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ABSTRACT 

In this work, the use of bio-oil was proposed as an alternative to fossil fuels (petroleum). The 

bio-oil was produced by pyrolysis of Eucalyptus sawdust and discarded soybean frying oil, while 

calcium oxide (CaO) was used as pyrolysis catalyst to improve the bio-oil yield. The temperature 

of the pyrolysis system was initiated at 25 °C and increased to 850 °C. The atmospheric 

distillation of crude bio-oil was carried out after pyrolysis and two fractions were separated at a 

temperature 80−160 °C (LFP, light fraction of pyrolysis oil) and 160−240 °C (HFP, heavy 

fraction of pyrolysis oil) and were analyzed by TGA (Thermal gravimetric analysis), GC-MS 

(gas chromatography and mass spectrometry), FTIR (Fourier transform infrared spectroscopy) 

and NMR (nuclear magnetic resonance spectroscopy). There was an abundance of oxygen and 

nitrogen containing compounds, as well as other reactive species in the bio-oil after pyrolysis. In 

order to reduce the amount of these species, because they not only lead to high corrosiveness and 

acidity, but also set up many obstacles to applications, both fractions LFP and HFP were 

subjected to the thermal cracking process in the presence of hydrogen (hydrogenation) and again 

subjected to catalytic hydrogenation in the presence of the NiMo (catalyst). After the catalytic 

hydrogenation, the second atmospheric distillation was carried out, obtaining more two fractions 

at temperature 80−160 ºC (LFH, light fraction after hydrogenation) and 160−240 ºC (HFH, 

heavy fraction after hydrogenation), which were also characterized by the same techniques and 

we observed that more than 60% of oxygenated, nitrogenated and other reactive species were 

converted into hydrocarbons. Both LFH and HFH were also compared with S-10 diesel fuels 

(DF) and jet A aviation fuels (AF) respectively. The differences amongst LFP, HFP, LFH, HFH, 

DF and AF were presented and critically discussed in this work, where it was verified after the 

physico-chemical analyzes such as chemical composition, enthalpy of combustion, freezing 
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point, flash point, density and viscosity, that the fractions obtained by the hydrogenation process 

(LFH and HFH) can be used as petroleum fuels because both fractions have very close 

similarities in the important physico-chemical properties with diesel fuels (DF) and aviation fuels 

(AF). From these fractions, formulations were prepared with 10% and 20% m/m fractions: LFH 

with diesel oil (DF) and HFH with aviation fuels (AF). The physico-chemical analyzes of these 

formulations were compared to the pure AF and DF which showed the potential to use these 

fractions as additives and consequent contribution to the mitigation of the global energy crisis. 

 

GRAPHICAL ABSTRACT 
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RESUMO 

Neste trabalho, o uso de bio-óleo foi proposto como alternativa aos combustíveis fósseis 

(petróleo). O bio-óleo foi produzido por pirólise de serragem de eucalipto e óleo de fritura de 

soja descartado, enquanto que o óxido de cálcio (CaO) foi usado como catalisador de pirólise 

para melhorar o rendimento de bio-óleo. A temperatura do sistema de pirólise foi iniciada a 25 

°C e aumentada para 850 °C. A destilação atmosférica de bio-óleo bruto foi realizada após a 

pirólise e duas frações foram separadas à temperatura de 80−160 ºC (LFP, Fação Leve da 

Pirólise do bio- óleo) e 160−240 ºC (HFP, Fração Pesada da Pirólise do bio-óleo) e as quais 

foram analisadas por TGA (análise térmica gravimétrica), GC-MS (cromatografia gasosa 

acoplada a espectrometria de massa), FTIR (espectroscopia de infravermelho de transformação 

de Fourier) e RMN (espectroscopia de ressonância magnética nuclear) verificando-se que havia 

uma abundância de espécies contendo nitrogênio e oxigênio, bem como outras espécies reativas. 

Com o objetivo de reduzir a quantidade destas espécies após a pirólise, as frações LFP e HFP 

foram submetidas ao processo de craqueamento térmico na presença de hidrogênio 

(hidrogenação) e, novamente submetido a hidrogenação catalítica na presença do catalisador de 

NiMo. Após a hidrogenação catalítca, foi realizada a segunda destilação atmosférica obtendo-se 

duas frações à temperatura de 80−160 ºC (LFH, Fração Leve da Hidrogenação ) e 160−240 ºC 

(HFH, Fração Pesada da Hidrogenação) as quais foram igualmente caracterizadas pelas técnicas 

acima enumeradas,  observando-se que mais de 60% de espécies nitrogenadas, oxigenadas e 

outras espécies reativas foram convertidas em hidrocarbonetos. As diferenças entre LFP, HFP e 

LFH, HFH foram apresentadas e discutidas criticamente neste trabalho, onde verificou-se após as 

análises fisico-químicas como composição química, entalpia de combustão, ponto de 

congelamento, densidade, viscosidade e volatilidadeque as frações obtidas pelo processo de 
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craqueamento e  hidrogenação catalítica (LFH e HFH) podem ser usadas como combustíveis, 

porque apresentaram semelhanças muito próximas nas propriedades fisico-quimicas importantes 

do óleo de aviação (AF) e óleo diesel (DF). A partir destas informações foram preparadas 

formulações com 10 e 20% (m/m) das frações: HFH com óleo de aviação (AF) e LFH com oleo 

diesel (DF). As análises fisico quimicas destas formulações comparadas com o AF e DF 

mostraram o potencial uso destas frações como aditivos e consequente contribuição para a 

amenização da crise energética mundial.  
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OBJECTIVES OF THIS WORK 

           The main six objectives of this work are as follows:  

1. To examine the influence of pre-treatment of agricultural wastes (biomass) on the 

pyrolysis process and fuel quality.  

2. To study the influence of NiMo as a catalyst on pyrolysis oil of agricultural wastes.  

3. To study and compare the important analysis as density, viscosity, freezing point,  

flash point, distillation curve and enthalpy of combustion of bio-oil with aviation fuels 

and diesel fuels after hydrogenation.  

4. To analyze 10% and 20% formulations of bio-oil with aviation fuels and diesel fuels. 

5. To understand and define the concept of upgrading and bio-oil quality.  

6. To determine a proper pyrolysis temperature for waste biomass to obtain the maximum 

pyrolysis yield. 
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1. INTRODUCTION 

The thermochemical conversion of biomass is a promising route for the production of 

chemicals and energy from renewable resources like woody biomass, residues etc1. Among all 

the possible thermochemical processes, pyrolysis is one of the most beneficial and easy 

technologies used for biomass conversion. This process converts the biomass into bio-oil, a 

burnable liquid that is easy to store2-4. The recent environmental restrictions on the use of fossil 

fuels have intensified research into new alternative energy sources and many alternative fuel 

production technologies have been developed, among which the use of biomass offers a 

promising potential5,6. 

 Biomass is a renewable source which has received attention due to various 

characteristics, particularly its low cost, wide availability and regrowth or regeneration. Biomass 

can be converted into biofuels by means of different processes, e.g., reductive combustion, 

liquefaction, pyrolysis, and gasification7,8. The use of biomass is particularly interesting when it 

involves waste products such as waste vegetable oil, fruit seeds, sugarcane bagasse, sugarcane 

straw, rice husks, coconut fibers, and coffee grounds, which are also potential sources of 

energy9,10.  

Bio-oil from biomass pyrolysis, also known as pyrolysis oil, is a dark brown almost black 

liquid with a characteristic smoke odor, whose elemental composition is analogous to that of the 

biomass from which it derives. It is a complex mixture of oxygenated and nitrogenated 

compounds with a significant amount of water originating from the moisture of the biomass and 

from crackingreactions11-13. Bio-oil may also contain small coal particles and dissolved alkali 

metals coming from the ash. Its composition depends on the raw material and on the operating 
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conditions used in its production. Bio-oil is an aqueous microemulsion resulting from the 

products of fragmentation of cellulose, hemicelluloses and lignin14,15.  

The biomass pyrolysis process is an economically feasible option for producing 

chemicals andfuels16. The bio-oil resulting from the pyrolysis process consists of a mixture of 

more than 300organiccompounds, but it’s processing, separation, and characterization poses 

technological challenges. In the thermal cracking process, the volatile compounds generated 

during pyrolysis also present a promising potential for energy generation17-19.  Moreover, the 

upgrading process, which involves the reduction of oxygenates is necessary to improve the 

quality of bio-oil, normally requires processes such as catalytic cracking, hydrogenation and 

steam reforming20,22.  

Hydrogenation is an important technique for improving the quality of bio-oil produced 

from biomass pyrolysis. Hydrogen is a reducing gas and cracking biomass in the presence of 

hydrogen can reduce the oxygen and nitrogen content in bio-oil23. Pyrolysis oil exhibits some 

inferior properties, such as high water content, high oxygen content, high viscosity low flash 

point, and strong corrosiveness and these drawbacks make it difficult to be directly used as a 

vehicle fuel. Therefore, several upgrading technologies have been developed to improve the 

quality of bio-oil, including catalytic hydrodeoxygenation, hydrodesulfurization and 

hydrodenitrogenation, catalytic cracking, steam reforming, catalytic esterification, supercritical 

upgrading and so on24-26. 

Many zeolites also have been applied as solid acid catalysts for oxygen removal from 

bio-oil and as a resolution multi-stage hydrodeoxygenation has been proposed in which first the 

pyrolysis oil is stabilized in a low-temperature reactor and then a deeper hydrodeoxygenation is 
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accomplished in the second-stage reactor at a higher temperature27-30. It is reported that  

Al-MCM-41 (a mesoporous catalysts used for converting the pyrolysis vapours of wood in order 

to obtain better bio-oil properties) is a promising catalyst for production of high-quality bio-oil. 

However, it is found that high amount of coke always deposited on this catalyst due to its 

specific properties such as high acidity and large pore volume31-33. The bio-oil can be upgrade by 

using various kinds of catalysts, such as NiMo, CoMo, FCC, ZnO, H-ZSM-5 etc34-36. The use of 

bio-oil has been proposed as an alternative to the fossil fuels in this work. Bio-oil was produced 

from pyrolysis of Eucalyptus sawdust and soybean frying oil. After pyrolysis the bio-oil was 

subjected into thermal cracking in the presence of hydrogen and after hydrogenation bio-oil was 

again subjected to catalytic hydrogenation in the presence of NiMo as a catalyst. The bio-oil was 

obtained from pyrolysis where the temperature of the system was initiated at 25 ºC and increased 

up to 850 ºC. Atmospheric distillation of crude bio-oil was performed and two fractions were 

separated at temperature 80-160 ºC and 160-240 ºC and these fractions were analyzed by thermal 

gravimetric analysis, Gas chromatography–mass spectrometry, Fourier transform infrared 

spectroscopy, and Nuclear magnetic resonance spectroscopy to identify different hydrocarbons 

and other groups present in pyrolysis oil. After conducting the above-mentioned analysis, it was 

noticed that there was an abundance of nitrogen and oxygen containing species as well as other 

reactive species in the bio-oil. To reduce the amount of these species, the bio-oil was subjected to 

hydrogenation in the presence of NiMo as a catalyst. After second atmospheric distillation of 

hydrogenated bio-oil two more fractions were obtained at temperature 80-160 ºC and 160-240 ºC 

and again these hydrogenated fractions were analyzed by the same techniques like TGA, GC-

MS, FTIR and NMR. We have noticed that after hydrogenation more than 60% of oxygenated, 

nitrogenated and other reactive species were converted into hydrocarbons. The differences 
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amongst all fractions of bio-oil, after and before hydrogenation were presented and critically 

discussed in this work, where we have seen that hydrogenated fractions of bio-oil can be used as 

fuels because it showed almost the same important properties and characteristics of petroleum 

fuels. For example, a light fraction (80-160 ºC) of bio-oil and a  heavy fraction (160-240 ºC) 

showed close similarities in density, viscosity, freezing point, flash point, the presence of lower 

molecular weight hydrocarbons and enthalpy of combustion as that of diesel fuels and aviation 

fuels respectively.  
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1. LITERATURE REVIEW 

 This literature review explains the origin, progress, and upgrading of pyrolysis oil as well 

as various catalysts for bio-oil pyrolysis and upgrading. This includes a basic introduction, types, 

and methods of bio-oil upgrading and types of some catalysts used by previous researchers and 

scientists. 

 

2.1. PYROLYSIS 

Pyrolysis is a thermal process for converting various biomasses, residues and wastes to 

produce high-energy-density fuels. while avoiding the high cost of transportation and technical 

difficulties that occur when bio-oil is used directly as fuel37. The fixed-bed pyrolysis experiments 

on a sample of hazelnut shells to determine the possibility of being a potential source of 

renewable fuels and chemical feedstocks. The effects of pyrolysis temperature and well-sweep 

gas atmosphere (N2) on the pyrolysis yields and chemical compositions have been also 

investigated38. Pyrolysis of tires is the thermochemical recycling of rubber from old tires by 

pyrolysis and Hydropyrolysis. Pyrolysis is a thermal decomposition (500 – 700 oC) that occurs in 

the absence of oxygen and is classified as slow or fast depending on the heating rate, residence 

time and rate of product condensation. During pyrolysis, the biomass components are thermally 

depolymerized producing condensable vapors, incondensable gas, aerosol, and char. Depending 

on the operating conditions, the pyrolysis process can be divided into three subclasses: 

conventional pyrolysis,pyrolysis, and flash pyrolysis39.  

The pyrolysis of fats has been investigated for more than 100 years, especially in those 

areas of the world that lack deposits of petroleum40. The first pyrolysis of vegetable oil was 

conducted as an attempt to synthesize petroleum from vegetable oil. A thermogravimetric is used 
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to obtain the effect of heating rate on the pyrolysis rate in experimental runs. It is interesting to 

determine how the heating rate affects the pyrolysis rate41. 

Thepyrolysis oil is a suitable source for chemicals, however, the composition of bio-oil 

from woody biomass pyrolysis varies considerably and it is a function of several parameters such 

as the source of biomass, its pretreatment, reactor technology, heating, quenching rates, and 

residence time of the products inside the reactor. The determination ofpyrolysis oil composition 

is a great analytical challenge. The best methodology among the most commonly available 

analytical techniques is a merging between gas and liquid chromatography. They allow 

complementary qualitative and quantitative analysis of a wide variety of compounds, giving 

complementary information. Gas chromatographic (GC) analyses provide reliable insight on 

volatile compounds with boiling points below 350oC. Among several biomass energy conversion 

methods, microwave assisted pyrolysis offers low temperature and energy efficient route to 

convert solid waste biomass resources to energy products43,44. The microwave assisted pyrolysis 

oil was found rich in valuable chemicals, such as phenol high content syngas and high quality 

bio-char. The pyrolysis performance of uniform distribution method was reported to improve 

microwave penetration depth, biomass heating profile and bio-oil yield44,45. Previous studies on 

microwave assisted pyrolysis of waste biomass indicated that the process factors influencing bio-

oil yield are MWA loading and microwave power. In addition, factors that are assumed to have 

minimal effects on bio-oil yield can be eliminated, as well as the factors that are categorical55. 

Investigation of the effects of uniformly distributed coconut activated carbon (CAC) at various 

levels of CAC loading, microwave power and N2 flow rate on heating profile, bio-oil yield and 

its composition. The response surface methodology was used to establish model to predict bio-oil 

yield. Moreover, bio-oil obtained under various microwave operating conditions was analyzed 



Page 25 of 115 
 

using GC–MS for phenol and other chemicals. However, the use of thermocouple in microwave 

cavity environment can measure accurate temperature provided that it is thin with grounded 

metal sheath and held exactly at 90oC to the electric field component of microwave64.  

The combination of pyrolysis-GC/MS and TLC–FID techniques for whole sample 

analysis of bio-oil samples obtained from different lignocellulosic biomasses, (i.e., birch wood, 

pine wood, barley straw and forest residue and thermal-cracking fractions) were used. Both 

techniques showed the ability to analyze the whole sample without cleanup or fractionation and 

to distinguish among the bio-oils based on their feedstock sources. They reported that forest 

residue bio-oil and its thermal cracking fractions could be effectively characterized by TLC–FID 

(and Py-GC/MS) whereby the light fraction was composed of a wide range of lower polarity 

compounds while the heavy fraction had higher polarity compounds47. Catalytic pyrolysis of 

green algae for hydrocarbon production using H-ZSM-5as a catalyst was performed and it was 

found that when a fresh water green alga, Chlorella vulgaris, was taken for pyrolysis study, the 

average activation energy for pyrolysis zone was found to be 109.1 kJ/mol. Fixed-bed pyrolysis 

of algae gave a bio-oil yield of 53 wt.% which accounts for 60.7 wt.% carbon yield. In addition, 

analytical pyrolysis of Chlorella vulgaris was carried out in a Py/GC–MS to identify major 

compounds present in bio-oil with and without catalyst (H-ZSM-5). In catalytic pyrolysis, as the 

catalyst loading increased from zero to nine times of the biomass, the carbon yield of aromatic 

hydrocarbons increased from 0.9 to 25.8 wt.%. Bio-oil and bio-char produced from Spirulina Sp. 

by slow pyrolysis were analyzed by thermo gravimetric analyzer (TGA) to investigate the 

pyrolytic characteristics and essential components of algae. It was found that the temperature for 

the maximum degradation, 322 oC, is lower than that of other biomass. With their fixed-bed 

reactor, 125 g of dried Spirulina Sp. algae was fed under a nitrogen atmosphere until the 



Page 26 of 115 
 

temperature reached a set temperature between 450 and 600 oC. It was found that the suitable 

temperature to obtain bio-char and bio-oil were at approximately 500 and 550 oC respectively. 

The bio-oil components were identified by a gas chromatography-mass spectrometry (GC-MS). 

The saturated functional carbon of the bio-oil was in a range of heavy naphtha, kerosene and 

diesel oil. The energy consumption ratio (ECR) of bio-oil and bio-char was calculated, and the 

net energy output was positive. The ECR had an average value of 0.4948. 

In 2011 a report about extraction of cardanol and phenol from bio-oils obtained through 

vacuum pyrolysis of biomass using supercritical fluid extraction was published and feasibility of 

extraction of phenol rich oil from the bio-oils obtained through pyrolysis of cashew nut shells 

and sugarcane bagasse also studied. The extraction rate of phenol rich oil using CO2 as a 

supercritical fluid is discussed. Operating parameters are optimized for the maximum 

concentration of phenol and cardanol. Higher yield of oil (50% by weight) along with higher 

concentration of phenols and cardanol by present method is found encouraging. The experiments 

were conducted in the pressure range of 120 - 300 bar, the temperature range of 303 - 333 K and 

the mass flow rate range of 0.7- 1.2 kgh-1. Also process parameters were optimized to maximize 

the yield of extracts and its contents of phenols and substituted phenols from sugarcane bagasse 

pyrolysis oil. The oil samples at various operating parameters, analyzed by Gas Chromatograph-

Mass Spectroscopy (GC-MS) and Fourier Transform Infra-Red Spectroscopy (FTIR) were 

obtained.  

The biomass pyrolysis is a promising path toward renewable liquid fuels. However, the 

calorific value of the pyrolysis oil also known as bio-oil, is low due to the high content of 

organic oxygenates and water. The oxygen content of bio-oil can be reduced by 

hydrodeoxygenation, in which hydrogen is used to remove oxygen49,50. An economic 
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disadvantage of hydrodeoxygenation pathway is its dependence on hydrogen as an expensive 

feedstock. An alternative technology is to upgrade bio-oil in hot, high pressure water, known as 

hydrothermal processing. They studies upgrading pyrolysis oil derived from Norwegian spruce 

by hydrodeoxygenation in a liquid hydrocarbon solvent using nanodispersed sulphide catalysts 

and hydrothermal treatment in near-supercritical water. Experimental results and simulation 

studies suggested that if water soluble products are reformed for hydrogen production, the 

hydrodeoxygenation pathway would be a net consumer of hydrogen, while the hydrothermal 

pathway could produce a significant hydrogen excess. By comparison, the fuel yield from 

hydrodeoxygenation was significantly higher than hydrothermally treated fuel51.  

For pyrolysis more than 100 types of biomass have been tested, ranging from agricultural 

wastes such as straw, olive pits, corncobs, tea waste and nut shells to energy crops such as 

miscanthus and sorghum. Forestry wastes such as bark, thinning and other solid wastes, 

including sewage sludge and leather wastes have also been studied by other researcher. But most 

of the research work has been done on wood.  

Bio-oil from wood pyrolysis is dark brown, free-flowing organic liquid that is comprised 

of highly oxygenated compounds. It is very viscous, relatively unstable and susceptible to aging. 

Chemically, bio-oil is a complex mixture of water, guaiacols, catechols, syringols, vanillins, 

furancarboxaldehydes, isoeugenol, pyrones, acetic acid, formic acid, and other carboxylic acids. 

It also contains other major groups of compounds, including hydroxyaldehydes, hydroxyketones, 

sugars, carboxylic acids, and phenolics52.  

To develop a separation process for phenolic fraction recovery from various pyrolysis-

oils, produced by pyrolysis process of wood and forest residues in the framework of the EU 

Project BIOCOUP25, two slightly different schemes, namely the first one starting with an 
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aqueous extraction of pyrolysis oil and the second one with the simultaneous use of a 

hydrophobic-polar solvent and antisolvent for the extraction of bio-oil were introduced. In both 

cases the distribution coefficients of phenolic components between the phases as well as 

extraction factors for major separation stages are presented. Different aqueous solutions were 

applied and alkali solution was found to be more efficient in comparison to water or aqueous 

NaHSO3 solution. From various hydrophobic-polar solvents tested, methyl isobutyl ketone 

(MIBK) was shown to be the most efficient solvent for extraction of phenolics from bio-oil in 

combination with 0.1 M or 0.5 M aqueous NaOH solution, followed by butyl acetate53.  

In 2013 a microwave pyrolysis of lignin were performed, an aromatic polymer byproduct 

from paper-pulping industry, produces char, gases, and lignin pyrolysis oil. A method using 

switchable hydrophilicity solvents (SHS) to extract phenols as a mixture from lignin microwave 

pyrolysis oil at the scale of 10 g of bio-oil was described. Even at a small scale, losses are small, 

96% of the bio-oil was recovered in its three fractions, 72% of guaiacol and 70% of 4-

methylguaiacol, the most abundant phenols in the bio-oil were extracted and 91% of the solvent 

SHS was recovered after extraction. The starting material (lignin microwave-pyrolysis oil) and 

the three fractions resulted from SHS extraction were characterized by GC–MS and quantitative 

13C{1H} and 31P{1H} NMR spectroscopy54.  

Recently, in 2017 the pyrolysis of several Canadian straw biomasses, using a 

thermogravimetric analyzer and a bench-scale horizontal fixed-bed reactor, in order to better 

understand the devolatilization process and to obtain information about the product yields of 

these biomasses. They converted the straw biomasses through pyrolysis performed in a fixed-bed 

reactor at temperatures of 500 °C to study the influence of the feedstock on product yields. They 

also discussed the effects of various catalysts on product yields. When using zeolite catalysts, the 
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bio-oil and bio-char yields of the straw pyrolysis were increased to 46% and 38%, respectively, 

while the bio-gas yield was decreased to 13%. The use of catalyst zeolite ZSM-5 ( Zeolite 

Socony Mobil–5, a zeolites catalyst, used for pyrolysis to obtain high quality of bio-oil) had the 

most significant effect on overall bio-oil yield, increasing the bio-oil yield by about 20%. This 

catalyst had the most significant effect on the pyrolysis of flax straw, where the bio-oil yield was 

increased to 40%. In the pyrolysis of oat straw, the use of the catalyst consistently decreased the 

bio-gas yield. However, the bio-oil yield increased the most significantly to 53% with the use of 

catalyst zeolite ZSM-554,55.  

 

2.2. CATALYTIC PYROLYSIS 

 Recently, catalytic pyrolysis has aroused a great interest for the advantages of operating at 

atmospheric pressure and the lack of need for hydrogen, which has been demonstrated in 

literature. Catalysts, namely, H-ZSM-5, (zeolite catalyst, used to decreases the yield of 

uncondensable gases and increases the yields of liquid and char) silicalite and silica-alumina for 

the upgrading of pyrolysis bio-oil were used. They examined for their relative performance in the 

production of organic distillate fraction, hydrocarbon formation and minimization of char, coke 

and tar formation.  

 A catalyst effectiveness criterion based on yield and selectivity for each product was 

defined and correlated with the performance of each catalyst. Amongst the five catalysts studied,  

H-ZSM-5 was the most effective catalyst for the production of organic distillate fraction, overall 

hydrocarbons and aromatic hydrocarbons. Also, it provided the least coke formation56.  
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 Silica-alumina catalyst was most effective for minimizing the char formation and H-Y 

catalyst was superior in minimizing tar formation as well as maximizing the production of 

aliphatic hydrocarbon. The experiments on catalytic pyrolysis of biomass were generally carried 

out in a fixed bed reactor or fluidized bed under nitrogen flow with some catalysts, such as H-

ZSM-557, Al-SBA-1558, alumina59 and Cu 60 etc.  

 Many aspects of catalytic pyrolysis have been studied, including a screening of feasible 

catalysts with high deoxygenating activities or preferred selectivities influence of temperature 

and catalyst-to-material ratio on product yields. Characteristics analysis of bio-oil using 

elemental GC–MS and FTIR technologies, both in a fixed bed reactor and in a fluidized bed, the 

investigation indicated that catalytic pyrolysis lowered the oxygen content of the bio-oil and 

aggrandized the calorific values compared to the direct pyrolysis without catalysts. This 

conclusion can be drawn in many experiments with different biomass, including green 

microalgae, corncob, herb residue and waste woody biomass. Besides, catalytic pyrolysis can 

lead to the higher content of aromatic hydrocarbons in bio-oil with H-ZSM-5, alumina or H-

ZSM- 5/γ-Al2O3 as a catalyst while direct pyrolysis promoted the increase of carbon chain 

compounds61. However, the addition of an H-ZSM-5 zeolite catalyst in the experiments caused a 

significant increase of heavy oil fraction and a decrease of the coke, water, and non-condensable 

gas yields. This was because the H-ZSM-5 zeolite catalyst could promote the conversion of 

oxygen in biomass into hydrocarbons. Choosing proper catalysts is crucial to catalytic pyrolysis 

so, catalyst should be chosen according to the nature of biomass62.  

 The catalytic cracking of pyrolysis oil of different starting compositions over H-ZSM-5 

was studied to inform the extent of upgrading in the liquid phase. After establishing a catalyst 
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bed temperature of 500 °C as the optimum operating condition with regard to deoxygenation and 

yield of mono-aromatics in the products obtained, the performances of conventional pyrolysis 

and tail gas reactive pyrolysis (TGRP) bio-oils as starting liquids for the cracking were 

compared. The results indicated that the formation of naphthalenes was favored, while the 

formation of benzene, toluene, ethylbenzene, and xylenes (BTEX) compounds were slightly 

depressed in the case of the TGRP oil. The results obtained from this study will help to 

determine the issues that need to be addressed when developing a catalytic cracker with H-ZSM-

5 for regular pyrolysis oil and TGRP oil63. Rope-like bundles of single-walled carbon nanotubes 

(SWNTs) similar to those obtained by laser vaporization and electric-arc techniques were 

synthesized on a relatively large scale and at low cost by the catalytic decomposition of 

hydrocarbons at a temperature of about 1200 °C using an improved floating catalyst method. The 

SWNTs thus obtained have larger diameters and are self-organized into ropes. The addition of 

thiophene was found to be effective in promoting the growth of SWNTs and in increasing the 

yield of either SWNTs or multiwalled carbon nanotubes under different growth conditions102. 

 Pyrolysis bio-oil currently produced in demonstration and semi-commercial plants have 

potential as a fuel for stationary power production using boilers or turbines but they require 

significant modification to become an acceptable transportation fuel. Catalytic upgrading of 

pyrolysis vapors using zeolites is a potentially promising method for removing oxygen from 

organic compounds and converting them to hydrocarbons. A set of commercial and laboratory-

synthesized catalysts for their hydrocarbon production performance evaluated via the 

pyrolysis/catalytic cracking route. Three types of biomass feedstocks; cellulose, lignin, and wood 

were pyrolyzed (batch experiments) in quartz boats in physical contact with the catalysts at 

temperature ranging from 400 °C to 600 °C and catalyst-to-biomass ratios of 5–10 by weight. 
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Molecular-beam mass spectrometry (MBMS) was used to analyze the product vapor and gas 

composition. The highest yield of hydrocarbons (approximately 16 wt.%, including 3.5 wt.% of 

toluene) was achieved using nickel, cobalt, iron, and gallium-substituted ZSM-5. Tests 

performed using a semi-continuous flow reactor allowed us to observe the change in the 

composition of the volatiles produced by the pyrolysis/catalytic vapor cracking reactions as a 

function of the catalyst time-on-stream. The deoxygenation activity decreased with time because 

of coke deposits formed on the catalyst103. 

 2.3. KEY FACTORS EFFECTING PYROLYSIS 

 

2.3.1. TEMPERATURE 

 Currently, many effective methods for pyrolysis and upgrading are known. Effect of 

temperature on pyrolysis yields for catalytic pyrolysis follows the same trend as for the non-

catalytic experiments. The organic yields reach a maximum at approximately 600oC and further 

temperature increase results in a reduction of liquid yields. In contrast, reaction water yields rise 

with an increase in temperature. In the case of gas yields, an increase is observed with rising 

temperature. The opposite trend is observed with char yields. Temperature has an effect on the 

chemical distribution for catalytic pyrolysis. Specifically, for both studies with temperature 

increase, the amount of monocyclic and bicyclic aromatic hydrocarbons was greater when  

ZSM-5 was applied. This is an interesting finding since hydrocarbons are a desirable product in 

terms of bio-oil quality64.  

2.3.2. PYROLYSIS TIME OR RESIDENCE TIME 

 The pyrolysis time in the reactor plays an important role to the catalytic pyrolysis products 

yields. The increase of pyrolysis time in the reactor results in an increase of the thermal 
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cracking of pyrolysis gas. While the effect of pyrolysis time using a ZSM-5 catalyst was also 

studied. Concerning the products yields, an increase of residence time, decreased the pyrolysis 

liquid yields, coke and char yields. The gas yields showed an opposite trend. In terms of 

chemical distribution, the monocyclic and bicyclic aromatic hydrocarbons were greater. The 

residence time also depends upon the amount and quality of biomass present in pyrolysis 

furnace or reactor65. 

 

2.3.3. CATALYSTS 

A substance able to increase the rate of a chemical reaction without itself being consumed or 

changed by the reacting chemicals is called a catalyst. The action of a catalyst is called 

catalysis. Catalysts are used by chemists to speed up chemical reactions that otherwise would be 

inconveniently slow. There are many catalysts used for pyrolysis to increase the pyrolysis 

yields. There are also many catalyst used for upgrading of bio-oil to increase the number of 

hydrocarbons in bio-oil. A few pyrolysis catalysts are given below:  

Research was undertaken in terms of the effect of ZSM-5 on pyrolysis products yields and 

chemical distribution, the influence of the regeneration of the former zeolite; the influence of 

deactivation of ZSM-5 on pyrolysis vapors; catalyst dilution; operating conditions66. 

Nickel molybdenum (NiMo) is also used in the hydrotreating process. Since research showed 

that Cobal molybdenum has a potential in pyrolysis process, NiMo could also prove to be an 

interesting catalyst for bio-oil upgrading67. As well as catalysts of cobalt molybdenum (CoMo) 

is known as a catalyst that enhances deoxygenation reactions in the hydrotreating process. 

CoMo was also used in the pyrolysis process. This catalyst improved cracking reactions, 

increased light hydrocarbons and deoxygenates the bio-oil68. 
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 Fluid catalytic cracking (FCC) is a commercial proprietary catalyst and previous research 

showed that it is a promising catalyst for phenol and hydrocarbon production69. 

 Zinc oxide (ZnO) is a metal oxide catalyst that seemed promising to improve viscosity and 

stability of bio-oil70. Metal oxides conventionally as a selective oxidation catalyst are used to 

synthesize intermediate chemicals. Currently, they are being used as catalysts in various 

applications, including the petroleum, chemical and environmental industries71. 

 The zirconium oxide catalysts (ZrO), iron oxide (Fe3O2) and titanium oxide (TiO) 

seemed to be a potential catalyst for improvement of viscosity and stability of bio-oil, it is worth 

it to investigate more metal oxides. The selection of ZrO was due to its market availability, as 

well as its potential for cracking the lignin derivative compounds in bio-oil. This was indicated 

from the oxidation of tar and ammonia in gasification gas cleaning process by ZrO. A red mud 

based catalyst was used to upgrade bio-oil and it was showed that the upgraded bio-oil contained 

less carbonyl-containing and polar oxygenated compounds and more saturated hydrocarbons. 

This result caused interesting to test red mud based catalyst, such as Fe3O2 and TiO. 

Additionally, the low cost and high availability of the red mud based catalysts made the catalysts 

attractive was noticed72. 

 Copper-chromium (CuCr) as a catalyst has the potential for improving bio-oil stability 

and deoxygenates the bio-oil. Additionally, it was used for hydrogenation of carbonyl groups, 

under a hydrogen atmosphere and high pressure. It was also noticed that through low 

temperatures biomass pyrolysis within the presence of zinc chloride (ZnCl2) proposed a new 

technique to produce furfural (FF). The result showed that in the presence of ZnCl2 reduce the 

temperature for biomass, It cause devolatilization of lignin and pyrolysis ring scission of 

holocellulose to form the FF and three anhydrosugars i.e.(levoglucosenone) (LGO),1-hydroxy-
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3,6dioxabicyclo[3.2.1]octane-2-1(LAC) and 1,4:3,6-dianhydro-α-d glucopyranose (DGP)) as the 

major primary pyrolytic products. It promoted depolymerization and dehydration of 

holocellulose. By increasing ZnCl2 content, the three anhydrosugars are increased firstly and 

then decreased, while steadily FF was increased. Secondary catalysis by ZnCl2, could convert the 

anhydrosugars to FF, leaving FF as the main product. The acetic acid is produced as the only 

significant liquid by-product73. Biomass experimental study by catalytic pyrolysis at low 

temperature through nickel / aluminum (Ni/Al) Co-precipitated catalyst fed into the reaction bed 

were study where the thermochemical breakdown of biomass occurred at temperature 600 °C– 

750 °C. Pyrolysis process (WFPP) technology, the hydrogen stream rate of catalyst and the 

influence of the calcinations temperature (750–850 °C) were analyzed. The properties and 

performance of catalyst were significantly influenced by the temperature of calcination. The 

temperature of the two reactions, 650 and 700 °C, with the presence of a catalyst at 850 °C, 

higher CO, and H2 products be obtained with the reduced catalyst (flow rate 3080 cm3 (STP) 

min-1; WHSV=0.826 h−1) than without reduction. By considering the experimental results and 

characterization, it was concluded that the catalyst calcined at 750 °C74. 

2.4. UPGRADING OF BIO-OIL  

 Pyrolysis can produce a considerable amount of bio-oil, for example, a yield up to 56% was 

reported in domestic research, their direct applications as fuels are limited by the problems of 

high viscosity, high oxygen content, and corrosion, as well as their thermal instability. Therefore, 

bio-oil should be upgraded using proper methods before they can be used in diesel or gasoline 

engines. 
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2.4.1. CATALYTIC CRACKING 

 Catalyticcracking for upgrading pyrolysis bio-oil can be divided into two patterns, the 

traditional catalytic cracking and the combination of catalytic pyrolysis and catalytic cracking. 

Traditionally, the catalytic cracking referred to a thermal conversion process of bio-oil under 

certain conditions, including hydrogen flow, proper catalysts like H-ZSM-5 and a specific 

temperature higher than 350 oC as well as rather high pressure75. Hydrogenation with 

simultaneous cracking occurred during the catalytic cracking process. The products of the 

catalytic cracking process consist of solid, liquid and gasses. The solid is called coke, and the 

liquid can be divided into two phases, aqueous phase and an organic phase and an uncondensable 

burnable gas. The traditional catalytic cracking had been carried out in a tubular fixed bed reactor 

and micro-fixed bed reactor76. The advantage of this technique was the probability of obtaining a 

good deal of light product, but catalyst coke deposition was a bottleneck for sustainable 

application of catalysts e.g., H-ZSM-5 made the combination of catalytic pyrolysis and catalytic 

cracking to upgrade pyrolysis bio-oil. It adopted a sequential biomass pyrolysis reactor which 

consisted of a traditional pyrolysis reactor followed by the subsequent apparatus that supported 

decomposition of gaseous intermediate.  

 The largest reactor for this kind of investigation was made of the 316 stainlesstube, with a 

length of 1000 mm and an inner diameter of 20 mm. For example, researchers applied this 

method and found that biomass could be fully converted into gaseous products, such as H2, CH4 

and CO etc. Catalyst (Fe/γ-Al2O3) activities were affected by several factors, including 

calcination temperature, the temperature of catalytic pyrolysis and Fe/Al mass ratio77. 

 Pyrolysis bio-oil is a promising source of liquid fuels, but requires upgrading to remove 

excess oxygen and produce a satisfactory fuel oil. Nickel phosphide (Ni2P) has been shown to be 
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an active composition for hydrodeoxygenation (HDO) of bio-oil model compounds. Nickel 

phosphide catalysts were used for direct upgrading of an actual pyrolysis bio-oil derived from 

cedar chips. The activity of Ni2P deposited on an amorphous SiO2 support for HDO was first 

verified using the model compound, 2-methyltetrahydrofuran (2-MTHF), at the temperature of 

the pyrolysis oil treatment of 350 oC. TheNi2P/SiO2 catalyst showed high activity for 2-MTHF 

hydrodeoxygenation under atmospheric pressure hydrogen with low cracking activity. Pyrolysis 

and catalytic upgrading were conducted sequentially using a laboratory-scale, two-stage system 

consisting of a fluidized bed pyrolyzer and a fluidized bed catalytic reactor both operating at0.1 

MPa, with a hydrogen partial pressure of 0.06 MPa. The Ni2P/SiO2 catalyst is moderately 

effective in upgrading the biomass pyrolysis vapors and producing a refined bio-oil with 

decreased oxygen content.  

 The moderate deoxygenation of the bio-oil is confirmed by elemental analysis and Fourier 

transform ion cyclotron resonance mass spectrometry (FT-ICR MS) analysis. Gas 

chromatography–mass spectrometry (GC–MS) analysis showed that the treated bio-oil mainly 

consisted of phenolic compounds and the MS spectra before and after upgrading suggested that 

reactions including hydrodeoxygenation, hydrogenation, decarbonylation, and hydrolysis 

occurred during the upgrading.  

 Furthermore, Ni2P supported on ZSM-5 zeolite eliminated oxygen in the bio-oil with 

smaller reduction in the oil yield than Ni2P supported on SiO2. The deoxygenation activity of the 

nickel phosphide catalysts is higher than that of conventional catalysts such as Ni/SiO2, Pd/C and 

an FCC catalyst108. 

 Micro algae are promising attractive energy carriers. Their biomass productivity is 5-30 

times higher than that of first and second generation biomass. Additionally, they utilize CO2 for 
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their photosynthetic process thereby protects possibly the environment and contributes towards 

CO2 remediation at higher rates. Their cultivation can be combined with wastewater and 

industrial effluents which consequently leads to the bioremediation of inorganic elements more 

effectively. Among the conversion technologies for the biofuels production from the micro algal 

biomass, thermochemical conversion is an enduring sustainable alternative path in the view of 

engineering as this process utilizes all kinds of the biochemical moieties from the micro algal 

biomass cellular constitution.  

 This article reviews the bio moieties of micro algal biomass, and subsequent use of them in 

thermochemical liquefaction (TCL) technologies like pyrolysis and hydrothermal liquefaction 

(HTL) for the extraction of liquid fuels and upgrading of bio-oil processes via decarbonylation, 

decarboxylation (DCO) and hydrogenation for palmitic/oleic using suitable catalysts viz activated 

carbon with noble metals & cost-effective tungsten based catalysts. These two technically 

feasible processes in an appropriate technical downstream path are dependent on the oil 

upgrading process. Moreover, a comparative study of pyrolysis and HTL processes has been 

evaluated towards the challenges and opportunities of a commercial-scale microalgae-to-fuels 

process in the consideration for mitigating technical, environmental, and logistical concern103. 

 Upgrading of bio-oil from biomass pyrolysis over Cu-modified β-zeolite catalyst in a down-

draft fixed-bed reactor, in which the pyrolysis and upgrading processes are integrated, is 

investigated in details. It is found that high silica β-zeolite has high selectivity to the hydrocarbon 

during the upgrading process. When it is modified by a small amount of Cu, the selectivity can be 

obviously promoted. Especially, when 0.50 wt% of Cu is loaded on it, almost only hydrocarbons 

can be detected in the light oil of upgraded bio-oil and its activity can be remained for several 

reuses even without regeneration treatment. However, if more Cu is loaded, the selectivity 
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decreases to some extent. Interestingly, low Cu loading on β-zeolite results in the increase of 

surface area as well as the formation of more micropores. The surface area reaches the maximum 

in the case of 0.50 wt% of Cu doping. Based on XRD analysis, when the loading amount is over 

1.00 wt%, Cu species aggregate on the surface of zeolite, resulting the blockage of zeolite pores 

and the decrease of surface area. Doping of Cu decreases the coke deposit on spent catalyst but 

overloading of Cu results in the increase of coking and the decrease of activity and selectivity. 

These results indicate that the synergetic effect between the doped metal sites and the protonic 

sites on the zeolite structure should be benefit for the promising catalytic performance and thus, a 

proper loading amount is very important for this kind of catalyst104. 

 Due to the negative effects of acids and aldehydes, crude bio-oil has to be upgraded before 

its application as a high-graded fuel. A novel method for bio-oil upgrading by simultaneous 

catalytic esterification and alkylation with azeotropic water removal using n-butanol and 2-

methylfuran is investigated. Under the optimum upgrading conditions, water content is evidently 

decreased from27.82% to 3.21%, and acid number is reduced from 41.12 mg NaOH/g to 6.17 mg 

NaOH/g. High heating value of upgraded bio-oil is more than 2 times higher than crude bio-oil 

and the other properties are also improved significantly. GC-MS analysis indicated that labile 

acids, aldehydes, ketones and lower alcohols are transformed to stable target products.  

 The introduction of 2-methylfuran effectively suppressed acetalization reactions and the 

yields of more stable alkylation products are higher than acetals. In addition, oxygenated liquid 

fuel and sugars and their derivatives could be effectively separated from upgraded bio-oil by 

H2O/CH2Cl2 extraction. The main product in crude sugars part is butyl-β-D-glucopyranoside, 

which is formed by means of hydrolysis of levoglucosan and the following glycosidation105,109.  
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2.4.2. ESTERIFICATION 

 There are also many drawbacks of bio-oil such as low heating value, high viscosity,  high 

corrosiveness and poor stability,   due to the drawbacks of pyrolysis bio-oil, upgrading of bio-oil 

before the practical application is necessary to acquire high-grade fuel. Organic acids in bio-oil 

can be converted into their corresponding esters by catalytic esterification and this greatly 

improves the quality of bio-oil78.  

 Upgrading the bio-oil through catalytic esterification has been carried out widely in all over 

the world. During the etherification process,  the experiment was generally conducted in a 250 ml 

or 300 ml autoclave and the catalysts included ion exchange resins, MoNi/γ-Al2O3
79. The results 

showed that the upgraded bio-oil had lower acid numbers, watercontents, and viscosities. 

Meanwhile, stability and corrosion properties of bio-oil were also promoted. 

 Recently, researchers reported their observations on ozone oxidation of bio-oil and 

production of upgraded bio-oil using subsequent esterification where they found good results of 

upgrading bio-oil. In 2009 developed a simple reactive condensation technique to decrease the 

concentration of reactive species in the oily phase of two-phase pyrolysis oil as a means to 

increase the storage stability, heating value, and overall quality of the bio-oil.  

 Bio-oil vapours were esterified from the reaction of in situ organic acids with ethanol 

during condensation resulting in the production of water and esters80.   

 The bio-oil from pyrolysis of biomass cannot be used directly as engine fuel because of its 

high corrosiveness and instability mainly due to substantial amounts of organic acids and reactive 

aldehydes. A treatment of acids and aldehydes in the bio-oil is focused on.  
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 A novel upgrading method named one-step hydrogenation−esterification (OHE) is 

established to convert acids and aldehydes to stable and combustible components. Acetaldehyde 

(butyl aldehyde) and acetic acid are chosen as model compounds for the OHE reaction over 

platinum catalysts that acidic supports such as H-ZSM-5 or amorphous aluminum silicate are 

adopted. The catalysts are bifunctional, which means they have properties of hydrogenation and 

esterification. Experiments showed this, and it is a feasible route to convert these main unstable 

components of bio-oil to esters through this simple and effective OHE reaction. The catalysts 

with high surface area, large pore size distribution, small metal particles and strong acid sites may 

be beneficial for the OHE reaction106,108. 

 The crude bio-oil is upgraded in supercritical ethanol under hydrogen atmosphere by using 

Pd/SO4
2−/ZrO2/SBA-15 catalyst. This is a novel way to upgrade bio-oil with the combination of 

hydrotreatment, esterification, and cracking under supercritical conditions. The results indicated 

that the upgrading process performed effectively and the properties of the upgraded bio-oil were 

improved significantly. After the upgrading process, a trace amount of tar or coke was produced 

and most of the organic components were kept in the upgraded bio-oil. No phase separation was 

observed. The amount of aldehydes and ketones decreased evidently. In particular, aldehydes 

were almost completely removed. Most acids were converted into corresponding esters, and at 

the same time many new types of esters were produced. The results of TGA and DTA indicated 

that macromolecular compounds were decomposed and much more volatile compounds were 

produced after the upgrading process. The pH value and heating value of the upgraded bio-oil 

increased; meanwhile, the kinematical viscosity and density decreased compared to those of the 

crude bio-oil107. 
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2.4.3. HYDROGENATION 

 The ultimate aim of hydrogenation is to improve stability and fuel quality by decreasing the 

contents of organic acids and aldehydes as well as other reactive compounds, because they not 

only lead to high corrosiveness and acidity but also set up many obstacles to applications.  

 Recently many researchers have achieved considerable progress in upgrading pyrolysis bio-

oils using hydrogenation technology. Traditionally, researchers generally upgraded bio-oil by 

single hydrogenation technology81. Traditional hydrogenation is the treatment of pyrolysis bio-oil 

under specific conditions, such as high pressure (10–20 MPa), certain temperature and hydrogen 

flow rate as well as a proper catalyst. 

 The bio-oil can be obtained by various kinds of pyrolysis using several catalysts, such as 

Al2O3- based catalysts and Ru/SBA-15 catalysts etc. In the upgrading experiments, the following 

results generally could be observed, the pH value, the water content as well as the H2 contents all 

increased in varying degrees while the dynamic viscosity decreased to some extent. These 

experiments also simultaneously indicated that the properties of the pyrolysis oil were improved 

by hydrotreating and esterifying carboxyl groups over these catalysts.  

 Recently, an over upgrading method named one-step hydrogenation esterification (OHE) 

was established to convert acids and aldehydes to stable and combustible components. The 

catalysts for OHE reaction were bifunctional, such as Al-SBA-15 supported palladium 

bifunctional catalysts and bifunctional Pd catalysts which meanthey have properties of 

hydrogenation and esterification82. This is the advantage over the traditional hydrogenation 

process for OHE screened out 5% Pd/Al2(SiO3)3 with the best catalytic performance among 

tested bifunctional catalysts, and demonstrated that it is viable to convert these unstable 

constituents of bio-oil to esters and alcohols through this simple and effective OHE reaction. 
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Besides, for the OHE reaction, tests. While in 2001 researcher demonstrated the effectiveness of 

the bifunctional catalyst system for combined hydrogenation/esterification and a synergistic 

effect between metal sites and acid sites over respective catalyst83. Moreover, in2011, some 

measures were taken to improve the catalytic performance of the bifunctional catalyst and they 

showed the new hydrogenation method is much better than the traditional method84. 

 In 2010 the application of the Shvo catalyst (The Shvo catalyst, named after Youval Shvo, 

is an organoruthenium compound that is used for transfer hydrogenation) in homogeneous 

hydrogenation of bio-oil obtained from pyrolysis of white poplar (New mild upgrading 

conditions) were studied. They focused on the use of the ruthenium based Shvo homogeneous 

catalyst for the hydrogenation of model mixtures (vanillin, cinnamaldehyde, 

methylacetophenone, glycolaldehyde, acetol, acetic acid) and of a real bio-oil. They investigated 

the  hydrogenation of model compounds both in mono- and biphasic mixtures under a P(H2) = 10 

atm in the temperature range of 90–145 °C varying the substrate to catalyst molar ratio from 

2000:1 to 200:1.  

 Employing the most active reaction conditions (substrate/catalyst 200:1, T = 145 °C, P(H2) 

= 10 atm) the Shvo catalyst maintains its performances under acidic “bio-oil conditions” leading 

to the almost quantitative conversion of the polar double bonds within 1 h. They also investigated 

the activity of the Shvo catalyst for the hydrogenation of a bio-oil. They noticed that 

hydrogenation deeply changed the chemical nature of the pyrolysis oil. Aldehydes, ketones and 

non-aromatic double bonds were almost totally hydrogenated. The catalytic system also promoted 

the hydrolysis of sugar oligomers into monomers85.  

 In 2008, a catalytic hydroprocessing of chemical models for bio-oil presented. They reported 

that bio-oil (product liquids from pyrolysis of biomass) is a complex mixture of oxygenates 
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derived from the thermal breakdown of the biopolymers in biomass. In the case of lignocellulosic 

biomass, the structures of three major components, cellulose, hemicellulose and lignin, are well-

represented by the bio-oil components.  

 To study the chemical mechanisms of catalytic hydroprocessing of bio-oil, three model 

compounds were chosen to represent those components. Guaiacol represents the large number of 

mono- and dimethoxy phenols found in bio-oil derived from soft- or hardwood, respectively. 

Furfural represents a major pyrolysis product group from cellulosics. Acetic acid is a major 

product from biomass pyrolysis, derived from the hemicellulose, which has important impacts on 

the further processing of the bio-oil because of its acidic character86.  

 The liquid phase upgrading of a model bio-oil over a series of supported Pt catalysts were 

studied. Pt/Al2O3 showed the highest activity for deoxygenation, the oxygen content of the model 

oil decreasing from an initial value of 41 wt% to 28 wt% after upgrading.  

 GC–MS analysis of the oil showed it to be highly aromatic, the major components 

corresponding to alkyl-substituted benzenes and cyclohexanes. CO2 was formed as the major 

gaseous product, together with lower yields of H2 and C1–C6 hydrocarbons. Based on the product 

distribution, they proposed a reaction scheme in which light oxygenates predominantly undergo 

reforming to CO2 and H2, with C–O bond breaking/hydrogenation (to afford alkanes) as a minor 

pathway. In a parallel process, aromatics undergo C–O cleavage/hydrogenation, affording 

benzenes and cyclohexanes. The highly alkylated nature of the products appears to be a 

consequence of the acidic nature of the reaction medium, favoring the occurrence of aromatic 

electrophilic substitution reactions87. 
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2.4.4. HYDRODEOXYGENATION 

 Hydrodeoxygenation (HDO) is a bio-oil upgrading process which removes the oxygen 

under high pressure of hydrogen with a catalyst. It can reduce the oxygen content of many kinds 

of oxygenated chemical groups, such as acids, aldehydes, esters, ketones, and phenols, etc. 

Hydrodeoxygenation has been considered to be one of the most promising methods for bio-oil 

upgrading. Recently, a 500 ml autoclave reactor with a diameter of 10 mm and length of 420 mm 

is the largest experimental facility for hydrodeoxygenation. Additionally, the largest dosage of 

the catalyst for this kind of research is 1.5 g.  

 Most of the previous researches on hydrodeoxygenation of bio-oil focused on industrial 

NiMo or CoMo sulfide/supported hydrotreating catalysts87. For instance, it is demonstrated that 

Pt supported on mesoporous ZSM-5 showed better performance than Pt/ZSM-5 and Pt/Al2O3 in 

dibenzofuran hydrodeoxygenation. However, it was reported that these catalysts have several 

inherent shortcomings in hydrodeoxygenation, such as production contamination and catalyst 

deactivation. The noble metal catalyst exhibits high catalytic activity in the HDO reactions but 

with a high cost. So, novel and economical catalysts that can be used for hydrodeoxygenation of 

bio-oil with high oxygen content should be developed88.  

An idealized reaction is, 

cyclohexa-1,3,5-triene-1,2-diol + H2    →   Hexane + water 

 C6H5O2 + H2                      →          C6H6 + H2O 

2.4.5. HYDRODESULFURIZATION (HDS) 

Hydrodesulfurization (HDS) is a catalytic chemical process widely used to remove sulfur 

(S) from natural gas and from refined petroleum products such as gasoline or petrol, diesel fuels, 
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kerosene, jet fuels and Bio-oil. The purpose of removing the sulfur and creating products such as 

ultra-low sulfur diesel is to reduce the sulfur dioxide (SO2) emissions that result from using those 

fuels in automotive vehicles, aircraft, railroad locomotives, ships, gas or oil burning power 

plants, residential and industrial furnaces and other forms of fuels combustions, e.g.  

Ethanethiol + Hydrogen → Ethane + Hydrogen sulfide 

C2H5SH+H2→ C2H6 + H2S 

2.4.6. HYDRODENITROGENATION (HDN) 

The hydrogenolysis reaction is also used to reduce the nitrogen content of a fuel stream in 

a process referred to as hydrodenitrogenation (HDN). The process flow is the same as that for an 

HDS unit. Using pyridine (C5H5N), a nitrogen compound present in bio-oil, as an example, the 

hydrodenitrogenation reaction has been postulated in 1996, as occurring in three steps below: 

Pyridine + Hydrogen→ Piperdine + Hydrogen→ Amylamine + Hydrogen→ Pentane +Ammonia  

 C5H5N + 5H2          →      C5H11N + 2H2     →  C5H11NH2 + H2         →  C5H12 + NH3 

And the overall reaction may be simply expressed as: 

 C5H5N + 5H2 → C5H12 + NH3 

Many HDS units for desulfurizing naphthas within petroleum refineries are actually 

simultaneously denitrogenating to some extent as well. 

2.4.7. SATURATION OF OLEFINS 

The hydrogenolysis reaction may also be used to saturate or convert olefins into paraffin. 

The process used is the same as for an HDS unit. As an example, the saturation of the olefin 

pentene can be simply expressed as: 
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 C5H10 + H2 → C5H12  

or 

 C4H6 + H2→ C4H8 + H2 → C4H10 

 

2.4.8. SUPERCRITICAL FLUIDS (SCFs) 

  Recently, a new method for upgrading bio-oil from pyrolysis using supercritical fluids 

(SCFs) has drawn a great attention in all over the world. This method takes full advantage of the 

unique and superior properties of supercritical reaction media, such as liquid-like density, faster 

rates of mass and heat transfer, dissolving power and gas-like diffusivity and viscosity. 

 They also reported that SCFs can be not only used as a reaction condition to produce bio-

oils, but also can be used as a superior medium to upgrade bio-oil, and have shown great 

potential for producing bio-oils with much lower viscosity and higher caloric values. In order to 

enhance the oil yields and qualities, some organic solvents, such as ethanol, methanol, water 

and CO2 etc. were adopted in many relative researches.  

 Usually, the upgrading method using SCFs performed effectively in improving the quality 

and yield with the help of some catalysts, such as aluminum silicate and H-ZSM-589. The 

upgrading experiments were mainly performed in the autoclave reactor, with a volume of 100 

ml or 150 ml. After upgrading, the components of the bio-oil were optimized significantly and 

the properties of the bio-oil were improved greatly. The catalysts in supercritical media can 

facilitate the conversion of most acids into various kinds of esters in the upgrading process. As a 

result, kinematic viscosity and the density of upgraded bio-oil decreased compared to that of 

crude bio-oil, while the heating value and pH value of upgraded bio-oil increased to a certain 

degree90.  
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2.4.9. STEAM REFORMING 

 The steam reforming is also an effective method to upgrade pyrolysis oil or bio-oil. It could 

simultaneously produce renewable and clear gaseous hydrogen along with bio-oil upgrading, 

which was a big advantage for steam reforming among various upgrading technologies. Steam 

reforming generally used a fluidized bed reactor system or a fixed bed reactor system. In the 

steam reforming process, high temperature (800 – 900 oC) and proper catalysts were generally 

necessary. However, coke formation caused catalyst deactivation, which was a big problem in 

steam reforming of the bio-oil for sustainable hydrogen production91. Carbon deposition behavior 

in the steam reforming process of bio-oil for hydrogen production and demonstrated that for the 

competition of carbon deposition and carbon elimination, a peak value of coking formation rate 

was obtained in a broad range of temperature (575 – 900 oC), while high ratio of steam to carbon 

contributed to the carbon elimination. Also, regenerated catalyst showed slight drops in activity 

due to Fe contamination and Ni redispersion. Above all, upgrading bio-oil methods were feasible 

but more appropriate catalysts and dependable and fully developed reactor systems still, need to 

be developed in the future for maximum product yields and a maximum number of hydrocarbons 

in bio-oil92.  

 The use of noble metal-based catalysts for the steam reforming of a few model compounds 

and that of an actual bio-oil were studied and he steam reforming of the model compounds was 

investigated in the temperature range 650 – 950 °C over Pt, Pd and Rh supported on alumina and 

a ceria–zirconia sample. The model compounds used were acetic acid, phenol, acetone and 

ethanol. 

  The nature of the support appeared to play a significant role in the activity of these 

catalysts. The use of ceria–zirconia, a redox mixed oxide, lead to higher H2 yields as compared to 
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the case of the alumina-supported catalysts. They noticed that the supported Rh and Pt catalysts 

were the most active for the steam reforming of these compounds, while Pd-based catalysts 

poorly performed. The activity of the promising Pt and Rh catalysts was also investigated for the 

steam reforming of bio-oil obtained from beech wood pyrolysis93.  

 Catalytic steam reforming of condensable vapours of bio-oil derived from pyrolysis of 

biomass is a technically viable process for hydrogen production. In their study, the aqueous 

fraction of bio-oil, generated from pyrolysis, was catalytically steam reformed at 825 oC and 875 

°C and low residence time (26 ms). They used a fixed-bed micro-reactor interfaced with a 

molecular beam mass spectrometer (MBMS), a variety of research and commercial nickel-based 

catalysts were tested. They used Magnesium and Lanthanum as support modifiers to enhance 

steam adsorption while Cobalt and Chromium additives were applied to reduce coke formation 

reactions.  

 The cobalt-promoted nickel and chromium-promoted nickel supported on  

MgO-La2O3-α-Al2O3 catalysts showed the best results in the laboratory tests. At the reaction 

conditions, progressive catalyst deactivation was observed leading to a decrease in the yields of 

hydrogen and carbon dioxide and an increase in carbon monoxide. The loss of activity also 

resulted in the formation of higher amounts of methane, benzene and other aromatic 

compounds94.  

 Commercial catalysts that were developed for steam reforming of natural gas and crude oil 

fractions proved to be more efficient for hydrogen production from bio-oil than most of the 

research catalysts mainly due to the higher water–gas shift activity95. Hydrogen and synthesis gas 

can be produced in an environmentally friendly and sustainable way through steam reforming of 

bio-oil and the state-of-the-art of steam reforming of bio-oil and model compounds presented and 
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reported that several catalytic systems with Ni, Ru, or Rh can achieve good performance with 

respect to initial conversion and yield of hydrogen96.  

 

2.5. PHYSICO-CHEMICAL PROPERTIES OF BIO-OIL        

2.5.1. HOMOGENEITY OF BIO-OIL 

Bio-oil is not considered to be homogeneous single-phase liquids. There are a number of 

reasons why two or more phases might be gone through during product recovery, handling or 

storage. If ignored, this phenomenon may cause serious problems in combustion applications. 

Especially due to water and other immiscible species, bio-oil shows many layers after pyrolysis 

but these immiscible species can be removed from bio-oil applying various methods, like water 

can be removedthrough the simple separatory flask. While for other immiscible species have 

other techniques97.  

2.5.2. SOLUBILITY OF BIO-OIL 

Bio-oil is a polar mixture of different compounds and the solubility of bio-oil in organic 

solvents is affected by the degree of polarity. Proper and good solvents for polar bio-oil are 

methanol, ethanol and acetone etc. These solvents dissolve practically all the bio-oil and some 

extractives. However polar bio-oil does not dissolve in hydrocarbons such as hexane, diesel fuels 

or polyolefins but after hydrogenation, the high molecular weight polar compounds, nitrogenated 

and oxygenated species get convert into low molecular weight hydrocarbons. 

 

2.5.3. ACIDITY OF BIO-OIL 

There are no strong acids, like hydrochloric acid (HCl) or sulfuric acid (H2SO4) in wood 

pyrolysis oil but still, this bio-oil contains some acids like acetic and formic acid. However, 
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phenolic compounds also increase the acidity of this bio-oil and this acidity can be determined as 

pH.  

 

2.5.4. STABILITY OF BIO-OIL 

Stability is the main factor in fuels. However, bio-oil is thermally and chemically 

unstable or less stable than conventional petroleum fuels because of its high content of reactive 

nitrogen and oxygen-containing species that’s why few hours after distillation it changes its 

color, which means that bio-oil is also highly reactive to oxygen present in the air. But by using a 

little amount of hydroquinone we can stop or reduce this phenomenon or we should store bio-oil 

at a very low temperature like 0 to -5 oC to reduce its reactivity98. 

 

2.6. FORMULATIONOF BIO-OIL 

Bio-oil is very viscous, highly acidic and does not ignite easily as it contains a substantial 

amount of structural water. To circumvent these problems pyrolytic bio-oil was formulated with 

petroleum fuel. 

The fuel properties such as heating values, cetane number, viscosity and corrosivity were 

characterized and the heating value of centrifuged bio-oil was about one third of that of diesel, 

reducing the heating values of formulation accordingly. Formulation viscosities, particularly in 

the 10 – 20% bio-oil concentration range, are substantially lower than the viscosity of bio-oil 

itself, making these products very easy to handle99. In order to promote the application of bio-oil 

as a combustion fuel, formulation was performed as a feasible method to upgrade the bio-oil. 

They demonstrated that formulation was a cheaper and convenient method for utilization of bio-

oil.  



Page 52 of 115 
 

Without any surfactants, pyrolysis oils can be formulated with diesel fuels. The bio-oil 

formulations fuels using bio-oil and 0# diesel by power ultrasound. The effects of treating time 

and ultrasound power on the stability of the emulsion fuels were studied. The results indicated 

that the formulations fuels with a stable time as long as 35 h could be obtained under ultrasound 

power of 80 W with a treating time of 3 minutes 22.  

The combustion characteristics of a blended fuel of bio-oil and diesel with different 

proportion of the two fuels using a numerical simulation method were investigated. The factors, 

such as combustion components distribution, ignition delay, and temperature distribution in the 

combustor were studied.  

The lubricity of the bio-oil/diesel fuel using a High-Frequency Reciprocating Test Rig 

(HFRR) also studied. It is found that the lubrication ability of the bio-oil/diesel fuel was better 

compared with the conventional diesel fuel (number zero). The bio-oil formulations with 

different percentages of diesel oil were conducted and evaluated the lubrication properties of oil 

samples using a four-ball tester. It is found that several properties, such as friction-reduction, 

anti-wear, and extreme pressure were better. The difference was likely to be caused by the use of 

the different device in their experiments. Meanwhile, increasing content of the bio-oil in the 

formulations could promote the lubrication ability of the formulation. Moreover, the solid char 

particles in the pyrolysis bio-oil could enhance its lubrication performance.  

An attempt was made in 2011, to use modified bio oil blended with diesel fuel in a single 

cylinder, four stroke, air cooled, DI diesel engine. The performance and exhaust emissions such 

as unburned hydrocarbons [UBHC], carbon monoxide [CO], carbon-di-oxide [CO2] and nitric 

oxide [NO] were measured from the diesel engine at different power outputs. The performance 

and exhaust emissions were studied from the engine with three different pyrolysis oil based fuels 
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such as pyrolysis oil diesel emulsion, and two pyrolysis oil diesel emulsions with addition of 2% 

and 4% diethylether. The results were compared with the diesel fuel data analyse. It is observed 

from the results that there was an increase in the brake thermal efficiency. The NO and HC 

emissions were lower with only pyrolysis oil diesel emulsion. For the other formulations the HC 

and NO emissions were higher than diesel fuel operation100.  

The effect of biomass pyrolysis oil on the formulation of diesel fuels was studied. It was 

analyzed that parameters like, ignition delay time, emission of particulate matter and unburned 

hydrocarbons, and specific fuel consumption. The fraction of pyrolysis oil used as fuel was 

obtained by vacuum distillation at 80 − 240 °C. The use of this fraction resulted in a decrease in 

the ignition delay time in the combustion process, with the resulting increase in the cetane 

number due to the presence of phenolic groups in the pyrolysis oil, which modify the formation 

mechanism of peroxyl radicals by altering the temperature of the flame front. Additionally, it 

was reported that particulate matter emissions are reduced significantly by up to 30% when 

compared with the base fuel. Their results indicated the promising potential of bio-oil for use in 

the formulation of diesel fuel, decreasing ignition delay and increasing the cetane number, as 

well as significantly reducing particulate matter emissions110.  
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                                      3. EXPERIMENTAL 

3.1: MATERIALS AND METHODS 

The bio-oil was obtained by pyrolysis of a mixture of discarded soybean frying oil, CaO 

(calcium oxide), sand and Eucalyptus sawdust. Sand was used for thermal resistance, soybean oil 

was used to make a malleable mixture of biomass as well as a high bio-oil yield while CaO was 

used as a catalyst to increase the bio-oil yield from 48% to 55% (CaO increases the bio-oil yield 

up to 7%) and also to improve biochar quality. The discarded soybean frying oil was mixed with 

the Eucalyptus sawdust after their particle size was reduced to 0.21 mm. Sand was added to this 

mixture to produce a malleable mass that could be moulded into cylindrical samples (50 mm × 

180 mm). The samples were allowed to dry at room temperature and many pyrolysis experiments 

were performed and many attempts were made to obtain a maximum pyrolysis yield by changing 

the amount of discarded soybean frying oil, sand and CaO in the mixture. Sawdust, CaO and 

sand were mixed to discarded soybean frying oil with different ratios and mixed well before 

pyrolysis. After preparation, the mixture was subjected to pyrolysis where the temperature of the 

pyrolysis system was changed in every experiment to discover a proper temperature for a 

maximum pyrolysis yield. The flow of hydrogen gas was kept 100 mL min-1.  

In all experiments, CaO was mixed to discarded soybean frying oil with different ratios 

(by mass) before pyrolysis and then Eucalyptus sawdust was added to the same mixture and sand 

was also added to those mixtures by different ratios and mixed well. The pyrolysis temperature 

was initiated at 250C in all experiments and then increased up to 600 0C, 700 oC, 850 oC and 900 

oC at different heating rates of 10 0C min-1, 15 0C min-1 and 20 0C min-1. The pyrolysis yields in 

all experiments are given below in Table I. 
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              Table I. Changes in the pyrolysis yields at different temperatures 

NO Weight of the 

sample (grams) 

Temperature 

(0C) 

Bio-oil 

(%) 

Uncondensable 

Gas (%) 

Residues 

(%) 

Water 

fraction 

(%) 

1 300 600  30 27 25 11 

2 300 700  36 35 24 10 

3 300 850  55 17 20 10 

4 300 900 42 37 23 9 

  

In the first pyrolysis experiment, CaO was mixed to discarded soybean frying oil 10% 

and 30% (by mass) respectively before pyrolysis and 50% Eucalyptus sawdust (by mass) was 

added to the same mixture and 10% sand was also added to this mixture and mixed well. The 

pyrolysis temperature was initiated at 25 0C and increased up to 600 0C at a heating rate of 10 0C 

min-1 where the pyrolysis yield was only 30%, which was not a good yield, and we also 

observed a blockage of the system at such a low temperature and slow heating rate, therefore the 

temperature, heating rate, catalyst, and biomass ratios were changed in next pyrolysis 

experiment. 

 In the second case CaO was mixed to discarded soybean frying oil 15% and 25% (by 

mass) respectively before pyrolysis and 50% Eucalyptus sawdust was added to the same mixture 

and 10% sand was also added to this mixture and mixed well. In this case, the pyrolysis 

temperature was initiated at 25 0C and increased up to 700 0C at a heating rate of 15 0C min-1. In 

this pyrolysis experiment, the pyrolysis yield was only 36%, and there was also an abundance of 
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incondensible gases and residues, which was also not a good yield, therefore, the temperature, 

heating rate, biomass, and catalyst amount, were changed in the third experiment. 

In the third pyrolysis experiment, CaO was mixed to discarded soybean frying oil 25% 

and 25% (by mass) respectively before pyrolysis and 50% Eucalyptus sawdust was added to the 

same mixture and 5% sand was also added to this mixture and mixed well. In this case, the 

pyrolysis temperature was initiated at 25 0C and increased up to 850 0C at a heating rate of 20 0C 

min-1 where the pyrolysis yield was 55% and there was a little appearance of incondensable 

gases and residues. Although 55% bio-oil yield is enough in the case of wood pyrolysis, 

anyhow, another pyrolysis experiment was done comparatively at a high temperature and 

different biomass and catalyst ratios only for the sake curiosity. 

In the fourth  pyrolysis experiment CaO was mixed to discarded soybean frying oil 20% 

and 20% (by mass) respectively before pyrolysis and 50% Eucalyptus sawdust was added to the 

same mixture by and 10% sand was also added to this mixture and mixed well. In this case, the 

pyrolysis temperature was kept at 25 0C and increased up to 900 0C at a heating rate of 25 0C 

min-1 where the pyrolysis yield was only 42% and there was a high appearance of incondensable 

gases and blockage of the system were observed due to high temperature and high heating rate. 

Therefore, we concluded that at a very low or very high temperature the blockage of the system 

occurs and the third pyrolysis experiment was considered as best one, where the bio-oil yield 

was 55%. 
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   3.2. PRODUCTION OF LFP AND HFP 

 The biomass sample was kept inside a stainless steel reactor of pyrolysis system which 

was connected to two condensers as shown in Figure 1. The temperature of the reactor which had 

biomass was increased from 25 ºC to 850 ºC with the help of electric heater and temperature 

controller cabinet. In this system, biomass was converted to biogas and the biogas was condensed 

to bio-oil. The condensed bio-oil fractions were collected from both condensers, the water 

contents were removed by simple separatory flask and subjected to atmospheric distillation, 

where two fractions were obtained at the temperature range of 80−160 oC (LFP) and 160−240 oC 

(HFP). These two fractions were subjected to hydrogenation after TGA, GC-MS, NMR and FTIR 

analysis.  

3.3. PRODUCTION OF LFH AND HFH 

 Hydrogenation was performed for the LFP and HFP in the presence of NiMo as a 

catalyst. NiMo was used as a catalyst because it is easily available and more suitable and 

productive for hydrogenation of bio-oil as compared to other catalysts like cobalt-molybdenum 

and nickel phosphide ect.25 During hydrogenation, relatively lower temperature and pumping 

pressure were used as compare to pyrolysis. After hydrogenation, more two fractions were 

separated at the same range of temperature 80−160 oC (LFH) and 160−240 oC (HFH) through 

atmospheric distillation. Both fractions were subjected to TGA, GC/MS, NMR and FTIR 

analysis. Other important analyses like density, viscosity, flash point, freezing point and enthalpy 

of combustion were also performed and compared with aviation and diesel fuels. 
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  Figure 1. Schematic diagram of biomass pyrolysis system 

3.4. CHARACTERIZATION OF LFP, HFP, LFH, AND HFH 

 The bio-oil was produced in a fixed bed reactor from a mixture of discarded soybean 

frying oil, calcium oxide, and Eucalyptus sawdust, applying a heating rate of 20 °C min-1 from 

room temperature to 850 °C. The bio-oil thus produced was separated from the water and 

fractionated by atmospheric distillation between 80 and 240 °C in two fractions, the LFP and a 

HFP. Both fractions were subjected to hydrogenation after pyrolysis and fractionated by 

atmospheric distillation between 80 and 240 °C in two fractions, the LFH and a HFH.  

All fractions HFH, LFH, HFP and LFP were characterized by Fourier transform infrared 

spectroscopy (FTIR), proton nuclear magnetic resonance spectroscopy (1H-NMR), Gas 

chromatography–mass spectrometry (GC-MS), and Thermal Gravimetric Analysis (TGA). The 
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infrared spectrums of the both bio-oil fractions were obtained in the form of a film on a 

potassium bromide (KBr) wafer, using an FTIR spectrophotometer (AIM-8800) in the frequency 

range of 4000 − 400 cm−1. A nuclear magnetic resonance (NMR) analysis was performed in 

deuterated chloroform, using a Varian VRMN-300 MHz spectrometer. TGA analysis was 

performed with gas used ultra-pure Nitrogen 100 mL min-1, a device used was SDT Q600 from 

TA Instruments, and type of crucible was Alumina.  

The bio-oil composition was also determined by gas chromatography with mass 

spectrometric detection (GC-MS), using a GC Agilent series 6890 with an Agilent mass selective 

detector of series 5973, a capillary polar wax column, polyethylene glycol (PEG)-coated (length 

of 30 m, internal diameter of 0.25 mm, and film thickness of 0.25 μm). Chromatographic 

conditions were: Injection volume of 0.2 μL, oven at 40 °C min-1 6 °C min−1 up to 300 °C (10 oC 

min-1) split mode with a ratio of 100:1 and injection temperature of 290°C. Time taken was 54 

minutes, He (helium) as a carrier gas with a flow rate of 2.9 mL min−1. Library Wiley and NIST 

were used for identification of compounds based on probability score and each compound was 

detected very clearly and with a high probability value and a mixture of standards of linear 

hydrocarbons was used to calculate the compound Retention Index.  

The bomb calorimeter (VEB Vereinigte Babelsberger App-Nr. 081036) was used to 

determine the enthalpy of combustion by measuring the temperature variation resulting from the 

heat transfer caused by the combustion reaction. For this purpose, the bio-oil to be analysed was 

burned in the presence of excess oxygen in an adiabatic calorimeter. The calorimeter is 

equipment used to determine the enthalpy of combustion by measuring the temperature variation 

resulting from the heat transfer caused by the combustion reaction. For this, the samples of bio-

oil fractions to be analyzed were burned in the presence of oxygen in an adiabatic calorimeter. 
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For burning, the samples were placed in a hermetically sealed calorimetric pump and in contact 

with a conductive wire through which electric current passes which promoted the burning of the 

sample after the activation of the ignition source. To ensure the material burns, after purging 

with O2, the system is subjected to 30 bars of the same gas. The calorimetric pump is submerged 

in water so that the energy generated during the combustion was transferred to it. In order to 

minimize thermal losses, the system is enveloped by an air layer that provides insulation, making 

the system adiabatic. Figure 2 illustrates this phenomenon. 

 After assembling the system, in order to optimize the transfer of energy, the agitation is 

activated. However, it was necessary to check the temperature change due to the transfer of 

mechanical energy to the system, accompanying the stabilization of the temperature for 5 

minutes. After this procedure, ignition is given, which promoted the flow of electric current by 

the resistance and consequently it's burning. The temperature change is monitored during the 

next 15 minutes to verify the variation of this as a result of the combustion reaction.  

 

 

      Figure 2. Calorimeter used for the determination of enthalpy of combustion 
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 A simple freezing point determination method and system were used to determine 

freezing point of bio-oil. Liquid nitrogen is used to determine the freezing point of all samples. A 

Hofmann bottle, liquid nitrogen, thermocouple, air cylinder and a computer system were 

connected to determine the freezing point as shown in Figure 3. The air was passed from liquid 

nitrogen to carry and pass liquid nitrogen in the Hofmann bottle which had bio-oil. After passing 

the liquid N2 from bio-oil, the air gets eliminate from Hofmann bottle and more cold air (liquid 

nitrogen) was entering to Hofmann bottle. This cycle was continuous until the temperature 

reaches to a point where the bio-oil starts freezing because the liquid nitrogen possesses a very 

low temperature.  

 

 

                               

      Figure 3. Schematic diagram of freezing point determination system 
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 The flash point of LFP, HFP, LFH, HFH, DF and AF was determined by simple open 

cup method with the help of a heater, water bath, thermometer, gas ignition flame and a sample 

in a little bottle, as shown in Figure 4. The sample was kept in the bath and the temperature was 

increased from 25 oC. At every degree Celsius the flash point was checked by gas ignition flame 

and here also the same method was repeated three times for each sample. The flash points all 

fractions were discovered according to standard ASTM D56.  

  

 

      Figure 4. Open cup method diagram for determination of flash point   

 

 A simple atmospheric distillation as shown in Figure 5 was performed with the help of a 

heater, a distillation flask, a condenser, a cooler, a thermometer and a graduated cylinder to 

separate the crude bio-oil into two fractions, a light fraction 80−160 oC and a heavy fraction 

160−240 oC (LFP & HFP) and also to separate hydrogenated bio-oil into two fractions a light 
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fraction 80−160 oC and a heavy fraction 160−240 oC (LFH & HFH). The 10% and 20% 

formulations of HFH and LFH with AF and DF were also distillated to obtain their distillation 

curves. As bio-oil was a mixture of many hundred organic compounds including water, so it was 

not an easy task to distillate it. Although the water fraction was separated by a simple separatory 

funnel but there were still some water molecules inside the crude bio-oil as well as in the 

hydrogenated fractions. Those water molecules were creating problems during distillation. After 

a long struggle the bio-oil was distillated according to ASTM D86 method and distillation curves 

were built for all fractions (LFH, HFH and their formulations) and compared with AF and DF. 

 

 

     Figure 5. A simple fractional distillation system 

 

 



Page 64 of 115 
 

    Ostwald Viscometer, also known as U-tube viscometer or capillary viscometer as shown 

in Figure 6 was used to determine the viscosity of the AF, AD and both bio-oil fractions HFH, 

LFH and their formulation with AF and DF at different temperatures. A bath having 

temperatures of -10 to 100 °C was used to determine the viscosity all fraction at different 

temperatures like -10 oC to 50 oC and then it was extrapolated to -20 oC. 

  The same bath having temperatures of -10 to 100 °C was used to determine the density 

all fraction at different temperatures like -10 oC to 50 oC and then it was extrapolated to -20 oC. 

A simple g/mL method was used to determine the density of bio-oil. A mass (10 gm) of sample 

was taken in test tube and its volume was checked at various temperatures and then the density 

was determined by simple formula m/v. The same method was repeated three times for each 

sample. 

 

 

          

            Figure 6. Ostwald Viscometer 
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4. RESULTS AND DISCUSSIONS 

4.1 GC-MS CHARACTERIZATION OF LFP, HFP, LFH AND HFH  

  All four fractions of bio-oil were analysed by GC-MS (two fractions before 

hydrogenation LFP and HFP and two fractions after hydrogenation LFH and HFH) and the 

resulting compounds are given in ANNEXES 1 and 2, while the main hydrocarbons of the 

respective fractions are presented in ANNEX 3. A total of 72 peaks (only large peaks were 

considered) were identified in each fraction considering a minimum signal-to-noise ratio (S/N). 

The bio-oil composition showed chemical class like alcohols, ketones, ethers, phenols, aromatics 

and aliphatic hydrocarbons and nitrogen compounds. The sample obtained by pyrolysis before 

hydrogenation was composed mainly of ketones and nitrogen compounds, with minor amounts 

of alcohols, ethers, phenols and hydrocarbons. The predominant classes in the samples before 

hydrogenation were oxygen and nitrogen containing compounds: 30% nitrogen and 45% ketone 

compounds. The nitrogen compounds in the bio-oil were due discarded soybean frying oil which 

had proteins after used in restaurants to fry meet or chickens (meet and chickens are sources of 

proteins and protein contains nitrogen in each amino acid)  

 

4.2. 1H-NMR SPECTRAS OF LFP, HFP, LFH, AND HFH  

Figure 7 (a, b, c, d) are representing the 1H-NMR spectrums of HFP, LFP, HFH and LFH 

respectively. In all cases, the same equipment and conditions were used. As the biomass was a 

mixture of two products (wood and soybean) so the NMR data of Figure 7 (a) and (b) showed the 

presence of (uncertainty + 0.2%, according to manufacturer of the equipment) aromatic and 

vinylic hydrogens, indicated by the signals in the region of 5 to 7.5 ppm, as well as of hydrogens 
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bound to oxygenated carbons (CH−O) between 5 and 6 ppm and of hydrogens neighboring 

carbonyl in the region of 1.9 to 2.9 ppm. The intense peaks between 0.7 and 1.5 are typical of 

aliphatic hydrogens. In the NMR data confirm the presence of many groups by the signals in 

region 0 to 8 before hydrogenation.  

Figure 7 (c) and (d) are the 1H-NMR spectrums of the HFH and LFH respectively. 

According to Figure 7 (c) and (d) as there were many hydrocarbons in both fractions after 

hydrogenation that’s why both spectrums are showing very few groups where the hydrocarbons 

are dominant. As the aromatic hydrogens normally have similar chemical shifts and may appear 

as either a broad singlet or complex multiplet in the region of 7 to 8 ppm in Figure 7 (c) and (d) 

after hydrogenation. 
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Figure 7. 1H-NMR spectrums of (a) HFP, (b) LFP, (c) HFH and (d) LFH 

4.3. FTIR SPECTRAS OF LFP, HFP, LFH, AND HFH 

 The FTIR spectrums in Figure 8 (a) and 8 (b) were used to investigate the chemical 

structure of both HFP and LFP (uncertainty + 0.1% according to manufacturer of the equipment). 

Since the pyrolysis oil obtained from the mixture of soybean oil and Eucalyptus sawdust, the 

absorption bands at 1592, 1453, 1414, 1376, 1266, 1165, 991, 745 and 695 cm−1 are characteristic 

of lignocellulosic materials and are consistent with the spectrum of wood before hydrogenation. 
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The absorption bands at around 3000 cm−1 are attributed to the symmetric and asymmetric 

vibration of saturated C-H bonds. The signal at 1704 cm−1 is related to the stretching vibration of 

the C=O bond of compounds derived from the fragmentation of soybean oil triglycerides. The 

absorption band at 1453 cm−1 is associated with the asymmetric deformation of the CH methyl 

and methoxyl groups, while the broadened band at 3367 cm−1 is characteristic of the stretching 

vibration of the OH bond.  

 The FTIR spectrums in Figure 8 (c) and Figure 8 (d) were used to investigate the 

chemical structure of both HFH and LFH.  In Figure 8 (c) the absorption bands around 3000 cm-1 

are attributed to the symmetrical and asymmetrical stretching of the C-H bonds. The peak at 1713 

cm-1 occurs due to the vibrational stretch of the C=O bond. The absorption bands at 1457 cm-1 

refer to the asymmetric deformation of CH of the methyl and methoxyl groups. The absorption 

bands at 1377 and 729 cm-1 are characteristic of lignocellulosic materials. In Figure 8 (d) also the 

absorption bands around 3000 cm-1 are attributed to the symmetrical and asymmetrical stretching 

of the C-H bonds. The peak at 1709 cm-1 occurs due to the vibrational stretch of the C = O bond. 

The absorption bands at 1457 cm-1 refer to the asymmetric deformation of CH of the methyl and 

methoxyl groups. The absorption bands at 1377, 909, 782, 728 and 696 cm-1 are characteristic of 

lignocellulosic materials. In Figure 8 (d) a double bond of an alkene gives C=C stretching at 

1640 cm -1 and we can see that a sharp vibration band near 1500 cm-1 indicates the presence of a 

benzene ring. 
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Figure 8. FTIR spectra of (a) HFP, (b) LFP, (c) HFH and (d) LFH 

 

4.4. TGA THERMOGRAMS OF ALL FRACTIONS OF BIO-OIL 

 Figure 9 (a, b, c, d) are the thermograms of LFP, HFP, LFH and HFH. Figure 9 (a) 

represents the thermogram of the LFP where 96% of the mass is decomposed at temperatures 

below 150 °C (uncertainty + 0.5%, according to manufacturer of the equipment). In this 
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thermogram also presents a material that does not undergo decomposition at temperatures 

between 150 and 300 °C and can be attributed to organic substances of high molecular weight 

(4%). It would not be used as fuel compatible with blends or formulation in petroleum fuels 

checking compatibility issues, miscibility and the main problem is that its thermal stability is 

very low and generates waste of 4%. Because after pyrolysis there are many oxygenated and 

other reactive organic species which boil or ignite very fast but never ignite 100%.  That’s why 

they left 4% of residues after ignition. On other hand,  

Figure 9 (b) is the thermogram of the HFP. Figure 9 (b) shows that most of the mass 

(95%) is decomposed at temperatures below 150 °C like the LFP. In this thermogram also 

presents a material that does not undergo decomposition at temperatures between 150 and 300 °C 

and can be attributed to organic substances of high molecular weight (5%). It would not be used 

as fuel compatible with blends or formulation in petroleum fuels checking compatibility issues, 

miscibility and the main problem is that it generates waste or residues of 5%. Because after 

pyrolysis there are many oxygenated and other reactive organic species which boil or ignite very 

fast but never ignite 100%. That’s why they left 5% of residues after ignition.  

Figure 9 (c) is the thermogram of LFH. There was a 100% augmentation or increase in 

the thermal stability (250−300 oC) of the sample conferred by the hydrogenation reaction. This 

increase is evidenced by the total boiling temperature which goes from 250 to 300 °C. Another 

interesting factor that this graph offers is the low waste or residue content (0.50%). The residues 

of LFH decreased from 4% to 0.50%, which favors the use of this fuel fraction in mixtures with 

diesel fuel. After hydrogenation, the analysis of LFH shows that the process residue or waste has 

a lower value due to the decrease of highly reactive organic compounds and other heavy species 

that do not ignite 100% as showed in the both fraction before hydrogenation.  
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In Figure 9 (d) is the thermogram of the HFH and there is also almost the same increase 

in the thermal stability of the sample conferred by the hydrogenation reaction. There was also a 

100% augmentation in the thermal stability (250−300 oC) of the sample conferred by the 

hydrogenation reaction. This increase is evidenced by the total boiling temperature which 

increases from 250 to 300 °C. Another interesting factor that this graph offers is the lowest 

amount of waste or residue contents decreased from 5% to 0.53%, which favors the use of this 

fuel fraction in mixtures with aviation fuels. The thermograms after hydrogenation show that the 

process residue has a lower value due to the non-existence of highly reactive organic 

compounds. Because after hydrogenation, almost all oxygenated, nitrogenated and other reactive 

species have converted into hydrocarbons or lower molecular weight stable compounds. 
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  Figure 9. TGA thermograms of (a) HFP, (b) LFP, (c) HFH and (d) LFH 

4.5. THE CALORIFIC VALUE OR ENTHALPY OF COMBUSTION AF, DF, LFH AND 

HFH 

 The calorific value (enthalpy of combustion or energy value or heating value) of a 

substance, usually a fuel or food, is the amount of heat released during the complete combustion 

of a specified amount of it. The calorific value is a characteristic for each substance. It is 

measured in units of energy per unit of the substance, usually mass, such as: kJ g-1, MJ kg-1 kJ 

mol-1, kcal kg-1. Calorific value is commonly determined by use of a bomb calorimeter.  



Page 73 of 115 
 

The calorific values of LFP, HFP, LFH, HFH, DF and AF were checked with help of 

bomb calorimeter (uncertainty + 0.1% according to manufacturer of the equipment) in laboratory 

and compared with to standard ASTM values of DF and AF. The calorific values of the LFP and 

HFP were 36.50 MJ kg-1 and 37.10 MJ kg-1 respectively. After hydrogenation the calorific values 

of LFH and HFH increased to 44.22 MJ kg-1 and 44.20 MJ kg-1 respectively, which make a 

17.07% increase in the calorific value of LFH and 16.06% increase in the calorific value of HFH.   

The calorific values of LFH and HFH were approximately the same as that of diesel fuels and 

aviation fuels. The LFH has a calorific value 44.22 MJ kg-1 and diesel fuel has a calorific value 

44.31 MJ kg-1 while the HFH has a calorific value 44.20 MJ kg-1 and aviation fuels has a calorific 

value 43.35 MJ kg-1.  While according to ASTM the calorific value of AF and DF are 43.28 MJ 

kg-1 and 44.80 respectively. 

 

4.6. FREEZING POINT OF LFH, HFH AND AF, DF 

 Table II represents the freezing point values for the base fuels (AF and DF) and the 

fractions (HFH and LFH). The freezing point should be low enough to prevent problems of fuel 

flow through lines, filters and valves in the fuel system of both turbines and diesel engines. 

However, this parameter should be stiffer for aviation fuel since the aircraft during flight reaches 

high altitudes and low temperatures. It is observed that the fractions present a freezing point 

within the parameters of quality demanded by the National Petroleum Agency, which establishes 

the value of -40 ºC for the AF and -10 ºC for the DF. 

 According to ASTM D 7153 the freezing point of aviation fuel is -47 and the freezing 

point of diesel fuels is varying from -8 to -18 oC. According to our laboratory tests the freezing 

point of aviation fuel was -48 oC and the freezing point of diesel fuels was -10 oC. There was a 
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little (2.04%) difference in both freezing point tests of aviation fuels and this difference was 

probably due the difference between the equipments. The freezing points of LFH and HFH were -

40 oC and -30 oC respectively.  

 

Table II. Freezing point, flash point, density, viscosity and calorific value of all fractions 

Fractions LFP LFH DF HFP HFH AF 

Freezing point (oC) -30 -30 -10 -40 -40 -48 

Flash point (oC) 75 67 63 77 69 50 

Calorific Value (MJ kg-1) 36.50 44.22 44.80 37.10 44.20 43.35 

Density (g mL-1) at 25 oC 0.8522 0.8329 0.8203 0.8878 0.8525 0.8354 

Viscosity (mm2 s-1) at 25 oC 1.5422 0.8312 0.8410 2.5243 1.8274 1.8484 

  

 

4.7. DENSITY AND VISCOSITY OF LFP, HFP, LFH, HFH, AF AND DF  

 Calorific power and density guarantee that the fuel used produces the necessary energy 

for certain autonomy. Density is an important feature because it is directly linked to the total 

energy content contained in a given mass of fuel. It is particularly useful for empirically 

determining the calorific value when used with other parameters such as the distillation curves 

and the aniline point for calculating the energy content of the fuel. Limiting a fuel density range 

is important for both the design and the proper functioning of the engine. Viscosity is limited to a 

maximum value in order to obtain a minimum loss of pressure in the low temperature flow as 

well as to allow adequate spraying of the fuel in the injector nozzles, enabling better combustion 

conditions. Viscosity can significantly affect the lubricity property of the fuel, and consequently 
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the fuel pump life. Figure 10 shows the experimental curves whose extrapolation allows the 

calculation of the values of the densities, while Figure 11 shows the experimental curves whose 

extrapolation allows the calculation of the viscosity values at -10 ºC, like aviation fuels (a), 

diesel fuels (b) , HFH (c) and the LFH (d). The values of the density and viscosity for AF, DF, 

LFH, HFH and their formulations at room temperature are shown in Table II and the values of 

the density and viscosity for AF, DF, LFH, HFH and their formulations at various temperatures 

(-10 to 50 oC) are shown in ANNEXES 4-10.  

At room temperature (25 oC) the density (uncertainty + 1.20%, according triplicate 

analysis) of LFH decreased from 0.8522 to 0.8329, which makes a 3.10% difference between the 

densities of LFP and LFH, while the density of HFH decreased from 0.8878 to 0.8525, which 

makes a 4% difference between the densities of HFP and HFH. Another hand, the densities of 

LFH and DF are 0.8329 and 8203 respectively, which makes 1.10% of the total difference while 

the densities of HFH and AF are 0.8525 and 0.8354, it makes only 1.19% of the total difference 

between the densities of HFH and AF. 
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   Figure 10. Density change of pure (a) AF, (b) DF, (c) HFH and (d) LFH at different 

temperatures 

  Table II shows the density and viscosity of all fractions like aviation fuels, diesel fuels, 

the LFH and HFH at room temperature. In Table II, we can see that the density and viscosity of 

LFH and HFH are a little lower than aviation fuels and diesel fuels. There are many parameters 

that influence the combustion properties. Density and viscosity are important parameters in 

combustion because these parameters mostly determine the droplet diameter distribution issuing 
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from the injector nozzle, and therefore impact the vaporization, ignition and combustion of the 

droplets. The droplet size from the spray increases the viscosity and density of the liquid. The 

viscosity and density of bio-oil are higher than those of petroleum fuels but by applying certain 

methods like hydrogenation, we can reduce the viscosity and density of bio-oil. That's why we 

can see in the graphs that viscosity the LFH is a little bit lower than diesel fuels and viscosity 

HFH is also a little bit lower than aviation fuels after hydrogenation. The Tables of density and 

viscosity of all pure samples are given in ANNEXES 4-6.  

At room temperature (25 oC) the viscosity (uncertainty + 1.27%, according triplicate 

analysis) of LFH decreased from 1.5422 to 0.8312, which makes 46.15% difference between the 

viscosities of LFP and LFH, while the viscosity of HFH decreased from 2.5243 to 1.8274, which 

makes 37.55% difference between the viscosities of HFP and HFH. Another hand, the viscosities 

of LFH and DF are 0.8312 and 0.8410 respectively, which makes 1.16% of the total difference 

and the viscosities of HFH and AF are 1.8274 and 1.8484, it makes only 1.13% of the total 

difference between the viscosities of HFH and AF.  

 

 

 

 

 

 



Page 78 of 115 
 

 

Figure 11.Viscosity change of pure (a) AF, (b) DF, (c) LFH and (d) HFH at different 

temperatures 

 

4.8. VOLATIZATION 

 The volatility of a fuel is its ability to vaporize at different temperatures and can be 

expressed through distillation and flash point curves, among others. 
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4.8.1 DISTILLATION CURVES OF AF, DF, LFH AND HFH 

 The distillation curve is expressed by means of the temperature as a function of the 

fraction of the distillate volume providing important information regarding the composition 

of the fuel connected to its volatility and the operation of the engine. A distillation curve 

provides: 

IB: The initial boiling point. 

T10: Temperature at which 10% of the sample was distilled. This is linked to the slight 

fractions of the fuel, important for starting the engine. 

T50: Temperature at which 50% of the sample was distilled. This is linked to the average 

fuel fractions, related to the heating and optimal engine operating range. 

FB: Final boiling point. 

T90: temperature at which 90% of the sample was distilled. This is linked to heavier fuel 

fractions, related to engine economy and performance. 

 Figure 12 shows the distillation curves of (a) HFH and (b) AF. It is observed that 

the profile of the distillation curve for the AF and the HFH fraction are similar, but the HFH 

fraction presents a lower PI (160 ºC), meaning the presence of compounds with lower 

volatility than the AF (165 ºC). The HFH fraction has heavier compounds. 

. 
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4.8.1.1. Distillation curves of AF and HFH  

 

 

    Figure 12. Distillation curve of (a) AF and (b) HFH  

 

 Figure 13 shows the distillation curves (a) DF and (b) LFH fraction. According to 

Figure 13, it is observed that the profiles of the distillation curves are similar however the LFH 

fraction presents in all its extension more volatile compounds than the DF.  
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4.8.1.2. Distillation curves of DF and LFH  

 

 

 

  Figure 13. Distillation curve of (a) DF and (b) LFH 

 

4.8.2. FLASH POINT OF LFH, HFH, DF AND AF 

 The flash point limitation is linked to the safety in the transport and handling of the 

product as well as the evaporative losses during storage. It also allows the detection of possible 

contaminations by lighter products. Bio-oil is mostly non-flammable and possesses only limited 

volatility, and ignite only at high temperatures. The flash point of bio-oil is varying from 50- 120 

oC, depending on the chemical composition of bio-oil. Bio-oil contains some light compounds 

that evaporate at low temperatures and may cause a small short-duration flash in the presence of 

air and heat. These compounds include acetaldehyde, acetone and methanol. However, the flash 

is rapidly suppressed by a large amount of evaporated water. The flash points of AF, DF, LFH 
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and HFH are 50 oC, 63 oC, 67 oC and 69 oC respectively and the flash points of formulations are 

very close to pure fuels. 

 

4.9. ENRICHMENT OF HYDROCARBONS IN BIO-OIL AFTER HYDROGENATION  

Figure 14 shows the percentage area of chemical classes for bio-oil (a) before and (b) 

after hydrogenation.   

 Figure 14 (a) shows that there are many nitrogen and oxygen containing compounds in 

the bio-oil before hydrogenation. The main groups are ketones and alcohols. There was 30% 

nitrogen and 45% oxygen containing groups in LFP and HFP. Only a few hydrocarbons were 

detected in LFP and HFP. In HFP there were almost all high molecular weight compounds. Due 

to having these high molecular weight nitrogenated and oxygenated compounds, the bio-oil is 

unstable and difficult to use in engines because the presence of high amounts of nitrogen 

compounds in the composition of bio-oil may lead to the formation of oligomers and increase the 

emission of nitrogen oxide compounds (NOx) during the combustion process. However, the NOx 

emitted during combustion depends not only on the composition of the fuel but also on the mode 

of operation and the design of the burners and of the combustion chamber and on the fuel’s other 

physicochemical characteristics (e.g., its cetane number (CN)). Eucalyptus biomass is composed 

of 38 − 45% cellulose, 16% hemicellulose, 25 − 37% lignin, and 9 − 15% of other organic and 

inorganic compounds. Cellulose is a natural high molecular weight polymer with the generic 

empirical formula of H(C6H10O5)n OH with up to 10,000 monomer units and a molecular weight 

of 1,600,000 a.m.u. Hemicelluloses are formed with copolymers of glucose and a variety of other 

monomers, mainly hydrates of carbon. They are amorphous and have a lower degree of 

polymerization than cellulose. During the process of pyrolysis, these compounds are cracked, 
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producing fractions of lower molecular weight while maintaining some of the characteristics of 

the original compounds.  

After hydrogenation, we can see in Figure 14 (b) that more than 50% of nitrogenated 

species, 65% of oxygenated species and more than 40% of other groups are converted into 

hydrocarbons. More than 30 peaks of hydrocarbons were detected in the HFH. All these 

hydrocarbons have an area of 61% of the whole sample. The hydrocarbons detected in the HFH 

have high molecular weight as compared to hydrocarbons detected in the LFH. The compounds 

detected in both LFH and HFH can be classified into hydrocarbons, alcohols, phenol, ethers, 

aldehydes, ketones, carboxylic acids, and esters as shown in ANNEX 11. Hydrocarbons with C9–

C17 are predominant in with a % area of 55% and 53% in both LFH and HFH respectively. In 

Figure 14 (a) we can see that there were only a few hydrocarbons in the bio-oil before 

hydrogenation which makes only 7% of the total HFP and 5% of the total LFP. These 

hydrocarbons are varying from C11–C15 and 93% of the HFP consists of nitrogenated, 

oxygenated and other reactive compounds before hydrogenation. 

 In Figure 14 (b) we can see that there were also many hydrocarbons in the bio-oil after 

hydrogenation which makes 61% of the total fraction and these hydrocarbons are very from C9 – 

C15 and only 39% of the total fraction of bio-oil consists of nitrogenated, oxygenated and other 

reactive compounds after hydrogenation. We noticed that there were aromatics, aliphatics as well 

as cyclic hydrocarbons in the bio-oil after hydrogenation. Residues and % area of hydrocarbons 

detected in LFP, HFP and LFH, HFH and % area of all groups detected in the LFH and HFH are 

shown in ANNEX 11. 
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  Figure 14. Percentage area of chemical classes of bio-oil (a) before and after (b) hydrogenation 

 

 

4.10. NITROGEN AND OXYGEN CONTENTS OF BIO-OIL AFTER AND BEFORE 

HYDROGENATION 

The nitrogen and oxygen contents of wood pyrolysis bio-oil are 45 – 65% and it is due to 

more than 300 oxygenated compounds that have been identified in the bio-oil. The distribution 

of these compounds depends on the type of biomass and the production process used. In the case 

of Eucalyptus, there was 30% nitrogen and 45% oxygen containing compounds in LFP and HFP. 

But these quantities decreased to 12% and 6% in LFH and HFH respectively. Due to high 
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nitrogen and oxygen contents, the bio-oil possesses different chemical and physical properties 

and behavior from other oils, this result in the difference in the combustion application of bio-oil. 

For example, the oxygen content of the bio-oil helps the combustion due to the lower need for 

combustion air and will also reduce the number of flue gasses generated. 

 

 5. ANALYSIS OF LFH AND HFH AFTER FORMULATIONS WITH DF AND AF  

5.1. DENSITY ALL FRACTIONS AFTER FORMULATION 

 Figure 15 shows the densities of all four samples after formulations, like10% aviation 

fuels (a), 20% aviation fuels (b), 10% diesel fuels (c) and 20% diesel fuels (d). 

   Figure 16 shows that the density of 10% and 20% formulation with aviation fuels are 

closed to the density of pure aviation fuels and the density of 10% and 20% formulations with 

diesel fuels are closed to the density of pure diesel fuels. It was observed that when HFH was 

added to aviation fuels, viscosity decreased and when LFH was added to diesel fuels its viscosity 

increased. The density of all formulated fractions was also checked at a temperature -10 to 50 oC 

and then it was extrapolated up to -20 oC.  The temperature didn’t show a great effect on density 

but when the temperature increased the density decreased. 
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Figure 15. Density change of all formulations (a) 10% AF, (b) 20% AF, (c) 10% DF and (d) 20% DF at 

different temperature 

 

 5.2. VISCOSITY OF ALL FRACTIONS AFTER FORMULATIONS 

 Figure 16 shows the viscosities of all four formulated samples, like 10% aviation fuels 

(a), 20% aviation fuels (c), 10% diesel fuels (b) and 20% diesel fuels (d). Where we can see that 

the viscosity of 10% and 20% formulations with aviation are closed to the viscosity of pure 

aviation fuels and the viscosity of 10% and 20% formulations with diesel fuels are closed to the 
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viscosity of pure diesel fuels. There is a decrease in viscosity in all cases. As the temperature 

increases the viscosity decreases. With the addition of bio-oil, the viscosity increases because 

pure bio-oil has a higher viscosity than the aviation fuels, that’s why formulated fractions have a 

little higher viscosity than pure aviation fuels. The tables of viscosity and density of all 

formulations are given in ANNEXES 7-10. 

 

 

Figure 16. Viscosity change of all formulations (a) 10% AF, (b) 20% AF, (c) 10% DF and (d) 

20% DF at different temperature  
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5.3. DISTILLATION CURVES OF FORMULATIONS AND PURE FRACTIONS 

5.3.1. Distillation curves of pure AF, HFH, 10% HFH and 20% HFH 

 Figure 17 represents the distillation curves of pure HFH (a), pure AF (b), 10% HFH (c) 

and 20% HFH (d) distillation curves. The pure HFH curve is a little different from AF curve, 

anyhow, 10% and 20% HFH curves are a very close and similar to pure AF curve. This means 

that we can make formulations of HFH with AF to use it in an aviation turbine.  

 

 

            Figure 17. Distillation curves of (a) HFH, (b) AF, (c) 10% AF and (d) 20% AF 
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5.3.2. Distillation curves of pure DF, LFH, 10% LFH and 20% LFH 

 Figure 18 illustrates the distillation curves of pure DF (a), pure LFH (b), 10% LFH (c) 

and 20% LFH (d). The pure LFH distillation curve is clearly different from DF curve but 10% 

LFH and 20% LFH distillation curves are a somehow close to DF curve. This means that we can 

make formulations of LFH with DF to use it in a diesel engine. 

 

 

    

   Figure 18. Distillation curves of (a) DF, (b) LFH, (c) 10% DF and (d) 20% DF 
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6. CONCLUSIONS 

    Bio-oil produced by the pyrolysis of agricultural wastes was a complex black sticky 

liquid containing many hundreds of compounds and various groups like alcohol, aldehydes, 

nitrogenated and oxygenated compounds as well as phenol ketones and some hydrocarbons. The 

hydrogenation of pyrolysis oil was performed in the presense of NiMo as a catalyst. 

Hydrogenation is a class of chemical reactions in which the net result is the addition of hydrogen 

to nitrogenated and oxygenated compounds present in bio-oil. NiMo (catalyst) was tested for its 

effect on the pyrolysis products of agricultural wastes (woody biomass). The influence of NiMo 

on improving the quality of bio-oil was investigated and found very promising in terms of 

reduction of lignin derived compounds, organic acids, heavy nitrogen and oxygen containing 

compounds, corrosiveness, and hydrocarbon production.  

 The aim of upgrading was to convert oxygen and nitrogen containing species as well as 

other reactive compounds in bio-oil to hydrocarbons through hydrogenation. Hydrogenation was 

found very useful to improve the quality and stability of bio-oil by decreasing the contents of 

organic acids, aldehydes, nitrogenated, oxygenated as well as other reactive compounds. The 

number of hydrocarbons is increased from 5% to 60% in the LFH and from 7% to 61% in the 

HFH.  

Thus bio-oil can be used (as formulation) as transportation fuels because the important 

physico-chemical properties such as boiling point, freezing point, flash point, viscosity, density, 

the number of lower molecular weight hydrocarbons, distillation curve and enthalpy of 

combustion etc of bio-oil were found very close to petroleum fuels. It was observed that LFH 

can be used with diesel fuel because it has almost the same physico-chemical properties as diesel 

fuels and HFH showed almost the same physico-chemical properties as that of aviation fuels.  
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Important results from different analyses were as follow: 

The GC-MS analysis of bio-oil after and before hydrogenation was completely different. The 

GC-MS results showed 5% hydrocarbons before hydrogenation while more than 60% 

hydrocarbons after hydrogenation. The GC-MS analysis also showed that there were a few 

phenolic compounds before hydrogenation while phenolics also increased (3−7%) after 

hydrogenation.  

The TGA results were also very interesting after hydrogenation. The thermal stability of bio-oil 

was increased 100% after hydrogenation while the number of residues (after a complete burning 

of the sample) was decreased from 4% to 0.53%.   

 

 RESPONSE TO OBJECTİVES: 

1.  It was found that pretreatment had a significant effect on thermal decomposition of wastes    

      biomass. The product yield increases or decreases due to different pretreatments during   

       pyrolysis. 

 

2.   NiMo catalyst had a significant effect on the hydrogenation of the higher molecular weight   

       products of pyrolysis. Hydrogenated bio-oil without NiMo didn’t show a big difference from  

       pyrolysis oil while it was observed that more than 60% heavy compounds were converted   

       in to hydrocarbons when NiMo was used as a catalyst during hydrogenation. 

 

3.    Both fractions of bio-oil (HFH and LFH) were characterized and compared with aviation  

      and diesel fuels. The density, viscosity, freezing point, flash point, distillation curve and  

      enthalpy of combustion of  LFH and HFH were found much closer to diesel and aviation  
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      fuels respectively. 

 

4.   The 10% and 20% formulation of bio-oil with aviation fuels and diesel fuels were also  

      analyzed, studied and compared with pure avaition and diesel fuels. The 10% and 20%   

      formulations of bio-oil showed almost the same physico-chemical properties and   

       characteristics as  pure aviation and diesel fuels. 

 

5.  The concept of upgrading and fuel quality was made easy and cleared to understand in this     

      work. Pyrolysis oil before hydrogenation (upgrading) was found a black viscous and sticky  

     liquid, which was impossible to use for any purpose. But after hydrogenation the same   

     pyrolysis oil was found very clean and less viscous as compared to pyrolysis oil. 

 

6.   Many attempts were made to discover a proper pyrolysis temperature and a proper biomass   

      and catalyst ratio, and finally, a proper pyrolysis temperature (850 oC) and a proper biomass   

      and  catalyst ratio (3:1) was discovered and it was observed that very low or very high   

      temperature can create many problems during pyrolysis. For example, a temperature lower   

      than 600 oC can cause blockage of the pyrolysis system and high amount of residues, and a  

      temperature higher than 900 oC can cause blockage of the pyrolysis system and produce a   

      high amount of uncondensible  gases.  
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ANNEX 1 

Main compounds identified in both fractions of bio-oil before hydrogenation  

Compounds identified in the HFP  

COMPOUNDS NAMES  FORMULAS  COMPOUNDS NAMES  FORMULAS  

H-Pyrrole, 4-ethyl-2,3-dimethyl C6H13N 1-Propyne, 2-bromo- C3H3Br 

5,6,7,8-Tetrahydroindolizine C8H11N Ethanol, 2,4-diethoxy- C6H14O3 

Amino-4-methylpyrrole-3 carbonitrile C6H7N3) 1H-Indole, 2,5-dimethyl- C10H11N 

 Methyl 4-O-methyl-d-arabinoside C6H10OS2 3-O-Methyl-d-glucose C7H14O6 

Diallylmethylsilane C7H14Si Ethanol, 2,2-diethoxy- C6H14O3 

Oxotetrahydrofuran-2-carboxylic acid      C5H6O4 1H-Indole, 2,6-dimethyl- C10H11N 

1-Phospha-1-butyne, 3,3-dimethyl C5H9P Ethanol, 2,2-diethoxy- C6H14O3 

 5,6,7,8-Tetrahydroindolizine C6H11N Furfural C5H4O2 

1H-Indole, 2,3-dihydro- C8H9N 1,3,5-Trisilacyclohexane C3H12Si3 

4-Methylimidazole-5- C6H16N20 Histidine, 1-methyl- C7H11N3O2 

4-Acetonylcycloheptanone C10H1602 4-(Trimethylsilyl) morpholine C7H17NOSi 

Phenol, 4-(2-aminoethyl)- C8H11NO Diethyl-phenylsilane C10H16Si 

1-Propyne, 3-bromo- C3H3Br Tetrahydro-1,3-thiazine-2-thione C4H7NS2 

4-Acetonylcycloheptanone C10H16O2 Ethanol, 2,2-diethoxy- C6H14O3 

1,2-Bis (dimethylphosphino) ethane C6H16P2 4-(Trimethylsilyl) morpholine C7H17NOSi 

Quinoline, 5,6,7,8-tetrahydro- C9H11N 9H-Fluorene, 9-bromo- C13H9Br 

Methyl 4-O-methyl-d-arabinoside C6H14O5 2,3-Anhydro-d-galactosan C6H8O4 

3-Ethoxypropionic acid C6H10O3 Ethanol, 2,2-diethoxy- C6H14O3 

Ethanol, 2,2-diethoxy C6H14O3 Pregna-3,5-dien-9-ol-20-one C21H30O2 

Naphthalene, 1,2,-tetrahydro-1-nonyl-   C19H30 Ethanol, 2,2-diethoxy- C6H14O3 

1,4-Dithiane-1-oxide C4H8OS2 Ethanol, 2,2-diethoxy- C6H14O3 

 3-Oxo-.alpha.-ionol C13H20O2 Glycero-galacto-heptose  C7H14O7 

2,3-Anhydro-d-galactosan C6H8O4 Glycerol-galacto-heptose C7H14O7 

Pregna-3,5-dien-9-ol-20-one C21H30O2 Ethanol, 2,2-diethoxy- C6H14O3 
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Quinoline, 5,6,7,8-tetrahydro- C9H11N Methyl 4-methyl-arabinoside    C7H14O5 

Cyclohexylamine C6H13N Indene,3-dihydro-4-methyl C10H12 

phenol C6H6O 2,5-Diaminotoluene C7H10N2 

pentanone C5H10O Cyclohexanone C6H10O 

Cyclohexenyl-ethanone C8H12O 2,5-Diaminotoluene C7H10N2  

    

Compounds identified in LFP 

COMPOUNDS NAMES 

 

FORMULAS COMPOUNDS NAMES  FORMULAS 

Pentanol C5H12O Cyclohexanone C6H8O 

cyclopentane, methyl ethylidene C8H14 phenol C6H6O 

1-Methyl-2-n-hexylbenzene C13H20 4-methylphenol C7H8O 

pentanone C5H10O Pyrrole C4H5N 

Hexanone C6H12O 3-methylbut-3-enenitrile C5H7N 

1H-Indene, 1-ethylidene- C11H10 Cyclohexylamine C6H13N 

Toluene C6H7 Cyclohexylamine C6H13N 

Benzene, 1-ethyl-3-methyl- C9H12  2,6-Dimethylpiperidine C7H15N 

octanone C8H16O 4-Methylpyridine C6H7N 

Heptanone C7H14O Phenethylamine C8H11N 

Hexenol C6H12O 1,5-Diazabicyclonon-5-ene C7H12N2 

cyclopentanone C5H8O Phenylenediamine C6H8N2 

Cyclohexanone C6H10O 2,5-Diaminotoluene C7H10N2 

endo-Norborneol C7H12O Tetramethylsuccinonitrile C8H12N2 

2-cycloheptenone C7H10O Diallylaminopropionitrile C9H14N2 

Heptanone C7H14O Benzene, (1-methylpentyl)- C12H18 

Acetylcyclohexene C8H12O 1-Aza-bicycloheptan-3-ol C6H11NO 

acetophenone C8H8O Triacetone amine C9H17NO 

cyclohexenyl, ethanone C8H12O 1-Amino-1-cyclopentanemethan C6H13NO 

3,5-Trimethyl-2-cyclohexene-1-one  C9H14O Amino-1-dimethylamin C10H16N2 

cyclohexanone, ethylidene C8H12O Isonipecotonitrile C6H10N2 
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 cyclopentenone, methylene C9H12O 4-Cyanopiperidine C6H10N2 

 indenone, hexahydro C9H12O 4-Methyl-2-propyl-H-imidazole C7H12N2 

ethane, diethoxy C6H14O2 4-methyl-2-propyl-1H-imidazole C7H12N2 

furan methanol C5H6O2 pyridine, propenyl C10H13N  

  

___________________________________________________________________ 
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ANNEX 2 

Main compounds identified in both fractions of bio-oil after hydrogenation  

 Compounds detected in the HFH 

COMPOUNDS NAMES  FORMULAS COMPOUNDS NAMES  FORMULAS 

Benzene, 1-ethyl-3-methyl- C9H12 Benzene, (1-methylbutyl)- C11H16 

Benzene, 1,2,3-trimethyl- C9H12 Azulene C10H8 

1,3-dithio-, S-ethyl ester  C6H10OS2 Indane C9H10 

1H-Pyrrole, 4-ethyl-2,3-dimethyl- C8H13N Dodecane C12H26 

5,6,7,8-Tetrahydroindolizine C8H11N 6-Dodecene C12H24 

3-Decene C10H20 3-Dodecene C12H24 

Benzene, 1,2,3-trimethyl- C9H12 Benzene, hexyl- C12H18 

Benzene, 2-propenyl- C9H10 Benzene, (1-methylpentyl)- C12H18 

Indane C9H10 1,3-Propanedithiol C3H8S2 

11-Dodecen-2-one, 7,7-dimethyl- C14H26O Naphthalene, 1-methyl- C11H10 

Diallylmethylsilane C7H14Si Tridecane C13H28 

5,6,7,8-Tetrahydroindolizine C8H11N 3-Tridecene C13H26 

1H-Indole, 2,3-dihydro- C8H9N Benzene, 2-propenyl- C9H10 

12-Methyl-E,E-2,13-octadecadien-1-ol C19H36O 1H-Indene, 1-ethylidene- C11H10 

1,3-Propanedithiol C3H8S2 Naphthalene, 2-methyl- C11H10 

Undecane C11H24 1-Isopropenylnaphthalene C13H12 

3-Undecene C11H22 Naphthalene, 1-methyl- C11H10 

3-Undecene C11H22 Tetradecane C14H30 

Benzene, 4-ethenyl-1,2-dimethyl- C10H12 3-Tetradecene C14H28 

1,7-Heptane C7 H10  Pentadecane C15H32 

3-Ethoxypropionic acid C5H10O3 Undecenol, 2,10-dimethyl- C13H26O 

Ethanol, 2,2-diethoxy- C6H14O3 camphor C10 H16 O 

Methyl isopropylidene- C9H16O5 3-Ethoxypropionic acid C5H10O3 

Benzene, pentyl- C11H16 Benzene, (1-methylpentyl)- C12H18 
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                               Compounds identified in the LFH 

COMPOUNDS NAMES  FORMULAS COMPOUNDS NAMES  

 

FORMULAS 

2,4-Dimethylstyrene C10H12 Naphthalene, 1,2,3,4-tetrahydro- C10H12 

Undecane C11H24 Benzene, (1-methylbutyl)- C11H16 

3-Undecene C11H22 furan methanol C5H6O2 

3-Undecene C11H22 Cyclohexanone C6H8O 

cyclopentane, methyl ethylidene C8H14 phenol C6H6O 

1-Methyl-2-n-hexylbenzene C13H20 Benzene, 2-propenyl- C9H10 

pentanone C5H10O Indane C9H10 

Hexanone C6H12O Indene C9H8 

1H-Indene, 1-ethylidene- C11H10 Benzene, butyl- C10H14 

Toluene C6H7 Cyclohexylamine C6H13N 

Benzene, 1-ethyl-3-methyl- C9H12 Naphthalene, 1-methyl- C11H10 

octanone C8H16O Tridecane C13H28 

Benzene, hexyl- C12H18 Benzene, (1-methylpentyl)- C12H18 

Benzene, (1-methylpentyl)- C12H18 Naphthalene, 1-methyl- C11H10 

Naphthalene, 1-methyl- C11H10 3-Tridecene C13H26 

Cyclohexanone C6H10O 2,5-Diaminotoluene C7H10N2 

endo-Norborneol C7H12O Tetramethylsuccinonitrile C8H12N2  

Azulene C10H8 Diallylaminopropionitrile C9H14N2 

Dodecane C12H26 octanone C8H16O  

6-Dodecene C12H24 1-Aza-bicycloheptan-3-ol             C6H11NO 

3-Dodecene C12H24 Triacetone amine C9H17NO 

cyclohexenyl, ethanone C8H12O 1-Amino-1-cyclopentanemethan C6H13NO 

3,5-Trimethyl-2-cyclohexene-1-one  C9H14O 2-Amino-1-dimethylamine  C10H16N2 

1H-Indene,2,3-dihydro-4-methyl-    C10H12 Isonipecotonitrile C6H10N2  

Benzene, pentyl- C11H16 4-Cyanopiperidine C6H10N2 

   

___________________________________________________________________ 
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ANNEX 3 

Hydrocarbons identified in both fractions of bio-oil after and before hydrogenation  

Main hydrocarbons detected in LFP 

  

 

 

 

Main hydrocarbons identified in HFP 

NO HYDROCARBONS NAMES  FORMULAS 

1 1H-Indene, 1-ethylidene- C11H10  

2 1-Isopropenylnaphthalene  C13H12  

3 Tetradecane  C14H30  

4 3-Tetradecene  C14H28  

5 Pentadecane  C15H32  

 

Main hydrocarbons detected LFH 

COMPOUNDS NAMES  FORMULAS COMPOUNDS NAMES  FORMULAS 

3-Decene C10H20 Benzene, hexyl- C12H18 

Benzene, 1,2,3-trimethyl- C9H12 Benzene, (1-methylpentyl)- C12H18 

Benzene, 2-propenyl- C9H10 Naphthalene, 1-methyl- C11H10 

Indane C9H10 Tridecane C13H28 

Undecane C11H24 Benzene, (1-methylpentyl)- C12H18 

NO COMPOUNDS NAMES  FORMULAS 

1 3-Dodecene C12H24 

2  3-Dodecene C12H24 

3 2-Tridecene C13H26 

3 Tridecane C13H28 

4 3-Tridecene C13H26 

5  3-Tetradecene C14H28  
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3-Undecene C11H22 Naphthalene, 1-methyl- C11H10 

3-Undecene C11H22 3-Tridecene C13H26 

Benzene,4-ethenyl-1,dimethyl- C10H12 1H-Indene, 1-ethylidene- C11H10 

Naphthalene,1,2,3,4-tetrahydro- C10H12 Naphthalene, 2-methyl- C11H10 

Benzene, (1-methylbutyl)- C11H16 1-Isopropenylnaphthalene C13H12 

Azulene C10H8 Tetradecane C14H30 

Dodecane C12H26 3-Tetradecene C14H28 

6-Dodecene C12H24 Pentadecane C15H32 

   

                    Main hydrocarbons identified in HFH 

HYDROCARBONS NAMES FORMULAS HYDROCARBONS  FORMULAS 

2,4-Dimethylstyrene C10H12 3-Dodecene C12H24 

Undecane C11H24 Benzene, hexyl- C12H18 

3-Undecene C11H22 Benzene, (1-methylpentyl)- C12H18 

3-Undecene C11H22 Naphthalene, 1-methyl- C11H10 

Benzene, 4-ethenyl-1,2-dimethyl C10H12 Benzene, 2-propenyl- C9H10 

1H-Indene, 2,3-dihydro-4-methyl- C10H12 Indane C9H10 

Benzene, pentyl- C11H16 Indene C9H8 

Naphthalene, 1,2,3,4-tetrahydro- C10H12 Benzene, butyl- C10H14 

 Benzene, (1-methylbutyl)- C11H16 Naphthalene, 1-methyl- C11H10 

Azulene C10H8 Tridecane C13H28 

Dodecane C12H26 Benzene, (1-methylpentyl)- C12H18 

6-Dodecene C12H24 Naphthalene, 1-methyl- C11H10 

 

_____________________________________________________________________________ 
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ANNEX 4 

Change in density of LFH and HFH at different temperatures 

 

Change in density of LFH at different temperatures 

T(oC) volume (mL) mass (g)  ρ (g mL-1) T (K) 1/K ln ρ 

-10 11.721 10 0.8531 263 0.003802 -0.156719 

0 11.811 10 0.8466 273 0.003663 -0.164128 

10       11.884 10 0.8414 283 0.003534 -0.17067 

20 11.916 10 0.8392 293 0.003413 -0.17877 

30 11.949 10 0.8368 303 0.003311 -0.18428 

40 11.984  10 0.8344 313 0.003195 -0.18983 

50 12.094 10 0.8271 323 0.003096 -0.19468 

 

Change in density of HFH at different temperatures 

T (°C) volume (mL)  mass (g) ρ (g mL-1) T (K) 1/K ln ρ  

-10 11.290 10 0.8857 263 0.003802 -0.11241 

  0 11.362 10 0.8801 273 0.003663 -0.11565 

10 11.410 10 0.8764 283 0.003534 -0.11866 

20 11.452 10 0.8656 293 0.003413 -0.12155 

30 11.792 10 0.8480 303 0.003323 -0.12451 

40 11.885 10 0.8413 313 0.003195 -0.12729 

50 11.910  10 0.8396 323 0.003096 -0.12896 

 _____________________________________________________________________________ 
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ANNEX 5 

Change in viscosity of LFH and HFH at different temperatures 

Change in viscosity of LFH at different temperatures 

  

T(oC) Time (s) T (K) 1/K η (mm2/s) ln η 

-10 270 263 0.003802 2.6722 1.057790294 

0 239 273 0.003663 2.1032 0.741937345 

10 219 283 0.003534 1.6531 0.500775288 

20 183 293 0.003413 0.9673 -0.03303985 

30 175 303 0.003311 0.8523 -0.18464425 

40 161 313 0.003195 0.8273 -0.18982967 

50 156 323 0.003096 0.7223 -0.19479908 

 

Change in viscosity of HFH at different temperatures  

T (°C) Time (s)  η (mm2/s)  T (K) 1/K ln η  

-10 370 4.4228 263 0.003802 1.48678327 

0 330 3.3433 273 0.003663 1.20697436 

10 286 2.5681 283 0.003534 0.94780622 

20 243 2.0375 293 0.003413 0.711723572 

30 205 1.7557 303 0.003321 0.50512943 

40 171 0.8634 313 0.003195 0.21026093 

50 149 0.8001 323 0.003096 0.09540108 

  _____________________________________________________________________________ 
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ANNEX 6 

             Change in viscosity of pure DF and AF at different temperatures 

                         Change in viscosity of DF at different temperatures  

T (oC) Time (s) T (K) η (mm2/s) 1/K ln n 

-10 245 263 2.5724 0.003802 0.944839 

0 215 273 1.9736 0.003663 0.679859 

10 191 283 1.5533 0.003534 0.440382 

20 173 293 0.9578 0.003413 -0.04312 

30 162 303 0.8427 0.003301 -0.17114 

40 141 313 0.8179 0.003195 -0.20102 

50 131 323 0.7128 0.003096 -0.33855 

 

                                 Change in viscosity of AF at different temperatures  

T(oC) 1/K T(K) Time (s) η (mm2/s)  ln (visc) 

-10 0.003802 263 179 4.618 1.529962 

0 0.003663 273 135 3.9771 1.380553 

10 0.003534 283 119 3.2171 1.16848 

20 0.003425 293 102 2.4484 0.895435 

30 0.003321 303 86 1.8484 0.61432 

40 0.003195 313 77 1.0934 0.089292 

50 0.003096 323 70 0.8678 -0.14179 

    

_________________________________________________________________________ 
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                                                          ANNEX 7 

Change in viscosity of AF with 10% and 20% HFH (mixture) at different temperatures 

Change in viscosity of AF with 10% HFH (mixture) at different temperatures 

T(oC) Time (s) 1/K T(K) η (mm2/s) Lnη 

-10 309 0.003802 263 4.521 1.508733 

0 259 0.003759 273 3.8743 1.354365 

10 236 0.003731 283 3.1976 1.162401 

20 208 0.003704 293 2.4789 0.907815 

30 188 0.003663 303 1.7487 0.558873 

40 175 0.003597 313 1.0838 0.080473 

50 152 0.003534 323 0.8575 -0.15373 

 

            Change in viscosity of AF with 20% HFH (mixture) at different temperatures 

T(oC) Time (s) 1/K T(K) η (mm2/s) Lnη 

-10 299 0.003802 263 4.5113 1.506585 

0 250 0.003759 273 3.8549 1.349345 

10 226 0.003731 283 3.1771 1.155969 

20 199 0.003704 293 2.4581 0.899389 

30 185 0.003663 303 1.7389 0.553253 

40 171 0.003597 313 1.0737 0.071111 

50 150 0.003534 323 0.8478 -0.16511 

 ______________________________________________________________________________ 
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ANNEX 8 

              Change in density of AF with 10% and 20% HFH at different temperatures 

                     Change in density of AF with 10% HFH at different temperatures 

T (°C) volume (mL) mass(g)  ρ (g mL-1) T (K) 1/K ln p 

-10 11.655 10 0.8580 263 0.0038023 -0.15154 

0 11.774 10 0.8493 273 0.003663 -0.17207 

10 11.980 10 0.8347 283 0.003534 -0.19109 

20 12.143 10 0.8235 293 0.003413 -0.20892 

30 12.481 10 0.8011 303 0.003311 -0.22558 

40 12.771 10 0.7830 313 0.003195 -0.24106 

50 12.965 10 0.7713 323 0.003096 -0.25565 

 

                   Change in density of AF with 20% HFH at different temperatures 

T (°C) volume (mL)  mass (g) ρ (gmL-1) T (K) 1/K ln ρ 

-10 11.330 10 0.8844 263 0.003802 -0.12277 

 0 11.572 10 0.8641 273 0.003663 -0.14303 

10 11.965 10 0.8357 283 0.003534 -0.19237 

20 12.277 10 0.8145 293 0.003413 -0.21035 

30 12.632 10 0.7981 303 0.003321 -0.22552 

40 12.823 10 0.7861 313 0.003195 -0.24067 

50 12.956 10 0.7718 323 0.003096 -0.25373 

 

____________________________________________________________________________ 
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    ANNEX 9 

           Change in viscosity of DF with 10% and 20% LFH at different temperatures 

           Change in viscosity of DF with 10%  LFH at different temperatures 

T(oC) Time (s) η (mm2/s)  T (K) 1/K ln η 

-10 270 2.5929 263 0.003802 0.952777 

0 240 1.9938 273 0.003601 0.690042 

10 206 1.5637 283 0.003532 0.447055 

20 183 0.9598 293 0.003411 -0.04103 

30 165 0.8469 303 0.003313 -0.16617 

40 151 0.8199 313 0.003221 -0.19857 

50 134 0.7168 323 0.003121 -0.33296 

       

              Change in viscosity of DF and 20% LFH at different temperatures 

T (°C) Time (s) η (mm2/s)  T (K) 1/K ln η 

-10 279 2.6121 263 0.003802 0.960154 

0 251 1.9999 273 0.003663 0.693097 

10 211 1.5777 283 0.003534 0.455968 

20 187 0.9599 293 0.003413 -0.04093 

30 169 0.8481 303 0.003321 -0.16476 

40 155 0.8214 313 0.003195 -0.19675 

50 141 0.7193 323 0.003096 -0.32948 

 

______________________________________________________________________________ 
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ANNEX 10 

             Change in density of DF with 10% and 20% LFH at different temperatures 

                     Change in density of DF with 10% LFH at different temperatures 

T (°C) volume (mL) mass (g)  ρ (g mL-1) T (K) 1/K ln P 

 

 

-10 11.852 10 0.8437 263 0.003802 -0.157544 

0 11.941 10 0.8374 273 0.003534 -0.178743 

10 12.021 10 0.8318 282 0.003413 -0.188542 

20 12.132 10 0.8242 293 0.003300 -0.198329 

30 12.212 10 0.8188 303 0.003195 -0.204813 

40 12.293 10 0.8134 313 0.003096 -0.213193 

50 12.346 10 0.8099 323 0.003003 -0.223019 

  

                    Change in density of DF with 20% LFH at different temperatures 

T (°C) volume (mL)  mass (g) ρ (g mL-1)  T (K) 1/K Ln P 

-10 11.780 10 0.8486 263 0.003802 -0.145882 

0 11.953 10 0.8366 273 0.003534 -0.175545 

10 12.011 10 0.8325 282 0.003413 -0.186209 

20 12.135 10 0.8240 293 0.003312 -0.192372 

30 12.221 10 0.8182 303 0.003195 -0.201382 

40 12.411 10 0.8057 313 0.003096 -0.219152 

50 12.585 10 0.7945 323 0.003003 -0.227277 

______________________________________________________________________________ 
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ANNEX 11 

                    Percent area of all groups present in bio-oil before and after hydrogenation 

Groups % Area before hydrogenation % Area after hydrogenation 

Alcohols 10.93 5.89 

Aldehydes 0 0.45 

Ketones 45 12 

Ethers 6.26 3 

Esters 0 0 

Phenols 2.85 7.80 

Nitrogenous 30 6 

Aromatics hydrocarbons 0.24 25.24 

Cyclic hydrocarbons 3.09 16.42 

Aliphatic hydrocarbons 0 21.84 

  

 

           Percent area of hydrocarbons and residues identified after and before hydrogenation 

Fractions Hydrocarbons detected 

before hydrogenation (%) 

Hydrocarbons detected 

after hydrogenation (%) 

% Residues after 

hydrogenation 

Light (80-160 oC)            7        60 16 

Heavy (160-240 oC)            5        61 15 

        

______________________________________________________________________________ 
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