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‘It is almost irresistible for humans to believe that we
have some special relation to the universe (...) It is
very hard to realise that this is all just a tiny part of
an overwhelmingly hostile universe. It is even harder
to realise that this present universe has evolved from
an unspeakably unfamiliar early condition, and faces
a future extinction of endless cold or intolerable heat.
The more the universe seems comprehensible, the more
it also seems pointless. But if there is no solace in the
fruits of our research, there is at least some consolation
in the research itself. (...) The effort to understand the
universe is one of the very few things that lifts human
life a little above the level of farce, and gives it some of
the grace of tragedy.’

Steven Weinberg, 1993, in the epilogue of The First
Three Minutes

ii



Abstract

Lenticular galaxies are proposed to be a transition phase between early-type and

late-type galaxies, as they share properties that can be found in either one or the other type.

Therefore, the study of the evolution of such galaxy morphology can shed light on the un-

derstating of galaxy evolution in a global way. In this work we study the kinematics of the

globular cluster (GC) systems of three lenticular galaxies: NGC 2768, NGC 3115 and NGC

7457, using previously obtained kinematics from planetary nebulae (PNe). Globular clusters

are ubiquitously found in luminous galaxies and can be used as tracers of their host galaxies’

assembly histories through its kinematics and stellar population parameters. PNe, on the other

hand, can be used as discrete kinematic tracers of the overall stellar population of their parent

galaxies. The broad goal of this dissertation is to infer evidences on the processes that may

have contributed to the formation and evolution of such galaxies. Specifically, our main

objective is to recover the kinematics of the GCs in their respective components

(spheroid and disk) with the derived galaxy kinematics (previously obtained with

PNe). The present work employs the method developed in Cortesi et al. (2016) to study the

GC system of the lenticular galaxy NGC 1023. Here we extend the analysis to three more galax-

ies and use PNe and GC data from the PN.S (Douglas et al., 2002; Cortesi et al., 2011) and the

SLUGGS Survey (Pota et al., 2013; Brodie et al., 2014). The method consists in decomposing

the light of a given galaxy in its spheroid and disc components. With such decomposition,

we assign probabilities for GCs to belong to the host galaxy disk or spheroid. Furthermore,

a maximum likelihood estimation (MLE) is applied to obtain the best fit estimators for the

parameters of a gaussian model for the velocity distribution of such tracers. Comparing the

results obtained for GCs with the ones previously found for PNe in Cortesi et al. (2011, 2013b),

we recalculate the probabilities for each GC to belong to each of the galaxy’s components. As-

sociating kinematics to the probabilities previously obtained from photometry, we drastically

reduce the impact from observational biases. We show that all galaxies have GCs that can be

found in the spheroid and disc components and the ratio between ordered and random motions

in those systems is lower than the ones found in regular spiral galaxies. Overall we find that

there is great variety in the kinematics of the GC systems in each galaxy, showcasing that the

formation and evolutionary processes of these galaxies are also varied. In general, our results

point towards a scenario where the assembly of our sample galaxies involved unequal mergers,

as suggested in the literature (Bekki et al., 2005; Bournaud et al., 2005).
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Resumo

Galáxias lenticulares são consideradas como uma fase de transição entre galáxias

early-type e late-type, uma vez que apresentam caracteŕısticas comuns a tanto um quanto ao

outro tipo. Devido a isto, o estudo da evolução deste tipo morfológico de galáxia contribui

para o entendimento da evolução de galáxias de forma global. Neste trabalho, estudamos a

cinemática dos sistemas de aglomerados globulares (GCs) de três galáxias lenticulares: NGC

2768, NGC 3115 e NGC 7457, usando a cinemática obtida previamente de nebulosas planetárias

(PNe). Aglomerados globulares são encontrados universalmente em galáxias luminosas e po-

dem ser usados como traçadores dos seus históricos de formação, através de sua cinemática e

paramêtros de populações estelares. PNe, por sua vez, podem ser usadas como traçadores dis-

cretos da cinemática da população estelar global de suas galáxias hospedeiras. O objetivo geral

desta dissertação é inferir evidências dos processos que contribúıram para a formação e evolução

destas galáxias. Especificamente, nosso principal objetivo é obter a cinemática dos

GCs em seus respectivos componentes (disco e esferóide) através da cinemática

inferida para as galáxias (obtidas previamente com PNe). O presente trabalho aplica

o método desenvolvido em Cortesi et al. (2016) para estudar o sistema de GCs da galáxia lentic-

ular NGC 1023. Aqui nós estendemos esta análise para mais três galáxias e usamos dados de

PNe e GCs do PN.S (Douglas et al., 2002; Cortesi et al., 2016) e do survey SLUGGS (Pota

et al., 2013; Brodie et al., 2014). O método consiste em decompor a luz de uma dada galáxia em

seus componentes, esferóide e disco. Com esta decomposição, atribúımos probabilidades para

os GCs pertencerem ao disco e esferóide da galáxia hospedeira. Posteriormente, uma estimação

por máxima verossimilhança (MLE) é aplicada para obtermos os estimadores mais verosśımeis

para um modelo gaussiano da distribuição de velocidade destes traçadores. Comparando os re-

sultados obtidos para GCs com os previamente encontrados para PNe, em Cortesi et al. (2011,

2013b), recalculamos as probabilidades de cada GC pertencer a cada um dos componentes da

galáxia. Associando cinemática às probabilidades previamente obtidas por fotometria, drastica-

mente reduzimos o impacto de viéses observacionais. Mostramos que todas as galáxias possuem

GCs que podem ser encontrados no esferóide e no disco e a razão entre o movimento ordenado

e aleatório nestes sistemas é menor do que os encontrados em galáxias espirais regulares. De

maneira geral, encontramos grande variedade na cinemática dos sistemas de GCs para cada

galáxia, demonstrando que a formação e o processo de evolução destas galáxias é também vari-

ado. No todo, nossos resultados indicam um cenário onde a formação das galáxias em nossa
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amostra envolveu fusões de galáxias de proporções desiguais, como sugerido na literatura (Bekki

et al., 2005; Bournaud et al., 2005).
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Notation

The following abbreviations, acronyms and units are used throughout this disserta-

tion:

GCs - Globular Clusters

PNe - Planetary Nebulae

PN.S - Planetary Nebulae Spectrograph (Douglas et al., 2002)

SLUGGS - The SAGES Legacy Unifying Globular and Galaxies Survey (Brodie et al.,

2014)

pc - parsecs

kpc - 103 pc

Mpc - 106 pc

Myr - 106 years

Gyr - 109 years

C11 - Cortesi et al. (2011)

C13a - Cortesi et al. (2013a)

C13b - Cortesi et al. (2013b)

C16 - Cortesi et al. (2016)

.
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Chapter 1

Introduction

1.1 S0 Galaxies in the Context of Galaxy Evolution

This work intends to unravel clues to the origins and evolutionary histories of lenticular (S0)

galaxies by analysing the kinematics of globular clusters (GCs) and planetary nebulae (PNe).

In this chapter, we aim to provide a brief historical background on the subject of S0 galaxies

within the context of the evolution of different morphological types and the evolution of the

Universe itself. Moreover, we will discuss the motivation to study the kinematics of the globular

cluster and planetary nebulae systems of lenticular galaxies.

1.1.1 Historical Background

When the objects we know today as galaxies were first observed, what distinguished them from

regular objects in the sky was their resolved structure. Nearby galaxies, such as the Andromeda

Galaxy (M31) and the Magellanic Clouds, were already described and studied as their own class

of objects as early as the 10th century by the Persian astronomer Al-Sufi (Conselice, 2014). As

technology progressed, more and more objects known today to be galaxies were catalogued, most

notably in the Messier catalogue, first published in 1781 and in the New General Catalogue

(NGC), first published in 1888 by John Dreyer based on observations performed mostly by

1



2 Chapter 1. Introduction

Figure 1.1: Hubble’s tuning fork diagram for galaxy classification. Credits: http://

skyserver.sdss.org/dr1/en/proj/advanced/galaxies/images/TuningFork.jpg.

William and John Herschel.

Until the early 20th century, however, the study of galaxies was restrictively descrip-

tive. With the advent of photography, astronomers were able for the first time to properly study

the different morphologies and structures present in external galaxies. Observations performed

by Edwin Hubble, in the early 1920s, confirmed that galaxies were indeed external structures

and not part of the Milky Way. He also proposed, in 1926, the famous ”tuning fork” diagram

to classify galaxies based on apparent morphology which hinted at a connection between mor-

phology and galaxy evolution. In his diagram, shown in fig. 1.1, Hubble divided galaxies into

two main classes: early-type galaxies, comprising elliptical and lenticular galaxies and late-type

galaxies, comprising spiral galaxies. The latter was divided into two subgroups based on how

developed the galaxy’s spiral arms structure were and how large its bulge was relative to the

disc. In this context, lenticular (S0) galaxies were suggested to be some sort of transition mor-

phology between early-type and late-type galaxies. This was due to their appearance of a disc,

similarly to late-types, but lacking spiral structures or gas, displaying prominent bulges and

overall redder colours, similarly to elliptical galaxies.

http://skyserver.sdss.org/dr1/en/proj/advanced/galaxies/images/TuningFork.jpg
http://skyserver.sdss.org/dr1/en/proj/advanced/galaxies/images/TuningFork.jpg


1.1. S0 Galaxies in the Context of Galaxy Evolution 3

Figure 1.2: Sérsic profiles of surface brightness (eq 1.1) for different values of sérsic index n,
adapted from Graham and Driver (2005) and obtained from https://ned.ipac.caltech.edu/

level5/Sept13/Graham/Graham1.html.

Along the past century, the study of the physics behind the variety of galaxy mor-

phologies improved dramatically as technology progressed, most notably by the advent of

Charged Coupled Devices (CCD), that enabled the detailed study of the light distributions

in galaxies. In the 1950s and 1960s, astronomers such as Gerard De Vaucouleurs and José Luis

Sérsic studied the surface brightness profiles of galaxies and paved the way to the study of their

different components and substructures. The Sérsic profile, eq. 1.1 (Sérsic, 1963), describes the

general form of the light distribution of galaxies, and has the following form:

µ(R) = µe +
−2.5bn
ln(10)

[ ( R
Re

)1/n

− 1
]
, (1.1)

where µe is the intensity at the effective radius Re, defined as the radius of the circle

enclosing half of the total galaxy luminosity, bn ≈ 2n − 0.237 (Capaccioli and Caon, 1989) is

a parameter directly dependent on the index n, called the sérsic index, that is related to the

concentration of the galaxy light in the inner regions when compared to its outskirts (see fig.

1.2). Galactic discs can be well described by exponential profiles, which correspond to eq. 1.1

with n = 1 (Graham and Driver, 2005), while bulges and spheroidal components of galaxies are

better described by values of n = 4, when the Sérsic profile turns into the de Vaucouleurs profile

(de Vaucouleurs, 1953). Other values for the index n can describe the light of other structures

https://ned.ipac.caltech.edu/level5/Sept13/Graham/Graham1.html
https://ned.ipac.caltech.edu/level5/Sept13/Graham/Graham1.html


4 Chapter 1. Introduction

possibly present in galaxies. Moreover, the combination of Sérsic profiles with different values

for n are able to describe the overall light profiles of galaxies effectively enabling one to model

a given galaxy by its individual components. Later works developed galaxy light bulge-disc

decomposition techniques (Kormendy, 1979) and provide explanations for bars, lenses, rings

and other structures observed in galaxies (Combes and Sanders, 1981).

Over the past 20 years, large scale surveys such as the Sloan Digital Sky Survey

(SDSS) (York et al., 2000), the Two Micron All-Sky Survey (2MASS) (Skrutskie et al., 2006)

and the observations of the Hubble Space Telescope (HST) enabled the discovery of hundreds

of thousands of galaxies at many redshifts and an unprecedented amount of data to be studied

and analysed. Observations up to redshift z = 8 have shown that the structure of galaxies

in the early universe were significantly different from what we see today. The star formation

rates of galaxies in the early universe were different, as well as their mass, brightness and

overall morphologies (Carrasco et al., 2010; Conselice, 2014). This motivated the development

of sophisticated statistical approaches to deal with this large amount of data and numerical

simulations to model the evolution of galaxies at larger scales and redshifts. In this modern

context of galaxy evolution, simulations and observations have shown that S0 galaxies still are

a possible transition phase between early and late-type galaxies, but also stand as interesting

science cases by themselves (Oser et al., 2010; Brodie and Strader, 2006).

1.1.2 The Role of S0 Galaxies in Galaxy Evolution

Lenticular galaxies (S0) have clearly defined disc structures alongside prominent bulges. Kine-

matically, their system is colder than the one of ellipticals, with a rotational velocity associated

with the disc and a significant value of velocity dispersion associated with the bulge and the

halo surrounding the galaxy. Their location in the Hubble sequence suggests a connection

between their formation and the evolution of early-type and late-type galaxies. However, the

formation paths these galaxies have undergone is an open field in current astrophysics with

several possibilities proposed along the past decades (Gunn and Gott, 1972; Quilis et al., 2000;

Bournaud et al., 2005).
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Throughout the 20th century, as technology enabled more distant galaxies to be

studied, evidences of the connection between morphology and environment also started to

appear and the role of S0 galaxies as tools to understand the evolution of galaxies became

increasingly important. Dressler (1980) has shown that the number of elliptical and lenticular

galaxies increases proportionally to the environmental density, while the number of late-type

galaxies decreases at the same conditions, see fig. 1.3 (Dressler, 1980; Dressler and Sandage,

1983). Such correlation, the morphology-density relation, can be interpreted as evidence of

an evolution from late-type galaxies to early-type galaxies, with S0 galaxies once more as

a transition type, at least in such dense environments. The mechanisms for such transition

would revolve around the removal of the gas content in spiral galaxies infalling towards the

centre of clusters due to its interaction with the intracluster gas. Example of such mechanisms

include ram-pressure striping, harassment or strangulation (Gunn and Gott, 1972). If not all

the gas of the infalling galaxy is removed, but only a percentage significant enough to halt its

star formation rate, we have the starvation process (McCarthy et al., 2008), which has almost

the same consequences of the ram-pressure stripping to galaxies in dense environments, as a

result of this process we would have a galaxy with an old stellar population such as what we see

in early-type galaxies today. In fact, the fraction of lenticular galaxies in clusters and groups

has been shown to decrease with redshift, while the number of spirals increases (Dressler et al.,

1997; Wilman et al., 2009). However, van den Bergh (2009) has shown that while S0 galaxies

are indeed more common in denser environments, comprising 13% of galaxies in groups and

15% of galaxies in clusters, they also account for 8% of the galaxies in the field. Moreover,

the ratio between the amount of S0 galaxies and the other kinds of early-type galaxies1 was

found in this same work to account for 33% in clusters, 38% in groups and 34% in fields. If S0s

galaxies are formed mostly in denser environments by the transformation of spiral galaxies, we

would expect for them to be more prevalent in clusters than in the field, but this seems not to

be the case.

In the hierarchical paradigm of galaxy formation, S0 galaxies would be formed from

halos of dark matter hosting lumps of baryonic particles, bonded by gravity, that would grad-

1As early-type galaxies, van den Bergh (2009) considered SA, SO and elliptical galaxies.
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Figure 1.3: Morphology-Density Relation as published in Dressler (1980). The correlation
between the environment density, ρ, and the different morphologies is clear. Spiral and Irregular
galaxies, shown as crosses, decrease with ρ while S0 (black circles) and elliptical galaxies (open
circles) have their number increased in denser environments.

ually form the more complex structures seen today (Hopkins et al., 2010). Observed data from

Globular Clusters (GCs) have shown that a two-phase scenario must be taken into consideration

as well (Oser et al., 2010). In this perspective, galaxies in most cases would pass through two

different phases of star formation: one in-situ2, i.e., the one that happened within the galaxy,

and one ex-situ that happened in other galaxies or lumps of gas of a primordial gas cloud that

then were later accreted by the end galaxy through minor or major merger events (Oser et al.,

2010). This second phase is theorised to be able to happen in selected few events or through

an extended sequence of minor mergers, such as the cannibalism of dwarf galaxies or globular

clusters from neighbouring galaxies.

Simulations indeed have shown that one or several minor mergers are able to form S0s

galaxies (Bournaud et al., 2005), while major mergers are expected to form ellipticals. If that

is the case, kinematics can play an important role in unravelling clues on the evolution of S0

galaxies, since such events would dramatically affect the kinematics of the stellar populations

2The in-situ formation of GCs is related to the monolithical collapse theory for galaxy formation (Eggen
et al., 1962). In such hypothesis, galaxies and their first GCs are formed from the gravitational collapse of a
primordial gas cloud.
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and GC systems in such galaxies (Bekki et al., 2005; Coccato et al., 2009; Forbes et al., 2012).

1.2 Kinematics of Discrete Tracers

Classifying galaxies only from their apparent morphologies has several limitations. For instance,

in the case of S0 galaxies, if a given galaxy presents itself in edge-on projection, it can easily

be mistakenly classified as a spiral galaxy due to its extended disc structure. Moreover, face-on

lenticulars are recurrently classified as ellipiticals due to their prominent bulges and the redder

colours of their stellar content. Kinematics can be used as a mean of galaxy classification

due to the intrinsic kinematical properties of each of the galaxy types proposed by Hubble.

Cappellari et al. (2011) proposed a revision of the Hubble sequence by taking into account

galaxy kinematics, see fig. 1.4. In elliptical galaxies, the kinematics of their stellar populations

are dominated by a larger value of velocity dispersion when compared to the systemic rotation,

being therefore kinematically hot systems. S0s and spiral galaxies, however, resemble each

other kinematically to some extent by having generally colder kinematics.

Therefore, by studying the kinematics of S0 galaxies, we can better understand how

closely related they are from spiral or elliptical galaxies. However, the lack of enough H1 gas in

early-type galaxies and the fainter stellar light in their outer regions makes it difficult to recover

kinematics of such galaxies with the same methods used for late-type galaxies (Pota et al., 2013;

Brodie et al., 2014; Cortesi et al., 2016). Fortunately, tracers such as GCs or Planetary Nebulae

(PNe) can be detected at large radii and provide us with tools to understand the kinematics of

their host galaxies as a whole (Bekki et al., 2005; Brodie et al., 2014; Cortesi et al., 2013a).

Recently larger data sets for GCs (Pota et al., 2013) and PNe (Coccato et al., 2009)

of S0 galaxies are becoming available, enabling us to study their kinematics in the perspective

of the evolution of their host galaxies. The kinematics of PNe is strong related to the one

of the overall stellar population of a given galaxy (Coccato et al., 2009; Cortesi et al., 2013a)

and therefore can be used to trace stellar kinematics even at large radii, where the surface

brightness of stellar light is too low and the imprints of the interaction with other galaxies or
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Figure 1.4: Morphology-Kinematics schematics proposed in Cappellari et al. (2011). In this
diagram, a revisionism of Hubble’s work on fig 1.1, intrinsic kinematic properties of each mor-
phological type of galaxy is taken into consideration. With this perspective, early-type galaxies
are shown on the bottom, from slow rotators (E0 to E4 elliptical galaxies) to fast rotators
(E5 and more flattened ellipiticals, lenticular galaxies). Anaemic Spiral galaxies (Aa, Ab and
Ac, van den Bergh (1976)) and regular spirals are shown in a separate category along the fast
rotators due to the presence of gas and clearly defined spiral structures on the disc.

the intergalactic medium are stronger. GC kinematics are tightly related to the formation of

their host galaxy and past events, such as mergers, in such galaxy evolutionary path (Bekki

et al., 2005; Brodie et al., 2014).

1.2.1 Planetary Nebulae

Planetary Nebulae (PNe) are stars at nearly the end of their life cycle that have masses of

around M < 8M�, therefore not massive enough to keep the combustion of heavier elements

than hydrogen or helium. In this phase, the star suffers a gravitational collapse in which its

outer shell is expelled at velocities that can reach 30 km/s while the star itself collapses into a

white dwarf. This outer shell of hot gas constitutes the most prominent part of the PNe and is

estimated to last 50,000 years before vanishing into the interstellar medium. The central star,

hot and dense, emits UV light that is absorbed and re-emitted by the surrounding gas cloud

of the PNe. This emission peaks at around 5007Å, the [OIII] line. As this line is not emitted
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by any other source in the interstellar surroundings, PNe are relatively easy to be detected at

large galactocentric radii, even in distant galaxies, where they appear only as point-like light

sources (Coccato et al., 2009).

Most PNe have ages around ' 1.5 Gyr (Douglas et al., 2002). Therefore, in the case

of early-type galaxies, PNe are expected to be good tracers for stellar kinematics due to its

generally old stellar populations. This assumption was confirmed with the advent of specific

instruments for extragalactic PNe measurement, such as the Planetary Nebulae Spectrograph

(PN.S) and subsequent works that probed the kinematics of the overall stellar populations of

galaxies using PNe (Douglas et al., 2002; Romanowsky and SAGES Team, 2013; Noordermeer

et al., 2008; Cortesi et al., 2013b, among others).

1.2.2 Globular Clusters

Globular Clusters (GCs) are high density stellar groups that are formed very early in their host

galaxy formation, and therefore are very old, with ages > 10 Gyr (Blakeslee, 1997; Forbes et al.,

2001; Brodie and Larsen, 2002). Their masses span 104 − 106M� with effective radii peaking

around Reff ≈ 4 pc. In the evolution of galaxies, the GCs we see today are expected to have

formed after major starburst events that alter the gas distribution within the primordial galaxy,

becoming denser and forming stars in a higher rate than usual (Oser et al., 2010; Brodie et al.,

2014). As such, GC dynamics, metallicity and ages can be used to trace back evolutionary

events in a given galaxy history. Early-type galaxies can host an enormous number of GCs

(Brodie and Strader, 2006). M87, the giant elliptical in the centre of the Virgo cluster, is

estimated to have over 17 thousand GCs (Oldham and Auger, 2016; Chies-Santos et al., 2011)

and lenticular galaxies such as NGC 3115 have over 150 spectroscopic confirmed GCs (Pota

et al., 2013; Jennings et al., 2014), to mention a few examples. Star clusters are expected to

be present in all galaxy components whereas globular clusters are not likely to survive for long

in galactic discs due to rotation effects (Brodie and Strader, 2006) and thus are expected to be

found mostly in the central component of galaxies, the bulge, or in their outermost component,

the halo. Therefore, the study of their metallicity, dynamics and age can offer clues on the
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evolution of its host galaxy, considering specially its innermost GC population, and also on

environmental processes a galaxy has experienced through its history by looking at the GC

populations in the halo (Bekki et al., 2005). Radially, GCs are distributed in most cases with

the same ellipicity as their host galaxies spheroidal regions, suggesting that at least most of

them formed within the galaxy (Brodie and Strader, 2006; Forte et al., 2001; Schuberth et al.,

2005), but a fraction of the GC population can result from the accretion of smaller galaxies

(Schweizer, 2001).

An important feature of GC populations is the fact that most galaxies display bi-

modality in their GC population optical colour distribution (Brodie and Strader, 2006). Such

bimodality suggests the presence of two distinct GC subpopulations within a galaxy, which

would be directly related to its host galaxy evolution. The bluer GC population is generally

found in the halo and consist of metal-poor objects, while the redder population, on the other

hand, are better tracers of the metal-rich components of galaxies and therefore are related to

the bulge, much like stellar populations of early-type galaxies such as ellipticals and the thick

discs of spiral galaxies (Cortesi et al., 2013b; Pota et al., 2013). Red populations are expected

to show, however, more rotational support than blue populations so their kinematics are more

akin to the disc component of some galaxies (Muratov and Gnedin, 2010). Other character-

istics, such as mass, age and size do not differ much in between the two populations, while

metallicity can show a bimodality in GC populations that follows the colour bimodality (Yoon

et al., 2006; Brodie and Strader, 2006; Cantiello et al., 2014). This correlation with metallicity,

however, is not universal (Muratov and Gnedin, 2010) and alternative views state that it is

possible for a flat, almost unimodal metallicity distribution to be present in a GC population

that is bimodal in optical colours. Such a fact becomes clearer when we shift to near-infrared

colour distributions, for which the colour bimodality for some galaxies become increasingly less

evident or even clearly unimodal, as its the case for NGC 1399 (Blakeslee et al., 2010) and M87

(Chies-Santos et al., 2012).

Moreover, the correlation between GC kinematics and colour bimodality is also not

clear, however some interesting results have arisen when S0 galaxies were studied. Forbes et al.

(2012) studied the galaxy NGC 2768 and found that the red GC population follows the radial
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density distribution of bulge starlight and PNe being also kinematically compatible to the bulge

stars, while no rotation was found for its blue GCs. This galaxy will be revisited in this work.

In the same vein, for NGC 1023, another S0 galaxy, blue GCs show some rotation this time but

have kinematics closer to halo PNe and starlight (Cortesi et al., 2016). Bulge-disc decomposition

has a very important role in this subject, since with its help we are able to trace the kinematics

of GCs of S0 galaxies to different components of the host galaxy. For this objective, however,

we need to employ some method to correlate objects to different components of a galaxy. For

this extent, in this work we employ a method based on photometry and kinematics.

1.3 This Work

The evolution and assembly of lenticular galaxies in different environments is a great topic of

debate and research in contemporary astrophysics. The limitations of using common methods

for kinematics analysis in such gas-poor galaxies at large distances makes GCs and PNe excellent

and needed kinematic tracers. Specially at large radii, where interesting events in S0 galaxies

evolution histories should leave imprints and stellar light is too faint. This work intends to

explore these tracers using a maximum likelihood estimation method to statistically infer the

best velocity profile for a given galaxy. Combined with photometry, we can also analyse the

different subcomponents of a galaxy and its multiple GC subpopulations spatially within the

galaxy.

The method used here was first introduced by Cortesi et al. (2011, hereafter C11),

when it was applied to PNe of a set of early-type galaxies. Later, in Cortesi et al. (2013b,

hereafter C13b), Cortesi et al. (2016, hereafter C16) the lenticular galaxy NGC 1023 was

studied, but this time with the addition of a GC sample alongside its PNe. These works

revealed the maximum likelihood estimation (MLE) to recover the kinematics of such tracers

as a powerful tool to study the evolution of early-type galaxies, such as S0s. The galaxy sample

used in those works was small and needed to be expanded, since the only galaxy with its

GCs and PNe studied at the same time so far is NGC 1023. This is where the present work
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comes along, applying the same method used in C16 to a wider set of S0 galaxies in different

environments: NGC 2768, an isolated galaxy, NGC 3115, a group galaxy and NGC 7457, a

field galaxy.

This work is divided as follows: In sec. 2 we present the data we used and the different

sources from where it was obtained, along with information about the galaxies in our sample;

in sec. 3 we present and discuss the MLE method and how we apply it to our sample; in sec. 4

we show the results obtained from this work and discuss the implications of those in the wider

range of scenarios proposed in the literature for the evolution of lenticular galaxies and in sec.

5 we summarise our results and present future prospects following the results obtained here.
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Data

In this work, we used spectroscopic and photometric data from GCs and PNe to model the

kinematics of a sample of three nearby S0 galaxies. In this section we describe this data and

briefly discuss the basic properties already studied in the literature for the galaxies in our

sample. In table 2.1 we summarise the size of the samples used for GCs and PNe for each

galaxy.

2.1 PNe data and The Planetary Nebulae Spectrograph

(PN.S)

The PNe data for the galaxies present in this work was obtained with The Planetary Nebulae

Spectrograph (PN.S) (Douglas et al., 2002) and is described and published in C13a1. The PN.S

is a dedicated instrument mounted at the William Herschel Telescope (WHT) in La Palma,

Spain. The instrument detects PNe using a technique based on counter-dispersed imaging

(CDI), which enables us to obtain velocities and positions for PNe at the same time. The

technique consists in taking, simultaneously, two images of the same field through a slitless

spectrograph equipped with an [OIII] filter. The light is then dispersed in two opposite direc-

1 The PN.S data is publicly available and can be downloaded from: https://www.strw.leidenuniv.nl/

pns/PNS_public_web/PN.S_data.html

13

https://www.strw.leidenuniv.nl/pns/PNS_public_web/PN.S_data.html
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Figure 2.1: Counter-dispersed imaging (CDI) for PNe detection, from Douglas et al. (2002).
Left : Schematics of CDI imaging; right : examples of obtained spectra from both CCDs for
stars (spectrum segment) and PNe (single peak emission line). By taking into consideration
the displacement δv in the two images, velocities are obtained for the PNe. This plots were
taken from Douglas et al. (2002).

tions reaching two different CCDs. The result is that in the final image, stars appear as short

segments of spectrum, while PNe appear as point sources due to their concentrated emission

at the [OIII] line. By comparing the displacement of the PNe [OIII] emission line in the images

of both CCDs, one can readily obtain the relative velocities which later are converted into

absolute values in the calibration process (see Douglas et al. (2002) for further details). In fig.

2.1 a schematic representation of the CDI technique is described and in fig. 2.2 a picture from

the PN.S instrument is shown.

The PN.S instrument was designed specifically to acquire spectroscopic data from the

[OIII] line at 5007Å, which provides an optimal efficiency on targets up to 25 Mpc in distance.

The spectroscopic measurements obtained with the instrument have uncertainties of around 20

km/s and are better suited for outer regions of galaxies, due to the difficulties in detecting PNe

closer to the centre of galaxies where their light is diluted on a stronger background light from

stars. Therefore, completeness and purity estimations and proper corrections are needed in

order to take into consideration the many complications in detecting PNe at the inner regions

of galaxies or the effects of foreground stars. In C13a, the analysis of incompleteness for the

samples used in this work was performed following the method described in Coccato et al.

(2009), and resulted in good agreement between the radial density of the PNe and the surface

brightness profiles of the host galaxies as obtained with IRAF/ELLIPSE (Jedrzejewski, 1987).
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Figure 2.2: Actual PN.S instrument. The light comes from above and is dispersed towards the
blue arms on the sides, reaching two CCDs at the end of each one. Credits: Ana Chies Santos.

These results are shown in fig. 2.3, which is taken from C13b.

2.2 GC data and The SLUGGS Survey

The globular cluster photometric and spectroscopic data present in this work comes from The

SAGES Legacy Unifying Globulars and GalaxieS (SLUGGS) Survey (Brodie et al., 2014; Forbes

et al., 2017). SLUGGS is a wide-field spectroscopic and photometric survey of early-type

galaxies using mainly the Subaru/Suprime-Cam imager and the Keck/Deimos spectrograph.

SLUGGS goals revolve around studying, with unprecedented detail, the outer regions of early-

type galaxies, where stellar light is fainter. Photometrically the survey has gri deep imaging of

25 nearby early-type galaxies, and near-infrared Ca II triplet (CaT) measurements that provide

spectroscopy for selected targets within the photometric catalogues.

Observations of all galaxies present in this work have been described in Pota et al.

(2013). NGC 2768 was observed with the Suprime-Cam instrument of the Subaru telescope

which has a field of view of 34 x 27 arcmin and a pixel scale of 0.202 arcsec (Miyazaki et al.,
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Figure 2.3: Comparison between PNe radial density and surface brightness profiles fitted using
IRAF/ELLIPSE, published in C13b, for our sample galaxies and NGC 1023, after incomplete-
ness corrections. Diamonds represent the ELLIPSE fit, filled circles represent PNe number
density and the blue lines represent the extrapolation of a Sérsic profile plus an exponential
disc profile fitted for the galaxies’ light profiles.
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2002). Additional photometric information for this galaxy comes from the SMOKA archives

(Baba et al., 2002) and the Advanced Camera for Surveys (ACS) from the Hubble Space

Telescope (HST), obtained from the Hubble Legacy Archive and described in Pota et al. (2013).

Spectroscopy for this galaxy was obtained using the DEIMOS spectrograph from the Keck-II-

Telescope (Faber et al., 2003) with a field of view of 16x5 arcmin and CaT absorption line

Doppler shift measurements.

NGC 3115 data is described in details in Arnold et al. (2014). Observations for this

galaxy were obtained with the Subaru/Suprime-Cam, with spectroscopy from Keck/DEIMOS,

and additional spectra from the LRIS instrument on the Keck-I-Telescope, with a field of view

of 6x7.8 arcmin (Oke et al., 1995) and the IMACS instrument from the Magellan telescope

(Dressler et al., 2011).

The photometric GC data for NGC 7457 included in SLUGGS comes from Hargis

et al. (2011), obtained from observations in the BVR filter with the WIYN/MiniMo imager

(Saha et al., 2000). Hargis et al. (2011) also obtained spectroscopy for a sample of 20 NGC

7457 GCs, however, in this work we use an updated and larger spectroscopic sample for this

galaxy’s GCs obtained with the KECK/DEIMOS spectrograph and published on Forbes et al.

(2017). This new sample has spectroscopy for 40 GCs, which is double the amount previously

published. However, only 22 GCs are present in both Hargis et al. (2011) photometric catalogue

and Forbes et al. (2017) spectroscopic sample. The main interest for studying this galaxy is

on velocity measurements of a sample of its GCs, therefore we adopted this larger sample and

discuss in section 4.5 the implications of this decision on the final results.

As in this dissertation we employ a maximum likelihood estimation (MLE) for GCs

and PNe of our sample galaxies, the size of the samples are important to some extent to ensure

good results. Further details on the efficiency of the method will be fully explored in chapter

3, but we note that in C13b it is shown that the MLE method is able to obtain reliable results

even with somewhat smaller samples, as its the case of NGC 7457. Therefore, we expect larger

uncertainties in the estimation of the kinematic parameters for this galaxy GCs, when compared

to the same procedures for NGC 2768 and NGC 3115 GCs, but we don’t expect systematic
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Galaxy NGC Photometric NGC Spectroscopic NPNe

NGC 2768 978 106 315
NGC 3115 781 150 188
NGC 7457 536 40 112
NGC 1023 360 115 203

Table 2.1: Size of GC and Planetary Nebula samples used in this work for our sample galaxies
with the addition of the amount of the same tracers used in C16 for NGC 1023, for comparison
purposes throughout this work. In the second column we have the number of the GC sample
for each galaxy for which only photometry is available, in the third column we have the number
of GCs for which spectroscopy data is available and in the last column the number of PNe
available for each galaxy (with spectroscopic and photometry obtained simultaneously in the
PN.S). See section 2.1 and 2.2 for further details on each sample.

errors that could compromise the fit. In what concerns the other galaxies, their GC and PN

sample sizes are comparable in size to the ones used for a successful application of the method

for NGC 1023, so we expect similarly satisfactory results.

2.3 Images used for the spheroid-disc decomposition

In this work we implement spheroid-disc decomposition for our sample galaxy images by fitting

surface density profiles using GALFIT (Peng et al., 2002). This procedure is described in

detail in section 3.1. The images used for our sample galaxies are K-band images from 2MASS

(Skrutskie et al., 2006).

2.4 Galaxies Present In This Work

In this section we present the general properties of the galaxies studied here. In table 2.2

these properties are summarised, and the multiple sources used to gather such information is

referenced. In the next subsections we discuss briefly other interesting properties and past

studies on our sample galaxies and NGC 1023.
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Galaxy Dist. (Mpc) Vsys (km/s) σsys (km/s) ε env. morph. Age (Gyr) Re (kpc) log(M∗) (M�)
NGC 2768 21.8 1353 206 0.57 G E/S0 12.3 6.37 11.21
NGC 3115 9.4 663 248 0.66 F S0 9.0 1.66 10.93
NGC 7457 12.9 844 74 0.47 F S0 3.8 2.13 10.13
NGC 1023 11.1 602 183 0.63 G S0 12.3 2.58 10.99

Table 2.2: General properties of our sample galaxies and NGC 1023 published in Alabi et al.
(2017). From left to right, the columns are: Galaxy designation, distance, systemic velocity,
central stellar velocity within 1 kpc, ellipticity, environment (F=Field, G=Group), galaxy mor-
phology from Brodie et al. (2014), average luminosity-weighted age of the stellar population
within 1 Re from McDermid et al. (2015), effective radius and stellar mass.

2.4.1 NGC 2768

NGC 2768 is a group galaxy classified as an E6 by de Vaucouleurs et al. (1991) and S0 1/2

by Sandage and Bedke (1994), located relatively nearby with a distance of about 22 Mpc from

us (Tully et al., 2013) in the direction of the constellation of Ursa Major. It is part of the

Lyon Group of Galaxies 167 (Garcia, 1993), and has traces of ionised gas and a dust lane along

the minor axis (Kim, 1989). It is interesting to add that the ionised gas and stars in the inner

regions of the galaxy have been found to have different kinematics (Fried and Illingworth, 1994).

Pota et al. (2013) found a bimodal distribution in colour for the sample of 978 GCs used in this

work with a separation at (Rc− z) = 0.57mag, obtained with KMM (Ashman et al., 1994).

This galaxy’s red subpopulation of GCs has already been studied with a method

similar to the applied here by Forbes et al. (2012). They found that the red GCs follow the

radial surface density profile and are compatible with kinematics of the bulge component of the

galaxy. Pota et al. (2013) finds rotation for the red GCs of this galaxy and no rotation for the

blue subpopulation.

2.4.2 NGC 3115

NGC 3115 is the closest S0 galaxy to us, with a distance of 9.8 Mpc (Cantiello et al., 2014) and

shows the most clear bimodality of our sample (Brodie et al., 2012; Pota et al., 2013; Cantiello

et al., 2014; Arnold et al., 2014). Pota et al. (2013) found a colour separation for our sample

of photometric GCs at (g − i) = 0.91mag.
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This galaxy is located in the field (Brodie et al., 2014) and displays many interest-

ing morphological structures, such as spiral structures proposed by Norris et al. (2014) and

redetected recently using VLT/MUSE spectroscopy by Guérou et al. (2016). It has two faint

companion galaxies (Doyle et al., 2005).

2.4.3 NGC 7457

NGC 7457 is a field S0 galaxy (Brodie et al., 2014) with a distance of 12.1 Mpc from us (Tully

et al., 2013) that, as opposed to the other galaxies in our sample, shows no signs of bimodality

in its GC population (Hargis et al., 2011; Pota et al., 2013). Previous studies with this galaxy

also proposed a counter-rotating galaxy core (Sil’chenko et al., 2002) and a possible merger

origin (Hargis et al., 2011). Furthermore, it presents the least amount of GCs of all galaxies in

our sample, with a total number of ∼ 210± 30 GCs, which is consistent with the total number

of GCs in late-type galaxies, such as M31 and the Milky Way (Hargis et al., 2011).

2.4.4 NGC 1023

NGC 1023 is a group S0 galaxy at a distance of 11.1 Mpc from us (Alabi et al., 2017). This

galaxy has an interacting companion galaxy, NGC 1023A (C16) and shows colour bimodality

for its GC population with a separation at (g − z) = 1.1mag (Forbes et al., 2014). In C16,

kinematic analysis of its GCs and PNe has shown rotation on both blue and red subpopulations

of GCs and a discrete amount of GCs with disc-like kinematics. Further analysis of the results

obtained for this galaxy on C16 will be discussed throughout this work and compared with

the results obtained for our sample galaxies. NGC 1023 is so far the only other galaxy for

which this method was applied for its whole GC and PNe populations, so it is invaluable to

the comprehension of the results obtained here.
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(a) NGC 2768

(b) NGC 3115

(c) NGC 7457

Figure 2.4: Positions of planetary nebula and spectroscopic GC samples described in this
section for our sample galaxies, overplotted in the k-band images from 2MASS used for the
spheroid-bulge decomposition.



Chapter 3

The Kinematic Likelihood Method

In this section we present the method used in this work to analyse the kinematics of GCs

and PNe belonging to our sample galaxies, and how we may use this information to learn

more about these galaxies’ evolutionary histories. Regular photometric techniques have several

limitations for the purpose of studying the evolution of galaxies, especially lenticulars. Some

of those drawbacks are: the faintness in surface brightness of the outer regions of galaxies,

preventing one to probe clues of the interaction between the galaxy and the environment with

only photometry; the generally smaller amount of gas content in lenticulars when compared

to spirals, complicating the recovering of the galaxy kinematics from H1 gas, for instance;

or the general difficulties in overcoming projection effects that often lead to lenticulars being

mistakenly classified as ellipiticals. Therefore, kinematics has an important role as a tool to

study properties associated with galaxy evolution that are otherwise harder to obtain. However,

due to the nature of S0 galaxies, as stated before, we cannot rely solely on the galaxy light

or gas to recover kinematic profiles. We focus instead in analysing discrete kinematic tracers,

such as GCs and PNe. Extragalactic GCs and PNe can be detected at distances up to 100

Mpc (Harris, 2010), and at radii up to ∼ 5Re of their host galaxies (Brodie et al., 2014), where

the galaxy light is too faint for conventional photometry. PNe have been shown to be excellent

tracers of the kinematics of the global stellar population of their host galaxy (Napolitano et al.,

2001; Coccato et al., 2009; Cortesi et al., 2013a) and the kinematics of GC systems is tightly
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correlated to past events in the host history of the host galaxy, such as mergers and other

formation scenarios proposed for S0 galaxies (Bekki et al., 2005; Bournaud et al., 2005).

To analyse the kinematics of GCs and PNe of a given galaxy, a useful and powerful

method was developed in C11 and C16 and is applied in this dissertation. Basically, the method

can be described by the following steps:

• A photometric spheroid-disc decomposition of the galaxy light is performed with software

such as GALFIT (Peng et al., 2002);

• The spheroid model obtained with GALFIT is divided from the total model of the galaxy

light, to obtain what we call the f-map, which is then used to estimate the probabilities,

fi for the GCs to belong to the spheroid of the galaxy only by its apparent positions over

the galaxy image.

• The GC velocity distribution is then modelled as a single gaussian model with mean

velocity V and a dispersion velocity σ, obtained through Maximum Likelihood Estimation

(MLE).

• Finally, using the fi probabilities for the GCs and the previously obtained velocity dis-

tribution functions of the PNe of each of our sample galaxies, obtained with the same

f-map procedure and MLE fit as used in this work, published in C13b, the probability for

each GC to belong to the galaxy disc or spheroid can be now calculated from a kinematic

perspective, which we expect to improve the probabilities obtained only with photometry.

To complement this methodology, we also employed a few other procedures in this

work, such as comparing the GC radial density profiles with the modelled light profiles obtained

with GALFIT, statistical smoothing of the velocity maps from our spectroscopic GC samples

and an analysis to look for correlations between the colour subpopulations of GCs and the

results we obtained from the kinematic fit. These extra steps were needed to confirm that PNe

kinematics can be used to describe GC kinematics, while also gathering additional information

on the GC samples.
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3.1 Photometric Spheroid-Disc Decomposition

The first phase of the method consists in applying a photometric spheroid-disc decomposition

on a galaxy image. In general, lenticular galaxies are well modelled as a combination of a

disc component and a spheroid, comprising a bulge and a halo. There are 1D decomposition

routines that only account for fitting the light profile of the galaxy, and 2D routines that, given

an image of a galaxy, fit the surface brightness profiles in a more precise way. In general, a

combination of Sérsic functions (eq. 1.1) is used to model the different components of a galaxy

(Caon et al., 1993). Several routines exist to perform such decomposition numerically, such

as IRAF/ELLIPSE in 1D, GALFIT (Peng et al., 2002) and MegaMorph (Vika et al., 2013) in

2D, to name only a few. In this work, we have used the quantities obtained using GALFIT, in

C13b, for the light profiles of the galaxies in our sample.

In C13b, images of each galaxy were decomposed in disc and spheroid, obtaining

estimated values for the light profiles of such components. These are listed in table 3.1. It

was adopted a Sérsic profile to model the spheroid light for our galaxies and an exponential

disc profile to model the disc. For all galaxies in our sample, K-band images from 2MASS

have been used to perform the decomposition. This modelling, with a disc and a spheroid,

comprising bulge and halo as previously mentioned, works well in general for S0 galaxies and

for the purpose of this work. However, it is to be noted that some galaxies have slightly more

complex structures. NGC3115, for instance, shows signs of multiple disc features that closely

resemble spiral arms, as noted by Norris et al. (2006). Nonetheless, for the scope of this work,

this spheroid-disc modelling is good enough for recovering the kinematics of the galaxy as it

was shown on C16.
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Table 3.1: Light profiles estimated parameters for sample galaxies, from Cortesi et al. (2013b)
and used for the analysis in this work. [1] disc apparent magnitude, [2] disk scale lenght, [3] axis
ratio, [4] galaxy inclination, [5] position angle, [6] spheroid apparent magnitude, [7] effective
radius, [8] sérsic index n for spheroid, [9] axis ratio of the spheroid, [10] position angle fitted
for the spheroid.

Disk Spheroid

Galaxy
mD

(mag)
RD

(arcs)
b/a

incl
(deg)

PA
(deg)

mB

(mag)
Re

(arcs)
n b/a

PA
(deg)

NGC 2768 8.19 42.93 0.29 73.0 -86.25 7.23 50.46 4.65 0.66 -85.39
NGC 3115 8.34 53.69 0.39 67.0 45.00 7.17 26.19 4.00 0.31 45.0
NGC 7457 8.56 27.07 0.48 62.0 -57.28 9.49 11.62 4.00 0.62 -46.04

3.2 GC radial density and the fitted surface brightness

profiles

To both verify the consistency of the models obtained above and to analyse how the GCs for our

galaxies are distributed along the galactocentric radius, we proceed to compare the obtained

light profiles with the radial photometric GC density for our sample galaxies (see figure 3.1).

Since the light of the galaxy is mainly due to stars, this plot is able to show us, in a basic

and preliminary way, how GCs are correlated to the general stellar population of our sample

galaxies. Also, the spheroid-disc decomposition allows us to further enhance this analysis by

looking at how much the light profiles of separate components of the galaxy are compatible with

the GC density, hinting at which of the host galaxy’s components its GCs are better correlated

with. For comparison purposes, we add in fig. 3.1 the GC density and the light profiles for

NGC 1023 published on C16.

Moreover, we separately calculated the GC colour subpopulations radial density for

NGC 2768 and NGC 3115. For NGC 7457, similar to what is done for all other plots in this

work, only the total GC population of this galaxy was taken into consideration due to its lack of

detected colour bimodality. Pota et al. (2013) performed tests on the colour bimodality of our

sample galaxies using gaussian mixture modelling (GMM). The values obtained in that work

are used here to separate GCs into colour subpopulations. Furthermore, this same work also

shows that the GCs of NGC 7457 do not display significant colour bimodality. We proceeded

by dividing the photometric GCs for each galaxy into elliptical bins with approximately the
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same number of GCs in each bin and the same ellipticity of the host galaxy, with the first bin

starting at the position of the GC with the smallest galactocentric radius. The final GC density

was calculated by dividing the number of GCs for each bin by the bin area. The number of

bins was determined by the size of the GC photometric sample of each galaxy, to ensure we get

a reasonable amount of objects in each bin.

For NGC 2768, the GC radial density profile shows good agreement, within errors,

with the spheroid light. At least visually however, the agreement between the disc light and

GC density is not as strong, though. In fig. 3.1 (c), the radial density for the photometric

GCs of NGC 7457 also displays good agreement with both spheroid and disc modelled profiles.

These preliminary results will be shown later to be consistent with the kinematic analysis (see

section 4.7).

For NGC 3115, the modelled light profiles do not show such strong agreement with

GC density as previously seen for NGC 2768 and NGC 7457. This could be a consequence of

the aforementioned difficulties in fitting this galaxy with a spheroid and disc model, although

as seen in fig. 2.3, PNe show good agreement with the galaxy light nevertheless. Fortunately,

our modelled profiles seem to be a reasonable approximation given the simplicity of our starting

model. The density of GCs appears to have a slightly stronger correlation with disc light except

at large radii. Such result will also be revisited after the kinematic analysis (see section 4.7).

Comparing to the same plot for the NGC 1023, from C16, we can see that the good

agreement between light profiles and GC radial densities is also present.

3.3 f-map

After the spheroid-disc decomposition, by dividing the spheroid model from the total model

of the galaxy light, we obtain an f-map, which is used to get preliminary probabilities fi for

each GC to belong to the spheroid region of the galaxy, based on their position over the galaxy

image.
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(a) NGC 2768 (b) NGC 3115

(c) NGC 7457 (d) NGC 1023

Figure 3.1: GC radial density and sample galaxies surface brightness profiles as shown in sect.
3.1. GC colour subpopulations are colour-coded by their respective colours. For NGC 7457 only
the total population of GCs is shown with magenta open circles. On the bottom right panel, we
add this analysis for NGC 1023 published in C16, where open magenta circles represent the total
GC population, blue open circles and red filled circles represent blue and red GC subpopulations
respectively. Also, for NGC 1023, open diamonds represent the surface brightness fitted with
IRAF/ELLIPSE for comparison with the GALFIT fit of an R-band image of the galaxy. ΣT ,
ΣS and ΣD represent the surface brightness profiles for the total galaxy light, spheroid and
disc, respectively.
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(a) NGC 2768

(b) NGC 3115

(c) NGC 7457

Figure 3.2: f-map for sample galaxies. The spheroid model obtained with GALFIT is divided
from the total image of the galaxy and fi values are assigned to each GC representing the
probability of belonging to the spheroid based only on its position over the divided image.
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• f = 1 means that the object certainly lies on the spheroid;

• f = 0 means that the tracer certainly belongs to the disc.

As discussed in section 3.1, we adopted in our analysis the GALFIT results from

C13b, therefore the f-maps used in this work to calculate the fi values for GC are the same

that were used in C13b to obtain such probabilities for PNe of our sample galaxies. We present

these f-maps in fig. 3.2, with our samples of spectroscopic GCs overplotted and colour-coded

by each individual value of fi obtained. Objects that are located outside of the image area are

assigned an fi value of 0.5. See C13b for more details on this procedure.

The values of fi will be used as preliminary information on the probability of a GC

to belong to each component of the galaxy, but are obviously prone to systematic errors due

to projection effects. Therefore, the MLE fitting and the recalculation of such probabilities

with kinematic information is expected to be able to reduce drastically the influence of such

projection effects and thus improve our results.

3.4 Preliminary Kinematic Properties

In most galaxies, GCs can be separated into two subpopulations based on their colour, namely

a red generally metal-rich population and a blue and metal-poor one. Different scenarios have

been proposed to explain the evolution of such subpopulations within an evolving galaxy, such

as blue globular clusters being formed in the halo (Forbes et al., 1997), with red GCs more

associated to the bulge, even if the evolutionary paths that lead them to this scenario involve

forming alongside the spheroid or migrating towards the center of the galaxy after a gas-rich

phase of galaxy evolution (Shapiro et al., 2010). Two-phase scenarios have also been proposed

(Oser et al., 2010) to explain the existence of two subpopulations of GCs as a result of two

distinct star formation events in the evolution of most galaxies. Our method aims to describe

the kinematics of the GC population of our sample galaxies not only by colour, but also by the

probabilities of each GC to belong to each of the host galaxy components.
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(a) NGC 2768

(b) NGC 3115

(c) NGC 7457

(d) NGC 1023

Figure 3.3: Smoothed Velocity maps of our sample galaxies GC subpopulations, using Adaptive
Kernel Smoothing (Coccato et al., 2009). Rotation is detected in all galaxies. On the bottom
panel, we add the smoothed velocity map for NGC 1023 GCs published in C16.
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Galaxy A B (arcsec)
NGC 2768 0.38 250.85
NGC 3115 0.45 184.19
NGC 7457 0.87 38.92

Table 3.2: A and B parameters for our sample galaxies AKS proceeding to obtain smoothed
velocity maps.

As a first approach to the kinematics analysis, we analyse the spatial distribution

of the kinematics of the GC colour subpopulations of our sample galaxies. To this extent, we

apply the method of Adaptive Kernel Smoothing (AKS), developed in Coccato et al. (2009).

AKS makes use of a Gaussian Kernel to approximate the actual observed velocity distribution

of the GC samples into a more visually smoothed and clear distribution. This enable us to

avoid the interference of kinematic outliers that pollute the globular cluster velocity maps and

more clearly see the rotation pattern that such systems exhibit in a given galaxy. A complete

description of the method is available in Coccato et al. (2009). Here we briefly describe how

we specifically applied the method to our data.

Given a set of objects with positions (xp, yp) and velocities vi, we compute new

velocities Ṽ with the following form,

Ṽ (xp, yp) =

∑
i viwi,p∑
iwi,p

, (3.1)

where wi is a distance-dependent weight for the ith object defined by:

wi,p = exp
−D2

i

2k(xp, yp)2
, (3.2)

where k is the gaussian kernel amplitude and Di is the distance from the ith object

to (xp, yp). The amplitude k varies from galaxy to galaxy and is defined by:

k(x, y) = ARm(x, y) +B, (3.3)
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where Rm(x, y) is the distance from the object with position (x, y) from the closest

M th object. The values of M were arbitrarily set to M = 20, but between M = 10 and M

= 60 show no significant influence in the final results (Coccato et al., 2009). The constants

A and B vary for each galaxy and need to be set very carefully to ensure that the smoothed

velocities are not too distorted from the real measurements of these quantities. To this extent,

we have simulated several artificial sets of velocities which resemble the actual observations and

by applying this procedure using different values for A and B, we assume that the most reliable

values for such constants are the ones that return the best compromise between the kinematic

resolution of the original observations and the smoothing, i.e, by minimising the effects of

objects with exotic kinematics within the distribution but without completely deforming the

distribution enough for us to lose the physical meaning behind it. These values are summarised

in table 3.2. Finally, Monte-Carlo simulations have been performed to obtain uncertainties for

Ṽ and for all galaxies and such uncertainties are of the order of ∆V ≈ 25 km/s.

In figure 3.3 we show smoothed velocity maps for each galaxy using the described

adaptive kernel smoothing technique, with the addition of NGC 1023 smoothed velocities pub-

lished in C16. We can clearly see that rotation is present for all GC subpopulations in all

galaxies, but notice that, for the case of NGC 2768, the rotation is more evident for the red

GCs closer to the center of the galaxy. When we compare this result with that of NGC 3115 or

the previous studied NGC 1023, that have clear rotation on both subpopulations, NGC 2768

stands out as an interesting case for having kinematically distinct GC colour subpopulations.

3.5 Likelihood Analysis

In this section we will summarise the method developed in C11; C16 and applied in this work.

It consists basically in using maximum likelihood estimation (MLE) to find global kinematic

parameters for a given galaxy assuming a gaussian velocity distribution for its GCs or PNe.

Given a set of vi = (v1, ..., vn) values for the velocities of tracers such as GCs or PNe

of a given galaxy, we assume they are drawn from a probability density function F = F (vi; θ),
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where θ = (V, σ) are the parameters we want to estimate. The likelihood function L will then

be given by:

L =
∏
i

F (vi; θ). (3.4)

The values of V and σ that maximize L are the best estimators for the actual values

of these parameters. Given a set of Gaussian distributed independent measurements, such

as velocities of GCs and PNe used in this work, the maximum likelihood method can be

approximated by the least-squares method and thus has its uncertainty measured by usual χ2

statistics:

∆χ2(θ) = −2∆lnL(θ), (3.5)

where ∆lnL(θ) is the difference between the maximum and minimum values of lnL.

Therefore, we can set confidence limits for the best estimators in the form:

lnL(θ) ≥ lnLmax −∆lnL. (3.6)

In this work, we are using a 2σ coverage probability, thus we need to use the cor-

respondent value for ∆lnL = ∆χ2 to set the confidence limits around the best estimators

θ. Thankfully, these values are already available in tabulated form for a given set of m free

parameters. In our case, m = 2, so ∆χ2 = 2.77.

To obtain our likelihood function F (vi, θ), we adopt an inclined disc model for our

galaxies, as described in C11. Considering a galaxy model consisting of an inclined rotating

disc, the velocity of an object in such galaxy vi is a projection of the galaxy’s mean rotational

velocity V , which is part of the line-of-sight velocity of the form:

Vlos = Vsys − V sin(i)cos(φ), (3.7)
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where such object is at an azimuthal angle on the galaxy plane, φ, the inclination

of the galaxy to the line-of-sight is i and the systemic velocity of the galaxy itself is Vsys.

Furthermore, we adopt the simplest possible model for the velocity distribution of such objects,

a gaussian distribution with mean velocity Vlos and dispersion velocity σ:

F (vi; θ) ∝ exp

[
−(vi − Vlos(V )2

2σ2

]
. (3.8)

In summary, the values of θ = (V, σ) which maximise the likelihood function L in

equation 3.4 are the best estimators for the actual kinematic parameters of the whole GC

system of a given galaxy.

In order to apply 3.4 and maximise the likelihood function L, it is convenient nu-

merically to take its negative logarithm, −ln(L), and then find its minimum, which would

correspond to the maximum of L. This procedure is also useful since it allows us to directly

apply the confidence limits using equation 3.5.

We apply the MLE fit by binning our data in elliptical annuli with the same ellipicity

of the disc component for each galaxy (as presented in table 3.1), with approximately the same

number of objects but with different bin areas along the galaxy radius. In this way we ensure

not to lose information on how the kinematics of our tracers change with radii. Also, we run

the MLE fit several times until all objects within the sample used for the estimation are within

the 2σ confidence interval, discarding outliers in each run. This ensures the reliability of the

fit even when dealing with a possible significant number of outliers.

3.6 Final probabilities from photometry, kinematics and

PNe

In C13b, kinematics of PNe for all galaxies in our sample were modelled using this same

MLE fitting process but with a likelihood function L which combines the contribution from
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the kinematics of the spheroid (bulge and halo) and the disc component of a given galaxy.

Since PNe are expected to be good tracers of the overall stellar population of the host galaxy

(Coccato et al., 2009; Cortesi et al., 2011), by calculating the probabilities of GCs with the

velocity distribution function obtained with PNe, we can infer how they are distributed in each

component of the host galaxy. In this section we summarise the model used for the MLE fit of

the PNe kinematics for our sample galaxies published in C13b. The likelihood function used

has the following form:

L(vi;V, σr, σφ, σsph) ∝
fi
σsph

exp

[
− v2i

2σ2
sph

]
+

1− fi
σlos

exp

[
−(vi − Vlos)2

2σ2
los

]
. (3.9)

For the spheroidal kinematics, we have adopted a gaussian velocity distribution with

zero mean velocity and velocity dispersion σsph. We assume, therefore, a kinematically hot

spheroid expected to be dominated by random motions. For the disc kinematics, the same

inclined disc model from C11 was adopted, where an object velocity vi is a projection of the

galaxy’s mean rotational velocity V , as described by eq. 3.7. The velocity dispersion in the disc,

however, is expressed in cylindrical coordinates (R, φ, z), so that it can be quantified in different

directions: σr, σφ and σz. Therefore, the line-of-sight velocity dispersion σlos for objects in the

disc has the following form:

σ2
los = σ2

rsin
2(i)sin2(φ) + σ2

φsin
2(i)cos2(φ) + σ2

zcos
2(i). (3.10)

Due to the fact that all galaxies in our sample are nearly edge-on, σz will have

negligible significance and therefore can be ignored in equation 3.10. We are then left only with

the radial and azimuthal contributions to σlos. These components vary sinusoidally, with σr

value set only from the minor axis objects and σφ value set only from the major axis objects.

Therefore, we are able to obtain the values of the dispersion velocity per component only by

fitting σlos as a free parameter in the MLE. Moreover, for a cold system with a flat rotation

curve as expected from the disc of S0 galaxies, we can also apply the epicyclic approximation:
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σφ/σr = 1/
√

2 (Binney and Tremaine, 1987). Therefore, we obtain information from σlos in

both radial and azimuthal directions without complicating the MLE method with too many

free parameters.

The probabilities fi obtained from the f-map in section 3.3 are used on eq. 3.9 to add

the photometric information previously obtained into the final probabilities from the kinematics.

They are divided by the velocity dispersion of each component to ensure the normalisation of

the distribution.

Finally, using this model, C13b obtained the V , σsph, σr and σφ parameters for the

velocity distribution of PNe of our sample galaxies, in elliptical bins along each galaxy radius

and MLE. In the present work, we proceed by using eq. 3.9 with these estimated parameters to

calculate, for our samples of spectroscopic GCs, their probabilities of belonging to the spheroid

and disc components of each galaxy. In C16, this same procedure was adopted for the GCs

of NGC 1023. Moreover, adopting this time a likelihood clipping threshold of 2.3σ, we can

potentially detect GCs that are not compatible with the velocity distribution function from

equation 3.9. If such kind of GC is present in a given galaxy, it can be considered an object

in loose agreement with the galaxy overall kinematics and therefore potential merger remnant

or interacting systems far from kinematical equilibrium with the studied galaxy gravitational

potential.

3.7 Chromodynamical Analysis

Now that we have calculated the best-fit mean rotational velocity for the GCs, V , their disper-

sion velocity σ and the probabilities to belong to each component of the host galaxy considering

the galaxy’s velocity distribution function obtained from PNe in C13b, we can analyse this data

from several perspectives. One that holds particular interest is the analysis of how the colour

subpopulations of GCs behave in what regards the probabilities of belonging to the spheroid

and the disc of its host galaxy. Also, it is of great importance to analyse the possible GCs

that are not compatible with the velocity distribution obtained from PNe, since this can point
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towards on-going mergers or interactions. In the next section we present the results from the

application of the methods described in this chapter to our galaxy sample and their associated

GCs and PNe.



Chapter 4

Results and Discussion

In this chapter we discuss the results obtained with the methods described previously (Chapter

3). We focus on the rotation curves derived from GCs obtained with the Maximum Likelihood

Fit developed in C11, and analyse the results within formation scenarios proposed by simula-

tions and observations from the literature. Additionally, we present several other properties of

our sample galaxies that can be studied with the information of the kinematic and photometric

likelihoods of a given GC to belong to the disc or the spheroid of the host galaxy. We show

that our studied galaxies have very distinct GC kinematic properties, which is evidence for how

diverse and complex the formation of S0 galaxies can be.

4.1 Rotation Curves derived from GCs and PNe

In fig 4.1 we present the results of the likelihood analysis described in the last chapter. In

addition to the rotation curves obtained from the MLE fit for GCs using eq. 3.8, we present

the same quantities for PNe adopting a single component model with only disc kinematics.

For NGC 3115 and NGC 7457, these PNe fits are from C13a. For NGC 2768, the PNe single-

component fit was obtained from Forbes et al. (2012). The idea is to compare both kinematic

tracers in a single component fit, and once again considering PNe as tracers of the host galaxy

kinematics (Napolitano et al., 2001; Coccato et al., 2009; Cortesi et al., 2011).

38
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For NGC 3115 and NGC 7457, all the GC colour subpopulations rotation curves

and dispersion velocity profiles show good agreement with the same quantities calculated for

PNe at all radii. For NGC 2768, however, there is no clear accordance between GC and PNe

kinematics, with only a slight agreement between red GCs and PNe. Also, NGC 3115 GCs and

NGC 2768 red GCs show very distinct rotation curves. NGC 7457 has a smaller GC sample

than the other galaxies in this work. Nevertheless, the robustness of the method enables us to

compare consistently GCs and PNe. For comparison purposes, we have also added absorption

lines, faint-fuzzies, GCs and PNe rotation curves for NGC 1023 that have been published in

C16. Notice how the the rotation curve derived solely from GCs and PNe for NGC 1023 shows

a decrease in rotation at large radii in the same way as the GCs and PNe of NGC 3115.

As far as the rotational velocity is concerned, our studied sample of galaxies have

very distinct profiles: NGC 2768 has strong kinematic discrepancies between its GC colour

subpopulations, with red GCs having a subtle increase in rotation velocity with radii and

blue GCs rotational velocity showing an opposite behaviour. Interestingly, the PNe rotational

velocity for this galaxy do not seem to be compatible with none of the GC colour subpopulations,

considering the one-component kinematic model. The rotational velocity of NGC 3115 decreases

with radius consistently for both GC colour subpopulations, in a similar way as NGC 1023, the

blue GCs of NGC 2768 and NGC 3115 PNe. Lastly, NGC 7457 GCs have increasing velocities

with radii, again in accordance with its PNe.

For the dispersion velocity, all galaxies show good agreement between PNe and GCs,

even in the cases where the rotational velocities between these two tracers were not found to

be compatible. For NGC 3115 and NGC 7457, the values for dispersion velocity are lower than

the rotational velocity of GCs, except for the last two bins of NGC 3115 red GCs. The blue GC

population of NGC 2768 after about 300 arcsecs (or 29.3 Kpc) do not show rotation anymore

but we are still able to find a value of dispersion velocity somewhat constant with radius. The

red GCs of NGC 2768 show very similar values for dispersion velocities and rotational velocities,

while this is not true for the PNe in this galaxy.

Moreover, the likelihood fit also offers us the advantage of detecting objects that are
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not kinematically compatible with the kinematics of the host galaxy, as shown in sec. 3.5. Such

objects account for 10 GCs in NGC 2768, 32 GCs in NGC 3115 and 4 GCs in NGC 7457. This

means that 21.5% of NGC 3115 GCs are not compatible with the galaxy kinematics. A higher

amount than the 9.4% rejected objects in NGC 2768 and 10% in NGC 7457.

4.2 Comparison of GC and PNe kinematics

In order to understand how similar the GC kinematics is from the PNe kinematics, we present,

in fig 4.2, the comparison of the GC kinematics with the PNe kinematics from the likelihood fits

published in C13b. The PNe fits this time assume a two-component model, both spheroid and

disc kinematics. PNe are excellent tracers of their host galaxy stellar population (Napolitano

et al., 2001; Coccato et al., 2009). Therefore, this comparison has the potential to tell us how

well GCs can be used to trace the host galaxy population in general. For the PNe of NGC

2768, the fit was allowed to calculate the rotation in both spheroid and disc components. For

the other two galaxies, PNe only show rotation in the disc.

For NGC 2768 we can see that the GC rotation curve agrees better, within the errors,

with the PNe rotation curve for the spheroid, when compared to the PNe rotation curve for

the disc. NGC 3115 also does not show agreement between GC rotation curves and the PNe

rotation curves of the disc. For NGC 7457, however, this agreement in the disc rotation is very

clear. The highly disc-like kinematics of the GCs in this galaxy is a very distinct feature from

the rest of the sample.

In fig. 4.2, PNe were fitted for a model with spheroid and disc dispersion velocities.

Analysing how GC dispersion profiles compare with these quantities derived from PNe, we see a

slight agreement between the dispersion velocity of PNe in the spheroid, σsph and GC dispersion

velocities. We note that due to the low amount of points it is difficult to precisely define the

statistical significance of any correlation between dispersion velocity profiles of GCs and PNe

in this analysis, therefore we assume the results from this section as qualitative evidence.

To summarise, fig. 4.2 suggests that GCs of NGC 2768 and NGC 3115 do not trace
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(a) NGC 2768 (b) NGC 3115

(c) NGC 7457

(d) NGC 1023, Cortesi et al. (2016)

Figure 4.1: Rotation curves and velocity dispersion for GC and PNe (from C13b) for our sample
galaxies following the likelihood analysis. Vertical errorbars are the uncertainties and horizontal
errobars represent binsizes. The data for NGC 1023 is adapted from C16, where green circles
represent PNe data, black points are absorption line data (Debattista et al., 2002), orange
circles represent stellar data obtained in Arnold et al. (2014) and the large red open circle
represent faint-fuzzies from Larsen and Brodie (2000).
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Table 4.1: Results of the likelihood analysis following photometry and kinematics for GC
subpopulations.

Galaxies
Disc Spheroid

Red GCs Blue GCs Total Red GCs Blue GCs Total
NGC 2768 12 6 18 45 42 87
NGC 3115 40 36 76 41 32 73
NGC 7457 - - 34 - - 6

well the disc component of its host galaxy, but show promising results as tracers of spheroid

kinematics. For NGC 7457, interestingly however, it is suggested a case of GCs that are able

to trace disc kinematics of its host galaxy.

4.3 Colour and Kinematics

Having now the complete overview of the GC population of our sample galaxies using estimated

kinematics and photometry within our model, we can analyse how the different subpopulations

of GCs appear within the galaxies’ components. For the red GC population of NGC 2768,

12 objects show a high probability of belonging to the disc while 45 show a high probability

of belonging to the spheroid. In the blue GC population of NGC 2768, 6 objects show high

probability of belonging to the disc, while 42 show a high probability of being present in the

spheroid. For the red GC population of NGC 3115, 40 objects have a high probability of

belonging to the disc while 41 have a higher probability of belonging to the spheroid. For blue

GCs of NGC 3115, 36 objects are likely to be from the disc while 32 objects are likely from

the spheroid. For NGC 7457, 34 GCs show high probability of belonging to the disc and 6 are

more likely to belong to the spheroid. These results are summarised in table 4.1.

NGC 2768 show the predicted behaviour of having its GC population with kinemat-

ics associated with the spheroidal component, for all colour subpopulations, but with a smaller

number of GCs with high probabilities of belonging to the disc. On the other hand, interest-

ingly, the GC population of NGC 7457 is predominantly associated with disc kinematics and

NGC 3115 has a similar number of GCs with disc and spheroidal kinematics. Shapiro et al.

(2010), proposed that the red subpopulation of GCs can be formed at a redshift of z ≈ 2 in
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(a) NGC 2768 (b) NGC 3115

(c) NGC 7457

Figure 4.2: Comparison of the rotation curves and velocity dispersion obtained from GCs with
the same quantities for PNe of our sample galaxies. Green filled circles represent PNe from
C13b, where a two component kinematic fit was performed. Red circles represent the red GCs
and blue circles represent the blue GCs. Magenta GCs represent the overall population of GCs.
In all panels, the velocity and dispersion values for GCs are the V and σ values from fig. 4.1,
respectively.
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turbulent and violent disc formations. This would leave imprints of disc-like kinematics in GC

populations, even if the disc does not survive to the present time. Therefore, the presence of

GCs compatible with disc kinematics on all galaxies, but specially in NGC 3115 and NGC 7457,

could be evidence of clumpy disc formation in such systems.

4.4 Final probabilities of belonging to the spheroid com-

bining photometry and kinematics

We now present, in fig. 4.3, the recovered probabilities of our sample galaxies GCs to belong

to the spheroid, now with the kinematic parameters obtained from the likelihood fit, i.e., the

first term on the left side of eq. 3.9. As explained in section 3.6, the new probabilities also

have the information of the PNe fit obtained in C13b for all galaxies. The most prominent

feature noticeable is the drastic decrease of probability values around 0.5 from the photometry

only histogram to the photometry and kinematic histogram. This shows the core improvement

of the Maximum Likelihood Method over the photometric only approach. Projection effects

severely reduce the ability to recover precise probabilities of component belonging based only

on photometry, but are much less significant when kinematic information is added.

As such, we can clearly see that for NGC 2768, the GC population has a tendency

to belong to the spheroid, with values of the probability to belong to the spheroid considering

kinematics and photometry, LSph, close to 1. There is, nevertheless, a small amount of disc-like

GCs in this galaxy. NGC 2768 has a more dominant spheroidal GC population than the other

galaxies, a fact in accordance with the value of 0.7 for the bulge-to-total ratio of this galaxy

(Forbes et al., 2012). NGC 3115 has an almost equal amount of disc and spheroid GCs, an

unusual feature but also compatible with the prominent disc that observations of this galaxy

seem to indicate (Guérou et al., 2016). NGC 7457 has an even more unusual higher amount of

disc GC with very few objects with spheroidal kinematics. Chomiuk et al. (2008) and Hargis

et al. (2011) have already found peculiar properties on the distribution of this galaxy GCs and

stellar kinematics, which we will be further discussed in sec. 4.7.
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(a) NGC 2768 Photometry (b) NGC 2768 Photometry + Kinematics

(c) NGC 3115 Photometry Only (d) NGC 3115 Photometry + Kinematics

(e) NGC 7457 Photometry Only (f) NGC 7457 Photometry + Kinematics

(g) NGC 1023 Photometry Only (h) NGC 1023 Photometry + Kinematics

Figure 4.3: The probability of GCs belonging to the spheroid.Left panels : results from photom-
etry only analysis; right panels : results from photometry and kinematics after the likelihood fit.
Notice the decrease of objects with probability values around 0.5 in the right panels compared
to the left ones. In the bottom panels, we present this analysis for NGC 1023 from C16, where
the filled bins represent GCs, open bins represent PNe information and the vertical lines comes
from a random distribution of objects with a 1/r density fall-of.
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(a) NGC 2768

(b) NGC 3115

(c) NGC 7457

(d) NGC 1023, Cortesi et al. (2016)

Figure 4.4: Radial distribution of GCs colour coded by LSph(vi, fi), the probability of belonging
to the spheroid. Red filled circles represent rejected objects with kinematics not compatible
with its host galaxy kinematics. NGC 1023 data is added for comparison, taken from C16, and
in such case, open red circles represent Faint-Fuzzies.
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4.5 Radial distribution analysis

We can now analyse how the radial distribution of GCs relates to their probability of being

kinematic and photometrically related to the different host galaxy components. In fig 4.4 we

show the radial distribution of GCs coded by the probability of belonging to the spheroid,

LSph(vi, fi). Note that disc GCs extend into large radii for all galaxies, at distances of at least

5Re. At first glance, the majority of objects with high probability of being in the disc are

closer to the centre of the galaxy, as expected, for all objects. However, some outliers do exist,

especially for the case of NGC 3115 (fig 4.4(b)). These objects are generally rejected in the

likelihood fit and therefore have exotic kinematics compared to the host galaxy system.

No direct evidence of a correlation between colour and disc or spheroid likelihood can

be seen for any of the sample galaxies. In NGC 3115, that shows a strongly bimodal GC colour

distribution, for instance, there is almost equal amounts of disc-like and spheroid-like objects

in each subpopulation. For NGC 2768, there is a slightly larger amount of spheroid GCs on

the red population and closer to the centre of the galaxy, as found by Forbes et al. (2012).

Fig. 4.4 (c) shows 22 GCs from NGC 7457 that come from our spectroscopic sample

of 40 GCs from Forbes et al. (2017). We lack photometry data for 18 objects in the spectroscopy

sample, since we rely on public available data. This, however, should be of minimal importance

since there is no signs of bimodality in this galaxy. Also, included in the 18 objects with missing

photometry are the rejected objects by the likelihood fit.

Moreover, one can analyse how GC colour subpopulations are related to both radial

distribution and disc or spheroid belonging probabilities. We can clearly see that the colour

bimodality stands much more obvious for NGC 3115 than for NGC 2768, but this doesn’t relate

directly to a clear pattern of disc-bulge belonging for those objects. Therefore, the bimodality in

colour displayed for the GC subpopulations does not seem to follow up to a spatial distribution

for GCs in such galaxies, at least when considering the disc and spheroid components. When

considering that the spheroid modelled in this work comprises both halo and bulge components

actually, the conclusion becomes less strong. In the Milky Way, for instance, blue and red
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GCs are also less present in the disc but well divided between a halo, blue and metal-poor GC

population and a bulge, red and metal-rich population (Larsen et al., 2001; Peng et al., 2006).

Forbes et al. (2012) has already shown that the red GC subpopulation of NGC 2768 is more

related to the bulge specifically. In summary, the bimodality in colour following up to a spatial

bimodality is not to be completely discarded, yet, for the galaxies studied here.

Nevertheless, taking into consideration the aforementioned reasonable assumption

that GCs should be more prevalent in the spheroid, it is interesting to note such a significant

amount of disc GCs in all colour subpopulations. This could lead to interesting consequences

on possible formation scenarios. Such issue will be discussed later on in this chapter after more

information is added.

4.6 Phase-space diagrams

In addition to the radial distribution of the recovered probabilities of belonging to the host

galaxies’ spheroidal regions, it is interesting to analyse the phase-space diagrams for the GCs

with the information from the recovered probabilities. Phase-space diagrams consist on the

line-of-sight velocities of objects plotted versus the radial position of such object within the

host galaxy. This diagram can shed light on how the overall kinematics of the galaxy is related

to its spatial distribution (Rocha et al., 2012). In general, we expect a somewhat ’bell shaped’

pattern for such phase-space diagrams, since objects closer to centre of a given galaxy should

display more rotation, and therefore a more scattered distribution (Strader et al., 2011). When

we go far into the galactic halo, objects are expected to rotate much less and display hot

kinematics. For this work, we decided to use instead of directly the line-of-sight velocities, the

quantity ∆V = Vlos − Vsys, where Vsys is the systemic velocity of a given galaxy obtained from

The NASA/IPAC Extragalactic Database (NED). In this way one can readily compare the 4

galaxies in this work. To emphasise even more the results of this section, we add PNe positions

and velocities from Pota et al. (2013) that have been used in C13b to produce the rotation curves

in Fig. 4.1. PNe are expected to trace strongly the disc kinematics (Napolitano et al., 2001;
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Coccato et al., 2009), and therefore we generally expect not to find general agreement between

GCs and PNe in the following diagrams, with the exception of NGC 3115 and NGC 7457

which show strong evidences of GCs compatible with the kinematics of the disc, as obtained

previously.

Another useful property of phase-space diagrams is that they allow us to estimate

the time an object started falling into its host galaxy gravitational potential, the infall time.

Rocha et al. (2012) have shown that this is possible for the Milky Way by looking at how far an

object is in a phase-space diagram from the host galaxy systemic velocity. In principle, objects

with kinematics closer to the systemic velocity of the whole system are closer to kinematical

equilibrium than objects that have been accreted by the galaxy and have ex-situ origins.

Fig. 4.5 shows the phase-space diagrams for our galaxies PNe and GC subpopulations.

These GCs are separated both by colour and likelihood to belong to the spheroid or disc. Notice

how in NGC 2768, fig. 4.5 (a), the blue population of GCs extends further out than the red

GC population, although as seen in fig 4.4, both subpopulations show high probabilities of

belonging to the spheroid. In fact, Forbes et al. (2012) when studying this galaxy kinematics

specifically looking into its red GC population found that it is related to the kinematics of the

stellar bulge of the galaxy. Therefore, it is reasonable to say that as the blue GC population in

this galaxy have a high probability of being in the spheroid and is not radially correlated with

the red GCs, it should be located predominantly in the halo. No correlation can be clearly

seen between colour and infall time for this galaxy GCs, although it is interesting to note that

farther away from the center of NGC 2768, objects seem to be more in equilibrium with its

kinematics than at close radii. This indicates that such objects can have in-situ origins, while

ex-situ objects were somehow brought into the host galaxy inner regions after accretion.

In the phase-space diagram for GCs and PNe of NGC 3115, fig. 4.5 (b), one can see

that GCs with high probabilities to belong to the disc are located on the edge of the distribution,

even at large radii. This indicates, as aforementioned, objects that display rotation. Notice the

symmetry of the location of disc-like GCs in the diagram and the consistency of this pattern

even at large radii (up to 18 Kpc). Rejected objects from the likelihood analysis also display a
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(a) NGC 2768 (b) NGC 3115

(c) NGC 7457 (d) NGC 1023

Figure 4.5: Phase-space diagrams for GCs and PNe. Objects likely to belong to the spheroid
are represented by filled circles, and objects with high probability of being part of the disc
are represented by open circles. Blue and red GCs are represented by their respective colours.
Green filled circles are PNe. For NGC 7457, due to its lack of bimodality in colour, we show only
disc and spheroid populations. Objects marked with crosses are rejections from the kinematic
fit. On the bottom-right, we show the phase-space diagram for NGC 1023 published in C16.
For this plot, rejected objects are shown as crosses (GCs), squares (PNe and stars) and stars
(objects associated with the companion galaxy NGC 1023A).
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rather interesting distribution in the diagram. Most of them have similar values of ∆V , around

200 Km/s larger than the host galaxy systemic velocity. Such fact indicates that these GCs

may form a coherent structure from ex-situ origin that recently was accreted by this galaxy, or

remnants of a minor merger that still remain scattered at different radii with imprints of their

original kinematics.

For NGC 7457, by analysing fig. 4.5 (c), we see a more compact distribution of GCs

and PNe in the phase-space diagram, with objects showing values of ∆V of ≤ 200 km/s. NGC

2768 and NGC 3115 have GCs with values of ∆V in the range of 600 km/s, therefore, NGC

7457 is a system, at least in principle, in a more developed kinematic equilibrium than the other

galaxies in our sample. The small amount of rejected objects from the likelihood fit for this

galaxy corroborates with this hypothesis. The high amount of GCs with high probabilities to

belong to the disc of this galaxy have similar loci on the phase-space diagram as the PNe, and

show an ’U’ shaped distribution. This shape is due to the higher amount of rotation displayed

by the GCs and PNe of this galaxy. Only at small radii, at around 2 kpc or less, this galaxy

shows GCs and PNe with values of ∆V close to zero. In summary, NGC 7457 seems to be a

very rotationally supported galaxy.

In addition to fig. 4.5, it is interesting to analyse the distribution of the velocities of

the tracers versus the distance projected onto the major axis of host galaxies. This complements

the phase-space analysis and is useful to pinpoint possible ongoing interactions. For the case

of NGC 3115, for instance, judging by fig 4.5 (b), although the colour bimodality for this

galaxy’s GCs is very strong, kinematically both subpopulations do not differ significantly. The

GCs that are not kinematically in equilibrium with the galaxy kinematic model used on the

likelihood fit, on the other hand, show interesting properties. They seem to be early accreted

objects, judging by the suggested infall times from the phase-space diagram, and seem to form

a connected structure. In fig. 4.6 they are also present in a somewhat connected structure,

albeit fairly large.

Chies-Santos et al. (2013) analysed a ∆V versus distance along the major axis dia-

gram for the PNe of NGC 1023. Later, C16 published this same diagram for NGC 1023 adding
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GCs and stellar absorption line data. We present, for comparison purposes, in fig. 4.5(d) and

fig. 4.6 (d) the phase space diagram and ∆V versus distance along the major axis for GCs, PNe

and stellar absorption lines of NGC 1023 published in C16. For this galaxy, objects rejected

from the kinematic fit, represented by asterisks, are very concentrated and seem to be related

to the companion galaxy, NGC 1023A. NGC 3115 rejected GCs form a less concentrated struc-

ture and therefore would be more compatible with being remnants of a recent merger than with

companion galaxies.

Finally, NGC 7457 has a very disc-like shaped distribution in fig. 4.6 both for PNe

and GCs, as expected from the analysis of the rotation curves. All objects seem to be in

a reasonable equilibrium with the galaxy’s kinematic system, showing evidence of it being a

relaxed system. If violent episodes occurred in this galaxy’s past, they were not recent enough to

still leave imprints in the galaxy’s dynamics. This argument is compatible with the hypothesis

of a clumpy disc formation producing this large GC population with disc-like kinematics.

In an interesting consideration, both fig. 4.5 and fig. 4.6 combine information pre-

viously known from observations of the individual objects velocities with the probabilities ob-

tained in this work from both photometry, kinematics and the likelihood fit. The results from

this section show that the posteriori results agree very well with our observational basis, a

confirmation of the reliability of the maximum likelihood method developed in C16 and used

here.

4.7 V/σ ratio and discussion

In this section, we will analyse the GC rotation curves and the V/σ ratio for all GC populations

of sample galaxies to compare our results with simulations from the literature. The V/σ

quantity is used as an indicator of how much the kinematics of a galaxy is influenced by

rotational velocity, in the case of higher values, or is more influenced by random motions, in

the case of a ratio smaller than 1. The GC rotation curves are in general, not necessarily

similar with the general kinematics of a galaxy, and, most often than not, are not completely
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(a) NGC 2768 (b) NGC 3115

(c) NGC 7457 (d) NGC 1023

Figure 4.6: Velocity versus distance along the major axis for GCs and PNe of our sample
galaxies and NGC 1023 published on C16. Markers are the same as in fig. 4.5 for all panels.
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Figure 4.7: V/σ ratio for our sample galaxies obtained from GCs. Left, full sample of GCs for
each galaxy, centre: Red subpopulation of GCs, right : blue subpopulation of GCs. NGC 7457
has no signs of significant bimodality so only one population is shown. The errorbars for NGC
7457 GCs are in the order of δV/σ ≈ ±3.0.
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in dynamical equilibrium with the host galaxy kinematics. This is specially true when the

evolution of a galaxy revolves around mergers, that can bring ex-situ objects into the progenitor

kinematic system. Nevertheless, GC kinematics can be used as great tools when tracing back

the evolution of galaxies.

Bekki et al. (2005), studied with dissipationless numerical simulations the outcome

of various mergers scenarios on the GC kinematics of early-type galaxies. They showed that

mergers with a proportion of 10:1 are able to produce flattened early-type galaxies such as

lenticulars and should impact the kinematics of GCs in such a way that the rotation at large

radii of the GC system would be smaller than at closer radii. Bournaud et al. (2005) showed

that minor mergers with a proportion of 4.5:1 would produce a v/σ ≈ 1 on the remaining

galaxy and a merger with a proportion of 10:1, such as the ones Bekki et al. (2005) studied,

would produce a v/σ ≈ 2. Besides a major merger event, another likely path on the evolution

of galaxies in various environments is a sequence of minor mergers that could produce a faster

consumption of the available gas in the initial galaxy, but not in a single episode. Moody

et al. (2014) showed that multiple minor mergers would not produce, however, fast rotating

galaxies (Emsellem et al., 2011), but instead being more likely to produce hot, elliptical and

slow rotating galaxies.

In fig. 4.7 we show the V/σ ratios obtained from the GC subpopulations using the

method described in the last chapter and the results from fig. 4.1. One can see that the values

of v/σ for NGC 3115 are close to or smaller than 1 for GC subpopulations and for all radii,

so that would corroborate with the proposition that this galaxy is a remnant of a merger with

a proportion of, at least, 4.5:1. This merger would have been not strong enough to rip the

disc structure of the galaxy apart, but significant enough to accelerate the gas removal in the

galaxy. NGC 3115 also has a known prominent disc structure, with even signs of spiral arms

(Norris et al., 2006; Guérou et al., 2016). This suggests that if this galaxy formed through

a merger, then it was not strong enough to disrupt not even fragile structures such as spiral

arms. Additionally, in most findings of our study shown in this work and C16, NGC 3115 and

NGC 1023 show very similar GC kinematics. In C16, it was argued that for NGC 1023 the

ratio between the rotation velocity and the velocity dispersion in the azimuthal direction is not
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compatible with a faded spiral galaxy, but instead consistent with minor mergers. Therefore,

the same seems to be the case for NGC 3115.

NGC 2768 shows a very different scenario than previous galaxies, presenting rotation

at large radii for its red GCs and PNe population. This is evidence of two possible formation

hypothesis: the outcome of the gas stripping of a regular spiral galaxy, or a merger scenario

more closely related to what could produce elliptical galaxies. NGC 2768 does indeed has a

more prominent spheroidal structure than the other galaxies in this sample, so a major merger

with a proportion larger than 4.5:1 but still not strong enough to disrupt completely the disc

structure of the progenitor galaxy is a possibility for the formation of such system. The v/σ

ratio of this galaxy however shows similar values for all GC subpopulations when compared to

NGC 3115, a galaxy with a prominent disc component. Forbes et al. (2012) argued that the

radial distribution of the v/σ ratio of this galaxy is similar to late-type galaxies by studying

its red GC population, PNe and starlight. This galaxy shows a complex pattern of kinematic

properties, not easy to put into simple formation scenarios. Nevertheless, it is clear that this

galaxy has had an evolution different from, at least, NGC 3115 and NGC 1023. This result

shows how diverse and more complex than expected the formation of S0 galaxies turns out to

be.

NGC 7457 is a particular case, since unlike the other galaxies in the sample, it has

a dominant disc GC population from the results of the likelihood analysis. This galaxy has

fewer GCs overall (around 210, from analysis of surface density profile in Hargis et al. (2011)),

from which we have 40 spectroscopic GCs, and therefore a slightly less reliable likelihood fit.

Nevertheless, the results from the GC rotation curve are well in agreement with the results for

PNe published in Cortesi et al. (2013b) that had a sample larger by more than 100%. Hargis

et al. (2011) studied the GC system of NGC 7457 and concluded that although the spatial

distribution of the system is very elliptical, an inclined disc GC population could explain

the properties found in his work. In the same work, it was suggested that the most likely

formation scenario for this galaxy is through mergers. NGC 7457 is a field galaxy, so gas

stripping mechanisms which usually are related to dense environments is a very complicated

hypothesis to maintain. Also, additionally to the unusual distribution of the GCs in NGC
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7457 components, the GC system apparent lack of bimodality in colour is rather difficult to

accommodate into formation scenarios. Presently in the literature, most scenarios for early-

type galaxy formation involve a two-phase of galaxy formation (Oser et al., 2010) in which the

bimodality of GCs in colour, metallicity and age would be a more natural outcome. However,

recently, Peacock et al. (2017) studied this galaxy and found a slightly more numerous GC

sample than previous studies, such as Hargis et al. (2011) and Pota et al. (2013). This slightly

larger sample show signs of bimodality in the (g − z) colour, albeit small. The v/σ ratio for

this galaxy is more than 2, which would mean, following Bournaud et al. (2005), a merger

origin with a proportion of around 10:1, at most. Another piece of information that can be

added into this puzzle comes from Alabi et al. (2017). In this work, the dark matter fraction

at large radii for this galaxy was studied and found to revolve around 0.9 within 5 Re. This is

much greater than the dark matter fraction values found for NGC 2768, NGC 3115 and NGC

1023 in the same work, which are all around 0.6. With this information, Alabi et al. (2017)

have calculated an assembly epoch for the halo of NGC 7457 at z ≈ 4.4 ± 1.1, or 12.3 Gyr

ago. However, the mean luminosity-weighted age for the stellar content of the central regions

of this galaxy and some of its GCs is around 3-7 Gyr (Sil’chenko et al., 2002; McDermid et al.,

2015; Chomiuk et al., 2008). Therefore, the assembly of the halo of the galaxy took place long

before the GCs and stars at the centre of the galaxy, compatible with a merger event in the

galaxy past that triggered the formation of such objects. However, the simulations of Bekki

et al. (2005) indicate that GC systems of galaxies that suffered minor mergers that would form

flattened disc galaxies, such as NGC 7457, should retain a more spherical structure with little

rotation at larger radii. In summary, this galaxy is a complicated object with clear evidences

for a merger origin due to its isolation and kinematic properties, but lacking observed GCs in

its outer regions to help explain this hypothesis. Undoubtedly this is a very interesting object

to be studied further with a larger sample of spectroscopic GCs.
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Conclusion

In this dissertation we have presented the analysis of the kinematics of discrete tracers, GCs

and PNe, for a sample of S0 galaxies. We have also obtained rotational velocities and dispersion

profiles for GCs using a method presented in C16 that relies on a photometric spheroid-disc

decomposition of galaxy images using GALFIT and a maximum likelihood estimation (MLE)

to find the best fit kinematic parameters. We have also obtained the probabilities of our

sample of spectroscopic GCs to belong to the spheroid and disc components of their host

galaxies, using the velocity distribution for the entirety of such galaxies obtained with MLE

using PNe from C13b. As an initial result, we have compared the GC radial density for our

sample galaxies with surface brightness profiles obtained with GALFIT, finding generally a

good agreement within errors for all galaxies. Additionally we found good agreement when

comparing the kinematics of GCs with the kinematics of PNe when assuming for both tracers

the same kinematic model in the MLE, for all galaxies in our sample, except for the case

of NGC 2768. For this individual galaxy none of its GCs subpopulations have compatible

kinematic profiles with PNe while also displaying a different kinematic behaviour between

themselves. NGC 2768 presents evidences, therefore, of a more complex structure than what

we see in the other galaxies, possibly implying a different formation mechanism for both its GC

subpopulations. For the other galaxies our results suggest that GCs can be used efficiently to

trace the kinematics of the spheroidal component of their host galaxies, comprising bulge and

58
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halo, and even the disc kinematics on galaxies such as NGC 3115 and NGC 7457 that show a

high number of GCs with kinematics compatible with the disc. Such results demonstrate that

the method used in this study is a powerful tool to study the global kinematics of galaxies even

at large radii, while conventional techniques employed for late-type galaxies are not as efficient

in gas-poor galaxies such as lenticulars, or in their outskirts where stellar light is too faint.

In broad terms, our goal, however, was to use the kinematic information recovered to

study the evolution of S0 galaxies. Proposed scenarios in the literature for the formation of such

type of galaxies include: environmental processes such as ram-pressure stripping, starvation or

harassment (Gunn and Gott, 1972; Dressler, 1980; McCarthy et al., 2008) and minor mergers, as

a single event triggering the transformation of regular spiral galaxies or a series of interactions

altering the original galaxy morphology into what we see today (Bournaud et al., 2005; Bekki

et al., 2005; Oser et al., 2010). All of these scenarios start with typical spiral galaxies somehow

losing their gas content and therefore halting their star formation rate but without having their

disc structure completely disrupted as it would be the case in major merger events that are

suggested to form elliptical galaxies (Bekki et al., 2005; Conselice, 2014).

The galaxies in our sample, NGC 2768, NGC 3115 and NGC 7457, with the addition

of NGC 1023, previously studied with the same method in C16, are not located in high density

environments, therefore we did not expect from the start to find evidence of ram-pressure

stripping or similar processes associated with high density environments. Therefore, minor

mergers would be more likely to explain the formation of such galaxies located in the field or in

low density groups. The differences in the kinematics of GC subpopulations seen among them,

however, showcase a heterogeneous scenario for these galaxies evolution.

5.1 Summary of Dissertation Achievements

After the discussion of the results presented in the last chapter, we reach the following conclu-

sions for our individual galaxies:



60 Chapter 5. Conclusion

• NGC 2768 This galaxy GC colour subpopulations are found to be kinematically dis-

tinct, with its red GCs displaying an increase in rotational velocity with radii alongside

a decrease in dispersion velocity for the same radial range, while its blue GCs show a

decrease in rotational velocity with radius and almost constant values for their velocity

dispersion. Forbes et al. (2012) found similar results in a study focused only on the red

GCs of this galaxy, and proposed that this subpopulation of GCs are compatible with the

kinematics of stars and PNe in the bulge component of the galaxy. The v/σ values for

both of our colour subpopulations of GCs in this galaxy are, however, very similar for all

radii, with values around 1. This is compatible with a merger origin with a proportion of

at least 4.5:1 (Bournaud et al., 2005). In such merger scenario, however, we would expect

to find rotation at large radii in this GC system (Bekki et al., 2005). While the red GCs

have an increase in velocity radially, they do not extend as far as the blue GCs, which

have negligible rotation at large radii. Thus we conclude that while a merger origin seems

still more likely for this galaxy due to its overall kinematics, it might have experienced

more than one event in its past that affected each of its GC subpopulations differently.

Interestingly, we find only a few GCs with kinematics not compatible with the overall

galaxy kinematics, making less probable that some GCs in this galaxy have recent ex-situ

origins, which could explain the distinct kinematics.

• NGC 3115 The PNe and GCs of this galaxy show very similar kinematics at all radii,

with both red and blue GCs behaving very similarly between themselves as well. The

rotational velocity in this galaxy decreases with radii with somewhat constant values for

dispersion velocity. The values of v/σ remain close to 1 at all radii, suggesting again a

merger origin of at least a 4.5:1 proportion (Bournaud et al., 2005). The high amount of

disc compatible GCs and the remnants of spiral structures recently found in this galaxy

(Guérou et al., 2016) suggest a very prominent and undisturbed disc structure. The

ratio of rotational and dispersion velocities, however, is still lower than what would be

expected for regular spiral galaxies. Moreover, this galaxy has around 20% of its GCs

with kinematics not compatible with the overall stellar kinematics. Taking into account,

all of these results suggest not a single merger event transforming an original spiral galaxy,
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but several minor mergers that were sufficient to cause the galaxy to run out of gas but

not violent enough to disrupt the disc. At least one of such events might have happened

recently to explain the amount of GCs with low probabilities to belong to the galaxy

based on kinematics. Finally, the kinematics of GCs and PNe share many similarities

with the previously studied NGC 1023, which also was proposed to be formed through

gentle mergers and is currently accreting a companion galaxy (C16).

• NGC 7457 The GCs of this galaxy were found in this work to be predominantly related

to the disc component of the galaxy, with few objects likely to belong to the spheroid. This

galaxy has a relatively low amount of detected GCs (Hargis et al., 2011) and consequently

our GC sample is much smaller than what we had for the other galaxies in our sample.

Nevertheless, we found good agreement between the kinematics of this galaxy’s GCs and

PNe. There is a slight increase in rotation velocity with radius, but with values of the

ratio v/σ around 2, larger than for the other galaxies in this sample. Initially, this points

towards a merger origin with a proportion of 10:1 (Bournaud et al., 2005), therefore

relatively subtle, enough to leave the kinematics of this galaxy disc highly undisturbed

when compared to its past as a spiral galaxy. This is compatible with the fact that this

galaxy is the most isolated of our sample, and therefore, less likely, in principle at least,

to experience violent interactions with other galaxies with similar size. However, it is still

puzzling to find so few GCs at large radii, even considering the photometric sample. The

peculiar kinematic properties of this galaxy GCs and stars have been suggest as evidence

of mergers (Chomiuk et al., 2008; Hargis et al., 2011), but the simulations of Bekki et al.

(2005) indicate that if this was the case, its GCs should display hotter kinematics than

what we have found. Also, Hargis et al. (2011) argues that even if the colour bimodality

is not easily found for this GC system, it has a very similar colour distribution to the GC

system of the Milky Way. A larger GC spectroscopic sample, therefore, would be of great

help to understand the puzzling formation of this galaxy.

In summary, this work shows that the structure and kinematics of lenticular galaxies

is very diverse and more complex than expected by most scenarios proposed in the literature.
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Although mergers and environmental effects still stand as the most probable origins for such

types of galaxies, their evolution seems to comprise several events that slowly transform regular

disc galaxies into S0s, instead of few significant events.

5.2 Future Work

This work employed a method first presented in C16 to three S0 galaxies that complement the

galaxy NGC 1023 studied with the method in C16. The MLE method showed once more its

effectiveness in using discrete tracers to study the kinematics of such galaxies. As we found

that each galaxy individually was more complex than expected, to study even more lenticular

galaxies would be the first step to further enhance and solidify the evolution scenarios suggested

by the results presented here. There are already strong candidates for galaxies to be studied in

the future, such as NGC 5866 and NGC 0821, for which the spectroscopy of GCs was recently

made available Forbes et al. (2017). For NGC 5866, a PNe analysis such as performed for our

sample galaxies in C13b is currently in preparation. If larger spectroscopic samples of GCs

and PNe are obtained for such galaxies in the future, it would also be interesting to revisit the

results found here with a larger sample.

The study of other types of galaxy morphologies is also possible with the method

presented here, especially other types of early-type galaxies, such as ellipticals. This could

reveal possible similarities between their GC systems and the ones of lenticulars and spirals

already studied in the literature, improving our understanding of the evolution and relations

of galaxies of different morphologies.

Finally, the kinematic model that was used for the MLE can also be improved,

possibly including additional galaxy components, such as separating the bulge and the halo, or

thin and thick discs. This is already possible currently but naturally increases the amount of

free parameters to be estimated in the MLE and therefore lowers the accuracy of the estimation

and increases the computational resources needed. With the optimisation of the method and

the codes used in this work, however, this could be made easier and would be very interesting
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to disentangle the properties of galaxies that have structures apparently more complex than

what we model here.
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