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The performance and energy efficiency of modern architectures depend on memory locality, which can be improved by
thread and data mappings considering the memory access behavior of parallel applications. In this paper, we propose IPM,
a mechanism that analyzes the memory access behavior using information about the time the entry of each page resides
in the Translation Lookaside Buffer (TLB). It provides very accurate information with a very low overhead. We present
experimental results with simulation and real machines, with average performance improvements of 13.7% and energy
savings of 4.4%, which come from reductions in cache misses and interconnection traffic.
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1. INTRODUCTION
As thread-level parallelism (TLP) increases in modern architectures due to larger numbers of cores
per chip and chips per system, the complexity of their memory hierarchies also increases. Such
memory hierarchies include several private or shared cache levels, and Non-Uniform Memory Ac-
cess (NUMA) nodes with different access times. In these parallel architectures, the resource man-
agement plays a key role in the performance and energy consumption. It influences the data move-
ment between cores, caches and main memory banks, which occurs when a core performs a memory
transaction. In this context, the reduction of data movement is an important goal for future archi-
tectures to keep performance scaling and to decrease energy consumption [Borkar and Chien 2011;
Coteus et al. 2011]. One of the solutions to reduce data movement is to improve memory access
locality through sharing-aware mapping [Torrellas 2009; Feliu et al. 2012].

State-of-the-art mapping mechanisms try to increase locality by keeping threads that share a high
volume of data close together in the memory hierarchy (sharing-aware thread mapping), and by
mapping data close to where its accessing threads reside (sharing-aware data mapping). Thread
and data mapping should be performed jointly [Terboven et al. 2008] for maximum improvements.
Performance and energy efficiency are increased for three main reasons. First, cache misses are
reduced by decreasing the number of cache line invalidations on shared data [Martin et al. 2012]
and by reducing the replication of cache lines on multiple caches [Chishti et al. 2005]. Second,
the locality of memory accesses is increased by mapping data to the NUMA node where it is most
accessed [Diener et al. 2014; Ribeiro et al. 2009]. Third, the usage of interconnections in the system
is improved by reducing the traffic on slow and power-hungry interchip interconnections, using more
efficient intrachip interconnections instead [Diener et al. 2014]. Failing to identify an application
data sharing behavior can lead to poor mappings that reduce performance and energy efficiency.

We propose a mechanism called Intense Pages Mapping (IPM), an online mechanism that
analyzes the memory access pattern of parallel applications using information about the residency
time of each page table entry in Translation Lookaside Buffers (TLBs). The information about the
time that a page table entry resides in the TLB is very relevant because it indicates the affinity
between the page and the threads accessing it. In this way, IPM identifies pages that are intensely
accessed by one NUMA node, along with which threads access these pages. This paper makes the
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following contributions:
• Our proposed metric, TLB residency, has a higher accuracy than previous mechanisms because it
has access to more accurate information about memory access behavior.
• IPM can be implemented natively in architectures with software-managed TLBs, and with little
additional hardware in architectures with hardware-managed TLBs.
• IPM allows the operating system to perform sharing-aware thread and data mapping during the
execution of an application in a non-intrusive way with no prior knowledge of application behavior.

We demonstrate the benefits of IPM in a wide variety of applications using simulation and real
machines. In a native implementation in a real machine, execution time was reduced by an average
of 13.7% (up to 39%). Energy efficiency was improved by an average of 4.4% (up to 12.2%).

2. RELATED WORK
In this section, we describe several related mapping mechanisms, organizing them in mechanisms
that perform only data or thread mapping, and mechanisms that perform both together.

2.1. Data Mapping Only
Traditional data mapping strategies, such as first-touch and next-touch [Löf and Holmgren 2005],
have been used by operating systems to allocate memory on NUMA machines. In the case of first-
touch, pages are not migrated during execution. Next-touch can lead to excessive data migrations if
the same page is accessed from different nodes. The NUMA Balancing policy [Corbet 2012b] was
included in more recent versions of Linux. In this policy, the kernel introduces page faults during
the execution of the application to perform lazy page migrations, reducing the number of remote
memory accesses. A previous proposal with similar goals was AutoNUMA [Corbet 2012a].

Marathe et al. [2010] present an automatic page placement scheme for NUMA platforms by
tracking memory addresses from the performance monitoring unit (PMU) of Itanium. Their work
requires the generation of memory traces to guide data mapping for future executions of the appli-
cations, which may lead to a high overhead [Barrow-Williams et al. 2009]. A similar technique is
used by Marathe and Mueller [2006] to perform data mapping dynamically. They enable the profil-
ing mechanism only during the beginning of each application due to its high overhead, losing the
opportunity to handle changes in the rest of the execution. Tikir and Hollingsworth [2008] use Ul-
traSPARC III hardware monitors to guide data mapping. Their proposal is limited to architectures
with software-managed TLBs, while IPM targets architectures with either hardware-managed or
software-managed TLBs.

Carrefour [Dashti et al. 2013] is a mechanism that uses sampling to detect page usage. Their sam-
pling mechanism makes use of instruction-based sampling to identify memory addresses accessed
by each thread. However, every delivered sample requires an interrupt, so processing samples at a
high rate becomes very costly in Carrefour. Due to its overhead, the authors restrict the mechanism
to 30,000 pages, which limits its use to applications with a low memory usage. Ogasawara [2009]
proposes a data mapping method that is limited to object oriented languages that use garbage col-
lection. On the other hand, IPM works regardless of the programming language or API.

Piccoli et al. [2014] propose a technique named Selective Page Migration (SPM) that automati-
cally includes instrumentation code at compile time and migrate pages at run time. In the compiler,
their proposal analyzes parallel loops to identify their memory access behavior. This behavior is
then used to migrate pages to the nodes that most access them during the execution of a loop. Al-
though using the compiler for analysis is interesting, it is only applicable to applications with simple
parallelization patterns.

The aforementioned mechanisms do not detect the sharing pattern between threads, losing the
opportunity to improve data sharing between them. Additionally, data mapping alone is not able to
reduce remote memory accesses effectively in pages accessed by more than one thread, since these
threads may be mapped to cores on different NUMA nodes.
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2.2. Thread Mapping Only
The usage of the instructions per cycle (IPC) metric to guide thread mapping is evaluated in Au-
topin [Klug et al. 2008]. Autopin does not detect the sharing pattern, only verifies the IPC of several
mappings fed to it and executes the application with the thread mapping that presented the highest
IPC. Similarly, Blackbox [Radojković et al. 2013] selects the best mapping by measuring the perfor-
mance of 1000 random mappings. These methods seldom converge to an optimal mapping because
the number of possible mappings is exponential in the number of threads.

Zhuravlev et. al [2012] surveyed the state of the art on thread scheduling algorithms to handle
resource sharing and contention. Many algorithms used metrics related to information from last
level cache miss rates and IPC to detect scheduling problems and estimate performance degrada-
tion [Zhuravlev et al. 2010]. Such statistics do not accurately represent sharing and data access
patterns, while IPM has direct access to the memory addresses being accessed.

Azimi et al. [2009] map threads based on information from the hardware counters of Power5
processors that sample the memory addresses resolved by remote caches. Accesses resolved by local
caches are not considered, generating an incomplete sharing pattern. When only thread mapping is
performed, the locality of memory accesses in NUMA architectures cannot be improved.

2.3. Joint Thread and Data Mapping
A library called ForestGOMP is introduced in [Broquedis et al. 2010a]. This library integrates
into the OpenMP runtime environment and gathers information about the different parallel sections
of the applications. ForestGOMP only works for OpenMP-based applications. Also, ForestGOMP
needs source code annotations to perform the mappings, which can be a burden to the programmer.

The kMAF affinity framework is proposed in [Diener et al. 2014]. It performs both thread and
data mapping and gathers information from page faults. To increase its accuracy, kMAF introduces
page faults during the execution of the application to identify which threads access each page. Each
additional page fault causes an interrupt to the operating system, increasing the overhead.

Gennaro et al. [2016] describe the inaccuracy that comes from using page faults to a single page
table to detect the sharing pattern of applications. They explain that the page fault caused by one
thread can mask eventual accesses to the same page by other threads. The authors overcome this
issue by creating additional thread-specific page tables, and using the collected sharing pattern to
map threads and their working sets of pages to the same NUMA node. kMAF and Gennaro et al.
generate mapping information based on a very small number of samples compared to IPM due to
the overhead of the page faults, such that IPM can provide a higher accuracy.

2.4. Summary of Related Work
We can observe that most related work either perform thread or data mapping, but not both of them
together. In the case of thread mapping mechanisms, they are not able to reduce the amount of re-
mote memory accesses in NUMA architectures. On the other hand, data mapping mechanisms are
not able to reduce cache misses or correctly handle the mapping of shared pages. The mechanisms
we described that perform both mappings together have several disadvantages. ForestGOMP [Bro-
quedis et al. 2010a] is online, but requires hints from the programmer to work properly. kMAF [Di-
ener et al. 2014] uses sampling and has a high overhead when we increase the number of samples
to achieve a higher accuracy. In general, other mechanisms rely on indirect statistics obtained by
hardware counters, which do not accurately represent the memory access behavior of parallel appli-
cations. Several proposals require specific architectures, APIs or programming languages to work,
limiting their applicability.

With the analysis of the related work, we can conclude that currently there is no online mecha-
nism that can be applied to any shared memory based application, in which increasing its accuracy
does not drastically increases its overhead. Our proposal fulfills this gap of the related work. We
perform both thread and data mapping to achieve improvements in terms of cache misses, remote
memory accesses and interconnection usage. We implement our proposal directly in the memory
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management unit (MMU) of the architecture, which allows us to keep track of many more memory
accesses than the related work in a nonintrusive way. In this way, we achieve a much higher accuracy
in the detected patterns, while keeping a low overhead. The next sections describe our proposal.

3. DETECTING MEMORY ACCESS PATTERNS VIA TLB RESIDENCY TIME
One of the main challenges of sharing-aware online mapping mechanisms is to detect memory usage
information. In this section, we first explain the traditional metrics used to collect such information.
Afterwards, we introduce our proposed metric of using the time resided in the TLB. Finally, we
perform some experiments to evaluate the accuracy and performance improvement of our proposed
metric compared to the traditional ones.

3.1. Traditional Metrics
As online mapping mechanisms require memory access information to infer memory access patterns
and make decisions, different information collection approaches have been employed with varying
degrees of accuracy and overhead. Although capturing all memory accesses from an application
would provide the best information for mapping algorithms, the overhead would surpass the benefits
from better task and data mappings. For this reason, this is only done for offline mapping algorithms.

In order to achieve a smaller overhead, most traditional methods for collecting memory access
information are based on sampling. Memory access patterns can be estimated by tracking page
faults [Diener et al. 2014; Diener et al. 2015; LaRowe et al. 1992; Corbet 2012a; Corbet 2012b],
cache misses [Azimi et al. 2009] or TLB misses [Marathe et al. 2010; Verghese et al. 1996], or
by using hardware performance counters [Dashti et al. 2013], among others. Still, these sampling-
based mechanisms present an accuracy lower than intended, as we show in Section 3.3. This is due
to the small number of memory accesses captured (and their representativeness) in relation to all of
the memory accesses. For instance, a thread may wrongly appear to access a page less than another
thread because its memory accesses were undersampled. In another scenario, a thread may have
few accesses to a page, while having cache or TLB misses in most of these accesses, leading to bad
mappings in mechanisms based on cache or TLB misses.

3.2. Using TLB Residency as Metric
In this section, we explain our novel method to detect memory access patterns and data sharing
based on the time a page table entry resides in the TLB. We refer to it as TLB residency. To
understand the concept of using TLB residency to estimate the affinity between the threads and
pages, we need to explain how the TLB works. A memory address, and thereby a page, can be
accessed by an application only when its corresponding page table entry is cached in the TLB.
While the application is executing code that is frequently accessing a page, the replacement policy
of the TLB should keep its page table entry in the TLB. After the thread stops accessing this page
for some time, the replacement policy of the TLB would select its page table entry for eviction,
making room for an entry of another page the thread needs to access. Hence, a direct correlation
between memory accesses and the time a page entry resides in the TLB can be observed.

Based on this explanation, the behavior of the TLB demonstrates that intensely accessed pages
tend to stay for longer times in the TLBs of the cores that make these accesses. Therefore, using TLB
residency, we can determine the memory affinity and use it to perform thread and data mapping. We
intend to overcome the issues pointed out in the previous section, providing high accuracy with a
low overhead. In Section 3.3, we show that the TLB residency metric estimates the memory access
behavior of an application with higher accuracy than others. Also, this metric provides a smaller cost
to implement in hardware than using the number of memory accesses itself, as the latter requires
the addition of counters to every TLB entry [Tikir and Hollingsworth 2008].

3.3. Comparing Mapping Metrics
Following the hypothesis that a more accurate estimation of the memory access pattern of an ap-
plication can result in a better mapping and performance improvements, we performed experiments
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using the TLB residency, memory access sampling, and TLB misses as metrics to guide thread
and data mapping. Experiments were run using the NAS parallel benchmarks [Jin et al. 1999] and
the PARSEC benchmark suite [Bienia et al. 2008] on a two NUMA node machine with software-
managed TLB (more information in Section 5.2). This machine was used because it provides ac-
curate information about TLB misses. TLB residency and TLB misses were captured directly from
the TLB miss handler in the operating system.

To analyze sampling based mechanisms, memory accesses were sampled using Pin [Bach et al.
2010]. We vary the number of samples from 1:107 to 1:104 of the whole for comparison. For in-
stance, when using a sampling rate of 1:104, a memory address is sampled at every 10,000 memory
accesses. We save the memory address and the ID of the thread that performed the access. After Pin
finishes executing the application, we generate a mapping such that a page will be mapped to the
NUMA node that has the highest number of samples of the page. It is important to mention that a
realistic sampling-based mechanism [Diener et al. 2015] uses a sampling rate of at most 1:105 to
avoid harming performance. Another sampling-based mechanism [Dashti et al. 2013] specifies that
it samples once every 130,000 cycles.

We use all memory accesses as a baseline for accuracy. The accuracy and execution time obtained
with the different methods for benchmarks BT, FT, SP, and Facesim are presented in Fig. 1. To
calculate the accuracy, we compare if the NUMA node selected for each page of the applications
is equal to the NUMA node that performed most accesses to the page (the higher the percentage,
the better). The execution time is calculated as the reduction compared to using 1:107 samples (the
bigger the reduction, the better).

The accuracy results in Fig. 1a show that the TLB residency provides estimations that are more
accurate than all other tested methods. The differences are most noticeable with the BT and FT
benchmarks, where the TLB residency shows over 85% of accuracy, while the other methods are
all under 60%. One may also notice that accuracy increases with the number of memory access
samples used, as expected. Nevertheless, most sampling mechanisms are limited to a small number
of samples due to the high overhead of the techniques used for capturing memory accesses [Azimi
et al. 2009; Diener et al. 2014], harming accuracy.

The execution time results in Fig. 1b indicate a clear trend: a higher accuracy in estimating mem-
ory access patterns translates to a shorter execution time. In this sense, the TLB residency metric
provided the best performance among the tested methods. Although its performance was similar to
the use of TLB misses for SP and Facesim, the effort to monitor both are very similar, such that
improvements over the use of TLB misses can be achieved with negligible overhead.

Sampling-1:107 Sampling-1:106 Sampling-1:105

Sampling-1:104 TLB Misses TLB Residency
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(b) Execution time normalized to 1:107 (lower is better).

Fig. 1: Results obtained using different metrics.
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3.4. Summary
The results indicate that accurate information about the memory access behavior is important for
a good mapping. Furthermore, a good mapping leads to better performance improvements. Our
proposed metric provided the best accuracy and performance improvements, and has the same im-
plementation complexity as the TLB misses metric. Given the benefits of using the TLB residency
over other methods, the next section presents a mechanism for capturing the TLB residency and
employing it for online data and thread mapping.

4. THE IPM MECHANISM
This section details our TLB residency-based mapping mechanism named IPM. In architectures
with hardware-managed TLBs, IPM is implemented as an addition to the memory management
unit (MMU) hardware, because the MMU has direct access to the TLB and all memory accesses.
In architectures with software-managed TLBs, IPM can be implemented natively in the TLB miss
handler of the operating system.

The text is organized as follows. It first presents an overview of IPM, followed by a discussion
on the additional data structures required to capture memory access patterns. A detailed description
of IPM is given next, and an account of its overhead completes the section.

4.1. Overview of IPM
An overview of the operation of the MMU, TLB and IPM is illustrated in Fig. 2. On every memory
access, the MMU checks if the page has a valid entry in the TLB. If it does, the virtual address is
translated to a physical address and the memory access is performed. If the entry is not in the TLB,
the MMU performs a page table walk and caches the entry in the TLB before proceeding with the
address translation and memory access. IPM modifies the behavior of the MMU during a TLB miss.

On every TLB miss, IPM stores a time stamp in the main memory in a structure called TLB Access
Table. If a TLB entry must be evicted to store the new entry, IPM loads from the TLB Access Table
the time stamp corresponding to the evicted TLB entry. By subtracting the loaded time stamp from
the current time stamp, it knows how much time the evicted entry resided in the TLB. IPM uses this
time difference to update sharing information in two structures: the Page History Table and Sharing
Matrix. Finally, IPM notifies the operating system if a page migration could improve performance.

Application
accesses
memory

Valid entry
in TLB?

Evict old entry from
the TLB

Perform address
translation

Fetch new TLB entry
by walking page table

Save time stamp of
fetched entry in the
TLB Access Table

Load entry from the
TLB Access Table and
Page History Table

Calculate time the
evicted entry stayed
in the TLB

Update Sharing Matrix
and Sharers Vector for
thread mapping

Operating system mi-
grates threads and
pages

Update NUMA Vector
for data mapping

Migration
required?

Detect infrequently
evicted pages

Yes
TLB Hit

No TLB miss

Yes

MMU

IPM

Operating system

Fig. 2: Overview of the MMU, IPM and the operating system.
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4.2. Structures Introduced by IPM
IPM adds new control registers to the architecture, and stores control data in the main memory. The
following structures were added to the main memory:
• Page History Table (PHT) Contains memory access information related to each page. It stores
2 fields for each page: the Sharers Vector (SV) and the NUMA Vector (NV). The Sharers Vector
holds the identifier of the last threads that accessed each page. The NUMA Vector holds the affinity
of each NUMA node to the page.
• TLB Access Table (TAT) For each TLB entry cached on all TLBs, it stores the virtual address of
the page and the time stamp related to the moment when the corresponding TLB entry was fetched
on a page table walk. It is used to compute the TLB residency used for mapping. The TLB Access
Table also stores the ID of the thread that generated the TLB miss, kept by the operating system in
a control register CRtid .
• Sharing Matrix (SM) Stores the affinity between each pair of threads. The size of the Sharing
Matrix is nt×nt, where nt is the number of threads per parallel application supported by IPM,
which can be configured by the operating system. This structure is used by the operating system to
calculate the thread mapping.

Since each TLB entry has a corresponding entry in the TLB Access Table, IPM adds a unique
static identifier to each TLB entry. This identifier is hardwired, not requiring any SRAM. The iden-
tifier is returned along with the physical address when the TLB is accessed, and is used as an index
into the TLB Access Table (further details in Section 4.3.1).

4.3. Detailed Description of IPM in the MMU
IPM is responsible for three tasks: computing the TLB residency for different page entries and
threads; detecting the page sharing for thread mapping; and discovering the memory affinity of
pages to NUMA nodes for data mapping.

4.3.1. Calculating the TLB Residency. The time resided in the TLB is the main information re-
quired by IPM to analyze the memory access pattern. For this end, the architecture must provide
a counter that is incremented at a constant rate over time. Most architectures already provide this
counter, such as the x86-64 architecture with its time stamp counter (TSC), which can be read using
the rdtsc instruction. In this paper, we refer to this counter as TSC, although in other architec-
tures it can have a different name. Whenever a TLB miss happens and it requires the eviction of an
older entry, IPM fetches from the TLB Access Table (TAT) the entry corresponding to the evicted
page, and saves in registers the resident time and thread ID. This is shown in Eq. 1 and 2, where
TLBEntryID is the ID of the TLB entry introduced in Section 4.2.

Residency← (T SC�CRshi f t)−TAT[TLBEntryID].ts (1)

Tid← TAT[TLBEntryID].tid (2)

TLB Entry TS Thread
0 – –
1 – –
· · · – –
P 100 1
· · · – –

TLB Access Table

TSC: 164

Tid: 1

Residency: 64

TLB Entry TS Thread
0 – –
1 – –
· · · – –
M 164 –
· · · – –

TLB Access Table

(a) Calculating time. (b) Saving TSC.

Fig. 3: Structures that are updated to calculate the time an entry resided in the TLB.
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Page SV NV
0 – –
1 – –
· · · – –
P SVP NVP
· · · – –

Page History Table

+ +

Sharing Matrix (SM)

0 2

Tid=1
0 2

Sharers Vector (SVP)

1 0

Insert thread
Tid=1

thread 2
removed

(a) Updating Sharing Matrix. (b) Updating Sharers Vector.

Fig. 4: Structures that are updated for thread mapping.

Since the time stamp has a clock cycle precision, we can discard the lowest bits of the resident
time with a negligible accuracy loss. The operating system can configure the number of bits to be
discarded using the CRshi f t control register. After that, since the TLB Access Table entry of the
evicted page is already stored in registers, IPM overwrites the TLB Access Table entry with the
current time stamp, also shifted by CRshi f t , and the thread ID of the current thread running in the
core, indicated in the CRtid control register.

An illustration on how the time an entry resides in the TLB is calculated is shown In Fig. 3a. In
this example, page M generates a miss in the TLB, which causes an eviction of the TLB entry of
page P, of thread 1. Consider for this example that CRshi f t is 0, and thus no shift is performed in the
TSC. To calculate the resident time, the current value of the TSC, 164, is subtracted by the TS field
stored in the TLB Access Table entry of page P, 100. The final value, 64, is stored in the Residency
register, and the thread ID, 1, is stored in the Tid register. Finally, the current value of the TSC, 164,
is stored in the same TLB Access Table entry, which now belongs to page M, as in Fig. 3b.

4.3.2. Gathering Information for Thread Mapping. To perform thread mapping, we need to know
the affinity between the threads. Threads with higher affinity should be mapped to cores close to-
gether in the memory hierarchy. To detect the affinity, IPM keeps the last threads that accessed a
memory page in the Sharers Vector (SV) of the Page History Table. Whenever a TLB entry of page
P is evicted, the corresponding Page History Table entry is read. After that, the Sharing Matrix (SM)
is incremented by the resident time (Eq. 1) in row Tid (Eq. 2), for all the columns that correspond
to an entry in the SVP, as shown in Eq. 3. In this equation, #SV , represents the number of elements
in the Sharers Vector.

SM[Tid][SVP[i]]← SM[Tid][SVP[i]]+Residency, 0≤ i < #SV (3)

Each line of the Sharing Matrix is accessed by its corresponding thread only, minimizing the
impact of coherence protocols. The operating system uses the Sharing Matrix as input to a thread
mapping algorithm to generate a thread-to-core mapping, as explained in Section 4.4.4. Finally, IPM
inserts thread Tid (Eq. 2) into the SV of the evicted page P by shifting its elements, removing its
oldest entry.

SVP[i]← SVP[i−1], 1≤ i < #SV (4)

SVP[0]← Tid (5)

We show how the information regarding the thread mapping is generated in Fig. 4, continuing the
example of Fig. 3. To update the Sharing Matrix, as in Fig. 4a, first, the Page History Table entry of
page P is read from memory to fetch the Sharers Vector SVP. Since SVP contains thread IDs 0 and
2, these two columns of the Sharing Matrix are selected. The row of the Sharing Matrix selected for
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Page SV NV
0 – –
1 – –
· · · – –
P SVP NVP
· · · – –

Page History Table

(a) Accessing NVP from the
Page History Table.

32 16

NUMA Vector (NVP)

(b) Initial value of NVP.

16 8

NUMA Vector (NVP)

(c) After aging (CRaging = 1).

80 8

NUMA Vector (NVP)

(d) After adding Residency.

80 >

8 � 1

Notify OS to
migrate page P
to node 0

Yes

(e) Checking for migration.

Fig. 5: Structures that are updated for data mapping.

update is specified by the Tid register, which is 1, as shown in Fig. 3. Due to this, cells (1,0) and
(1,2) are incremented by Residency, which has the value 64 as in Fig. 3. We also insert Tid (1) in
the Sharers Vector, as shown in Fig. 4b, and remove thread ID 2, which is the oldest element.

4.3.3. Gathering Information for Data Mapping. To perform data mapping, the operating system
needs to know the affinity of each memory page to each NUMA node. In this way, the operating
system can map pages to the nodes that most access them. To achieve this, IPM introduces the
NUMA Vector (NV) in each entry of the Page History Table. The NUMA Vector has one counter
per NUMA node. Each counter estimates the affinity of the corresponding page to each node. When
a TLB entry corresponding to a page P is evicted and its Page History Table entry is loaded, IPM
performs aging in each counter of the NUMA Vector, as in Eq. 6. In this equation, #nodes represents
the number of NUMA nodes. Aging is important to detect changes in the access pattern to a page.
The higher the value of the CRaging control register, less aging is performed.

NVP[i]← NVP[i]− (NVP[i]�CRaging), 0≤ i < #nodes (6)

After aging, the NUMA Vector element related to the NUMA node where the thread is running is
incremented by the resident time (Eq. 1) of the evicted TLB entry, shown in Eq. 7. In this equation, n
represents the NUMA node where the thread that generated the TLB miss is running. It is important
to note that the counters of the NUMA Vector are saturating counters, such that they keep their
maximum possible value in case of overflow.

NVP[n]← NVP[n]+Residency (7)

After incrementing the counters, IPM evaluates if the evicted page is intensely used by a specific
node and should be migrated. This is shown in Eq. 8, where n is the node of the core executing
the thread, m is the node that currently stores page P, and CRmig is a control register to help decide
whether a migration is necessary. We left shift NVP[m] by CRmig to avoid migrating pages that are
accessed by several nodes. The higher the value of CRmig, the more difficult it is to migrate a page.
If the condition of Eq. 8 is true, then the page is intensely used by a node and IPM notifies the
operating system to migrate page P to node n.

NotifyOS =

{
true if NVP[n]> (NVP[m]�CRmig)

f alse otherwise
(8)

We demonstrate how the data mapping is calculated in the example shown in Fig. 5, continuing
Figs. 3 and 4. In this example, the TLB evict happened in node 0, and page P is currently stored in
node 1. First, the NUMA Vector NVP is fetched from the Page History Table entry of page P (Fig. 5a
and 5b). After that, we perform an aging in NVP, which in this case divides by 2 each of its elements
because CRaging is 1 (Fig. 5c). Then, we add Residency, which contains the value 64, as shown in
Fig. 3, to NVP[0], since the TLB evict happened in node 0 (Fig. 5d). Finally, we evaluate if NVP[0]
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is higher than the double of NVP[1] (Fig. 5e). The value needs to be at least the double because
CRmig is 1 in this example. Since the condition is fulfilled, IPM notifies the operating system to
migrate page P to node 0.

It is important to mention that the initial value of each counter of the NUMA Vector should not
be zero. A zero value would result in too many migrations early during the execution. The initial
value was defined as in Eq. 9, which is the maximum value not affected by aging, and is set by the
operating system when initializing the page table entry.

NVP[i] = (1�CRaging)−1, 0≤ i < #nodes (9)

4.4. Operating System Support for IPM
We explain some implementation details of the operating system support for IPM.

4.4.1. Dealing With Infrequently Evicted Pages. Depending on the application and architecture
configuration, specially the page size and number of entries in the TLB, some pages can present
very few TLB evictions (or even none). In this scenario, the procedure described in Section 4.3
alone may not be able to find a good mapping for these pages, as the described procedure uses TLB
evictions as source of information. To overcome this issue, we introduce a thread in the kernel to
periodically iterate over all entries in the TLB Access Table. Whenever an entry has been in the
TLB Access Table for a long period, the kernel thread updates the contents of the Page History
Table entry of the corresponding page using the exact same procedure described in Sections 4.3.1,
4.3.2 and 4.3.3. In this way, pages that have very few TLB evictions but reside a long time in the
TLB can be correctly mapped by IPM.

4.4.2. Increasing the Supported Number of Threads. The operating system starts an application
configuring IPM to support a certain number of threads using a control register. If the parallel
application creates more threads than the maximum supported, the operating system can change
this during execution. To do that, it must allocate a new Sharing Matrix and copy the values from
the old one. It must also update the contents of all Page History Table entries to use the new number
of bits per Sharers Vector entry. Since this is an expensive procedure, we recommend to avoid
it by configuring IPM to support a large number of threads from the beginning. For all systems
and applications we evaluated, configuring IPM to support 1024 threads was enough to avoid this
procedure.

4.4.3. Selecting the ID of a New Thread. In some applications, although several threads can be
created, only a few may be alive at a given time, since threads can finish their execution before the
application ends. When a new thread is created, two main solutions can be adopted to select its ID:
(i) new threads can always have a unique ID, (ii) or new threads can reuse the IDs of threads that
finished their execution. If the first solution is adopted, the Sharing Matrix will have several rows
and columns wasting memory. Therefore, we adopt the second solution. Before reusing a thread ID,
the corresponding row and column of the Sharing Matrix must be reset, and any reference to that
thread ID in the TLB Access Table and Page History Table must be deleted.

4.4.4. Performing the Thread Mapping. To calculate the thread mapping, the operating system
applies a mapping algorithm in the Sharing Matrix. In this work, we used the EagerMap [Cruz et al.
2015] mapping algorithm, which receives the Sharing Matrix and a graph representing the memory
hierarchy as input, and it outputs which core will execute each thread. The complexity of EagerMap
is O(N3), where N is the number of threads. EagerMap is designed to work with symmetric tree
hierarchies. It uses an efficient greedy strategy to group threads that share lots of data. It is important
to note that other mapping algorithms that consider the data sharing behavior of the application,
such as METIS [Karypis and Kumar 1998], Zoltan [Devine et al. 2006], or TreeMatch [Jeannot and
Mercier 2010], could be used without any additional change to IPM.

One of the important characteristics of EagerMap is that it only changes the mapping of threads
to cores if the sharing pattern changes significantly. In our experiments, this is done every 200ms. In
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order to reduce the influence of old values in the Sharing Matrix, we apply an aging technique every
time the mapping mechanism is called by multiplying all of its elements by 0.75. Values between
0.6 and 0.95 were also evaluated, but the results showed no sensitivity to this value.

4.5. Overhead
We implemented IPM in a way to handle only one TLB eviction at a time to keep the hardware mod-
ifications limited. If a TLB eviction happens while IPM is already handling another eviction, we do
not consider this new eviction. Since TLB evictions are very frequent, we do not expect a signifi-
cant impact on accuracy even when discarding a fraction of them, which is evaluated in Section 6.3.
The overhead of IPM consists of storage space in the main memory, circuit area, and performance
and power consumption overhead since it operates during application execution. We calculated the
overhead with the configuration shown in Table II in Section 5, considering the Xeon64 machine.

4.5.1. Memory Storage Overhead. The TLB Access Table, Page History Table and Sharing Ma-
trix are stored in the main memory. Table I contains the storage overhead in Xeon64.

Each entry of the TLB Access Table requires 128 bits (16 bytes): 52 bits to store the page address
(right shifted to remove the offset), 60 bits to store the shifted time stamp counter, and 16 bits to store
the thread ID. There is one entry per TLB entry in the architecture. Eq. 10 shows how to calculate
the space overhead of the TLB Access Table. The TLB Access Table required only 256 KBytes,
which represents an overhead lower than 0.0002%.

overheadTAT =
TATentrySize×#T LBentriesPerCore×#Cores

memSize
(10)

Each entry of the Page History Table would require 16 Bytes (we need to roundup the size of the
Page History Table entry to a power-of-two). Eq. 11 shows how to calculate the size of each entry
(we fixed the number of Sharers Vector elements as 2). There is one entry per physical page. Eq. 12
shows how to calculate the overhead of the Page History Table. The Page History Table would
require 512 MBytes of memory, which corresponds to a space overhead of 0.4% relative to the total
main memory in Xeon64.

PHTentrySize = #nodes×NVentrySize+2×
⌈

log2#threads
8

⌉
(11)

overheadPHT =

memSize
pageSize ×PHTentrySize

memSize
=

PHTentrySize
pageSize

(12)

Table I: Memory storage overhead of IPM in the Xeon64 machine (128 GBytes of main memory,
64 virtual cores and 256 entries per TLB).

Structure Field Space per entry Total space Overhead

TLB Access Table Thread ID 16 bits
(256 × 64 entries) Time stamp 60 bits

Page Address 52 bits
Total 128 bits (16 Bytes) 256 KBytes 0.0002%

Page History Table Sharers Vector 2 × 16 bits
(33,554,432 entries) NUMA Vector 4 × 16 bits

Unused 32 bits
Total 128 bits (16 Bytes) 512 MBytes 0.4%

Sharing Matrix – 4 Bytes
(1024 × 1024 entries) Total 4 Bytes 4 MBytes 0.0032%
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Each element of the Sharing Matrix has 4 Bytes. There is one element per pair of threads (we
configured the Sharing Matrix to support 1024 threads per parallel application running at the same
time). Eq. 13 shows how to calculate the overhead of the Sharing Matrix. The Sharing Matrix would
require 4 MBytes, which represents an overhead lower than 0.0032%.

overheadSM =
SMentrySize×#threads2

memSize
(13)

The total space overhead is lower than 0.5% of the total physical memory. In this configuration,
IPM can track up to 1024 threads per parallel application running at the same time, and supports
4 NUMA nodes. In this case, the number of threads is limited by the Sharing Matrix size, since
the Sharers Vector uses 16 bits, supporting up to 65536 threads. There are 4 unused bytes in the
Page History Table. To support larger systems, we would need only to use these unused bytes, or
use more space per Page History Table entry, allocating more NUMA Vector and Sharers Vector
entries, and a larger Sharing Matrix.

In the context of multiple applications running, each one requires a separate Sharing Matrix, while
only one TLB Access Table and Page History Table is kept for the entire system. In case a memory
page needs to be swapped to the disk, two main strategies can be adopted to handle its Page History
Table entry: (i) to save a backup copy of the entry in another memory area (or even together in the
swap) to be restored when the page is returned to the memory; (ii) or to lose the information and
detect the memory access pattern of the page from zero when the page is returned to the memory.
As the storage space required by each entry is very small, we recommend the first solution.

4.5.2. Circuit Area Overhead. In architectures with hardware-managed TLBs, IPM is imple-
mented in the MMU of each core. The area overhead can be estimated by analyzing the resources
required for implementation. IPM requires the addition of 16 registers, 3 carry look-ahead adders
and subtractors, 8 shifters, and 12 multiplexers in the MMU. 64 bit registers are used to store the po-
sitions in memory of the Sharing Matrix, Page History Table and TLB Access Table, while control
registers and others store values using 16 bits or less.

An implementation of IPM optimized for area and power (by reusing some of the circuits for the
different equations described previously) requires less than 30,000 additional transistors per core,
which represents an increase of less than 0.02% in a current processor (12% relative to the MMU
alone). Additionally, a performance-oriented implementation of IPM (with replicated resources) can
be done by using less than double of the number of transistors of the other implementation.

4.5.3. Execution Time Overhead. The additional hardware of IPM is not in the critical path, since
it operates in parallel to the MMU, such that application execution is not stalled while IPM is oper-
ating. Therefore, the time overhead introduced by IPM consists of the additional memory accesses
to update the TLB Access Table, Page History Table and Sharing Matrix, which depend on the TLB
miss rate. All memory addresses used by IPM are physical addresses and therefore do not require
any translation. They proceed through the cache hierarchy as any other memory access, and could
be found in the cache if it was recently used. To keep the overhead of these memory accesses low,
IPM does not lock any structure before its update. Any possible race condition would not cause the
application to fail, just a slight reduction in accuracy. On the software level, the operating system
introduces overhead when checking the TLB Access Table for pages that are infrequently evicted
from the TLB, when calculating the thread mapping, and when migrating threads and pages. The
measured execution time overhead from both hardware and software are shown in Section 6.3.

4.5.4. Power Consumption Overhead. Since IPM includes additional memory transactions dur-
ing TLB evicts, it introduces a power consumption overhead. Considering a Sharers Vector with
2 elements, there are 4 read and 4 write additional memory transactions per TLB evict. The amount
of power consumption of such transactions will depend if they are resolved by the cache memory or
need to go to the main memory.
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5. EXPERIMENTAL METHODOLOGY
In this section, we describe the experiments we performed to evaluate IPM, including the envi-
ronments and workloads employed. We used 3 environments to analyze our proposal in different
scenarios. A full system simulator is used to evaluate the operation in machines with hardware-
managed TLBs. We used a real machine with a software-managed TLB to prove that IPM can work
not only in a simulator, but also in real machines. We performed a trace-based evaluation using real
machines with hardware-managed TLBs to gain precise information regarding how our proposals
affect the performance, cache misses, interchip traffic, and energy consumption in a real architec-
ture, with more reliable results than in the simulator. Table II summarizes the parameters used.

5.1. Evaluation in a Full System Simulator
We implemented IPM in the Simics simulator [Magnusson et al. 2002], extended with the GEMS-
Ruby memory model [Martin et al. 2005] and the Garnet interconnection model [Agarwal et al.
2009]. The simulated machine runs Linux 2.6.15 and has 4 processors, each with 2 cores, with
private L1 caches, and L2 caches shared by all cores. Each processor is on a different NUMA node.
Cache latencies were calculated using CACTI [Thoziyoor et al. 2008] and the memory timings from
JEDEC [JEDEC 2012]. The intrachip and interchip interconnection topologies are bidirectional
rings. We simulate the benchmarks with small input sizes due to simulation time constraints. To
compensate for the small input sizes, we reduced the size of cache memories and TLBs accordingly,

Table II: Configuration of the experiments.

System Parameter Value

IPM Structure sizes SV: 2x 16 bits, NV: 4x 16 bits
Sharing matrix 1024 threads, 4 Byte element size
Control registers CRshi f t : 13, CRaging : 7, CRmig : 2

Pin L1 TLB 64 entries, 4-way, shared between 2 SMT-cores
L2 TLB 512 entries, 4-way, shared between 2 SMT-cores

Itanium Processors 4x Intel Itanium 9030 (Montecito), 2 cores
Caches/proc. 2x 16 KByte L1, 2x 256 KByte L2, 2x 4 MByte L3
Main memory 2 NUMA nodes, 16 GByte DDR-400, 16 KByte page size
Environment Linux kernel 2.6.32, GCC 4.4

Xeon32 Processors 2x Xeon E5-2650 (SandyBridge), 8 cores, 2-SMT
Caches/proc. 8x 32 KByte L1, 8x 256 KByte L2, 20 MByte L3
Main memory 2 NUMA nodes, 32 GByte DDR3-1600, 4 KByte page size
Environment Linux kernel 3.8, GCC 4.6

Xeon64 Processors 4x Xeon X7550 (Nehalem), 8 cores, 2-SMT
Caches/proc. 8x 32 KByte L1, 8x 256 KByte L2, 18 MByte L3
Main memory 4 NUMA nodes, 128 GByte DDR3-1066, 4 KByte page size
Environment Linux kernel 3.8, GCC 4.6

Simics Processors 4x 2 cores, SPARC instruction set, 2.0 GHz, 32 nm
L1 cache/proc. 2x 16 KByte, 4-way, 1 bank, 2 cycles latency
L2 cache/proc. 1 MByte, 8-way, 2 banks, 5 cycles latency
TLB/proc. 2x TLBs (64 entries), 4-way, 1 TLB per core
Cache coherency Directory-based MOESI protocol, 64 Byte lines
Main memory 8 GByte DDR3-1333 9-9-9, 4 KByte page size
Interconnection 1/40 cycles latency (intra/interchip)

64/16 Byte bandwidth (intra/interchip)
Environment Linux kernel 2.6.15, GCC 4.3
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similar to previous work [Cuesta et al. 2013]. We compare the results in the simulator to a first-touch
page mapping, interleaving and to an oracle mapping, which generates mappings considering all
memory accesses. Results in the simulator are normalized to the first-touch mapping.

5.2. Evaluation in a Real Machine with Software-Managed TLB
Although IPM is an extension to the current hardware of MMUs, it is possible to implement its
behavior in software in architectures that have a software-managed TLB. In these architectures,
whenever a TLB miss happens, there is no hardware page table walker to fetch the page table entry
from the main memory. Instead, the architecture generates a TLB miss interrupt that is handled by
the operating system, which walks through the page table in software.

The Itanium architecture [Intel 2010] has a hybrid mechanism to handle TLB misses, where we
can choose to use a hardware-based manager called Virtual Hash Page Table (VHPT) walker, or
handle the TLB misses in software. We implemented IPM in the Linux kernel version 2.6.32 for
the Itanium architecture configured to use a software-managed TLB. Although the architecture does
not allow the software to access the contents of the TLBs, as all the TLB misses are handled by the
operating system, we can manage a virtual TLB in software in the main memory. The architecture
also provides access to a cycle accurate time stamp by reading the ar.itc register. The code that
performs the same procedure of IPM was added to the data TLB miss interrupt handler of the kernel.
We refer to this machine as Itanium. Hardware performance counters can be accessed in Itanium
using Perfmon2 [Eranian 2006].

In Itanium, we compare the results obtained with IPM to the original scheduler of Linux, an oracle
mapping, an interleaved data mapping, NUMA Balancing [Corbet 2012b], kMAF [Diener et al.
2014] and the usage of TLB misses. For the oracle mapping, for most benchmarks, we generated
traces of all memory accesses for each application and performed an analysis of the sharing and
page usage patterns, similar to [Barrow-Williams et al. 2009]. For one of the applications evaluated
in Itanium, we generate the oracle mapping by modifying its source code, as detailed in Section 5.4.
NUMA Balancing and kMAF had to be ported to work in Itanium. Regarding the comparison to
TLB misses, we compare to two strategies: (i) similar to NUMA Balancing, we migrate pages to
the NUMA node that generated a TLB miss on that page; (ii) does the same procedure of IPM,
keeping a Sharing Matrix, Sharers Vector and a NUMA Vector, but using TLB misses instead of
TLB residency. Each experiment in Itanium was executed 30 times, and we show average values as
well as a 95% confidence interval calculated with Student’s t-distribution. Results are normalized to
the operating system mapping.

5.3. Trace-Driven Evaluation in Real Machines with Hardware-Managed TLB
Experiments were also performed using two different real machines. The first machine, Xeon32,
consists of two NUMA nodes with one Intel Xeon E5-2650 processor per node, with a total of 32 vir-
tual cores. The second machine, Xeon64, consists of four NUMA nodes with one Intel Xeon X7550
processor per node, with a total of 64 virtual cores. The machines are running version 3.8 of the
Linux kernel. Information about the hardware topology is gathered using Hwloc [Broquedis et al.
2010b]. Besides performance, we measured L3 cache misses per thousand instructions (MPKI),
interchip interconnection traffic (QuickPath Interconnection) and energy consumption (RAPL hard-
ware counters [Intel 2012a]) using the Intel PCM tool [Intel 2012b].

Since IPM is an extension to the current MMU hardware, we simulate its behavior with the Pin
dynamic binary instrumentation tool [Bach et al. 2010]. The simulated hardware uses the same TLB
configuration as the real machines. We used Pin because it is faster than a full system simulator. To
make it possible to evaluate IPM in real machines with hardware-managed TLBs, the mapping
information generated in Pin is fed into the mapping mechanism during run time.

Similar to Itanium, all experiments in the two Xeon machines were executed 30 times, and we
show average values as well as a 95% confidence interval calculated with Student’s t-distribution.
We compare the results of IPM to the default mapping performed by the operating system, to ran-
dom static mappings, and to an oracle mapping. The operating system mapping uses the original
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Fig. 6: Sharing patterns of some applications. Axes represent thread IDs and cells the amount of
accesses to shared pages between threads. Darker cells indicate more accesses.

scheduler and data mapping policy (first touch) of Linux. For the random mapping, we randomly
generated a thread and data mapping for each execution. For the oracle mapping, we generated
traces of all memory accesses for each application and performed an analysis of the sharing and
page usage patterns, similar to [Barrow-Williams et al. 2009]. All results are normalized to the
operating system mapping.

5.4. Workloads
As workloads, we used the OpenMP implementation of the NAS parallel benchmarks (NPB) [Jin
et al. 1999], v3.3.1, and the PARSEC benchmark suite [Bienia et al. 2008], v3.0. We configured the
benchmarks to run with one thread per virtual core, although some applications of PARSEC execute
with multiple threads per virtual core. Some PARSEC applications were not executed in Itanium
due to software FPU errors.

For the evaluation in the real machines with hardware-managed TLBs, the evaluated applica-
tions must present the same sharing and page usage patterns across different executions, as well
as keeping the same memory address space, since the trace generated in Pin is used to guide map-
ping decisions. For this reason, only the NAS applications (except DC) were executed on the real
machines with hardware-managed TLBs. DC and applications from PARSEC usually do not keep
the same memory address space due to dynamic memory allocation. This makes the information
generated in Pin unreliable to guide mapping in future executions.

Input sizes were chosen to provide similar total execution times and feasible simulation times.
Regarding NAS, benchmarks BT, LU, SP and UA were executed using input size A in Pin, Xeon32
and Xeon64, and input size W in Simics. Benchmarks CG, EP, FT, IS and MG were executed using
input size B in Pin, Xeon32 and Xeon64, and input size A in Simics. DC was executed with input
size W in Simics. Regarding PARSEC in Simics, the input size used in Canneal was simmedium,
and all others simlarge. In the Itanium machine, DC was executed with input size A and all other
NAS benchmarks with input size B, and the ones of PARSEC with the native input size.

We also experiment with a real world scientific application, Ondes3D [Dupros et al. 2008]. On-
des3D simulates the propagation of seismic waves using a finite-differences numerical method. The
oracle mapping in Ondes3D was not generated by analyzing memory traces, as explained in Sec-
tion 5.2, because the execution time of Ondes3D is too large to enable the generation of a trace.
Therefore, the oracle mapping in Ondes3D is performed by manually adding the mapping routines
in its source code. By exploiting the regular memory access pattern of finite-differences applications,
we guarantee that the memory accessed by each thread is mapped nearby [Dupros et al. 2010].

6. EVALUATION OF IPM
The evaluation comprehends results regarding performance, energy consumption, and overhead.
They are presented in this section following this order. A comparison with previous mapping mech-
anisms is shown in Section 6.1.2.
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6.1. Performance Results
One of the key aspects to understand the performance improvement obtained by sharing-aware
mapping is the sharing pattern between the threads. Fig. 6 illustrates the sharing patterns of some
of the evaluated applications detected by IPM. In the illustrations, axes represent the threads of the
application, and each cell shows the amount of data sharing between each pair of threads. Darker
cells indicates more shared data.

Applications with threads that share more data within a small group present more potential for
performance improvements when mapping the threads with most sharing to cores nearby in the
memory hierarchy. In SP, whose sharing pattern is illustrated in Fig. 6c, neighboring threads present
intense sharing. The patterns of MG and Fluidanimate, shown in Fig. 6b and 6e, are similar, but also
present data sharing between more distant threads. Ferret and Dedup, illustrated in Fig. 6d and 6f,
have a pipeline sharing model, forming thread clusters that share data.

In some applications, the amount of data shared between threads is very similar. The sharing
pattern of CG, shown in Fig. 6a, falls in this category. For these applications, thread mapping does
not affect performance, since there is no mapping that optimizes access to shared data. However,
data mapping is still able to improve their performance by mapping the private data each thread uses
to its NUMA node.

In the remainder of this section, we explain the performance improvements obtained in each
platform.

6.1.1. Results Generated in Simics. The execution times obtained in Simics are shown in Fig. 7a,
and the interchip interconnection traffic is shown in Fig. 7b. We can observe that the NAS applica-
tions presented better improvements than the PARSEC ones. IPM achieved the best improvements
with CG, reducing execution time by 28.7%. This is a result of a better data mapping, as IPM
reduced the interchip interconnection traffic by 55.3%. Similar behaviors of interchip traffic and
execution time reductions are seen in DC, MG, SP and Ferret. We can note a slight decrease in
performance in Blackscholes and Bodytrack due to the overheads of monitoring the TLB and thread
migrations. On average, execution time and interchip interconnection traffic in Simics were reduced
by 9.4% and 52.0%, respectively.

In some applications, no performance improvements are expected by either thread or data map-
ping. Swaptions is an example of such an application. Although its sharing pattern is similar to the
one of CG, its memory usage is much smaller, as almost all its data fits in the caches. Therefore, al-
though we decrease interchip traffic in Swaptions, the absolute reduction is very small (about 9.5%
of CG’s) and not affected by data mapping.

6.1.2. Results Generated in Itanium. The execution times in Itanium can be found in Fig. 8. CG
was the application with the best reduction in execution time (39.0%). Since the memory hierarchies
are very different between platforms, some applications present different results, such as DC and
Ferret. The lack of hardware counters to monitor interchip traffic in Itanium makes it difficult to
better understand some results, but one of the main reasons for differences comes from the absence
of shared caches in Itanium. Nevertheless, most results are very similar to the ones from Simics,
where NAS applications such as CG, MG, SP and UA presented the best improvements.

The results generated in Itanium show that IPM reduced execution time by an average of 13.7%,
while the oracle mapping reduced execution time by 14.2% on average. The experiments with the
Ondes3D application showed an execution time reduction of 30.8% using IPM, while the oracle
mapping reduced execution time by 30.5%. It is important to emphasize that IPM was developed as
a hardware extension and that this machine is emulating IPM’s behavior with its software-managed
TLB. This emulation ends up stalling the execution of the thread that generated the TLB miss, as
IPM is executed in its core. This would not be an issue with the hardware implementation of IPM,
as the MMU would operate in parallel to the application.

We compare IPM on Itanium to several previously mentioned techniques: Interleave, NUMA
Balancing [Corbet 2012b], the kMAF affinity framework [Diener et al. 2014], and to mapping using
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Fig. 7: Performance results in Simics, normalized to the operating system, represented as 0%.

TLB misses as source of information. The results of kMAF are lower than IPM due to its sampling
mechanism, as kMAF needs more time to detect the memory access behavior, losing opportunities
for improvements. NUMA Balancing performed a little worse than kMAF mainly because of un-
necessary page migrations, since NUMA Balancing keeps no history regarding page migrations, in
contrast to kMAF. The overhead of adding more page faults in kMAF and NUMA Balancing to
generate a better profile is high compared to the usage of TLB residency in IPM.

The usage of TLB misses alone with no history, similarly to NUMA Balancing, resulted in too
many page migrations, harming performance in several applications. The amount of page migrations
using this policy is much higher than in NUMA Balancing, since the amount of TLB misses is also
much higher than the amount of page faults introduced by NUMA Balancing. On the other hand,
using TLB misses as a source of information to the same procedures performed by IPM results in a
very good performance, since it reduces the amount of unnecessary page migrations. Nevertheless,
the usage of TLB residency provided a clear advantage over TLB misses in some applications, such
as BT, FT, SP and Facesim. As the implementation complexity of TLB residency is almost the same
as TLB misses, we believe the usage of TLB residency is recommended.

The comparison to the related work shows that mechanisms that perform both thread and data
mapping are able to achieve better improvements than mechanisms that perform these mapping
separately. It also shows that simple policies do no guarantee a good performance for all applica-
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Fig. 8: Execution time in Itanium, normalized to the operating system, represented as 0%.

tions. As we can observe in the interleaved mapping policy, it provided a high variance in the results.
Furthermore, the results shows that IPM, with its TLB residency-based metric, is able to achieve a
higher accuracy and better performance than other mechanisms.

Finally, the results obtained in Itanium demonstrate that IPM works not only in a simulator, but
also in a real machine. Furthermore, these results indicate that IPM is able to improve performance
not only for traditional benchmarks, but also for real applications (Ondes3D). Also, as explained in
Section 5.4, the oracle mapping in Ondes3D was generated by inserting mapping routines directly
in the source code, which shows that IPM achieves improvements as good as manually optimized
code.

6.1.3. Results Generated in Xeon32 and Xeon64. The execution time in Xeon32 and Xeon64 can
be found in Figs. 9a and 9b, respectively. We also show results of L3 cache misses and interchip
interconnection traffic obtained in Xeon64 in Figs. 9c and 9d. In Xeon32, CG was the application
with the highest improvements, reducing execution time by 16.6%. CG, as explained before, has a
sharing pattern in which thread mapping is not able to improve performance, which is the reason
why we only reduce interchip interconnection traffic (cache misses were actually increased). In
Xeon64, SP was the application with the highest improvements, with a reduction of execution time
of 35.6%. Due to its sharing pattern, both cache misses and interchip traffic were reduced, by 59.8%
and 63.4%, respectively.

We can observe how thread mapping affects data mapping by analyzing MG. The sharing pattern
of MG is similar to the one of SP, thereby thread mapping affects its performance. However, the
memory usage of MG is much higher than SP, such that its amount of data shared by threads is
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Fig. 9: Performance results, normalized to the operating system, represented as 0%.

much higher than the L3 cache size, resulting in no reduction in L3 cache misses. Thread mapping
improves data mapping in cases where pages are shared by multiple threads. In this way, the more
appropriate thread mapping puts threads that share pages on the same NUMA node, thus reducing
interchip traffic. Therefore, we are able to observe MG’s potential for thread mapping by looking at
interchip traffic, and not at cache misses.

Comparing the different metrics analyzed, we observe that the highest reduction occurred in
the interchip interconnection traffic, with an average reduction of 39.1% in Xeon64. Meanwhile,
execution times were reduced by an average of 12.9% in Xeon64 and 5.9% in Xeon32. The effects
in total execution time are smaller because they are influenced by several factors, as opposed to
interchip traffic and cache misses, which are directly influenced by better mappings.

6.1.4. Summary. The results obtained in Simics, Itanium and Xeon64 are better than the results
obtained in Xeon32. As Simics and Xeon64 have 4 NUMA nodes (while Xeon32 has 2), the prob-
ability of finding the correct node to a page without any knowledge of the memory access pattern
is only 25% on them (while it is 50% on Xeon32). Regarding Itanium, although it also has only 2
NUMA nodes, a better mapping has a bigger impact because the latency of a remote memory access
is much higher than in Xeon32.

Most applications are more sensitive to data mapping than thread mapping, which can be observed
in the results by the fact that the interchip traffic presented a higher reduction than cache misses.
This happens because, even if an application does not share much data among its threads, each
thread will still need to access its own private data, which can only be improved by data mapping.
It is important to note that this does not mean that data mapping is more important than thread
mapping, because the effectiveness of data mapping depends on thread mapping for shared pages.

IPM presented results similar to the oracle mapping, demonstrating its effectiveness. It also per-
formed significantly better than the random mapping for most cases. This shows that the gains over
the operating system are not due to the unnecessary migrations introduced by the operating sys-
tem, but due to a more efficient usage of resources. Results were also significantly better than other
related work.
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Fig. 10: Energy per instruction on Xeon32, normalized to the operating system, represented as 0%.
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Fig. 12: TLB miss rate in Simics and Itanium.

6.2. Energy Consumption Results
Results of the total amount of energy per instruction for Xeon32 are shown in Fig. 10. Energy
per instruction was improved by 4.4% on average, and up to 12.2% in SP. This shows that our
mechanism not only saves energy by reducing the executing time, but also by providing a more
efficient execution, which is an important goal for future Exascale architectures [Torrellas 2009].
We also measured the DIMM and processor energy separately, but do not show them due to space
constraints. These measurements show a higher reduction of DIMM energy than processor energy,
9.6% and 5.2% on average, respectively, because a sharing-aware mapping has more influence in
the memory than in the processor.

6.3. Performance Overhead
IPM causes an overhead on the execution of the application on the hardware and software levels, as
discussed in Section 4.5.3. We evaluate the hardware overhead by running IPM without performing
any migration, and compare the execution time to the baseline without IPM. For the software over-
head, we measure the time spent to calculate the mapping and perform migrations. We only show
the performance overhead in Simics because the real machines with hardware-managed TLBs do
not implement IPM. The performance overhead in Simics is shown in Fig. 11. We also show the
TLB miss rate of the experiments running in Simics and Itanium in Fig. 12.

The average performance overhead caused by the hardware was 0.31%, due to the introduction
of 1.2% additional memory transactions, on average. IS has the highest overhead due to its large
TLB miss rate, 1.43% in Simics, introducing more memory accesses. The average TLB miss rate
was 0.26% and 0.05% in Simics and Itanium, respectively. As explained in Section 4.5, our im-
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Fig. 13: Normalized execution time of the applications when varying configurable parameters.

plementation of IPM is able to handle only one event per core simultaneously, such that IPM was
able to handle 67.6% of the total amount of TLB evicts. IPM required an average of 255 cycles to
handle each TLB eviction. Application execution is not stalled while IPM handles a TLB eviction.
The overhead in the software level was 0.32%, on average. These results show that IPM presents
only a minor overhead.

As explained in Section 4.5.3, race conditions can happen when updating the Page History Table.
In Simics, on average, only 0.12% of the TLB evictions caused this race condition. The impact
of these race conditions on the accuracy was very low. On average, IPM maps 91.3% of the total
pages to the correct node. If there were no race conditions, the accuracy would be increased to
91.6%. In the worst case, in SP, there were 0.5% of race conditions, dropping the accuracy by 0.9%.
No impact was observed in the thread mapping accuracy. Statistically, no performance impact was
observed due to the race conditions.

6.4. Design Space Exploration
The configurable parameters of IPM control migrations. The size of each element of the NUMA
Vector, CRshi f t and CRaging depend on each other. We decided to fix the size of each NUMA Vec-
tor element to 2 bytes because it has a large range, and at the same time does not impose a high
memory usage in the Page History Table. Regarding CRshi f t , a low value would make the resident
time (Eq. 1 in Section 4.3.1) too large, such that it would not fit in the NUMA Vector. On the other
hand, a high value for CRshi f t would make the resident time lose too much precision. Based on that,
we empirically determined that a good value for CRshi f t is 13. After fixing the size of the NUMA
Vector and CRshi f t , we analyzed how the aging (CRaging) and the migration threshold (CRmig) af-
fect performance. We also check the impact of the number of TLB entries and page size. For this
analysis, we ran the experiments in the Itanium machine and used the applications CG, MG, SP
and Facesim, because they present very different characteristics. Each experiment is normalized to
a different baseline, represented as 0% in all graphics.

6.4.1. Impact of Aging (CRaging). The execution time varying the aging value is shown in Fig. 13a.
The results are normalized to the results of CRaging set to 7. The higher the value of CRaging, less
aging is performed (Eq. 6 in Section 4.3.3). In our experiments, we observed that an aggressive
aging (low CRaging) did not have a negative impact on performance, because the migrations did
not increase significantly, as, in these applications, most memory pages are accessed by a single
NUMA node [Diener et al. 2014]. On the other hand, we observed a negative impact on performance
when using a conservative aging (high CRaging) because it increased too much the time to start
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(b) Verifying infrequently evicted pages.

Fig. 14: Execution time varying the number of TLB entries, normalized to 128 entries per TLB.

migrating data, since the initial values of the NUMA Vector are set according to the aging (Eq. 9 in
Section 4.3.3).

6.4.2. Impact of the Migration Threshold (CRmig). The execution time varying the migration
threshold value is shown in Fig. 13b. The results are normalized to the results of CRmig set to 2.
The higher the value of CRmig, the more difficult it is to migrate a page (Eq. 8 in Section 4.3.3). We
observed that an aggressive threshold (low CRmig) did not lead to too many migrations, not harming
performance. The reason is the same as in the evaluation of the aging: in these applications, most
memory pages are accessed by a single NUMA node [Diener et al. 2014]. However, conservative
values of the threshold (high CRmig) made it too difficult to migrate the pages, losing opportunities
to improve performance.

6.4.3. Impact of the Number of TLB Entries. The number of TLB entries per core directly in-
fluences the number of TLB misses and evictions. Since TLB evictions are the primary source of
information of IPM, it is important to evaluate how the number of TLB entries affects IPM. Fig. 14
contains the execution time when varying the number of TLB entries in the Itanium machine. Al-
though the number of entries in the hardware TLB is fixed, we can perform this evaluation in Itanium
because, as we explain in Section 5.2, we manage a virtual TLB in software. We perform two differ-
ent sets of experiments: the first using only TLB evictions as source of information, and the second
also enabling the verification of infrequently evicted pages, as described in Section 4.4.1. Results
are normalized to the execution time using 128 entries per TLB, which is the value used in the
previous experiments.

Analyzing Fig. 14a, where IPM does not verify infrequently evicted pages, we can observe that
the execution time increases when the number of TLB entries per core is higher than 512. This hap-
pens because the amount of TLB evictions drastically decreases, such that pages have their entries
in the TLB for too much time, and IPM does not consider these pages for migrations. However,
when enabling the support for infrequently evicted pages, IPM is able to handle this scenario and
the execution time remains stable, even with an unrealistic TLB size, as can be seen in Fig. 14b.

6.4.4. Impact of the Page Size. Another important architectural parameter that has a high influ-
ence in the number of TLB evictions is the page size. The higher the page size, the lower the number
of evictions. Also, the page size represents the granularity of the memory block used to detect the
data sharing. With larger pages, it is likely that more threads and NUMA nodes will access the same
page [Diener et al. 2014]. To analyze how this influences our proposal, we run experiments varying
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Fig. 15: Execution time varying the page size, normalized to a 16 KBytes page size.

the page size from 16 KBytes to 4 MBytes. We perform experiments disabling and enabling the
support for infrequently evicted pages.

Results can be found in Fig. 15. They follow the same tendency of the experiment of Section 6.4.3.
When we increase the page size and thereby decrease the number of TLB evictions, the execution
time increases if the support for infrequently evicted pages is disabled. On the other hand, IPM is
able to handle large pages when the support for infrequently evicted pages is enabled.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed IPM, a mechanism that uses information about the time each page entry
resides in the TLB to perform thread and data mapping. The TLB residency metric proved to have a
better accuracy than other metrics, such as TLB misses and sampling of memory addresses, and has
a lower implementation cost than metrics that consider all memory accesses. In this way, our pro-
posed metric has the best trade-off between accuracy and implementation cost in the state of the art.
Architectures with hardware-managed TLBs require very little extra circuit area to implement IPM,
while architectures with software-managed TLBs can implement our proposal directly in software,
without any hardware changes.

We performed an extensive evaluation of IPM, including two benchmark sets and one scientific
application. The experiments were performed in one simulated machine, one real machine with
software-managed TLB and two real machines with hardware-managed TLB. The execution time
was reduced by an average of 9.4%, 13.7%, 5.9% and 12.9% on the machines, respectively. Results
were highly dependent on the sharing-pattern of each application, as well as the characteristics of
each machine, reducing execution time by up to 39.0% in applications whose sharing patterns had
high potential for mapping. To better understand the performance improvements, we also measured
cache misses and interchip interconnection traffic, with an average reduction of 30.7% and 39.1%
in the real machine. Energy efficiency was improved by an average of 4.4%. We compared our
proposal to related work, in which IPM had the best performance.

As future work, we intend to extend our mechanism to balance the load in memory controllers.
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