent predictors: two patient-

related (ASA-PS, age) and two procedure-related (surgical severity and elective vs non-elective

nature). As noted above, death or survival at hospital discharge was the main outcome of inter-

est. Patients were assessed for up to 30 days of hospitalization.

Odds ratio and 95% confidence intervals were calculated to determine the magnitude with

which these variables were associated with likelihood of 30-day in-hospital postsurgical deaths.

The C-statistic was used to predict the model’s ability to sort patients by outcome. The Hos-

mer–Lemeshow test was used to check for goodness of fit by comparing the expected and

actual deaths in each risk group.

The final model was validated with a new sample (another database from the same institu-

tion). The validation dataset was composed of consecutive patients who underwent surgical

procedures at the study institution from January to November 2014. The same tests [logistic

regression analysis, Hosmer–Lemeshow statistic, receiver operator characteristic (ROC) curve

analysis] were applied, using the original sample cut-off point, to confirm the accuracy and cal-

ibration of the risk model. All statistical analyses were carried out in the SAS version 9.4.

Results

Model development

Fig 1 shows the study flow chart. During the 24 months of analysis, 13524 patients comprised

the dataset used to develop the model. In this series, there were 311 operative deaths [2.30%;

95% confidence interval (CI): 2.06–2.56%]. Table 1 describes the characteristics of the overall

sample and of the 30-day in-hospital postsurgical deaths, stratified by the clinical and surgical

variables of interest. The procedures most frequently associated with 30-day in-hospital mor-

tality are listed in S2 Table. Exploratory laparotomy was the procedure most significantly asso-

ciated with in-hospital postoperative death.

On adjusted logistic regression analysis, the pre-selected variables age, ASA, nature of pro-

cedure (elective vs non-elective), and procedure degree (major, intermediate, or minor) were

found to correlate significantly with the final outcome. Each of these variables contributed to

mortality. The probability for mortality is showed by the formula (where Y = 1 if the patient

SAMPE model for perioperative risk stratification
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died, x1 = age,x2 = ASA, x3 = nature and x4 = severity):

P mortalityð Þ ¼ log
PðY ¼ 1jx1;x2; x3; x4Þ

1 � PðY ¼ 1jx1;x2; x3; x4Þ
¼ � 10; 7506þ 0; 0339� ageþ 1; 7073� ASAþ

1; 0672� nature � 0; 3699� intermediate severity þ 0; 8966�major severity

Tests for linearity were performed for ASA status (p = 1.0) and age (p = 0.15) by quartiles

test and binned residual plot [8] and it suggested that the linearity supposition was accorded,

with increments of 1 year for age and one class for ASA status.

Table 2 lists the variables entered into the model and their respective weights (odds ratios

and confidence intervals).

By analysing these odds ratios with a view to clinical applicability, we drew several conclu-

sions for each of the variables included in the model. Each 1-year increase in patient age was

associated with a 1.35-fold increase in the odds of death. Major (vs minor) surgery was associ-

ated with a 2.45-fold increase in the odds of death, while each increment in ASA class led to a

5.51-fold increase. Urgent or emergency surgery increased the odds of death by 2.9 compared

to elective surgery.

The accuracy of the final logistic regression model was assessed by its discriminant capacity

and calibration. The C-statistic for prediction of in-hospital mortality in the derivation cohort

was 0.9137, indicating excellent discrimination. The Hosmer–Lemeshow goodness-of-fit sta-

tistic of 13.28 (p = 0.125) in the derivation dataset reflects acceptable model calibration.

Fig 1. Trial diagram for SAMPE model dataset analysis.

https://doi.org/10.1371/journal.pone.0187122.g001
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A sensitivity of 85.2% and specificity of 81.7% were obtained for the adjusted model, con-

sidering a cut-off value of 0.02 for the predictive probability of death. Full sensitivity and speci-

ficity data are provided in S3 Table.

Moreover, the proposed model was compared with a model where the ASA-PS classifica-

tion was the only predictor, and it added a significant incremental increase in the area under

the receiver operating characteristic (AUROC) curve, from 0.857 to 0.913 (p< 0.0001) (Fig 2).

The cut-off sensitivity limit mentioned above yielded four classes of postoperative in hospi-

tal all-cause mortality risk:

Class I–probability of death: <2%;

Class II–probability of death: between 2 and 5% (2%� p<5%);

Class III–probability of death: between 5 and 10% (5%� p<10%);

Class IV–probability of death:�10%.

Table 1. Characteristics of the overall sample and 30-day in-hospital postsurgical deaths, stratified by clinical and surgical predictors.

Total sample Deaths

n Overall % n postoperative

deaths %

13524 100 311 2.30

Age

15–35 2841 21.00 16 5.14

36–55 4672 34.54 47 15.11

56–75 4901 36.23 161 51.76

>75 1110 8.20 87 27.97

ASA physical status

I 3349 24.76 2 0.64

II 7439 55.00 58 18.64

III 2466 18.23 149 47.90

IV 247 1.82 82 26.36

V 23 0.17 20 6.43

Nature of procedure

Elective 10789 79.77 135 43.40

Urgent 2735 20.22 176 56.59

Severity of procedure

Minor 4809 35.55 50 16.07

Moderate 5593 41.34 66 20.25

Major 3122 23.08 195 62.70

https://doi.org/10.1371/journal.pone.0187122.t001

Table 2. Variables included in the model with respective odds ratios and confidence intervals.

Variable Odds ratio 95% confidence interval p

Age 1.035 1.025–1.044 < 0.0001

ASA class 5.514 4.573–6.648 < 0.0001

Surgical severity, intermediate vs minor 0.691 0.467–1.022 0.0641

Surgical severity, major vs minor 2.451 1.750–3.434 < 0.0001

Status, non-elective vs elective 2.907 2.239–3.776 < 0.0001

p-values denote the significance of each variable in improving model predictive capacity (likelihood ratio test).

https://doi.org/10.1371/journal.pone.0187122.t002
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Comparisons of the observed and predicted mortality rates for each class (Table 3) were

indicative of model consistency and very good calibration, confirming the results of goodness-

of-fit testing [9].

Model validation and utilization

The discriminant ability and calibration of the final model were than assessed in another vali-

dation cohort from the same institution, composed of 7253 patients. The high sensitivity

(86.4%) and specificity (81.4%) obtained for prediction of in-hospital mortality at a cut-off

value of 0.02 confirmed the accuracy of the final model, which we named “SAMPE”, after our

institutional affiliation (Serviço de Anestesia e Medicina Perioperatória, Anaesthesia and Peri-

operative Medicine Service). The C statistic for the validation dataset was 0.922. Also, the cal-

culation of the Hosmer–Lemeshow goodness-of-fit statistic for each decile of risk showed a

good concordance between observed and predicted deaths at 30 days (x2 test = 4.27 –p = 0.89).

Fig 2. ROC curve calculated using the development SAMPE model dataset compared to the ASA

model.

https://doi.org/10.1371/journal.pone.0187122.g002

Table 3. Patient mortality in the derivation cohort, stratified by risk class according to the SAMPE

model.

Risk class

(Predicted mortality)

Total

(n = 13.524)

Deaths (%)

(n = 311)

Class I–probability of death: <2%; 10.161 28 (0.28)

Class II–probability of death: between 2 and 5% 1.503 49 (3.26)

Class III–probability of death: between 5 and 10% 915 76 (8.31)

Class IV–probability of death:�10% 944 158 (16.74)

https://doi.org/10.1371/journal.pone.0187122.t003
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In-hospital death probability was calculated and tabulated for all possible combinations of

variables predicted into the model. We also developed an automated on-line table as shown in

Fig 3, that calculates the predicted probability of death for each possible combination of vari-

ables. This tool will be used to overcome what would otherwise be a considerable challenge—

performing a calculation based on a logistic regression equation at the patient’s bedside. The

calculator is available at https://www.hcpa.edu.br/downloads/pesquisa/sampe.xlsx.

Although developed as a risk prediction tool before surgery, the SAMPE model, as any

other risk model, should ideally be adjusted for use in a new population.

Worked example for prediction of intensive care unit admission

To illustrate application of the final model, we evaluated postoperative allocation according to

SAMPE risk status. The role of intensive care in the management of high-risk surgical patients

was analysed. First, surgical admissions to intensive care units were stratified into two groups:

patients transferred directly from the operating theatre to the ICU versus patients transferred

to ICU after a period of care in the post-anaesthesia recovery room or on a regular ward. A

logistic regression model for mortality was done only on the very high risk patients (class

IV), considering the predictors used in the original model plus early or late ICU admission

(Table 4). Overall, 944 patients were classified as having very high surgical risk (�10% mortal-

ity, i.e., SAMPE class IV). Of these patients, 158 (17%) died. The mortality odds ratio from

patients admitted late versus early in ICU was 5.431 (IC 2.820–10.462). The remained patients

that died in this category (risk class IV) were not admitted at any time in the intensive care

unit (47 patients).

Discussion

Statistical risk models for prediction of mortality can be seen as adjuncts to diagnosis, and are

best used to enhance perioperative risk reduction strategies. The greatest challenges are to

incorporate the chosen model into the care process and ascertain its impact on postoperative

outcomes. In this study, we used a dataset of 13524 patients to construct a preoperative model

based on clinical and surgical variables, to stratify adult patients into risk classes of in-hospital

mortality probability for general surgery. After adjustment and refinement, we validated the

Fig 3. Model calculator developed in the Google Docs platform.

https://doi.org/10.1371/journal.pone.0187122.g003
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model on 7253 patients with a high degree of accuracy. The main strength of our model is that

we translate the mathematical model into an automated on-line table that informs the risk and

divides it into four categories. This approach creates an efficient risk communication system

to the collaborative teams, being its two main goals to predict postoperative complications and

to prevent the failure to rescue.

It has already been demonstrated that postoperative death rates oscillate widely across hos-

pitals, even if they have similar complication rates. The hospitals with the best results invest

their efforts in the ability of effectively rescue a patient from a complication once it occurs:

from timely recognition to effective management[10]. Ferraris et al [11] showed that 20% of

patients with the greatest risk for developing postoperative complications account for 90% of

failure to rescue. Therefore, identifying these high-risk patients and implementing timely rec-

ognition and treatment of early complications are the best opportunity to intervene and limit

failure to rescue.

The model

The high performance of the SAMPE model in the validation cohort (AUROC = 0.913) con-

firms its consistency. Unfortunately, all risk models currently in use have limitations. Some

employ the same variables we selected[5–7] but have limited generalizability and are not easily

applied at the bedside. Others, such as the POSSUM score, rely on multiple pre and intrao-

perative variables and have been shown to overestimate mortality in lower-risk groups [12,13].

One of the strengths of our model is the absence of multiple variables or excessive analyses,

which could result in overfitting. Another advantage is its applicability at bedside where it can

be used preoperatively, without intraoperative data or laboratory results.

The few clinical and surgical variables selected were powerful predictors of the outcome of

interest. Therefore, if a pre-selected combination of variables can explain a phenomenon with

the same level of accuracy as a more complex model, the former should be preferred; according

to the law of parsimony[14].

It’s known that the models considering surgical and clinical variables have greater accuracy.

The comparison of some mortality models using only preoperative variables is shown in

Table 5.

Table 4. Mortality-adjusted logistic regression model parameters for high-risk patients (n = 944) and their odds ratio estimates for each predictor.

Predictors Beta Standard error OR 95% CI

Age 0.055 0.01 1.057 1.03–1.07

ASA 1.757 0.210 5.8 3.83–8.76

Surgical Severity

Low Ref - - -

Intermediate -0.177 0.428 0.838 0.36–1.94

Major 0.416 0.367 1.517 0.73–3.11

Nature

Elective Ref - - -

Urgent/Emergent 1.322 0.295 3.753 2.10–6.69

ICU admission

Early ICU Ref - - -

No ICU admission 1,454 0.24 0.23 0.14–0.37

Late ICU 3.146 0.327 5.431 2.82–10.46

https://doi.org/10.1371/journal.pone.0187122.t004
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This study has several limitations. First, the model reflects mortality risk in the patient pop-

ulation of the study facility, and cannot yet be generalized to other care settings or geographic

locations. Second, although it was designed to provide a relatively accurate assessment, 2 of 4

(ASA and surgical severity) variables are subjective measures.

Third, it is limited by the fact that the data were obtained retrospectively; further work is

needed to compare the accuracy of the SAMPE model to that of other risk models in a multi-

centre design. Nevertheless, the numbers at our hospital did not differ greatly from rates

reported in developed countries. The overall in-hospital mortality of our sample (2.3%) was

comparable to the overall mortality in a 7-day European cohort study[19]. The mortality of

patients undergoing high-risk procedures, especially laparotomies, was consistent with that

Table 5. Mortality models with pre-operative variables.

Model Variables included in the model Outcome Population AUROC (CI) Comments

SORT model

[15]

ASA, Surgical Nature, High risk

specialty, Surgical Severity,

Cancer, Age

Predicted risk

of 30-day

mortality

General non-cardiac

surgery (n = 16.788)

0,91 (0,88–0,94) It’s a multicenter study in United

Kingdom that used a specific surgical

severity classification. ROC curve

comparing this model with Surgical

Risk Scale and ASA was superior. It

needs an app web-base calculator.

Surgical

Mortality

Probability

Model, (SMP-M)

[6]

Surgical severity, ASA, Surgical

Nature

30 day

mortality

General surgical

patients,

(n = 298.772)

0.89 It’s a model based on the American

College of Surgeons Program

database (ACS NSQIP). It exhibited

good discrimination compared to the

35-variable ACS NSQIP risk

adjustment model.

mE-PASS [16] Age, Severe Pulmonary disease,

Severe heart disease, Diabetes

mellitus, ASA class, Performance

status, Surgical Procedures

In-hospital

mortality and

30 day

mortality

General surgical

patient (n = 5.272)

In hospital

mortality: 0.86

(0.79–0.92) 30

day mortality:

0.81 (0.66–0.96)

Model derived from the Japanese

National Health Care Reimbursment

System. Good accuracy compared to

models that included intra-operative

variables (E-PASS and POSSUM).

Lee Cardiac

Risk Index [17]

High risk surgery (retroperitoneal,

intrathoracic, suprainguinal

vascular), ischemic heart disease,

heart failure, cerebral vascular

disease, renal insufficiency,

diabetes mellitus

Cardiac

mortality up to

30 days

General non-cardiac

surgery,

(n = 108.593)

0.63 The outcome is focused on

cardiovascular mortality. Its simple

classification of procedures as high-

risk versus not high-

risk seems suboptimal.

Surgical Risk

Score[7]

ASA, surgical severity, surgical

nature, age

Inpatient

mortality

General surgery,

(n = 1.849)

0.88 (0.83–0.93) It was developed and validated in

Italy. Subsequent study evaluating

this model found it to be poorly

predictive of in-patient mortality [16].

ASA PS[7] ASA Inpatient

mortality

General surgical

patient (n = 1.849)

0.81 (0.79–0.82) ASA grade has been used since

1941. In this cohort, it had good

accuracy in predicting mortality even

being the only predictor.

Charlson [18] 19 clinical conditions 30 day

mortality

General surgery

(n = 2.167)

0.52 The index is designed to predict

1-year mortality. It does not consider

the surgical procedure. In this cohort,

the index was the least able to predict

mortality.

Surgical Risk

Scale[5]

ASA, surgical severity–(minor,

intermediate, major, major plus,

complex major), surgical nature

(elective, scheduled, urgent,

emergency)

Inpatient

mortality

Gastrointestinal,

vascular, trauma

(n = 1.946)

0.95 (0.93–0.97) Incorporates specific

subclassifications: the CEDOP

(Confidential Enquiry into

Perioperative Deaths) grade and

BUPA (British United Provident

Association) classification.

Transformed the multivariate

regression in a pragmatic score.

https://doi.org/10.1371/journal.pone.0187122.t005
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recorded in an ongoing audit project at UK hospitals[20], and the mortality of high-risk

patients (8.5%) was similar to that found in a study focused on a similar population [21].

Finally, the outcome in-hospital mortality could bypass the no-less important outcome of peri-

operative complications, as it is a hard endpoint and postoperative complications are more dif-

ficult to define and quantify.

The variables

Age has been identified as an important predictor of increased risk of postoperative mortality.

However, it is not age itself that leads to heightened risk, but rather the decline in bodily func-

tions that comes with ageing [22]. The impact of age-associated decline in five domains is

demonstrated in the recently developed Frailty Score[23,24] which has been associated with

higher expectancy of adverse hard end-points following surgery, including mortality, func-

tional decline, and cardiac complications.

The most significant variable in the SAMPE model is the physical condition of the patient,

determined by the ASA-PS classification. Despite its classic, widespread use and subjective

nature, this score was not originally developed for prediction of adverse outcomes; neverthe-

less, adequate inter-reliability in clinical practice was recently demonstrated[25]. Furthermore,

it reflects the global health status of the patient, irrespective of the body systems affected by

current pathology. The ASA classification has also been used as the main clinical variable in

several recent perioperative risk models, such as the SPM-P model[6] and the Gupta model

[26]. The predictive performance of these models exceeds that of traditional risk indices such

as the Cardiac Index Revised[17] and the ACS-NSQIP model[27]. In order to reduce the sub-

jectivity of the ASA classification, it’s recommendable the use of the recent update published

by the American Society of Anesthesiologists, which encompasses ASA-approved class-specific

examples belonging to each class (http://www.asahq.org/resources/clinical-information/asa-

physical-status-classification-system).

The risk inherent to the type of procedure performed is also of utmost importance. Elective

and less complex procedures had the lowest rates of postoperative mortality, while the worst

outcomes were found in patients undergoing major procedures. In our study, only the com-

parison between major versus minor surgeries was significantly predictive in the model. The

classification of procedural severity was adapted from the SPM-P model[6] and corrected for

local context after consultation with experts from various surgical specialties and analysis of

crude procedure-related mortality, since it depends on several factors related to the whole con-

tinuum of perioperative care. The electronic tool contains all procedures previously classified

by its severity, which reduces inter-user variability.

Non-elective surgery is a recognized risk factor for perioperative mortality, especially in

abdominal procedures[28]. In emergent surgery, there is limited time for data collection and

preoperative optimization of comorbid states[29]. Furthermore, the lack of structured care in

the crowded and hectic setting of the emergency department certainly contributes to insuffi-

cient patient preparation and poor definition of the goals of care. It was recently demonstrated

in a large English NHS cohort that structural and procedural aspects such as the number of

doctors, nurse staffing, available operating rooms, and critical care beds are important modify-

ing factors related to 30- and 90-day post-emergent surgical mortality[30].

In a worked example, we were able to highlight the ability of our model to guide rational

utilization of resources, including postoperative intensive-care allocation, through surgical risk

stratification. Despite a higher overall mortality rate (16%) and accounting for over 50% of in-

hospital deaths, only 29% of very-high risk (class IV) patients in the cohort were admitted to

critical care at any time following surgery (204 early admission vs 68 late admission).

SAMPE model for perioperative risk stratification

PLOS ONE | https://doi.org/10.1371/journal.pone.0187122 October 30, 2017 10 / 14

http://www.asahq.org/resources/clinical-information/asa-physical-status-classification-system
http://www.asahq.org/resources/clinical-information/asa-physical-status-classification-system
https://doi.org/10.1371/journal.pone.0187122


Perhaps most importantly, we found that late admission to the intensive care unit was asso-

ciated with increased mortality. The very high-risk patients admitted to intensive care after a

period of recovery on a regular ward had a 5.43-fold greater risk of postoperative death com-

pared with those admitted to intensive care directly after surgery. Our results confirm the pre-

vious findings of higher mortality amongst high-risk patients that were not immediately

admitted to a critical care unit after surgery in a large NHS trust [31]. One explanation for

these rates could be the lack of availability of critical care resources, since only 4.7% of all risk

class patients had immediate postoperative ICU allocation. This contrasts with a European

7-day cohort in which 8% of patients were admitted to the ICU postoperatively [19].

It’s important to emphasize that other determinant variables such as respiratory and hae-

modynamic instability or trans-operative complications were not included in the pre-operative

model. Thus, the model could not be the only source of ICU admission but it may be a useful

tool in the allocation decision, especially when there are scarce critical bed resources.

We believe that recognition, identification, and increased visibility of patients with high

perioperative risk could make a greater contribution to improving the quality and safety of

care than would simply ensuring the availability of critical care resources.

This objective risk assessment could be used to identify which patients must be actively fol-

lowed in the postoperative period. Multidisciplinary postoperative care teams could also be

created, with a view to providing enhanced, patient-centred care and improving postoperative

outcomes.

Accordingly, some processes are been encouraged to be implemented by different caregiv-

ers after adopting SAMPE risk model adoption during the high-risk patients’ hospitalization:

(i) The postoperative and acute pain team follows them for 48 hours; (ii) the surgeon team

assigns senior residents to care for these patients; (iii) the internal medicine co-management is

implemented and optimized; (iv) the nurse staff staggers care by prioritizing high-risk patients,

evaluating the vital signs more often than usual, and defining nurse-to-bed ratio according to

patient’s risk. Additionally, the classification is taken into account in the decision of a possible

patient transfer to the ICU after surgery (Fig 4).

Conclusions

Our perioperative mortality risk model exhibited excellent performance with a small set of eas-

ily assessed and sustainable variables. Although the model was well validated internally, pro-

spective validation in external samples is crucial. However, accurate identification of high-risk

patients is not enough. The key challenge for clinical translation of our findings, as well as a

Fig 4. Flow of the high-risk patient’s care.

https://doi.org/10.1371/journal.pone.0187122.g004
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major avenue for future research, is to incorporate our risk model as a component of care and

ascertain its impact on patient outcomes. If successful, this could contribute to improved

patient safety and more efficient utilization of perioperative care resources.
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