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We study, using Density Functional theory (DFT) and Monte Carlo simulations, aqueous electrolyte
solutions between charged infinite planar surfaces, in contact with a bulk salt reservoir. In agreement
with recent experimental observations [Z. Luo et al., Nat. Commun. 6, 6358 (2015)], we find that
the confined electrolyte lacks local charge neutrality. We show that a DFT based on a bulk-HNC
expansion properly accounts for strong electrostatic correlations and allows us to accurately calculate
the ionic density profiles between the charged surfaces, even for electrolytes containing trivalent
counterions. The DFT allows us to explore the degree of local charge neutrality violation, as a function
of plate separation and bulk electrolyte concentration, and to accurately calculate the interaction force
between the charged surfaces. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4962198]

I. INTRODUCTION

In physics, as well as in chemistry, one often
finds situations in which electrolyte is confined between
charged surfaces. These surfaces may belong to electrodes,
macromolecules, charged colloidal particles, polymers, etc.,
and can give rise to complex ionic distributions generally
known as Electrical Double Layers (EDLs). Presence of
electrolyte between charged surfaces strongly affects their
interaction and can lead to fascinating phenomena such
as like-charge attraction1–3 and charge reversal.4,5 The
interaction between EDLs is fundamental for understanding
colloidal stability and efficient energy storage.1,6 Electrolytes
confined by porous walls show promising application as
supercapacitors, since carbon-based electrodes are known to
increase the storage performance of these devices due to their
high specific surface area.7 The porosity brings about strong
ionic confinement within the nano-sized pores. Despite intense
exploration, many questions are yet to be elucidated regarding
the behavior of strongly correlated Coulomb systems in a
confined environment.7

From a theoretical perspective, the earliest attempts to
describe the properties of electrolytes in a close vicinity of
charged surfaces go back to the pioneering work of Gouy,
Chapman, and Stern (GCS).8–10 In the original approach,
the double layer structure was described as a thin layer of
counterions, condensed onto a charged surface — the so-called
Stern-layer — followed by a diffuse region in which ionic
distributions rapidly decayed to their bulk values.7 This simple
picture was based on the mean-field Poisson-Boltzmann (PB)
theory. It provided a clear physical explanation for a number of
interesting phenomena inherent to electrical double layers —
ranging from the charge renormalization of charged
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surfaces1,11 to the capacitance of simple electrodes.7,12 For
this reason, the GCS theory has remained very popular in both
electrochemistry and biophysics literature.12 Care, however, is
required when extrapolating this simple picture to the case of
strongly correlated electrolytes — such as aqueous electrolytes
made of multivalent ions, organic electrolytes, or ionic liquids.
In these cases, the structure of the EDL is dominated by ionic
correlations,13 giving rise to complex phenomena such as
charge reversal in multivalent ionic electrolytes and layering
in ionic liquids.14 Even in situations of low electrostatic
couplings, the packing effects in strongly confined electrolytes
can alone be responsible for oscillatory profiles which cannot
be captured at a mean-field level of GCS theory.15

Over the last decades, a number of different approaches
have been put forward to quantitatively describe the ionic
correlations in EDLs beyond the mean-field theory.16 A great
progress has been achieved with computer simulations, in
part due to rapidly increasing computational power, but also
because of the development of new techniques which allow
to efficiently handle the long-range Coulomb interactions in
slab geometry.17–19 The theoretical advances have relied on
extending the integral equation (IE) methods developed for
bulk systems20–23 to inhomogeneous ones,24–28 as well as to
interacting EDLs.29–32 Other approaches explored Modified
Poisson-Boltzmann (MPB) equation33–35 and a classical
Density Functional Theory (DFT).36 The main advantage
of using DFT is that various contributions to free energy
can be handled separately, allowing distinct approximations
in their calculations. For instance, it is well known that the
excluded volume interactions can be described to a very high
degree of accuracy using the Fundamental Measure Theory
(FMT)37–40 and can be conveniently decoupled from the
electrostatic interactions. The DFT can be constructed using
relatively simple arguments based on truncation of functional
expansions, introduction of coupling parameters, local or
weighted density approximations, or even combinations of
these.36,41 All these approximations are easy to control and
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possess quite transparent physical interpretations, allowing
for their systematic improvement. This should be contrasted
with IE techniques, for which the approximations are based
on closure relations which appear in diagrammatic cluster
expansions for the correlation and bridge functions,16,42 the
degree of accuracy of which is, in general, not known
a priori.

It is usual to take for granted the local charge neutrality
between charged surfaces43–45 when dealing with EDL in both
theoretical and computational approaches. This is not to be
confused with the overall charge neutrality, which clearly has
to be always satisfied for a charged system as whole. In order
to avoid any confusion, we emphasize that from now on the
term charge neutrality will refer to the local electroneutrality
of electrolyte confined between charged walls. The possibility
that electrolytes in contact with a bulk reservoir might lack
charge neutrality in situations of strong confinement has
been already discussed both theoretically46,47 and observed
in computer simulations.48–50 However, these findings have
only very recently been confirmed experimentally in the work
of Luo et al.,51 who demonstrated that electrolytes confined
in narrow pores do not in general exhibit electroneutrality.
To explore this issue Luo et al. used Nuclear Magnetic
Resonance (NMR) techniques to demonstrate that electrolytes
confined by nanoporous carbon with graphite-like internal
surfaces can violate charge neutrality. They have observed a
dependence of charge neutrality breakdown on ion specificity
which followed the Hofmeister series. This is consistent with
the recent theoretical works which show that ionic specificity
arises from a combination of hydrophobic, dispersion, and
polarization interactions, which are very different for F−, Cl−,
Br−, and I− near hydrophobic surfaces.52–59 Although this ionic
specificity is extremely interesting, we will not address it in
this paper. Instead we will explore the role that electrostatic
correlations1 play in charge neutrality breakdown. A similar
line of investigation has been taken by Lozada-Cassou and
co-workers,46,47 who used a three-point extended version
of the traditional IE formalism to address the problem of
electroneutrality violation in electrolytes confined by parallel
charged surfaces. In this approach, the two-plate system was
modeled as “dumbbell-like” molecules at infinite dilution,
and the resulting ionic profiles were calculated as thee-body
wall-wall-ion correlations.29–32,60–62 The ionic correlations
were treated altogether at the level of the Mean Spherical
Approximation (MSA). It is, however, well known that in
situations in which electrolyte is bounded by narrow pores —
where violation of electroneutrality is expected to take
place — size correlations between the confined ions may
strongly influence the structure of the EDLs.63–66 Furthermore,
electrostatic correlations in electrolytes containing multivalent
ions usually require use of more accurate approximations. It
is, therefore, unclear to what extend can strong correlations
be captured at the MSA level. In order to further explore
the question of how important are the correlation effects in
determining electroneutrality violation, we shall, therefore,
apply a somewhat different approach. The size correlations
will be described through the FMT approach, whereas the
electrostatic correlations will be taken into account at the level
of the hyppernetted chain (HNC) approximation. Furthermore,

a recently developed MC simulation technique, well suited
to simulate ionic systems in slab geometries at very low
computational cost, will be applied19 to this system. We
will show that for large separations between surfaces the
macroscopic charge neutrality is restored and the traditional
Donnan approach, in which a potential difference across the
system-reservoir interface is established to force the overall
electroneutrality (Donnan equilibrium),67,68 can be applied.
On the other hand, for narrow pores the interior of the pore
is not electroneutral, in which case the internal charge of
the pore will be determined by the chemical equilibrium
with a bulk reservoir. These findings are in qualitative
agreement with earlier theoretical predictions obtained in
Refs. 46 and 47. We will also investigate to what extent
the absence of electroneutrality between the confining plates
influences the net forces between the charged surfaces. It is
important to emphasize that such effects from local violation
of electroneutrality on the interaction between double layers
can have important implications in a number of biological and
physical systems composed by charged objects immersed in
an electrolyte solution.1 Examples range from colloidal self-
assembly69–72 to membranes73 and biological cells,74 as well as
confined phase separations,75 ionic correlations across charged
membranes,76 and colloidal systems confined by charged
walls.62 For a recent overview on the way EDL interaction
might influence the assembly of soft-matter systems, we
refer the reader to Ref. 77 and references therein. In spite
of these numerous applications, the role that the charge
neutrality violation plays in the EDL interactions has been
mostly neglected after the original contributions of Lozada-
Cassou29 which addressed this issue. The aim of the present
work is to investigate the effects that addition of salt and
electrostatic correlations has on the charge neutrality violation
and explores how it influences the interaction between planar
EDLs.

The work is organized as follows. In Sec. II, a description
of the system under consideration is briefly given. Some
details about the MC techniques and the DFT are presented
in Secs. III and IV, respectively. Results are shown in Sec. V
and the conclusions are outlined in Sec. VI. Technical details
regarding some of the specific calculations employed in this
work can be found in Appendices A and B.

II. MODEL SYSTEM

Throughout the paper we will use the framework of the
Primitive Model (PM) of electrolytes, in which the ions are
represented as hard spheres with point charge embedded at
the center. The solvent is modeled as a uniform dielectric
continuum with its molecular structure disregarded. We
will consider a system composed of two positively charged
walls located along the z direction at positions z = −d/2
and z = d/2. Both walls have a surface charge density σs

uniformly distributed over their infinite surfaces. The space
between the walls is occupied by an aqueous electrolyte
(permittivity ϵ = 80ϵ0, with ϵ0 the dielectric constant of
vacuum) composed of cations of valence α+ and anions of
valence α−. The confined electrolyte is in contact with a bulk
reservoir of concentration cs. In simulations, we will consider
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FIG. 1. Schematic representation of the system. The positively charged walls of thickness h→ 0 are located at z =±d/2, with the confined electrolyte between
them. As indicated in the figure, each face of a surface carries a charge density σs/2. The system consists of a confined electrolyte and a bulk solution, which
are in chemical equilibrium and can freely exchange ions. The net charge in the region −d/2 < z < d/2, Qt , is determined by the chemical equilibrium with the
bulk. In order to implement 3d Ewald summation for 2d slab geometry, in the simulations the region 2LT > |z | > LT is occupied by pure solvent.

that the whole system (electrolyte plus reservoir) is confined
by neutral walls symmetrically located at positions ±LT/2,
such that LT ≫ d (see Fig. 1). Due to the symmetry in the XY
plane, all the system inhomogeneities take place along the z
direction. Although the net charge in the space between the
walls is not explicitly taken to be zero, it is important to point
out that the system as a whole does obey the global charge
neutrality, which is expressed as

2σs +

i

qi

 LT/2

−LT/2
ρi(z)dz = 0, (1)

where ρi(z) represents the ionic profile of component i
= ± at position z, and qi = αiq is its corresponding charge
(with q being the charge of a proton).

III. MODEL AND MONTE CARLO SIMULATIONS

The difficulty of simulating systems with long-range
interactions is that the interaction potential cannot be cutoff
and one cannot use simple periodic boundary conditions.
Instead one must consider an infinite set of replicas of
the simulation cell, so that the ions in the principal cell
feel the electric field produced by the ions from all the
replicas. To efficiently sum over the replicas, one must use
some form of Ewald summation.78 There are a number
of very efficient implementations of Ewald summation for
isotropic 3d Coulomb systems. The situation, however, is
more complicated for systems with reduced symmetry, such
as our two infinite charged plates, in which case the system
is periodic only in two out of three dimensions. Recently
we have introduced a method which allows for a very
efficient adaptation of 3d Ewald summation to systems with
reduced slab geometry, with confining charged surfaces. The
fundamental idea of the method is to separate the electric
field produced by the infinite charged plates from the rest
of the system. The difficulty, however, is that when this
is done, the residual systems is no longer charge neutral,
so that the electrostatic energy of the infinitely replicated
system will diverge. We showed, however, that this divergence

can be renormalized away, allowing us to calculate finite
renormalized electrostatic energy. The details of all the
derivations can be found in Ref. 19. Here we will just
present the applications of the algorithm to the present
problem.

Our simulation cell has the volume V = LxLyLz, with
Lx = Ly = L = 50 Å and Lz = 250 Å. The electrolyte is
in the region −L/2 < x < L/2,−L/2 < y < L/2,−LT/2 < z
< LT/2 (with LT = Lz/2), and the pair of charged plates
is positioned at −d/2 and d/2. In the regions −Lz/2 < z
< −LT/2 and LT/2 < z < Lz/2, there is pure water, see
Fig. 1. Water is treated as a continuum of dielectric constant
ϵw = 80ϵ0. The Bjerrum length, defined as λB = q2/ϵwkBT ,
is 7.2 Å. This value is appropriate for water at room
temperature. All ions have radius 2 Å. The plates are
equally charged with a positive surface charge density in the
range 0.05 C/m2 < σs < 0.07 C/m2. The effect of counterion
valence is explored by changing between 1:1, 2:1, and 3:1
electrolyte.

To efficiently sum over all the replicas, the electrostatic
potential is split into long and short-range contributions, in
addition to the potential produced by the charged surfaces,
see Ref. 19, and a residual potential of self-interaction. The
short-range electrostatic potential at position r is

φS(r) =
N
j=1

qj

erfc(κe|r − r j |)
ϵw |r − r j | . (2)

The dumping parameter κe is set to κe = 5/L. The long-range
electrostatic potential is

φL(r) =

k,0

4π
ϵwV |k|2 exp

(
− |k|

2

4κ2
e

) N
j=1

qj exp[ik · (r − r j)]

− 2π
ϵwV

N
j=1

qj(z − z j)2. (3)

The number of k-vectors defined as k = (2πnx/L,2πny/L,
2πnz/Lz), where n′s are integers, is set to around 400 in
order to achieve fast convergence. The electrostatic potential
produced by the charged surfaces is
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φcoul
p (r) =




4π
ϵw
σs(z + d/2) z < −d/2,

0 −d/2 < z < d/2,

−4π
ϵw
σs(z − d/2) d/2 < z.

(4)

The self-interaction potential has the form

φself(r) = qi
erf(κe |r − ri |)
ϵw |r − ri | . (5)

We can now easily compute the total ionic electrostatic energy

U =
1
2

N
i=1

qi[φL(ri) − φself(ri)] + 1
2

N
i, j

qiφS(ri)

+

N
i=1

qiφcoul
p (ri). (6)

To perform MC simulations, we use Metropolis algorithm
with 106 MC steps to achieve equilibrium. The profile
and force averages are performed with 5 × 105 uncorrelated
samples. During the equilibration, we adjusted the length
of the particle displacement to achieve an acceptance of
trial moves near 50%. We are particularly interested in the
net charge of electrolyte in between the confining surfaces.
The external electrolyte acts as a reservoir for the internal
region, so that the ions are allowed to freely move across
the charged surfaces. The interaction between two surfaces is
modulated by the external and internal electrolyte and has both
electrostatic and entropic contributions. To calculate the mean
electrostatic force, we use the method of virtual displacement
in which one of the plates is moved while the other plate and
all the ions remain fixed, which implies that the electrostatic
force per unit area in the z direction is

⟨Fcoul
z ⟩ = 2π

ϵw
σ2

s −
1
A

N
j=1


∂Up(r1, . . . ,rN)

∂z j


, (7)

where A is the area of the plate, Up =
N

i=1 qiφcoul
p1 (ri), and

φcoul
p1 (r) =




2π
ϵw
σs(z + d/2) z < −d/2,

−2π
ϵw
σs(z + d/2) −d/2 < z.

(8)

The first term on the right-hand side of Eq. (7) is the mutual
force between the charged wall surfaces, while the second
term represents the ionic-averaged electrostatic forces on the
first wall. Note that a positive force means repulsion between
the walls. Eq. (7) can be simplified to yield

⟨Fcoul
z ⟩ = 2π

ϵw
σs(σ> − σ<), (9)

where σ> and σ< represent the total charge per unit of area
located in the regions z > −d/2 and z < −d/2, respectively.

To calculate the entropic force, which arises from the
transfer of momentum in the collisions between ions and
plates, we use the method introduced by Wu et al.79 It consists
of performing a small virtual displacement of the plates along
the z direction — while all the ions remain fixed — and
counting the number of resulting virtual overlaps between the
plates and the ions. The entropic force per unit area can then

be written as

βFen
z =

⟨Nc⟩ − ⟨N f ⟩
2∆RA

, (10)

where Nc is the number of virtual overlaps between the plates
with the ions after a small displacement ∆R = 0.9 Å that
brings plates closer together (superscript c stands for closer)
and Nf is the number of overlaps of the plates with the ions
after a displacement ∆R that moves the two plates farther
apart (superscript f stands for farther).80

The profiles were made counting the average number of
particles in a volume range bin = ∆zL2 running over the z
direction. The value of ∆z was set to 0.5 Å.

IV. DENSITY FUNCTIONAL THEORY

The DFT assumes that the functional of a set of densities
{ρi(r)},

Ω[{ρi(r)}] = F [{ρi(r)}] +

i


[µi + φi(r)]ρi(r)dr, (11)

where µi and φi(r) are, respectively, the chemical potential
and the external potential acting on the ion of type i, achieves
a minimum at equilibrium.81 This minimum corresponds to
the system’s grand potential (or the ground-state energy of a
quantum system82). The functional F [{ρi(r)}] is the intrinsic
free energy, since it contains all the information about the
particle interactions, regardless of any particular external
potential acting upon the system. It can be split into an ideal
gas contribution F id plus an excess free energy F ex, in which
all contributions resulting from the particle interactions are
included.81,83–86 The ideal gas contribution is

βF id[{ρi(r)}] =

i


ρi(r)[ln(Λ3ρi(r)) − 1]dr, (12)

where Λ is the usual de Broglie wavelength. Use of this exact
relation together with a straightforward application of the
Euler-Lagrange minimization condition to Eq. (11) provides
the following equilibrium distributions:

ρi(r) = ρ̄i exp(−βφi(r) + ci(r)), (13)

where ρ̄i = exp(−βµi)/Λ3 and ci(r) = −βδF ex/δρi(r) define
the first-order direct correlation function. If the density profiles
corresponding to a given external potential φ0

i (r) are known,
the equilibrium distributions (13) can be easily written in
terms of such reference profiles as

ρi(r) = ρ0
i(r) exp(−βδφi(r) + δci(r)), (14)

where ρ0
i(r) = ρ̄i exp(−βφ0

i (r) + c0
i (r)) are the reference

density profiles, with δφi(r) = φi(r) − φ0
i (r) and δci(r)

= ci(r) − c0
i (r). Unfortunately, the intrinsic energy, F ex

[{ρi(r)}], is not known for arbitrary density distributions.
However, it can be very accurately calculated, for example,
for a bulk system which can then be used as the reference state.
In general, if a suitable approximation for the reference fluid
with densities ρ0

i(r) is known, Eq. (14) can then be applied in
a perturbative scheme to obtain improved corrections for the
desired distributions ρi(r), as we will see later on.
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So far no approximations have been made in writing
Eqs. (13) and (14). The excess free energy can be further
split in accordance with different particle interactions. In the
present case of ionic systems in the framework of the PM
approach, the functional F ex is a combination of hard-core
F hc and electrostatic F coul contributions, F ex = F hc + F coul.
Accordingly, the single-particle direct correlation function
can be written as a sum of hard-core and electrostatic
contributions, δci(r) = δchc

i (r) + δccoul
i (r). This possibility of

treating separately the different contributions for the particle
correlations is one of the major advantages of using a DFT
approach. The hard-core contribution can, for example, be
treated in the framework of the Fundamental Measure Theory
(FMT),37–39 which has proven to be extremely accurate in
describing both thermodynamic and structural properties of
hard-sphere system for a variety of packing fractions and
size asymmetries.40,87 We will, therefore, apply the FMT for
calculating the ionic exclusion volume interactions, using its
more recent White-Bear formulation,88,89 the details of which
are outlined in Appendix A. For a deeper analysis of the
hard-sphere FMT, we refer the reader to Roth’s recent review
on this topic, Ref. 40.

The difference between the electrostatic single-particle
direct correlation function and the reference state, δccoul

i (r),
can be formally evaluated by introducing a parameter λ
to continuously interpolate between the equilibrium and
reference states. The simplest choice is to use a linear
path such that ρλi (r) = λδρi(r) + ρ0

i(r), with 0 ≤ λ ≤ 1 and
δρi(r) ≡ ρi(r) − ρ0

i(r). When λ varies from zero to unity, the
profiles ρλi (r) smoothly change between the reference state
and the desired equilibrium distributions. The corresponding
variation in the single-particle electrostatic correlations with
respect to their reference counterpart can be written as

δccoul
i (r) ≡ ccoul

i (r; λ = 1) − ccoul
i (r; λ = 0)

=

 1

0

∂ccoul
i (r; λ)
∂λ

dλ, (15)

where ci(r; λ) represent the direct correlation functions
evaluated when the profiles are ρλi (r). The derivative on
the right-hand side of the last equality can be obtained by
noting that the single-particle correlations depend on λ only
implicitly, through the density profiles ρλi (r). It can, therefore,
be related to the changes in the density distributions as90

∂ccoul
i (r; λ)
∂λ

=

j


δccoul

i (r; λ)
δρλj (r′)

∂ρλj (r′)
∂λ

dr′

=

j


ccoul
i j (r,r′; λ)∂ρ

λ
j (r′)
∂λ

dr′, (16)

where in the second equality the definition of the direct pair
correlation function has been used. With the particular choice
of the linear dependence of ρλi (r) on λ, the derivative on the
right-hand side of Eq. (16) reduces to δρ j(r′), and the changes
in the direct correlation functions described in Eq. (15)
become

δccoul
i (r) =


j


δρ j(r′)c̄coul

i j (r,r′)dr′. (17)

In the above relation, we have defined the mean pair direct
correlation function as

c̄coul
i j (r,r′) =

 1

0
ccoul
i j (r,r′; λ)dλ. (18)

Even though the relations (17) and (18) are formally exact, they
require knowledge of the direct pair correlation functions for
inhomogeneous systems with densities between the reference
and equilibrium states, which in general are not known.
Further progress can be achieved by removing the long-
distance Coulomb interaction from the pair direct correlation
functions in Eq. (18), which are expected to behave as
ccoul
i j (r,r′; λ) ∼ −λBαiα j/|r − r′| at large particle separations.

The resulting short ranged direct correlation csr
i j(r,r′; λ)

= ccoul
i j (r,r′; λ) + λBαiα j/|r − r′| can be used together with

Eq. (18) to rewrite Eq. (17) as

δccoul
i (r) = −αiδΦ(r) + δcres

i (r), (19)

where δΦ(r) is the electrostatic potential arising when the
ionic density profiles in the reference state are perturbed by
an amount δρi(r). In the second term on the right-hand side
of Eq. (19), we have defined the residual direct correlation
function as

δcres
i (r) =


j


δρ j(r′)c̄sr

i j(r,r′)dr′, (20)

where the mean short range correlation c̄sr
i j(r,r′) is defined in

Eq. (18), with the integral in λ performed over csr
i j(r,r′; λ).

Clearly, the first term on the right-hand side of (19)
corresponds to the mean-field electrostatic potential, while
the residual electrostatic single-particle correlations contain all
the correlation effects beyond the mean-field. Combining the
above results with the Euler-Lagrange equation, Eq. (14), the
ionic profiles corresponding to an arbitrary external potential
φi(r) acting on the ionic system can be finally written as

ρi(r) = ρ0
i(r) exp[−βδφi(r) − αiδΦ(r) + δchc

i (r) + δcres
i (r)].

(21)

In the case of planar double layers, where the external
potential is provided by the electrostatic and hard core ion-
wall interactions, the density profiles change only along the
z direction perpendicular to the parallel plates, and Eq. (21)
reduces to

ρi(z) = ρ0
i(z) exp[−αiδψ(z) + δchc

i (z) + δcres
i (z)], (22)

where now δψ(z) represents the (dimensionless) total
electrostatic potential change with respect to the reference
state (including the ionic interactions with the wall). Here,
it is assumed that the hard core ion-wall interaction is the
same for both the equilibrium and reference states. Eq. (22)
represents the basic relation for the planar electric double layer
structure in the framework of the DFT approach. In practice,
it has to be coupled with the Poisson equation for the ionic
distributions. In the case depicted in Fig. 1 of two parallel
charged plates located at positions ±d/2, Poisson equation is

d2ψ

dz2 = −4πλB


i

ρi(z) + σ[δ(z + d/2) + δ(z − d/2)]

,

(23)
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where σ ≡ σs/q is the surface density of charge carriers
on the wall. Once the single-particle hard-core and residual
electrostatic correlations are known, Eqs. (22) and (23) can be
self-consistently solved (e.g., via a Picard iteration method) to
provide the ionic distributions around the charged plates. As
already mentioned, the exclusion volume contributions can be
evaluated with a high degree of accuracy in the framework
of the FMT approach. What essentially determines the ability
of different DFT approaches to capturing the fine structure
of the EDL are, therefore, the approximations employed
in the evaluation of both reference state and the residual
electrostatic correlations. Several different approaches have
been proposed over the last years to accurately calculate
these quantities in a number of different contexts.41 Since
very little is actually known about the pair correlations of
inhomogeneous ionic system, it is in practice usual to take a
homogeneous system, with the reservoir bulk concentrations
ρ̄i, as a representative reference state. In most cases, a further
bulk-like approximation is invoked by taking the effective
pair correlation functions in Eq. (20) to coincide with the
corresponding bulk ones,

c̄sr
i j(|r − r′|) ≈ csr

i j(|r − r′|; { ρ̄i}), (24)

where the correlations on the right-hand side are calculated
in the charge-neutral bulk fluid. This approximation,
usually referred to in the literature as the bulk expansion
approximation, can be easily identified as a second-order
truncation in the Taylor functional expansion of the excess
Coulomb free energy around the reference bulk state.36 It
was first employed by Rosenfeld91 more than twenty years
ago and has been extensively used since then to describe
EDL structures. The bulk expansion approximation is also
equivalent to the hyppernetted chain (HNC) approximation
for the residual wall-ion correlation.90 It is employed in a
combination with the Mean Spherical Approximation (MSA)
for the bulk direct pair correlations (bulk-MSA) for ion-
ion interactions, for which an analytical solution is known
exactly.92 This leading-order bulk-MSA approximation has
been applied with a good success in a number of situations
involving both planar14,93–96 and spherical97,98 double layers,
provided the electrostatic coupling inside the EDL is not too
high.36,41

Going beyond the bulk-MSA approach, Gillespie
et al.99–101 proposed a Reference Density Fluid (RDF)
approximation in which the residual electrostatic correlations
are expanded around an inhomogeneous reference fluid
represented by density profiles that are themselves functionals
of the real equilibrium profiles. Having recognized that these
profiles do not need to represent real equilibrium states of the
system, they have chosen them in such a way as to satisfy
electroneutrality at each position, allowing for the use of a
local approximation for the evaluation of the pair correlation
functions, again in the context of the MSA approach. Another
accurate approach for the residual contributions is the so-
called Weighted Correlation Approach (WCA), which has
been recently developed by Wang et al.102–104 The basic idea
relies on the interpretation of the effective direct correlations
in Eq. (18) as the correlations which are averaged over the path
of inhomogeneous densities connecting the reference and the

final state. Since the residual correlations are short ranged, the
resulting mean correlations in Eq. (20) can be approximated by
direct pair correlations weighted over a region whose typical
size is the range of the residual correlations.102 The question of
which approximation — among bulk-MSA, RDF, and WCA
— is best to describe the EDL structure seems to depend
on the particular problem at hand,36 although the bulk-MSA
is in all cases computationally cheaper than the other ones.
Recently, Yang and Lui performed a careful analysis on
the accuracy of these approaches within a large range of
electrostatic couplings. They conclude that the optimal choice
is in general a combination of these methods,41 in which
the reference profiles used in Eq. (22) and the ones used
for calculating δcres

i j (r) in Eq. (20) are decoupled from one
another, leading to different approximations for the zeroth and
first order residual correlations.41 Besides all these expansion-
based approaches, in a very recent contribution, Roth and
Gillespie105 proposed a first-principle approach in which
the residual single-particle correlations are obtained via a
generalization of the MSA bulk excess free energy to an
inhomogeneous system, showing promising results with yet
relatively low computational cost.

All the aforementioned approximations for the residual
contributions involve the application of the MSA in the
calculation of the direct pair ion-ion correlations. Since
the MSA is based on a linear response approximation for
such correlations, it is reasonable to expect that such MSA-
based approaches should fail at sufficiently high electrostatic
couplings — where the MSA proves to be inaccurate even for
bulk solutions.106 In these limits, strong non-linear effects such
as ionic association start to take place,1,13 therefore requiring
more sophisticated approaches for the ionic correlations.
One easy way to circumvent this problem is to adopt an
approximation in which the electrostatic bulk correlations are
evaluated in the framework of the HNC relation, whereby the
total and direct pair correlations are related by

hi j(r) = exp[−βui j(r) + hi j(r) − ci j(r)] − 1, (25)

where hi j(r) is the radial total correlation function. The
MSA relation ci j(r) = −βui j(r) is clearly recovered upon
linearization of the exponential factor on the right-hand side.
This relation is complemented by the Ornstein-Zernike (OZ)
equation for the homogeneous bulk electrolyte, which in the
Fourier space reads as

ĥi j(k) = ĉi j(k) +

l

ĉil ρ̄l ĥl j(k). (26)

These relations can be numerically evaluated to obtain the
ionic direct correlation functions ci j(r) for the bulk system.
Although remarkably more accurate than its MSA counterpart,
the HNC approach has the disadvantage of not possessing an
analytic solution, which makes its direct application in the
context of RDF or WCA approaches quite difficult from
a computational perspective. However, the implementation
of the HNC approximation for the electrostatic correlations
together with bulk expansion, Eq. (24), can be readily
accomplished with no significant additional increase in
computational effort. Since we aim to investigate the EDL
at high electrostatic couplings — namely, high ionic valencies
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and small surface charges — we will, in what fallows, employ
(unless otherwise specified) the bulk expansion in combination
with the HNC solution obtained from Eqs. (25) and (26) for
computing the residual contributions in Eq. (20). While for
moderate ionic correlations the MSA-based approach should
provide results comparable to the HNC-based approximation,
we expect HNC to be much more accurate in the limit of very
strong electrostatic correlations — where the validity of even
bulk MSA approach must to be put in doubt.

V. RESULTS

Having established the theoretical basis as well as
the simulation methods to be employed, we now briefly
outline some aspects of their numerical implementation before
proceeding to analyze the properties of the model electrolyte
system described in Sec. II.

In practice, the regions outside the charged plates — the
bulk — are taken to be large enough to guarantee that the ionic
profiles relax to their bulk values sufficiently far away from
the plates. Using these bulk concentrations as the reference
state, the ionic profiles in Eq. (22) read as

ρi(z) = ρ̄i exp(−αiδψ(z) + βφhc
i (z) + δchc

i (z) + δcres
i (z)).

(27)

The bulk densities ρ̄i are set by the reservoir salt concentration
and should satisfy the overall electroneutrality condition

i ρiαi = 0. The potential φhc
i (z) represents the exclusion

volume interaction between the ions and the hard walls located
at positions z = ±d/2,

φhc
i (z) =




∞, −ai ≤ (|z | − L/2) ≤ ai,

0, otherwise.
(28)

Making use of the one-dimensional Poisson equation, Eq. (23),
the difference between inhomogeneous and bulk potentials
δψ(z) = ψ(z) − ψb can be conveniently written as a simple
functional of the ionic profiles as

δψ(z) = βqφcoul
p (z) + 4πλB

×

i

αi

 z

−zb
(z′ − z)ρi(z′)dz′, (29)

where φcoul
p (z) is the electrostatic potential produced by the

charged walls, as defined in Eq. (8), and zb represents a
position deep inside the bulk solution, |zb | ≫ d/2. When
the single-particle correlations are set to zero in Eq. (27),
combination with Eq. (29) recovers the traditional Poisson-
Boltzmann equation for the ionic distributions. Since both
residual and hard sphere contributions are also explicitly
written as functionals of the ionic profiles, Eqs. (27) and
(29) can be numerically solved with a standard Picard-
like iteration method. Starting with guess functions ρi0(z),
the corresponding electrostatic profiles are calculated from
Eq. (29), along with the FMT hard sphere contributions
δchc

i (z), as described in Appendix A. As for the residual single-
particle correlations δcres

i (z), the bulk fluid expansion resulting
from the application of Eqs. (24) and (20) is employed. Here,
the direct pair correlations for the bulk system are calculated
via the solution of the OZ equation, Eq. (26), together with

either MSA or the HNC approximations, Eq. (25). While for
the MSA case analytic expressions for the pair correlations
are available, the HNC approach requires numerical solutions,
which are here obtained using the methods described in
Ref. 107. For the computation of δcres

i (z), one has to
explicitly remove the short range hard sphere contributions
from the HNC solution. This is accomplished by taking
ccoul
i j (r) = ci j(r; λB) − ci j(r; λB = 0) for the HNC electrostatic

correlations. Once all the relevant contributions are calculated,
new estimate density profiles are obtained using Eq. (27). The
whole process is then repeated until convergence is achieved.
In practice, improved estimates for the ionic profiles are
obtained by properly combining the corresponding input and
output resulting from consecutive iterations. Finally, we notice
that the imposed boundary conditions — namely, that the bulk
concentrations should be recovered far away from the charged
walls, ρi(|z | → zb) → ρ̄i, are naturally satisfied within this
iterating scheme, provided they are fulfilled by the initial
profile guess.

We are now going to use the DFT presented above to
study ionic distributions between two like-charged surfaces in
contact with a bulk salt reservoir, focusing on the equilibrium
ionic profiles, degree of charge neutrality breakdown between
the charged walls, and the net force on each surface.

A. Ionic profiles

Ionic distributions around two charged surfaces separated
by distance d = 15 Å are shown in Fig. 2, for several salt
concentrations and electrolyte asymmetries. Open symbols
represent the MC results, the solid lines are profiles obtained
from the bulk-HNC approximation, while dashed lines stand
for the bulk-MSA approach. We note that the recently
developed efficient MC method19 allows us to very accurately
perform statistics while using small grid sizes over the
simulation box. The resulting ionic profiles are able to
precisely capture the fine details of the double layer structure
in the vicinity of the charged surfaces, providing an excellent
basis for testing the validity of different theoretical approaches.

Ionic density profiles are strongly inhomogeneous in the
region between the plates and assume their bulk values shortly
beyond the charged walls. Exception is the 1:1 electrolyte at
small salt concentration (Fig. 2(a)), in which case the ionic
inhomogeneities extend farther away from the walls, which
is clearly a consequence of a larger screening length. We can
also see that both bulk-HNC and bulk-MSA show excellent
agreement with the simulations in the case of monovalent
electrolyte (Figs. 2(a) and 2(b)). Since the curves overlap with
each other, it is actually difficult to distinguish between the
two approximations. At such weak electrostatic couplings, the
hard core correlations strongly dominate over the electrostatic
ones, and the ionic density profiles are well described by the
mean-field electrostatic approximation in addition to hard-
core corrections.15 As the electrostatic coupling increases
— changing the anionic valencies (2:1 in Figs. 2(c) and 2(d)
and 3:1 in Figs. 2(e) and 2(f)) — the deviations between
different theoretical approaches begin to appear, the bulk-
HNC being always the closest to the simulation results. In
particular, at higher salt concentrations and strong electrostatic
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FIG. 2. Equilibrium ionic profiles for various counterion valences and salt concentrations, for charged walls at a separation d = 15 Å from one another. Open
circles and squares represent the MC cationic and anionic profiles, respectively. The dashed lines are theoretical results using the bulk-MSA approximation,
while the full curves correspond to profiles obtained within the bulk-HNC approach. In all cases, the particle radii are fixed at a+= a−= 2 Å, while the electrolyte
charge asymmetries are 1:1 (a) and (b), 2:1 (c) and (d), and 3:1 (e) and (f). The corresponding reservoir salt concentrations are displayed in the figures. From (a)
to (d), the wall surface charge density is fixed at σs = 0.064 C/m2, while in (e) and (f) it is σs = 0.0576 C/m2.

coupling (Figs. 2(d) and 2(f)), the bulk-MSA results fail
to reproduce the MC counterion and coion distributions,
while the bulk-HNC approximation shows perfect agreement
with the simulations. The situation is slightly different at
smaller salt concentrations (see Figs. 2(c) and 2(e)), where
still the bulk-MSA deviates from the MC data at strong
couplings. Although closer to the MC results, the bulk-HNC
approximation in this situation is less accurate in comparison
with the high salt case. This loss of accuracy is a consequence

of the local character of the bulk expansion. While the HNC
approach can correctly account for the stronger magnitude of
ionic correlations in the case of divalent and trivalent ions, at
small ionic strengths the range of the electrostatic correlations
becomes larger and, therefore, more important, rendering the
bulk expansion less accurate. It is likely that in this limit
the non-local approaches such as the RDF or the weighted
densities approximations — in which the inhomogeneities
are averaged over a distance that scales with the range of
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the electrostatic correlations — will become more reliable
for describing electrostatic correlations. Unfortunately, the
implementation of such methods in a combination with
the HNC is very difficult. A detailed comparison of the
different DFT approaches against the MC results at several salt
concentrations and ionic asymmetries goes beyond the scope
of this work and will be the subject of future investigations.
For now, we simply emphasize that the bulk-HNC is far more
accurate than the bulk-MSA approximation and, therefore, in
what follows, we will exclusively use the bulk-HNC approach
in the calculation of the system properties.

B. Electroneutrality

It is not clear from the density profiles in Fig. 2 whether
or not the electrolyte confined between the charged plates
obeys charge neutrality. Notice that nowhere this condition
has been explicitly imposed in our calculations. We now
investigate under what circumstances will the electroneutrality
breakdown takes place. To this end, we define the total charge
of the confined electrolyte per unit area as

σin =

 d/2

−d/2
[α+ρ+(z) − α−ρ−(z)]dz

= 2
 d/2

0
[α+ρ+(z) − α−ρ−(z)]dz. (30)

The, electroneutrality between the plates, −d/2 < z
< d/2 is satisfied if Qt = σ + σin = 0, see Fig. 1. In Fig. 3,
the ratio between the magnitude of such “internal” net surface
charge and the bare plate surface charge is plotted as a function
of the wall separation for different electrolyte asymmetries
and salt concentrations. In all cases, breakdown of charge
neutrality is found at small wall separations. As the distance
between the walls grows larger, the ratio |σin|/σ converges
rapidly to unity, meaning that the overall electroneutrality in
the region between the charged walls is naturally recovered.
The crossover distance at which charge neutrality starts to take
place is dependent on the amount of salt in the bulk reservoir.
Clearly, at small salt concentrations (full curves), larger wall
separations are required to guarantee charge neutrality in the
interior region. Again, this can be understood in terms of
the larger inhomogeneity region across the charged walls at
smaller ionic strengths, as has been observed in the left panels
of Fig. 2. As the salt concentration increases, the ionic profiles
rapidly converge to the bulk value in the outer region, leading

to a decrease in neutrality breakdown between the plates.
This effect is also consistent with the Donnan approach in
which the electrostatic potential difference between the system
and the reservoir becomes smaller as the salt concentration
increases.68,108

There are several physical mechanisms responsible for
electroneutrality violation in narrow pores. First, electrostatic
effects lead to strong counterion condensation at the charged
walls, in an attempt to neutralize their surface charge. On
the other hand, entropic effects try to induce a homogeneous
particle distribution all over the system, thereby limiting
counterion condensation. Electrostatic correlations between
anions and coions are responsible for complex ionic
association, which also effectively reduce the amount of
counterion condensation. Moreover, the bulk counterion-
counterion correlations favor additional condensation. Finally,
exclusion volume correlations strongly constrain the number
of ions which can be present between the walls, significantly
affecting the charge neutrality of the interior region. Clearly,
this effect is much more important for small wall separations,
when only few layers of ions can be accommodated between
the surfaces.

Fig. 3 also reveals the effect of ionic correlations on
electroneutrality. As the counterion valency changes, different
qualitative behaviors are clearly observed. In the case of
monovalent ions (Fig. 3(a)), the overall charge between the
surfaces grows monotonically as the wall separation increases.
Strong violation of charge neutrality is found in this regime,
the net charge between the walls being always positive
(|σin| ≤ σ). Remarkably, at the smallest salt concentration
cs = 0.1 M and at the narrowest separation d/R = 2 studied,
the net internal charge density is 40% of the bare wall surface
charge. Upon salt addition, the magnitude of electroneutrality
breakdown becomes weaker, and the separation between the
surfaces at which it occurs shorter. A quite different behavior
takes place for higher charge asymmetries, as can be observed
in Figs. 3(b) and 3(c). For both 2:1 and 3:1 electrolytes, the
magnitude of the net charge between the plates reaches a
maximum before charge neutrality is achieved. Furthermore,
the phenomenon of charge reversal — whereby the internal
double layer has a net charge with sign opposite to the surface
charge — is observed in these cases and is a manifestation
of strong electrostatic correlations between the multivalent
counterions. In the case of 2:1 electrolyte (Fig. 3(b)) for very
narrow slits, the internal charge density is smaller than the
surface charge. However, when the separation between the

FIG. 3. Ratio between the magnitudes of net charge per unit area confined between the surfaces, σin, and the surface charge density, σ, as a function of the plate’s
separation for different electrolyte asymmetries and salt concentrations. In all the cases, the surface charge density on the plates is σs = qσ = 0.0576 C/m2, and
the ionic radii are a+= a−= 2 Å. The wall separation d is scaled in terms of the effective diameter R ≡ a++a−.
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FIG. 4. Ratio between the magnitudes of charge per unit area of the confined electrolyte, σin, and the surface charge σ, as a function of the plate separation for
different bare surface charges σ and electrolyte asymmetries 1:1 (a), 2:1 (b), and 3:1 (c). In all the cases, the reservoir salt concentration is cs = 0.5 M, and the
ionic radii are a+= a−= 2 Å. Once again, the wall distances d are scaled with the effective diameter R ≡ a++a−.

surfaces is increased, the internal charge overcompensates
the surface charge, resulting in a charge reversal. For larger
separation between the plates the charge neutrality is restored.
The situation is remarkably different for trivalent counterions
(Fig. 3(b)), for which the internal region is always overcharged
for very narrow pores — the internal net charge has a
sign opposite to the bare surface charge (|σin| ≥ σ) at salt
concentrations cs = 0.1 M and cs = 0.5 M. On the other
hand, when cs = 0.75 M (dashed curve) the internal region
is undercharged for intermediate separations — the net
EDL charge is slightly positive when 5 ≤ d/R ≤ 7. Another
interesting feature in the case of trivalent counterions is
that the breakdown of charge neutrality is significantly more
pronounced for very low salt concentration, cs = 0.1 M, and
narrow slits.

To investigate the effect of increasing the surface charge
at constant salt concentrations on charge neutrality violation,
the ratio |σin|/σ as a function of the wall separation for
the different charge asymmetries is plotted in Fig. 4. Once
again, a different qualitative behavior is observed in the
case of monovalent and multivalent ions (Fig. 4(a)). While a
system with 1:1 electrolyte always remains undercharged and
restores the internal charge neutrality only at asymptotically
large separations, both 2:1 and 3:1 electrolytes exhibit strong
charge reversal for very narrow pores (Figs. 4(b) and 4(c)).
For monovalent electrolytes the degree of electroneutrality
breakdown becomes weaker as the surface charge increases.
On the other hand, for very narrow slits, we see that
while a system with 2:1 electrolyte is undercharged, for
very low surface charge densities, it actually becomes
overcharged for large charge density. For 3:1 electrolyte, the
overcharging occurs even at very low surface charge densities
and becomes very pronounced as the surface charge is
increased.

C. Wall forces

We now investigate the interaction between the two
surfaces. According to the Contact Value Theorem (CVT),
the net force acting on each wall has two contributions, an
electrostatic and an entropic. The electrostatic force felt by one
of the surfaces is produced by the interaction with the other
surface and with the electrolyte, both external and internal
ones. The entropic force arises from direct collisions of ions
with the surface and the resulting momentum transfer.

Consider the surface located at −d/2. The electric field
it produces is E(z) = 2πλBσsign(z + d/2) (where sign(x)
denotes the sign of x). Newton’s third law then requires that
the net force per unit of area, F/A, is

βΠ ≡ βF/A = 2πλBσ(σ> − σ<)
+


i

ρi(−d/2 + ai) − ρi(−d/2 − ai), (31)

where σ> and σ< represent the total charge per unit
of area located in the regions z > −d/2 and z < −d/2,
respectively. Since for equally charged surfaces the ionic
distributions are even functions, ρi(−z) = ρi(z), it is easy
to see that these quantities are constrained by the condition
σ> = σin + σ + σ<. The total force on the plate located at
z = −d/2 can therefore be rewritten as

βΠ ≡ βF/A = 2πλBσ(σ + σin)
+


i

ρi(−d/2 + ai) − ρi(−d/2 − ai). (32)

Notice that we have defined Π in such a way that a positive
force corresponds to repulsion between the charged surfaces.
While the first term on the right-hand side of this equality
represents the net electrostatic force per unit of area, the
second term is the pressure resulting from the transfer of
momentum from the ions to the surface. We notice here
that in the present situation the same result is obtained from
a direct thermodynamic calculation of the osmotic pressure
across the walls, and that it does not depend on the particular
approximations employed in building up the excess functional
(see Appendix B).

The net force, given by Eq. (32), shows a very non-trivial
influence of the electroneutrality on the interaction between
the surfaces. When |σin|/σ < 1, the net charge between the
walls is positive, leading to a repulsive electrostatic force. This,
however, implies a net negative charge on the bulk side of
the walls, which leads to a larger accumulation of counterions
at the surfaces facing the bulk electrolyte. This imbalance of
ions on both sides of the surface provides a net force that
pushes the plates towards each other, leading to an attractive
entropic contribution. In the opposite case where |σin|/σ > 1,
the inverse situation takes place: the electrostatic interactions
become attractive, while the balance of ions between the
confined and bulk electrolytes leads to a repulsive force. It
is the fine balance between these contributions — described
by the two terms at the right-hand side of Eq. (32) — that
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FIG. 5. The pressure βλ3
BΠ on the charged walls for separation between the surfaces d. The system parameters are the same as in Fig. 3.

dictates the net, ion mediated, force between the charged
surfaces. Fig. 5 shows the net force per unit of area βλ3

BΠ

acting on a charged wall at different electrolyte charge
asymmetries and salt concentrations. The parameters are
the same as in Fig. 3. Although in this case the degree
of electroneutrality for monovalent and multivalent ions has
quite different behaviors, the net force between the walls has
similar form for monovalent and divalent ions (Figs. 5(a)
and 5(b)). In both cases, the force is always repulsive and
decays monotonically when cs = 0.1 M and cs = 0.5 M. At
the highest salt concentration cs = 0.75 M, the force becomes
slightly attractive at wall separations 3 ≤ d/R ≤ 5 in the case
of 2:1 electrolyte. In this region, the net charge within the
walls is slightly positive, as can be verified in Fig. 3(b) which
shows that |σin| . σ. The attractive force induced by the
net momentum transfer by the bulk side ions, in this case,
overcomes the weakly repulsive electrostatic force. The fact
that such an effect takes place at higher salt concentrations
is due to stronger screening of the electric field on the bulk
side of solution, which forces the ions to be accumulated
within a narrow region in the vicinity of the wall surfaces (see
Fig. 2). The absence of attractive force in the case of surfaces
surrounded by monovalent electrolyte has been proven in the
framework of the Poisson-Boltzmann theory.109,110 Since for
1:1 electrolyte the electrostatic correlations play only a minor
role, it is not surprising that no attraction is found between
the charged plates under such conditions. It is important to
stress, however, that a steric-driven attractive force as well as
charge reversal have been already reported in the case of size
asymmetric, strongly confined, monovalent electrolytes.111,112

In the case of trivalent counterions (Fig. 5(c)), the force
changes sign at all concentrations under consideration. Again,
the low salt situation cs = 0.1 M differs qualitatively from
the other ones. In this case, the force achieves a well-defined
minimum at d/R = 4 and is attractive even at large wall
separations. This result is consistent with the large ratio
|σin|/σ observed in Fig. 3(c), which implies a net negative
charge and an electrostatic attraction that strongly overcomes
the repulsive pressure provided by the confined electrolyte.

VI. CONCLUSIONS

We have investigated the electrostatic properties of an
electrolyte confined between the charged surfaces in contact
with a bulk salt reservoir. A DFT approach combined with a
bulk-HNC expansion was employed to calculate the density

profiles and the forces acting on the surfaces. Special attention
was paid to the local charge neutrality violation in a confined
electrolyte. Contrary to the traditional Donnan approach — in
which electroneutrality is enforced by the introduction of
a potential difference across the system boundaries — in
our calculations, charge neutrality has not been assumed a
priori. The model system can be used to describe the situation
in which an electrolyte is confined in carbon nanoporous,
for which experimental evidence of local electroneutrality
violation has been recently reported.51 The breakdown of
electroneutrality occurs naturally when confined electrolyte is
able to exchange particles with a bulk reservoir. Furthermore,
the net charge within the confined region can be controlled
by electrolyte properties other than ionic specificity, such
as the salt concentration and charge asymmetry, as well as
the surface charge of the confining walls. In particular, we
find that the degree of charge neutrality violation is much
more pronounced in the limit of small ionic strengths. These
results are in line with the ones obtained previously using
a three-point extended HNC-MSA approach.46,47 The results
of the present theory were compared to simulations based
on a recently introduced efficient implementation of Ewald
summation method in a slab geometry, Ref. 19. The agreement
between the theory and simulations is excellent.

The system under investigation can also be used to
study interactions between colloidal particles.113–117 In the
traditional Derjaguin, Landau, Verwey, and Overbeek (DLVO)
theory, it is assumed that charge neutrality is satisfied in the
inter-particle region. On the other hand, the discussion in
the present paper shows that at short separations between
the colloidal surfaces charge neutrality is violated. In order
to asses the effect of charge neutrality violation, we have
used the contact value theorem to calculate the force between
charged planar surfaces inside an electrolyte solution. We
find that at large salt concentrations, and in some range of
wall separations, the net force on each surface is attractive
in the case of multivalent electrolytes. Using Derjaguin
approximation, it should now be possible to construct the
effective interaction potential between the charged colloidal
particles of radius R. The work along these lines is currently
in progress.
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APPENDIX A: FUNDAMENTAL MEASURE THEORY

Here we discuss briefly the FMT. The basic assumption
of the FMT is that the excess free energy of a hard sphere
fluid has the general form

βF ex =


βΦ[{nα(r)}]dr, (A1)

where the excess free energy density Φ[{nα(r)}] is a local
functional of weighted densities {nα(r)}, which are in turn
defined as

nα(r) =

i


ρi(r′)w(α)

i (r − r′)dr′. (A2)

The simple form of Eq. (A1) is strongly suggested by the
leading term of F [{nα(r)}] in its low-density diagrammatic
expansion. In this limit, the set of weight functions w(α)

i (r) can
be inferred from the deconvolution of the underlying Mayer
functions f i j(r). It is composed of the four scalar functions,

w
(3)
i (r) = Θ(ai − r),

w
(2)
i (r) = δ(ai − r),

w
(0)
i (r) = w

(2)
i (r)

4πa2
i

, (A3)

together with two vector weight functions w(α)
i ,

w(2)
i (r) = δ(ai − r)r

r
,

w(1)
i (r) = w(2)

i (r)
4πai

. (A4)

In the context of the Scaled-Particle Theory (SPT), these
functions characterize the fundamental measures of hard
spheres.39,118 Note that the corresponding weighted functions
in (A2) have dimensions of [length]3−α. Since the free energy
density βΦ has clear dimensions of [length]−3, it follows that
it can be quite generally written as the following combination
of weighted densities:38

βΦ[{nα}] = f1n0 + f2n1n2 + f3n1 · n2

+ f4n3
2 + f5n2|n2|2, (A5)

with the coefficients f i being all functions of the dimensionless
weighted density n3. The next step in the FMT approach is
to impose some conditions to be fulfilled in the limit of
homogeneous density distribution, leading to a differential
equation from which the coefficients f i can be determined.
The condition is used determine the version of FMT. In
Rosenfeld’s original formulation, a SPT condition is applied
in the limit where ai → ∞, resulting in the Percus-Yevick
(PY) compressibility equation of state for the bulk fluid.
The White-Bear version, on the other hand, requires that the
(more accurate) Mansoori-Carnahan-Starling-Leland (MCSL)
equation of state for hard-sphere mixtures be recovered in the
bulk limit.88,89,119 The resulting White-Bear excess free energy
density reads

βΦ[{nα}] = −n0 ln(γ3) + n1n2 − n1 · n2

γ3

+
n2(n2

2 − 3|n2|2)
36πγ2

3n2
3

[n3 + γ
2
3 ln(γ3)], (A6)

where γ3 ≡ 1 − n3. For a given set of density profiles {ρi(r)},
the White-Bear hard-sphere excess free energy follows
then from the direct applications of Eqs. (A1), (A2), and
(A6). We finally note that the corresponding hard-sphere
excess single-particle correlations used in Eq. (21) are given
by

chc
i (r) = −


α


∂βΦ

∂nα

����nα(r′)
w
(α)
i (r′ − r)dr′. (A7)

APPENDIX B: THERMODYNAMIC ROUTE
FOR THE WALL FORCES

We now show that the forces between the walls given
by Eq. (32) also follow from the direct thermodynamic
calculation of the wall osmotic pressure, regardless of
the underlying approximations invoked for the free energy
calculation. The osmotic pressure on the walls separated by a
distance d can be written as

βΠ = −∂βΩ
∂d

. (B1)

According to Eq. (11), the grand canonical potential Ω for the
two plate system is

βΩ = βF +

i

 LT/2

−LT/2
ρi(z)[βµi + βφi(z)]dz + 2πλBdσ2,

(B2)

where LT ≡ Lz/4 represents the system size across the z
direction (see Fig. 1). The last term on the right-hand side
is the electrostatic energy resulting from the direct wall-wall
interaction. It has to be included since the remaining two terms
only contain ion-ion and wall-ion interactions. The resulting
osmotic pressure is

βΠ = −β ∂F [{ρi(z)}]
∂d

− ∂

∂d

×



i

 LT/2

−LT/2
ρi(z) (βµi + βφi(z)) dz


− 2πλBσ

2.

(B3)

Now, since the intrinsic free energy F [{ρi(z)}] only depends
on the ionic interactions, it cannot have any explicit
dependence on the particular external potential the particles
are subjected to and has therefore no explicit dependence
on d. All changes in F [{ρi(z)}] come exclusively from the
corresponding changes in the ionic profiles as d is varied.
Applying the usual rule for the derivative of a functional, we
find

β
∂F [{ρi(z)}]

∂d
= β


i

 LT/2

−LT/2

δF
δρi(z)

∂ρi(z)
∂d

dz

= −

i

 LT/2

−LT/2
[βµi + βφi(z)]∂ρi(z)

∂d
dz.

(B4)

In the last equality, the Euler-Lagrange equilibrium condition
δF /δρi = −(µi + φi(z)) has been employed. With the above
result, Eq. (B3) for the osmotic pressure can be simplified to
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βΠ + 2πλBσ
2 = −


i

 LT/2

−LT/2
ρi(z) ∂

∂d
[βµi + βφi(z)]dz.

(B5)

Since the chemical potentials µi have the purpose of fixing
the ionic bulk concentrations ρ̄i — and these are in the
present formulation kept constant as d changes — the first
derivative on the right-hand side can be set to zero. We
further notice that the wall-ion interaction potential can
be split into hard-core and electrostatic contributions, φi(z)
= φcoul

i (z) + φhc
i (z) = βqiφcoul

p (z) + φhc
i (z), which are given by

Eqs. (8) and (28), respectively. It follows that the osmotic
pressure can be written as

βΠ + 2πλBσ
2 = −


i

 LT/2

−LT/2
ρi(z)

×


∂ βφhc
i (z)
∂d

+
∂ βφcoul

i (z)
∂d


dz

≡ βΠhc + βΠcoul. (B6)

We now turn to the calculation of each contribution on the
right-hand side of (B6) separately. First, it is convenient to
rewrite the first integral as

βΠhc = −

i

 LT/2

−LT/2
ρi(z)

∂ βφhc
i (z)
∂d

dz

=

i

 LT/2

−LT/2
ρi(z)eβφhc

i
(z) ∂
∂d

e−βφ
hc
i
(z)dz. (B7)

The so-called cavity functions e−βφ
hc
i
(z) are either zero at

particle’s overlap with the hard walls or one otherwise.
Similarly, the function eβφ

hc
i
(z) goes to infinity at ion-wall

overlap and to unity anywhere else. It follows from Eq. (28)
that

e−βφ
hc
i
(z) = Θ(−z − d/2 − ai) + Θ(z + d/2 − ai)
−Θ(z − d/2 + ai) + Θ(z − d/2 − ai). (B8)

Performing the straightforward differentiation with respect to
d provides

∂

∂d
e−βφ

hc
i
(z) =

1
2
[δ(z + d/2 − ai) − δ(−z − d/2 − ai) + δ(z − d/2 + ai) − δ(z − d/2 − ai)] . (B9)

Using the above result in Eq. (B7) and performing the integration, we find

βΠhc =
1
2


i

[ρi(−d/2 + ai) − ρi(−d/2 − ai) + ρi(d/2 − ai) − ρi(d/2 + ai)] =

i

ρi(−d/2 + ai) − ρi(−d/2 − ai), (B10)

where in the last equality the parity of the distribution functions ρi(z) = ρi(−z) was used. As for the electrostatic contributions
Πcoul in Eq. (B6), we first notice that Eq. (8) can be used to write the ion-wall electrostatic potential as

βφcoul
i = 4πλBσαi [(z + d/2)Θ(−z − d/2) − (z − d/2)Θ(z − d/2)] . (B11)

Differentiation with respect to d provides

β
∂φcoul

i (z)
∂d

= 2πλBσαi [Θ(−z − d/2) + Θ(z − d/2)] . (B12)

The electrostatic contribution to the osmotic pressure then
becomes

βΠcoul = −2πλBσ

×



i

αi

 −d/2

−LT/2
ρi(z)dz +

 LT/2

d/2
ρi(z)dz


.

(B13)

Now, using the overall electroneutrality condition for the
system as a whole, Eq. (1), the term in parenthesis can be
clearly identified as −2σ − σin, and the above relation can be
simplified to

βΠcoul = 2πλBσ(2σ + σin). (B14)

Substitution of Eqs. (B10) and (B15) in Eq. (B6) leads to
osmotic pressure across the charged walls,

βΠ = 2πλBσ(σ + σin)
+


i

ρi(−d/2 + ai) − ρi(−d/2 − ai), (B15)

which precisely recovers the result (32) for the force per unit
of area exerted on the wall at z = −d/2. It is important to
emphasize that no assumption has been made on F [{ρi(z)}]
other than its fulfillment of the Euler-Lagrange equilibrium
condition. The result above is, therefore, quite general and
independent of the particular set of approximations employed
in the construction of F ex[{ρi(z)}]. This is to be contrasted
with the situation in which electrolytes are present at only one
single side of the surface, where then the contact condition
does depend on the particular free energy functional.15 When
the charged surface lies in between two electrolytes, the
mutual interaction between these electrolytes will also play a
role on the net force acting upon the surface.75 The numerical
derivative in Eq. (B1) can in practice be performed as an
accuracy check of the calculated ionic density profiles in
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Eq. (B15), since the corresponding values are usually sensitive
to numerical precision.103
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