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ABSTRACT

This dissertation presents MagnetViz, a technique for the visualization of graphs.
While most techniques visualize a static pre-computed graph layout, MagnetViz allows
users to dynamically alter the layout of a graph to better satisfy their needs. This is done
by building on the physics metaphor of force-directed algorithms to provide users with
virtual magnets, which can attract nodes that fulfill a set of criteria associated with them.
Criteria can be based on either the topology or semantics of the graph. Through boundary
shapes, which are simple geometric shapes that can be placed around magnets, users can
also define regions within the scene where the attracted nodes should remain.

Graphs are described in GraphML, a XML-like description language which allows
the specification of nodes and edges between nodes as well as attributes associated to
nodes and edges. After loading a graph, Magnetviz displays it using a slightly modified
version of the classical Fruchterman and Reingold’ algorithm, and allows the user to insert
magnets. Users can build the criteria associated with the magnets using the attributes of
nodes and/or edges, besides the common graphs’ topological attributes.

For MagnetViz’s evaluation, it was first analyzed how the technique fared in aiding
users to perform tasks defined by a graph visualization task taxonomy described in the lit-
erature. Then, MagnetViz was tested within a practical context by means of a case study.
A co-authorship network was chosen as the target dataset. The MagnetViz prototype was
initially used to answer questions relevant to this dataset and then tested by a group of
potential users, who had to use it to answer these same questions. After trying the appli-
cation, subjects answered questionnaires about their opinion on the technique’s usability,
applicability, relevance and visual results.

While some aspects of the technique should still be refined, results of the evaluation
proved MagnetViz to be a valid approach when it comes to interaction with graph visual-
izations.

Keywords: Graph visualization, force-directed layouts, interaction, information visual-
ization.





RESUMO

MagnetViz: Projeto e Avaliação de uma Técnica de Interação Baseada em Física
para Visualização de Grafos

Esta dissertação apresenta MagnetViz, uma técnica para visualização de grafos. En-
quanto a maior parte das técnicas visualizam um layout de grafo estático pre-computado,
MagnetViz permite que usuários dinamicamente alterem o layout de um grafo de forma
a melhor satisfazer suas necessidades. Isso é feito ao construir em cima da metáfora de
física de algoritmos dirigidos à força para proporcionar aos usuários imãs virtuais, que
podem atrair nodos que satisfazem um conjunto de critérios associados a eles. Critérios
podem ser baseados na topologia ou semântica do grafo. Através deboundary shapes,
que são simples formas geométricas que podem ser colocadas ao redor de imãs, usuários
podem também definir regiões na cena onde os nodos atraídos devem permanecer.

Grafos são descritos usando GraphML, uma linguagem baseada em XML, que permite
a especificação dos nodos e arestas e de atributos para essas entidades. Após a submis-
são de um grafo como entrada, MagnetViz o exibe utilizando uma versão modificada do
algoritmo clássico de Fruchterman and Rheingold, e permite que usuário, a seguir, insira
imãs na cena. Usuários podem construir as condições associadas aos imãs utilizando os
atributos dos nodos e arestas, além de atributos topológicos próprios de grafos.

Para a avaliação de MagnetViz, foi primeiro analisado o desempenho da técnica ao
ajudar usuários a executarem tarefas definidas por uma taxonomia de tarefas de visuali-
zação de grafos encontrada na literatura. Então, MagnetViz foi testada em um contexto
prático através de um estudo de caso. Uma rede de co-autorias foi escolhida como con-
junto de dados e o protótipo de MagnetViz foi inicialmente usado para responder questões
relevantes a esses dados e então testado por um grupo de potenciais usuários, que tinham
de usa-lo para responder essas mesmas perguntas. Após testar a aplicação, os sujeiotos
receberam questionários sobre usas opiniões quanto a usabilidade, aplicabilidade, rele-
vância e resultados visuais da técnica.

Enquanto alguns aspectos da técnica ainda podem ser melhorados, os resultados da
avaliação provaram que MagnetViz é uma abordagem válida para interação com visuali-
zações de grafos.

Palavras-chave:visualização de grafos, layouts baseados em física, interação, visualiza-
ção de informações.
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1 INTRODUCTION

1.1 Motivation

A graph is an abstract structure used to represent information that is comprised of
objects and relationships between those objects. Due to its intuitive use, simple and easy
to understand definition and power as a modeling and representational tool for relational
data, graphs have become the structure of choice for representing information in many
fields, such as Biology, Economy, Psychology and Computer Science.

In some applications, graphs are simply the data structure in which the information is
internally represented, not explicitly manipulated by the end-user. Others, though, require
the user to deal directly with them. This leads to the necessity of systems that allow the
user to explore and manipulate the information contained in the graphs.

A user might textually explore the information contained in a graph through tools such
as query languages. For a user who is not very computer-savvy, though, this might prove
to be too complex and not very intuitive. Therefore, it is interesting for many applications
to visualize those graph structures in order to make it easier for the users to read and
manipulate the information as required.

The most common approach to visually representing a graph is the use of node-link
diagrams. These consist simply of visual objects representing the nodes, which are con-
nected by lines that represent the edges. There is a large community of researchers dedi-
cated to studying algorithms to lay out those nodes and edges in the best possible way.

The problem that the field of graph drawing tries to solve can be very simply stated as
how to find the geometric positions of the nodes that are aesthetically more interesting for
the better comprehension of the graph and its structure. Its solution, though, has proven
to be quite complex.

Different layout algorithms for node-link diagrams of graphs have been created, each
favoring certain aesthetic criteria, such as edge crossings, edge bends, graph symmetry,
etc., in detriment of others. Graph aesthetics, however, is very subjective. While there
are some guidelines as to what might lead to a good layout (that is, a layout that is easily
readable by a human) they are far from being hard rules. This leads to techniques that
might work perfectly for some applications but not at all for others. A good source on the
classical graph drawing algorithms is the book written by Di Battista et al. (1999).

To circumvent the limitations of layout algorithms, many approaches have been exper-
imented with. Some have attempted to deal with the problem by using creative navigation
and interactive schemes, building on the knowledge provided by the fields of Information
Visualization and Human-Computer Interaction. Others have tried to build 3D visualiza-
tion techniques, or even created alternative visual representations altogether. Some have
also combined all of these approaches into new hybrid techniques. Most graph drawing
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and visualization techniques take into account only the topological structure of a graph.
While they might frequently produce aesthetically pleasing visualizations, they might be
leaving out important data in their computation of the layout by ignoring the semantic in-
formation contained in the attributes of the nodes and edges. Even though there are some
algorithms that produce attribute-based layouts, these are few and mostly not very gener-
ically applicable. Therefore, it is usually the case that semantic information is handled by
interaction techniques, such as filtering.

Depending on the application, semantic information might be just as important to the
user as the topology of the graph. Leaving out this information might result on the user
missing out on important data and even relationships that are not explicitly expressed.

1.2 Objective

The goal of this work is to investigate an alternative visualization technique which
combines a flexible layout with interaction mechanisms that allow the user to explore the
graph. The proposed technique builds on the metaphor of physics-based graph-layout al-
gorithms. It consists of providing the user with virtual magnets that are associated with
user-defined criteria. These criteria can be topology or attribute-based, and allow the in-
teractive manipulation of the visualization of a graph in order to make it semantically
more interesting and valuable. Magnets can also be used to intuitively perform set oper-
ations such as union and intersection, becoming a visual tool for exploring the datasets,
and allowing the user to discover new relationships that were previously invisible due to
the techniques that focused exclusively on the topology. To illustrate and validate the
technique, it is analyzed in terms of a task taxonomy and how it can be used in practice
in the context of a graph representing a social network.

1.3 Organization of the Text

The rest of this work is organized as follows. Chapter 2 provides a background
on graphs and graph drawing, with emphasis given to force-directed layout algorithms,
specifically to the ones employed by the proposed technique. Chapter 3 covers the related
work, illustrating techniques for interactive layout reorganization, focus+context interac-
tion and relevant graph visualization techniques and toolkits. The proposed technique
is detailed in chapter 4, while its evaluation process and results are shown in chapter 5.
Conclusions and the planned future work are described in chapter 6’.
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2 BACKGROUND

This chapter provides some background on all the topics necessary to the comprehen-
sion of the technique proposed in this work. A brief review of some graph theory concepts
is presented and followed by an overview of the field of graph drawing. Force-directed
graph layout algorithms are then covered, with the one employed by the technique pro-
posed in this work explained in more detail.

2.1 Basic Concepts

In many fields it is often necessary to represent objects and the relationships between
these objects. Graphs provide a very simple, powerful and intuitive way of doing so and
are thus vastly used in fields ranging from software engineering, databases and artificial
intelligence to medical science, biology, chemistry and many others. In computer science,
graphs are one of the most commonly used data structures.

Formally, a graph can be simply defined as a finite set of nodes and a finite multi-set of
edges, with the former standing for the objects and the latter for the relationships between
those objects. An edge is defined as a pair of nodes. If both nodes of an edge are the
same, it is said to be a self-loop. If an edge occurs more than once, it is called a multiple
edge. If a graph has no loops and no multiple edges, it is known as a simple graph. Two
nodes that are a part of the same edge are adjacent to each other. The neighbors of a node
are the nodes adjacent to it and its degree is the number of its neighbors. A graph is said
to be non-directed if the edges are unordered pairs of nodes, and is said to be regular if all
its nodes have the same degree.

A directed graph (or digraph) is found almost as commonly as regular graphs and is
just as simple, with the only difference being that an edge is defined by an ordered pair
of nodes. In a digraph, an edge goes from node A to node B, being an outgoing edge of
A and an incoming edge of B. Nodes may have no incoming or no outgoing edges, being
then known as sources and sinks, respectively.

In a digraph, a path is a sequence of nodes in which there is always an outgoing edge
of a node to the one that immediately follows it (except for the last node of the sequence).
If the paths form cycles (paths that begin and end with the same node), the graph is known
as cyclic. Otherwise, it is acyclic. If there is a path for each pair of nodes, the graph is
said to be connected.

An important special case of a graph is the tree, which is used to represent hierar-
chical structures and is so called due to its resemblance to biological trees. A tree is a
graph in which every two nodes are connected by at most one path, thus being connected
and acyclic. An important type of tree is the rooted tree, in which each node (with the
exception of the root), has one parent node and may have children nodes. If a node has
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no children, it is a leaf node.

2.2 Graph Drawing

Graph drawing algorithms are of course essential to graph visualization techniques.
Here we present a short background on the subject. For a more detailed study of graph
drawing, the reader can refer to the book by Di Battista et al. (1999).

The problem that graph drawing techniques attempt to solve can be very simply stated:
given a graph, calculate the position of its nodes and the curve to be drawn for each edge
(HERMAN et al., 2000). Finding a solution to this problem, though, is not as trivial.

Many layout algorithms have been developed (BATTISTA et al., 1999) and are widely
used in graph visualizations. Each algorithm takes into account different aesthetic criteria,
such as number of bends in an edge, amount of line crossings and the size of the area
occupied by the drawing, and very often will only work on specific types of graphs.

Graph drawing algorithms usually define a rule, or drawing convention, that the gen-
erated drawing must adhere to. These conventions might be very complex requirements,
but they are usually quite simple, with some of the most often used being the polyline,
straight-line and orthogonal drawings (Figure 2.1). Constraints are often placed on the
drawing, such as forcing the algorithm to always place a certain vertex at a certain posi-
tion, clustering (placing a subset of nodes close together according to certain criteria) or
drawing a certain subgraph with a predefined shape.

Figure 2.1: Common graph layouts. From left to right: polylines, line segments, orthog-
onal and grid layout.

It is also desirable that a graph drawing algorithm be predictable, so that two differ-
ent runs with the same or similar graphs should produce similar visual representations
(HERMAN et al., 2000). This way the user can maintain a consistent "mental map" of
the drawing.

There is no graph drawing algorithm that could be considered the best - as said before,
the effectiveness of graph drawings depends on their readability, and that changes depend-
ing on how (and where) the technique is being applied. User studies show that a drawing
is more readable if it has no edge-bends, no edge-crossing and small edge-lengths, occu-
pies small screen-space, displays symmetries and satisfies application-specific constraints
such as clustering and alignment (BATINI; FURLANI; NARDELLI, 1985; COHEN et al.,
1994; PURCHASE; COHEN; JAMES, 1997). It is usually the case that those readability
criteria cannot all be satisfied simultaneously, so trade-offs must be made.

There are many different types of graph drawing algorithms, with the optimization-
based approach being of particular interest to us. Optimization-based layout algorithms
rely on a series of mathematical equations that act as constraints for the drawing and
are passed to a "solver", which tries to optimize them. Such constraints might be the
minimization of edge crossings and edge bends, for instance. Optimization-based layouts
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tend to generate organic-looking layouts that can be applied on all types of graphs and
are very customizable. They are also interesting for allowing the user to see the graph
being built in a real-time animation by rendering the intermediary steps of the layout
computation process. The main drawbacks of this type of layout are that it tends to be very
computationally expensive (especially with larger graphs) and that it is not deterministic.

For the user to be able to interact wih the graph in real-time it is very important that a
graph drawing algorithm be efficient. Due to faster, multi-core CPUs and GPUs, perfor-
mance is gradually ceasing to be a problem.

Of the optimization-based techniques, the ones that are of particular interest to us are
the force-directed algorithms, which we will detail in the following section.

2.3 Force Directed Layouts

The most popular and widely used class of techniques that use the optimization-based
approach is the force-directed or spring layout. Their pleasing visual results, relative
implementation simplicity and flexibility as to the inclusion of new aesthetic criteria make
them a staple of graph visualization in general.

The basic idea of a force-directed algorithm is to treat the graph as a physical system,
assigning forces to the nodes and edges, and minimizing its energy until reaching a stable
layout. The forces will work to rearrange the positions of the nodes until the system finds
itself in a state of mechanical equilibrium.

One interesting property of force-directed algorithms is that most of them support the
application of constraints. A position constraint can be established by forcing nodes to
remain within a certain region, while other types of constraints can be used if they can
be expressed with forces. Examples of this include the use of magnetic fields to impose
orientation constraints (SUGIYAMA; MISUE, 1994, 1995) (seen in Figure 2.2) and the
utilization of dummy nodes to force groupings.

Figure 2.2: Sugiyama and Misue’s magnetic-spring layout (1994; 1995).

For many years, force-directed algorithms have suffered dramatically from a scala-
bility problem: the more nodes and edges we have, the slower it is for the system to
converge. Thus, it was only possible to use these algorithms in real-time with smaller
graphs due to their high computational cost. However, with the advent of faster, multi-
core processors and powerful, programmable graphic processing units (GPUs) this reality
is changing fast. Mass-spring algorithms can now deal with hundreds of thousands nodes
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Figure 2.3: Some graph drawings generated by Frishman and Tal’s algorithm (2007).

Figure 2.4: Sample layout generated using the Eades spring-embedder technique (1984).

and edges in real-time, and many different applications, such as real-time cloth simu-
lation, are already making use of that (GEORGII; ECHTLER; WESTERMANN, 2005;
TEJADA; ERTL, 2005). Recent works on GPU-based force-directed layout include a
multi-level graph layout algorithm proposed by Frishman and Tal (2007), seen in Figure
2.3.

Aside from the scalability problem, force-directed algorithms also suffer greatly from
a predictability problem. Two different runs of an algorithm over similar (or even the
same) input graphs might generate two completely different layouts, which is not very
helpful in allowing the user to create and maintain a mental map of the visualization. One
approach that has been used to minimize this is to run another layout algorithm first, and
afterwards execute the force-directed technique on top of that.

The first force-directed algorithm was proposed by Eades (1984), producing visual re-
sults as shown in Figure 2.4. It takes the intuitive approach of treating the graph as a mass-
spring system, with nodes being steel rings and edges springs that connect them. Despite
the physical metaphor, it does not aim for physical accuracy, not employing Hooke’s law
for the springs and with forces affecting velocity instead of acceleration. It produces
visualizations of uniform edge length and allows representation of graph symmetry. In
this technique, nodes act as physical bodies and edges as springs, with nodes exerting a
repulsive force and a drag force or some amount of friction being applied to the model.



19

This algorithm results in an optimization process, since it minimizes the energy within
the physical system. This technique is very simple to implement and also generically ap-
plicable. Bertault (2000) managed to make a more deterministic version of this technique
by preserving edge crossings.

Many other algorithms extended the basic idea presented by Eades. One of those is
Kamada and Kawai’s (1989), which aims at positioning nodes in a way that their geomet-
ric distance is equal to their graph-theoretic distance. It does so by having the simulation
assume that between every two nodes there is a spring with rest length equal to the theo-
retical distance between them.

Another interesting algorithm is Davidson and Harel’s (1996), which introduced the
idea of using simulated annealing to minimize the system’s energy function, which takes
into account vertex distribution, edge length and edge crossings. This algorithm, seen in
Figure 2.5, can be very time consuming, but can produce better results.

Figure 2.5: Layouts computed with Davidson and Harel’s technique (1996)

One of the most important force-directed algorithms is the one proposed by Fruchter-
man and Reingold (1991). This algorithm consists on calculating on each iteration all the
forces that attract and repulse nodes. Nodes connected by edges exert an attraction force
between them, while all nodes exert a repulsion force on all others. From the forces, the
position displacement a node will suffer during each iteration is calculated and limited
by the current value of an attribute (usually used as temperature), which is progressively
decreased. This algorithm’s straightforward implementation, relatively fast running speed
and high flexibility when it comes to the insertion of constraints and other aesthetic cri-
teria make it probably the most popular force-directed layout technique. Its major draw-
backs are its high complexity of O(n3) and its unpredictability. These can be dealt with,
though, and numerous improved versions of the algorithm have been proposed. One of
these approaches was used in this work and will be explained in detail in the next section.
Graph layouts generated with this technique can be seen in figures 2.6 and 2.7 while the
algorithm itself can be seen in Algorithm 1.

Another interesting approach is Noack’s LinLog energy model (2003), exemplified in
Figure 2.8, which attempts to reveal clusters of highly connected nodes. This technique
is particularly useful for datasets such as social networks, and was proposed in two vari-
ations, the node-repulsion LinLog model (NOACK, 2003, 2004) and the edge-repulsion
LinLog model (NOACK, 2005). Both variations produce similar drawings, but the lat-
ter avoids dense accumulations of nodes with high degrees for graphs with non-uniform
degrees.
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Figure 2.6: Fruchterman-Reingold layout (1991).

Figure 2.7: Fruchterman-Reingold layout (1991) of the largest component of the co-
authorship graph of the AVI conference (26 nodes and 78 edges).

Figure 2.8: Noack’s LinLog algorithm (2003; 2004). Image taken
from the open source implementation provided by Noack in his website
(http://www.informatik.tu-cottbus.de/ an/GD)
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Algorithm 1 Fruchterman-Reingold layoutalgorithm.
Require: C {Constant for computation of the optimal distance between nodes.}
Require: W {Width of the workspace}
Require: H {Height of the workspace}
Require: nodes{List of nodes, which are in random positions},
Require: edges{List of edges}
Require: nIterations{Number of iterations to be performed}

1:

2: {Calculate optimal distance between nodes}
3: k←C∗

√
(W ∗H)/nodes.count()

4:

5: function attractiveForceStrength(x)← x2/ k
6: function repulsiveForceStrength(x)← k2/ x
7:

8: for i = 1 tonIterationsdo
9: {Calculate attractive forces.}

10: for eache in edgesdo
11: Δ← e.n1.pos() -e.n2.pos()
12: e.n1. f orce−= ( Δ / | Δ | ) ∗ attractiveForceStrength(| Δ |)
13: e.n2. f orce+= ( Δ / | Δ | ) ∗ attractiveForceStrength(| Δ |)
14: end for
15:

16: {Calculate repulsive forces.}
17: for eachn in nodesdo
18: for eachm in nodesdo
19: if n 6= m then
20: Δ← n.pos() -m.pos()
21: n. f orce+= ( Δ / | Δ | ) ∗ repulsiveForceStrength(| Δ |)
22: end if
23: end for
24: {Limit maximum displacement to the temperaturet}
25: {and then prevent node from leaving the workspace.}
26: n.pos+= (n. f orce/| n. f orce|) ∗ min(n. f orce, t)
27: n.pos.x← min(W/2, max(−W/2, n.pos.x))
28: n.pos.y← min( H/2, max(−H/2, n.pos.y))
29: end for
30: t ← cool(t) {Reduce temperature.}
31: end for
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Other force-directed approaches include Frick et al.’s GEM (1995), Gajer and Kouborov’s
Grip (2000; 2004), and more recently the DiG-CoLa technique by Dwyer and Koren
(2005), which allows the application of force-directed algorithms to directed graphs. Ex-
amples of layouts generated with these techniques can be seen in Figures 2.9, 2.10 and
2.11, respectively.

Figure 2.9: Evolution of a layout computed with Frick et al.’s technique (1995)

Figure 2.10: Graph layouts computed with Grip (GAJER; KOBOUROV, 2000)

Figure 2.11: Layouts computed with Dwyer and Koren’s DiG-CoLa technique (2005)
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2.4 Combining Fruchterman-Reingold’s Algorithm With the Barnes
and Hut Technique

One approach to reduce the complexity of Fruchterman and Reingold’s technique is
to combine it with Barnes and Hut’s n-body simulation algorithm (1986), as done by
Tunkelang (1999). With this, one can reduce the original algorithm’s complexity from
O(n3) to O(n2), making it substantially more scalable.

The n-body problem consists of computing the movement of a given number of bodies
that are mutually affected by gravitational forces. The brute force approach for solving
this problem consists of going through every body and computing how all other bodies
affect it. This is clearly not very scalable, having a complexity of O(n2). Thus, the more
bodies we have, the slower the algorithm runs.

The Barnes-Hut algorithm is able to speed up the computation to O(nlogn) by group-
ing together nearby bodies and approximating them as a single body. If a group of bodies
is sufficiently far away, their total gravitational effect on a certain body can be approxi-
mated with the group’s center of mass. This can be applied recursively, with each group
of bodies being comprised of smaller groups and the last level of groups containing just
one body each.

The data structures that naturally fit this sort of space partitioning problem are the
quadtreesfor 2D simulations, and theoctreesfor 3D (SAMET, 1990). In the case of a
2D n-body simulation, the Barnes-Hut algorithm consists of building a quadtree of bodies
and using it to compute how each body will be affected by all the others. The leaves of
this quadtree will contain each just one body, while inner nodes will contain quadrants
that represent groups of bodies, storing their total mass and center of mass. If the affected
body is sufficiently far away from a group of bodies, the group’s total mass and center of
mass is used to calculate the gravitation force instead of each body’s individual location
and mass. If the body is close to other bodies, it will naturally be affected by smaller
groups, which might eventually represent each body individually depending on their dis-
tance. The quadtree can be built by inserting into it all the bodies with algorithm 2, while
the repulsive force exerted on a body can be computed using algorithm 3. For 3D the
algorithm works analogously, but substituting the quadtree by an octree.

The combination of Fruchterman and Reingold’s algorithm with Barnes and Hut is
show in Algorithm 4. Every node of the graph becomes a physical body with a mass and
at each iteration of the algorithm the tree is rebuilt (since the nodes will have moved a
little), and subsequently used to compute the repulsion force that is applied on each node
by all the others.

2.5 Final Comments

Even though the proposed technique can work with any layout algorithm that supports
the application of forces on nodes, it was decided to use a variation of the Fruchteman-
Reingold algorithm (1991). It is one of the most well-known force-directed algorithms,
producing organic-looking, clean, layouts that minimize edge crossings, and is also very
straightforward to implement. The visual results it produces were thought to be very
reasonable for the technique’s proof-of-concept. This, along with its relative simplicity
and widespread use, as well as the fact that it lends itself very easily to the technique,
made this the algorithm of choice for the prototype developed in this work. An approach
similar to Tunkelang’s (1999) was taken.
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While this chapter provided an overview of what is necessary to properly understand
the proposed technique and reproduce the implementation of the prototype as done for
this work, the following chapter describes other works that are not exactly necessary for
the comprehension of this one but that help put it into context by providing an overview
of the field of graph visualization.
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Algorithm 2 Method for insertion of a body in the Barnes-Hutquadtree.
Require: body{Body to be inserted.}
Require: bhTreeNode{Node of Barnes-Hut quadtree wherebodyshould be inserted}

1:

2: if bhTreeNodeis not a leafthen
3: Recursively insertbodyinto the quadrant ofbhTreeNodethat contains it.
4: {Note that quadrants are also Barnes-Hut quadtrees}
5:

6: {ComputebhTreeNode’s new total mass and center of mass.}
7: for eachq in bhTreeNode.quadrants()do
8: bhTreeNode.mass+= q.mass()
9: bhTreeNode.centerMass+= q.centerMass()∗ q.mass()

10: end for
11: bhTreeNode.centerMass/= bhTreeNode.mass()
12:

13: else
14:

15: if leaf is emptythen
16: bhTreeNode.body← body
17: bhTreeNode.mass← body.mass()
18: bhTreeNode.centerMass← body.pos()
19: else
20: SubdividebhTreeNodeby creating new quadrants in it
21: MovebhTreeNode’s body to the quadrant that contains it.
22: Recursively insertbodyin the subquadrant that contains it.
23: RecalculatebhTreeNode’s mass and center of mass as in lines 7-11.
24: end if
25:

26: end if
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Algorithm 3 Using the Barnes-Hut technique to calculate the repulsive forces exerted on
a given body by all the others (bhGetRepulsiveForce( )).
Require: body{Target body}
Require: bhTreeNode{Barnes-Hut quadtree node. Initially this should be the root}
Require: θ {User-supplied threshold. Usually a little less than 1}
Require: G {Gravitation constant},

1:

2: if bhTreeNodeis leafthen
3: Δ = | body.pos()− bhTreeNode.body.pos()|
4: f orce=G ∗ body.mass()∗ bhTreeNode.body.mass()/ Δ2

5: else
6: Δ=| body.pos()−bhTreeNode.centerOfMass()|
7: if bhTreeNode.quadrantLength()/Δ< θ then
8: f orce=G ∗ body.mass()∗ bhTreeNode.mass()/ Δ2

9: else
10: {Recursively sum the forces of the four subquadrants, which are also tree nodes}
11: for eachq in bhTreeNode.quadrants()do
12: f orce+= bhGetRepulsiveForce( body, q )
13: end for
14: end if
15: end if
16: return f orce
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Algorithm 4 Combined Fruchterman-Reingold / Barnes-Hut layoutalgorithm.
Require: C {Constant for computation of the optimal distance between nodes.}
Require: W {Width of the workspace}
Require: H {Height of the workspace}
Require: nodes{List of nodes, which are in random positions},
Require: edges{List of edges}
Require: nIterations{Number of iterations to be performed}

1:

2: {Calculate optimal distance between nodes}
3: k←C∗

√
(W ∗H)/nodes.count()

4:

5: function attractiveForceStrength(x)← x2/ k
6: function repulsiveForceStrength(x)← k2/ x
7:

8: for i = 1 tonIterationsdo
9: {Calculate attractive forces.}

10: for eache in edgesdo
11: Δ← e.n1.pos() -e.n2.pos()
12: e.n1. f orce−= ( Δ / | Δ | ) ∗ e.n1.mass()∗ attractiveForceStrength(| Δ |)
13: e.n2. f orce+= ( Δ / | Δ | ) ∗ e.n2.mass()∗ attractiveForceStrength(| Δ |)
14: end for
15:

16: Build barnesHutTree. All of the graph’s nodes are inserted as the tree’s bodies.
17: {see algorithm 2 for insertion of a body into a Barnes-Hut quadtree}
18:

19: {Calculate repulsive forces.}
20: for eachn in nodesdo
21: bhGetRepulsiveForce(node, barnesHutTree)
22: {Note thatrepulsiveForceStrength() is used asbhGetRepulsiveForce()’s grav-

ity function, with the current| Δ | passed as its parameter (see algorithm 3)}
23:

24: {Limit maximum displacement to the temperaturet}
25: {and then prevent node from leaving the workspace.}
26: n.pos+= (n. f orce/| n. f orce|) ∗ min(n. f orce, t)
27: n.pos.x← min(W/2, max(−W/2, n.pos.x))
28: n.pos.y← min( H/2, max(−H/2, n.pos.y))
29: end for
30: t ← cool(t) {Reduce temperature.}
31: end for
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3 RELATED WORK

This chapter describes work related to the fields of graph visualization and human-
computer interaction. The works here presented are not necessary for the implementation
and comprehension of MagnetViz, but are nonetheless essential to put it into context.

3.1 Graph Visualization

3.1.1 Node-Link Diagrams

The most intuitive (and therefore the most commonly used) approach for visually
representing a graph is the node-link diagram. It consists of visual objects that represent
the nodes and lines that connect these objects, representing the edges. If the graph is
directed, the lines are drawn as arrows that go from the origin node to the target. An
example of a graph drawn as a node-link diagram can be seen in Figure 3.1.

Figure 3.1: Example of a node-link diagram

Node-link diagrams of graphs are drawn using layout algorithms. These algorithms
attempt to calculate geometric positions for the nodes in ways that are aesthetically pleas-
ing and that convey useful information to the viewer. There are many different types of
layout algorithms, with the force-directed approach that was discussed in Chapter 2 being
one of the most widely used. A good source of material about graph visualization is the
book written by DiBattista et al. (1999), which covers the most important work of the
field.

Many graph layout algorithms are focused on the drawing of trees, which are a special
case of graphs. Amongst these, one of the most commonly found is the indentation layout,
seen in Figure 3.2, which is typically used to represent file structures. Also well known is
the Reingold-Tilford layout (REINGOLD; TILFORD, 1981) (seen in Figure 3.3), which
was designed for binary trees and later extended for trees of any degree by Walker (1990).
Shiloach’s H-tree layout (1976) for binary trees is another prominent algorithm, being
later adapted by Eades into the radial layout (1992) for general graphs (seen in Figure
3.4). Another important technique is Carrière et al.’s Balloon Trees layout (1995) (seen
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in Figure 3.5), which is a rare adaptation of a 3D algorithm (namely, Robertson et al.’s
classic 3D Cone Trees algorithm (1991)).

Figure 3.2: Indentation layout.

Figure 3.3: The Reingold-Tilford layout (REINGOLD; TILFORD, 1981).

Figure 3.4: The radial layout (EADES, 1992).

Figure 3.5: The Balloon Trees layout (CARRIERE; KAZMAN, 1995).
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Due to the effects of interacting with it, perhaps one of the most interesting tree visu-
alizations is the hyperbolic layout (LAMPING; RAO; PIROLLI, 1995; LAMPING; RAO,
1996), which builds a node-link diagram on a hyperplane and projects the result back into
Euclidean geometry. The visual results have a focus+context effect similar to Furnas’s
Fisheye technique (1981), with nodes far from the center shown in progressively smaller
size and lines being projected as curves. An example of a tree drawn with a hyperbolic
layout can be seen in Figure 3.6. For more details about focus+context techniques, see
Section 3.4.

Figure 3.6: Example of a 2D hyperbolic layout (LAMPING; RAO, 1996).

Regarding general graphs, there are several approaches that can be taken. Since tree-
drawing algorithms usually have a reasonably low complexity and are relatively easy to
implement, one of the most popular approaches is simply drawing the spanning tree of the
graph using one of the previously mentioned tree layout algorithms. Another approach
is hierarchical layouts (also known as upward layouts), in which most edges start from a
source node in a directed graph and flow towards a sink. These layouts are particularly
useful for displaying hierarchies, organization charts, scheduling and logistic diagrams,
etc.. One of the fundamental techniques of this type is Sugiyama et al.’s "dot" algorithm
(1981), in which nodes are assigned to hierarchically organized layers according to a
chosen layering technique. Once that is done, nodes are positioned within their layers
in a way that minimizes the edge-crossings between two consecutive layers. Figure 3.7
illustrates this algorithm. Techniques that build on this approach include the works by
Gansner et al. (1988; 1993).

Some techniques are also designed specifically for graphs, such as the optimization/force-
directed, orthogonal, spectral, attribute-based and feature-based layouts. Covered in more
detail in Chapter 2, optimization techniques use physics-based algorithms to create or-
ganic, non-deterministic layouts.

Orthogonal layouts attempt to reduce the number of edge crossings and the area oc-
cupied by the graph drawing by always laying the edges horizontally or vertically, being
thus quite useful for VLSI circuit layout design. Important orthogonal layout algorithms
include the ones by Tamassia and Tollis (1989) and Biedl and Kant (1994). Other tech-
niques can be found in the survey written by Eiglsperger et al. (2001). An example of a
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Figure 3.7: Graph drawn with the "dot" layout (SUGIYAMA; TAGAWA; TODA, 1981).

Figure 3.8: Graph drawn with Tamassia and Tollis’s orthogonal layout algorithm (1989).

graph drawn with an orthogonal layout can be seen in Figure 3.8.
Spectral layout algorithms employ the eigenvectors of the Laplacian matrix for gen-

erating layouts for undirected graphs. These techniques are not widely used, since they
do have a very intuitive aesthetic interpretation. However, they provide an exact solution
to the layout problem (other approaches generally result in an NP-hard problem that can
only be approximated) and can be computed extremely fast. The basic method of spectral
graph drawing was described in Godsil and Royle’s book (2001), with the algorithms by
Pisanski and Shawe-Taylor (1998) and Koren (2003) being important works on the sub-
ject. More information on this topic can be found in Ross’s survey (2004) and Puppe’s
book (2008). Examples of graph layouts generated with spectral algorithms can be seen
in Figure 3.9.

Attribute-based algorithms take into consideration the information stored in the nodes
and edges for the computation of the layout, mostly discarting the topological structure
of the graph. Some works that take this approach include Pretorius and van Wijk’s two

Figure 3.9: Graphs drawn with a spectral layout algorithm (KOREN, 2003).
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papers on the visualization of transition graphs (2005; 2006), Wattenberg’s PivotGraph
(2006) and Aris and Shneiderman’s NVSS (Network Visualization by Semantic Sub-
strates) (2006). Some works, such as Archambault et al.’s GrouseFlocks (2008), take
a middle-ground approach between topology and attribute-based techniques. Grouse-
Flocks, seen in Figure 3.10 is a system for the interactive visualizations of a graph’s
hierarchy space that provides users with operations that help them create and modify their
graph hierarchies based on selections, which can be made manually or based on patterns
in the attribute data.

Figure 3.10: GrouseFlocks (ARCHAMBAULT; MUNZNER; AUBER, 2008).

Feature-based techniques detect some desired trait the graph may have and use it to
draw the layout. In this class of algorithms, we find works such as Archambault et al.’s
TopoLayout (2007), which is a multi-level algorithm that recursively detects topological
features of the graph, such as trees, connected and biconnected components, and uses
this information to build a hierarchy. For each topological feature found, an appropriate
algorithm is used to compute the layout. TopoLayout can be seen in Figure 3.11.

Figure 3.11: Graph layouts generated with Archambault et al.’s TopoLayout (2007).
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3.1.2 Alternative Approaches for Large Graphs

A common problem found in most 2D graph layouts is that a large amount of nodes
and edges tends to create cluttered visualizations that occupy a large amount of screen
space, being thus potentially too big and/or dense to be comprehensible to users. Some
authors attempt to solve this problem by creating layout algorithms geared at large/dense
graphs, such as the works of van Ham and Wattenberg (2008). Another approach is
the use of interaction and navigation techniques, such as selection, picking, drag-and-
dropping, zooming, panning, etc., to explore the drawing of a graph. Other approaches
include trying alternative visual representations, coordination of different visualizations,
3D visualizations (which can be completely novel or extended from 2D), and new hybrid
techniques built from combinations of others.

One example of alternative approach is Shneiderman’s very popular Treemaps (1992),
which uses nested rectangles to communicate the hierarchy of a tree, easily providing the
user with an overview of an entire large tree. This technique is one of the most well
known of the field of Information Visualization, having been used in many applications,
ranging from visualization of file systems (SHNEIDERMAN, 1992) to stock market data
(JUNGMEISTER; TURO, 1992; WATTENBERG, 1999). A directory structure viewed
with Treemaps can be seen in Figure 3.12. The image was generated using the demo
available in the Treemaps website (http://www.cs.umd.edu/hcil/treemap).

Amongst the techniques that take the approach of using a different visual representa-
tion, some of the most prominent are the ones that visualize a graph’s adjacency matrix.
This approach consists of showing the graph as a table with the nodes as its rows and
columns and the edges as filled table cells. Matrix visualizations are not as intuitive as
node-link diagrams, but they have proven themselves very promising, since they elimi-
nate all occlusion and scalability problems that are often found in node-link diagrams.
When the nodes are ordered following some criteria, the visualization as an adjacency
matrix allows a rapid perception of the relationships between nodes, since there are no
edge crossings. Ghoniem et al. (2004) wrote an interesting comparison of matrix and

Figure 3.12: A directory structure viewed with Treemaps (SHNEIDERMAN, 1992) using
the demo provided in the Treemaps website.
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Figure 3.13: Graph visualized as both a node-link diagram and a matrix (GHONIEM;
FEKETE; CASTAGLIOLA, 2004).

node-link representations. Applications that use matrix visualization include Henry and
Fekete’s Matrix Explorer (2006), MatLink (2007) and NodeTrix (2007), the system de-
veloped by Abello and Korn for visualizing multidigraphs (2002), Abello and van Ham’s
Matrix Zoom (2004) and Ghoniem et al.’s VISEXP (2004). Figure 3.13 shows a graph
visualized both as a node-link diagram and a matrix.

Each visualization technique has its own different advantages and drawbacks. There-
fore, one sometimes taken approach is to use two or more different techniques in a co-
ordinated manner so that one’s disadvantages is counterbalanced by the the other’s ad-
vantages. An example of technique that does this is Henry and Fekete’s MatrixExplorer
(2006), which uses matrix visualization in conjunction to node-link diagrams in order to
help the user with filtering and searching, while also providing the traditional and intuitive
view of the graph.

Adjacency matrix visualization and its coordination with other techniques is one of

Figure 3.14: MatrixExplorer showing two synchronized representations of the same net-
work: matrix on the left and node-link on the right (HENRY; FEKETE, 2006).
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the possible approaches to visualize graphs that might be too big for regular drawing and
interaction techniques. Some have also tried what are known as hybrid techniques. These
consist of two or more techniques that are effectively combined into new methods, with
one’s technique’s advantages compensating for the other’s drawbacks (working similarly
to coordinated techniques, albeit in an integrated manner). Amongst these are found
Balzer et al.’s Voronoi Treemaps (2005), Zhao et al.’s Elastic Hierarchies (2005), Dwyer
et al.’s DiG-CoLa (2005) and Henry et al.’s MatLink (2007) and NodeTrix (2007). These
can be seen in Figures 3.15, 3.16, 2.11 and 3.18, respectively.

Other ways of dealing with the problems of large graph visualization is the use of

Figure 3.15: Voronoi Treemaps (BALZER; DEUSSEN; LEWERENTZ, 2005).

Figure 3.16: Elastic Hierarchies (ZHAO; MCGUFFIN; CHIGNELL, 2005).
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Figure 3.17: MatLink (HENRY; FEKETE, 2007).

Figure 3.18: Largest component of the InfoVis co-authorship network visualized with
NodeTrix (HENRY; FEKETE; MCGUFFIN, 2007).

special navigation and interaction schemes (see Section 3.2) and clustering.
Clustering is the grouping together of related nodes in order to reduce screen clutter.

It is usually of two types: structure-based or content-based. Structure-based clustering
utilizes the graph structure to group elements, while content-based clustering uses the se-
mantics of the graph (HERMAN et al., 2000). A structure-based clustering technique can
be more generally applied since it does not depend on application-specific information,
while a content-based technique can generate the best results for its application (possibly
even being used in combination with structure-based clustering) but might not be general
enough to use in other contexts.

Clustering works by allowing the use of a single on-screen element to represent sev-
eral, making possible, for example, the use of different levels of detail that can be ac-
cessed by zooming in and out of the graph. Clustering also helps the user identify desired
relationships that otherwise could not be seen, being frequently employed to help with
filtering and searching. Node clustering techniques can be either an inherent part of the
visualization, such as in Henry et al.’s MatrixExplorer (2006), MatLink (2007) and Node-
Trix (2007) and ASK-GraphView (2006) or independent methods that can be used with
another technique. It is important to note that clustering is not exclusive to nodes, with
Cui et al.’s work (2008) being an example of edge clustering.

Occasionally it might happen that ideally a node would have to belong to two clusters
to better suit the graph (i.e. the case of an author that contributes to two or more differ-
ent groups of authors). One approach that can be used to deal with this situation is the
duplication of nodes, as proposed by Henry et al. (2008).
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To deal with the limitations of 2D visualizations, another approach that is occasionally
taken is to use 3D. Some 3D visualizations are just natural extensions of 2D counterparts,
while other are created completely from scratch. Amongst the first group, are Patrignani
et al.’s 3DCube (1998), Rekimoto et al.’s Information Cube (1993), Hendley et al.’s Nar-
cissus (1995) and Parker’s NV3D (1998). Amongst the latter are Robertson et al.’s Cone
Trees (1991), Munzner’s H3 (1997), the SGI File System Navigator (????) and Hyun’s
Walrus (2008).

The 3D techniques often inherently solve many of the problems faced by 2D meth-
ods, but they come with many of their own. While 2D techniques can seize on a large
amount of knowledge about 2D interfaces and interaction on well-defined standards, for
the 3D case development is largely experimental, counting on just a few guidelines and
recommendations that depending on the case might or not be applicable.

3.2 Interaction in Graph Visualization

In Information Visualization, interaction and navigation are as important as the visu-
alization of the data itself, especially when we are dealing with (possibly large) graphs.
Finding desired information on a graph is often difficult without the proper navigation
and interaction tools.

Techniques for interaction and navigation in 2D graph visualizations have evolved
from generally applicable human-computer interaction (HCI) methods, being thus able
to rely on all the well known HCI standards. Many different techniques have already
been developed, sometimes being an integral part of the visualization technique itself,
supporting all users’ tasks.

It is important to note that both navigation and interaction present a related, but very
different problem from graph drawing, with most researchers focusing either in one or the
other. In order to produce an efficient visualization, the two areas should be combined,
since they are quite dependent on one another to work properly.

Some of the most important categories of interaction techniques are filtering, search,
selection, scrolling/panning and scaling/zooming. Recently, with the surge of interest
in visualizing large and complex graphs incremental exploration and navigation has also
become essential for many applications. See Herman et al. (2000), for a wider review on
navigation and interaction techniques for graph visualizations.

Filtering allows the user to define a set of criteria that will be used by the visualization
system to determine what will be displayed on the screen, after filtering the information
to a subset that is of interest to the user. Filtering allows for faster finding of desired infor-
mation by the user due to less visual complexity, being thus very useful to deal with prob-
lems generated by visual clutter and occlusion that tend to happen with large datasets. The
criteria chosen by the user for the filtering operation might be anything from the graph’s
structure to a particular attribute of the nodes. North et al.’s (1994), Gansner et al.’s (2000)
and Jia et al.’s (2008) works describe the use of filtering in graph visualization applica-
tions, with the latter showing how edge filtering can be used to improve visualizations of
large graphs (namely social networks).

Searching allows the user to easily find information on the visual representation of the
graph by providing some criteria as input to the search mechanism, which usually returns
the node that best matches the search parameters by visually focusing on it somehow.
The Cone Trees (ROBERTSON; MACKINLAY; CARD, 1991) and Hyperbolic Browser
(LAMPING; RAO; PIROLLI, 1995) techniques are some of the first that implemented
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this feature that is nowadays common to all visualization systems.
Selection provides the user with a mechanism to select certain information from the

dataset. When an element is selected, it is usually visually highlighted from the rest of
the dataset, with more information often being displayed about it. Selection is one of the
most common interaction techniques and is closely related to search mechanisms (which
may return a certain element selected). Selection also serves as basis for tools that allow
moving and manipulating elements.

When the drawing of the graph occupies more than the size of the screen, it is often
useful to apply the classical zoom and pan tools. Zooming allows a visualization to be
viewed in more detail and has two distinct variations: geometric and semantic (HERMAN
et al., 2000). Geometric zooming simply scales up the drawing while semantic zooming
shows more detailed information when approaching an area of the graph, thus requiring
some sort of level of detail control.

One approach when dealing with large graphs is the use of incremental exploration
and navigation techniques, which display only a small part of the graph at a time, showing
other parts as they are needed. This approach allows the use of layout techniques that
otherwise might be too expensive for real-time interaction, since it would only be applied
to a relatively small subgraph at a time, and avoid screen clutter by showing in detail only
a part of the dataset at a time (the context might still be visible, albeit in a limited and/or
simplified form, such as cluster nodes). These techniques are useful for exploration of
graphs that are not known in their entirety, such as the World Wide Web. Examples of
techniques that uses this approach to dealing with large graphs is Archambault et al.’s
Grouse (2007) and Rodrigues Jr. et al.’s GMine (2006; 2006; 2008).

3.3 Interactive Layout Reorganization

Most graph visualization techniques usually use interaction and navigation techniques
to explore static, pre-computed layouts. As mentioned before, well-known techniques
include filtering; fish-eye views; scrolling and panning; zooming and even coordination
of two or more visualizations. Very few techniques, though, allow for dynamic interactive
reorganization of graph layouts.

Some applications allow for simple layout reorganization by letting the user move
around nodes in force-directed layouts, which will cause an alteration in the balance of
energy of the force-directed system, thus triggering a repositioning of the nodes, which
will move until equilibrium is again reached. Another known technique is to find clusters
of nodes and transform them into cluster-nodes that can be expanded and collapsed by
the user. Clusters can also be used to perform cluster-based semantic zooming, which al-
lows for a level-of-detail-like approach to the visualization, letting the user incrementally
explore the graph by zooming in or out.

Amongst the few techniques that allow for dynamic graph layout reorganization, we
find the work of Henry et al., NodeTrix (2007), which is a hybrid of matrix and node-
link visualizations. NodeTrix allows the user to turn clusters of nodes present in node-
link visualizations into matrices, which are then displayed within the node-link diagram.
The layout itself is computed with the previously mentioned LinLog algorithm (NOACK,
2003).

In our work we make use of a magnet metaphor to provide the user with tools for
layout manipulation. Some other works have used a similar metaphor, but for purposes
that are not necessarily related to graph visualization. Amongst these, we find Fidg’t
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(PROTOHAUS, ????) and Dust & Magnet (YI et al., 2005). Fidg’t is an application
developed for the management of social networks that includes an interactive visualization
tool that allows users to iteratively explore their networks by creating tag magnets for
pictures (from Flickr) or music (from Last.fm), and observing how its nodes are attracted
or repelled. Although devoted to a different data domain (multivariate information), the
Dust & Magnet information visualization technique also uses a magnet metaphor.

3.4 Focus+Context Interaction Techniques

Usually an intrinsic part of the visualization itself, focus+context interaction tech-
niques allow a detailed view of a desired subset of information while at the same time
showing the larger context where that information is located with a reduced level of de-
tail (CARD; MACKINLAY; SHNEIDERMAN, 1999). As the user’s focus of interest
changes, the highlighted subset may also change correspondingly.

One of the classic focus+context techniques is the fisheye view (Figure 3.19), which
shows a larger, detailed view of the desired information subset (possibly centered on the
screen) while also displaying the rest of the information surrounding it (the context) in
progressively less detail (FURNAS, 1981). The fisheye view is based on mapping the
graph to a plane, defining a focus point and applying a degree-of-interest function on
every node with their distance from the focus point as parameter.

Figure 3.19: Fisheye view as seen in AbsInt’s aiSee (see http://www.absint.com/aisee/).

There are many variants of the fisheye view technique, mostly divided into two cate-
gories: filtering and distortion (NOIK, 1993). Filtering fisheye views work by using the
degree-of-interest function to display only the most interesting or relevant elements and
are closer to what Furnas suggested. By far the most commonly found, the distortion
techniques work by using a degree-of-interest function to geometrically distort the visu-
alizations in order to obtain a fisheye lens look. There are also techniques with more than
one focus point, such as the one by Storey et al. (1997).

The fisheye view can be applied to any visualization independent of its layout algo-
rithm, but that is not the case with all focus+context techniques. The previously men-
tioned hyperbolic layouts (LAMPING; RAO; PIROLLI, 1995; MUNZNER, 1997) merge
the fisheye-like visual distortions with the layout itself. This layout technique was devel-
oped with focus+context in mind, so it becomes an integral part of the layout algorithm
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instead of a separate stage applied later to the drawing.

3.5 Graph Visualization Toolkits

Many toolkits and libraries have been developed to aid the creation of graph visual-
ization software, ranging from tools developed as part of academic research to free GPL-
licensed libraries and commercial toolkits, supporting many languages and platforms,
from C++ and Win32 to Java and .NET. Most allow the drawing of the graphs using many
different algorithms and several are also able to handle interaction and navigation (drag
and dropping nodes, zoom and pan, etc.). Many also support graph theory algorithms,
with a few providing as well features specifically for network visualization. Table 3.1
provides a list of some toolkits.

It is important to note that while there is a multitude of graph visualization toolkits,
the prototype for MagnetViz was implemented from scratch. Since the prototype was
just a proof-of-concept, the alterations required in the toolkits’ layout implementations to
support MagnetViz would not be justified.

3.6 Final Comments

As mentioned in the previous sections, there is really no such a thing as a perfect graph
layout. Depending of the user’s necessities, a given technique might either apply or not.
Even if a technique applies, it might have several limitations. A given layout algorithm,
for example, might end up in a visualization that is too dense and cluttered, or a graph
might eventually be so big that the users might not know where to start their search for
information.

One of the approaches to circumvent all the natural limitations of graph drawing algo-
rithms is to combine them with interaction techniques. A good interaction scheme might
make the efficient exploration of a graph possible even if the graph is too big and complex
or the layout not exactly ideal. This is the approach taken in the tool developed for this
work, which is described in detail in the following chapter.
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Toolkit Licensing Supports URL / Reference
GDToolkit Free for academic use;

Commercial
C++ http://www.dia.uniroma3.it/~gdt

GINY Free,Open-source Java http://csbi.sourceforge.net
GoVisual Commercial Win32,

.NET,
Java,
Linux

http://www.oreas

Gravisto Not yet available Java http://gravisto.fim.uni-passau.de
(BACHMAIER et al.,2005)

GVF (Graph
Visualization
Framework)

Free,Open-source Java http://gvf.sourceforge.net

HyperGraph Free,Open-source Java http://hypergraph.sourceforge.net
ILOG Views
GraphLayout

Commercial C++, Java,
.NET

http://www.ilog.com

InfoVis Toolkit Free for academicuse Java http://ivtk.sourceforge.net
JGraph Free;Commercial Java http://www.jgraph.com
JGraphT Free,Open-source Java http://jgrapht.sourceforge.net
JUNG Free,Open-source Java http://jung.sourceforge.net
LGL (Large
GraphLayout)

Free,Open-source Java http://lgl.sourceforge.net

Prefuse Free, Open-source
(BSD)

Java http://www.prefuse.org

Tom Sawyer Vi-
sualization

Commercial ActiveX,
ASP.NET,
Java, JSP,
MFC

http://www.tomsawyer.com

Tom Sawyer
Layout

Commercial ActiveX,
C++, Java,
.NET

http://www.tomsawyer.com

Touchgraph Free;Commercial Java http://www.touchgraph.com
http://touchgraph.sourceforge.net

Tulip Free, Open-source
(GPL)

C++ http://www.tulip-software.org

yFiles Commercial Java http://www.yworks.com

Table 3.1: Toolkits for graph visualization.
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4 MAGNETVIZ

4.1 Overview

The aim of this work is to introduce MagnetViz, a technique that is able to aid users in
interactively reorganizing the layout of a graph to better fit their particular needs by giving
them tools that allow for the manipulation of graph visualizations based on topological
and semantic attributes. This is inherently a focus+context approach, since it lets the
users find and have more details about some specific subset of nodes while at the same
time maintaining the other nodes on display and reorganizing their disposition in a way
that clearly shows their relationship to the ones in focus.

Although Archambault’s GrouseFlocks (2008) also takes a middle-ground approach
when it comes to favoring semantics or topology, its goals and approach differ from Mag-
netViz’s. GrouseFlocks is geared at visualizing and manipulating graph hierarchies, while
MagnetViz is a set of tools for the manipulation of graph layouts. GrouseFlocks does not
use traditional graph drawing algorithms, while MagnetViz is designed to complement
them, allowing the user to query the graph based on its semantic and topological features.

The technique developed in this work is based on the physics metaphor of the force-
directed layouts. It provides the user with virtual magnets that can be inserted into the
scene and set to attract nodes and edges that fulfill a set of criteria based on the semantic
and/or topological attributes of the graph. Force-directed techniques were chosen as a
starting point because they are widely used, are flexible and easily adaptable, and are a
natural fit for real-time applications that require the visual representation of the graph to
dynamically change according to some criteria.

With the goal of evaluating MagnetViz, a prototype was implemented and subse-
quently used in a case study, which will be covered in the next chapter. This prototype was
built for generic graph visualization, with no specific application in mind. The technique,
however, can be easily adapted to work for more specific cases.

The prototype was implemented in C++ using OpenGL for the rendering and the free,
open-source version of Nokia/Qt Software’s Qt library (INC., ????) for the some of the
interface, data structures and handling of XML files. It can open graphs stored in the
GraphML format (GRAPHML, ????), which can then be explored using the tools pro-
vided by MagnetViz, as well as basic interaction techniques (selection, drag+dropping,
zooming and panning). Even though there are many toolkits with graph visualization ca-
pabilities, none were used, since MagnetViz requires not only an alteration of the layout
algorithm but also in the way it is executed. Since the current implementation is just a
proof-of-concept, the work involved in adapting a toolkit to handle MagnetViz would not
be worth the effort.

The prototype allows the user to import a graph, manipulate and explore it using the
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tools of MagnetViz. The graph is displayed using a modified version of Tunkelang’s
(1999) approach, with the users being allowed to pause and play the physics simulation
whenever they desire. Figure 4.1 shows a sample graph layout generated with this algo-
rithm for the co-authorship network of the AVI conference (years 1994 - 2006).

Figure 4.1: A sample graph layout generated by our algorithm from the AVI co-authorship
dataset (years 1994-2006).

Layout properties are usually displayed on a panel to the right of the working area
whenever no object (nodes, edges, magnets) in the scene is selected. Object properties
are displayed on the same panel whenever a single object is selected. In case of selection
of a node or edge, their attributes are displayed in this panel as well. Users can select
objects by clicking on them and subsequently moving them by drag-and-dropping. The
scene can be navigated by panning and zooming. Figure 4.2 shows the user-interface.

The following sections cover all the features that comprise MagnetViz, which include
gravity spots, magnets and all the attraction criteria that can be used with them. Details
about the data structures used by the prototype to internally represent a graph are then
given, followed by a description of the algorithm and its alterable properties. The chapter
is then closed with a few final comments.

4.2 Gravity Spots

Gravity spots were designed to help users shape the graph to their liking by attracting
nodes to certain regions of the scene. Therefore, a gravity spot basically attracts nodes
towards itself, with the user being able to define whether it will affect all nodes of the
scene or only the nodes that are within a certain radius of its location. In the latter case,
the user can set to display a circle with the desired radius. They can be inserted wherever
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Figure 4.2: User-interface of the MagnetViz prototype.

the user desires by the simple click of a mouse button and subsequently moved about
whenever the user finds necessary. The strength of the force they apply on the attracted
nodes can be set through their properties panel. Figure 4.3 shows the icon used for a
gravity spot and Figure 4.4 shows their properties. Figure 4.5 shows a gravity spot being
used to attract nodes towards the top left corner of the workspace.

Figure 4.3: Gravity spot icon.

4.3 Magnets

Magnets are tools that can be inserted into the scene to attract all nodes that fulfill
a user-defined set of criteria. A magnet works by exerting onto each of these nodes an
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Figure 4.4: Gravity spot properties panel.

Figure 4.5: Gravity spot in action .

attraction force that will progressively move them towards it, thereby building a cluster
of semantically-related nodes around it. When these nodes move, the force-directed lay-
out algorithm ensures that all the other nodes that are connected to them by edges will
be pulled along, reorganizing the layout of the graph in the process. Figure 4.6 shows
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how magnets are visually represented in the prototype we developed while a magnet that
attracts all nodes that have a degree of 3 can be seen in Figure 4.7.

Figure 4.6: Magnet icon.

Figure 4.7: a) Largest component of the AVI co-authorship network in its initial layout;
b) A magnet in action, attracting all nodes of degree 3.

To define which nodes a magnet should attract, users must assign it a set of attraction
criteria. These criteria can be set as requirements or as simple criteria. To be attracted by
a magnet, a node should satisfy all of its requirements and at least one of its criteria. If a
magnet has no criteria, attraction is based only on the requirements, and vice versa for the
case of a magnet having no requirements. These requirements and criteria can be based
on the topology of the graph, the attributes of its nodes and edges or even other magnets
that have been placed on the scene.

Within the physics metaphor, a magnet works by applying on each of the attracted
nodes a force in its direction, with the magnitude of this force being defined by the user.
To make sure that it is not overlapped by the attracted nodes and to keep these nodes from
being all bundled together too close to each other, a magnet also exerts a repulsion force
on all the graph’s nodes. This repulsion force is analogous to the one exerted by common
nodes, working like a reverse gravity by being inversely proportional to the distance of the
node to the magnet and proportional to the magnitude of the magnet’s force of attraction,
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so that it is stronger with nodes that are closer to the magnet and weaker with the ones
that are progressively further away from it.

Occasionally it might be hard to see which of the nodes that are close to a magnet are
actually attracted by it. To deal with this situation, it is possible to assign a color to all
the nodes that a magnet attracts, making them more distinguishable. If desired, the user
may also define a region where all the attracted nodes should be. This is done through a
boundary shape (Figure 4.8), which is simply a circle that is placed around the magnet.
Nodes that are attracted by the magnet are forced to stay within the boundary shape while
other nodes are forced out. In the prototype, the boundary shape can have its radius and
background color set by the user, making the magnet’s attracted nodes very clear to the
user.

Figure 4.8: Magnet with boundary shape.

Magnets can be placed and moved anywhere on the scene by the user and all of their
properties can be altered at any time through the panel displayed when a magnet is se-
lected (Figure 4.9).

When a magnet has a boundary shape, its attracted nodes ignore all forces exerted on
them but the magnet’s attraction force (which is also doubled) until they are within the
bounding region. Once inside, they are affected by all forces normally, but are kept from
escaping the region by simple collision detection. The user may also choose to increase
or decrease the effect of the central gravity and the gravity spots on the nodes that are
within the shape by setting a scalar multiplier on these forces.

A magnet effectively creates sets of related nodes and ensures that they remain near
a certain physical region. Occasionally it might be useful to refine this set of nodes into
subsets. To allow for that, it is possible to define magnets that act only on the subset of the
graph that is already attracted by another magnet. To do this, the user must simply create a
magnet and define another one as its parent. It is interesting to note that children magnets
might children magnets of their own; creating thus a hierarchy of magnets that might
be helpful for incremental exploration of a graph, corresponding to composing complex
queries.

Occasionally it might happen that some nodes fulfill the criteria of two or more mag-
nets. Whenever such magnet "intersections" are found, these common nodes are visually
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Figure 4.9: Magnet properties panel.

distinguished from regular nodes by having a different icon (as seen in Figure 4.10) and
by colored lines that link them to their attracting magnets, with each line being in the
same color as the nodes attracted by their corresponding magnets. The user will be also
asked if the common nodes should be left free or if they should be bound to any of the
magnets (Figure 4.11). If they are left free, they will ignore boundary shapes and will be
affected by both magnets. If they are bound to a magnet, they will be physically treated
like all the other nodes of this magnet and will ignore the other.

Figure 4.10: Intersection node icon.
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4.4 Attraction Criteria

To make a magnet attract a particular set of nodes, users have to assign it criteria.
These criteria can be set as requirements that have to be fulfilled by any attracted node
or as simple criteria, of which (if there are any) at least one should be fulfilled. These
requirements and criteria can be based on the topology of the graph, the attributes of its
nodes and edges or even other magnets that have been placed on the scene.

Topology-based criteria use the structure of the graph to attract nodes. In our proto-
type, the following topology-based criteria were implemented:

• Degree Criterion. It can be used to attract all nodes that have as degree a value
that is within a user-specified range. Figure 4.12 shows the dialog used to create
and edit a criterion of this type.

• Path Length Criterion It can be used to attract all nodes that have as path length
to another user-specified node a value that is within a user-specified range. Figure
4.13 shows the dialog used to create and edit a criterion of this type and Figure 4.15
shows an example of a magnet that attracts all nodes with path length 1 from a node
that been selected in the dialog box.

• Connected Subgraph Criterion It can be used to attract subgraphs that have an
amount of nodes that is within a certain user-specified range. These subgraphs can
be maximally connected (connected components) or not. Figure 4.14 shows the
dialog used to create and edit a criterion of this type. Figure 4.16 shows a magnet
that attracts all connected subgraphs that have from 4 to 15 nodes.

Attribute-based criteria use the semantic properties contained in nodes and edges in
order to attract nodes. The following were implemented:

• Node/Edge Has Attribute. It can be used to attract all nodes/edges that have a
certain attribute. Figure 4.17 shows the dialog used to create and edit a criterion of
this type.

• Node/Edge Has Attribute With Given Numerical Value. It can be used to attract
all nodes/edges that have a certain attribute with a value within a given range. Figure
4.18 shows the dialog used to create and edit a criterion of this type.

• Node/Edge Has Attribute With Given Substring. It can be used to attract all
nodes/edges that have a certain attribute containing a given substring. Figure 4.19
shows the dialog used to create and edit a criterion of this type. An example can be
seen in Figure 4.20.

Figure 4.11: Intersection found dialog.
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Figure 4.12: Degree criterion properties.

Figure 4.13: Path length criterion properties.

Figure 4.14: Connected subgraph criterion properties.

Figure 4.15: Magnet with path length criterion that attracts all nodes with path length 1
from the pink node.
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Figure 4.16: Magnet with connected subgraph criterion that attracts all non-unitary groups
of less than 20 nodes.

Figure 4.17: Properties of the "Node Has Attribute" criterion.

Figure 4.18: Properties of the "Has Attribute With Given Numerical Value" criterion.

Figure 4.19: Properties of the "Has Attribute With Given Substring" criterion.
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Figure 4.20: Magnet with the "Has Attribute With Given Substring" criterion.

A magnet-based criterion can be used to attract all nodes that are attracted by some
magnets and not attracted by others. This criterion’s dialog, as shown in Figure 4.21,
shows in the center a list of all the scene’s magnets. These magnets can be moved to the
lists on the left or right using the arrow buttons. The criterion will set the magnet to attract
all the nodes that are attracted by the magnets on the list to the left and all the nodes that
are not attracted by the magnets on the list to the right. A practical example can be seen
in Figure 4.22.

Figure 4.21: Magnets criterion properties dialog.

4.5 Graph Representation

Graphs are represented as GraphML files. A typical GraphML file is an XML file
that begins with a declaration of the type of graph (directed or undirected) and a listing
of the properties nodes and edges can have and their types (integer, string, etc.). This is
followed by the nodes and edges themselves, with the values they have for each property.
Nodes and edges cannot have properties without values. A parser built on top of Qt’s
XML classes is used to read the GraphML. A sample GraphML can be seen in Figure
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Figure 4.22: Magnet with Magnets criterion (on the right), attracting all nodes not at-
tracted by the one on the left.

Figure 4.23: Sample GraphML file.

4.23.
Internally, graphs are represented by three classes:Graph, NodeandEdge. Graph

contains pointers to nodes and edges.NodeandEdgeinherit from aGLSceneObjectclass,
which contains properties and functions common to most objects that have to be drawn
by the prototype’s rendering engine (position, scale, color, visibility, virtual functions for
drawing, collision detection and picking routines, etc.). On top of that,Nodecontains lists
of pointers to edges and magnets, a list of attributes and values, and a pointer to a binding
magnet (if there is one), as well as properties such as mass (always set to 1.0 in the case of
this prototype), radius and implementations of the necessary virtual functions.Edgecon-
tains pointers to its two nodes and a list of attributes and values, and also implementations
of required virtual functions.

Magnets and Gravity Spots are respectively represented by theMagnetandGravi-
tySpotclasses, which also inherit fromGLSceneObject. Magnetproperties such as radius,
strength, radius of bounding area, parent magnet, fill color of bounding area, multipliers
for gravity and gravity spot forces, and color of attracted nodes, as well as hash maps
for its associated criteria and requirements and a list of attracted nodes.GravitySpotis
similar, but doesn’t contain the criteria and requirements and the bounding area, having
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instead a property that defines the radius of the region where it can act.
Requirements and criteria are a both instances of the same set of classes, being dif-

ferentiated simply by the list in which they are placed. These classes inherit fromAttrac-
tionCriterion, which is an abstract class that defines the interface and common elements
of all criteria. These common elements are the magnet for which the instance of the cri-
terion was created, and virtual functions to ensure that the criteria will have routines to
verify that a node fulfills them and to display their associated properties dialog. Each cri-
terion has its own different properties dialog class, with all of these inheriting from Qt’s
QDialog.

A simplified class diagram of the main data structures of the MagnetViz prototype can
be seen in Figure 4.24.

Figure 4.24: Simplified class diagram of the MagnetViz prototype data structures.

4.6 Layout Algorithm

The basic layout used as a basis in our prototype is based on the modified version
of the adapted Fruchterman-Reingold algorithm proposed by Tunkelang (1999) described
in the related work. This approach was taken because Fruchterman-Reingold is one of
the most classic and widely used graph-drawing algorithms, produces natural-looking
layouts, is straightforward to implement and lends itself easily to our technique. However,
even though this was the one we implemented for our prototype, practically any force-
directed algorithm can be used in its place - the only requirement is that the algorithm
must allow for the application of forces on the nodes.

Since our technique requires the interactive manipulation of the graph layout, we had
to make some modifications in Tunkelang’s original approach (1999) in order to support
that. The original technique runs the simulation for a fixed number of iterations while
gradually decreasing a temperature. Since we deal with real time interaction, we needed
the simulation to be constantly running to be able to handle any modifications made on
the scene by the user, much like the physics engine of a game. Therefore, aside from the
regular algorithm, we created a new version (seen as Algorithm 5) that uses the integra-
tion method proposed by Verlet (1967) to run constantly in real time and allow for the
utilization of the forces generated by the magnets.

It must be noted that Algorithm 5 is a simplified version of what was actually imple-
mented. The version here depicted does not take into consideration a few details which
were omitted for simplicity’s sake. The actual algorithm handles cases such as whether
a node is bound to a magnet (in case of a magnet intersection), is outside the boundary
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Algorithm 5 Simplified MagnetViz layoutalgorithm.
Require: C {Constant for computation of the optimal distance between nodes.}
Require: W, H {Width and height of the workspace}
Require: nodes, edges{Lists of nodes and edges}
Require: magnets{List of magnets}
Require: gravitySpots{List of gravity spots}
Require: repulsionExponent, centralGravityStrength, damping, Δt

1:

2: {Note: This algorithm is called at every timer event.}
3:

4: {Calculate optimal distance between nodes}
5: k←C∗

√
(W ∗H)/nodes.count()

6:

7: function attractiveForceStrength(x)← x2/ k
8: function repulsiveForceStrength(x)← krepulsionExponent/ x
9:

10: {Calculate attractive forces.}
11: for eache in edgesdo
12: Δ← e.n1.pos() -e.n2.pos()
13: e.n1. f orce−= ( Δ / | Δ | ) ∗ e.n1.mass()∗ attractiveForceStrength(| Δ |)
14: e.n2. f orce+= ( Δ / | Δ | ) ∗ e.n2.mass()∗ attractiveForceStrength(| Δ |)
15: end for
16:

17: Build barnesHutTree.
18:

19: {Calculate repulsive forces.}
20: for eachn in nodesdo
21: CalculatecentralGravityForceusingcentralGravityStrengthandn’s position
22: CalculatemagnetForce{Total force generated byn’s magnets}
23: CalculategravitySpotForce{Total force generated byn’s gravity spots}
24: n. f orce+= centralGravityForce+magnetForce+gravitySpotForce
25: n. f orce+= bhGetRepulsiveForce(n, barnesHutTree)
26:

27: newPos= n.pos() +((n.pos()− n.oldPos()+ n.force()) ∗ Δt2 ∗ damping)
28:

29: Deal with temperature and position constraints (workspace area, boundary shapes)
30:

31: n.pos← newPos
32: end for
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Figure 4.25: CHI co-authorship graph, with 2800 nodes and 5724 edges.

shape of a magnet that attracts it (in which case the only force that affects it is the force
of that magnet), should be affected differently by certain specific forces (i.e. if it is inside
a boundary shape and values for the multipliers were set), etc..

Another small modification made to the original technique was the addition of a cen-
tral gravitation force, which is applied on all the nodes to make the visualization more
aesthetically pleasing and keep nodes from getting too close to the border. The visual
result looks somewhat like constellations in space, as can be seen in Figure 4.1. However,
dense graphs (Figure 4.25) are hard to observe in details, thus justifying the interaction
technique developed thus far.

Whenever a graph is opened in our prototype, some pre-computation is done to pro-
vide an initial layout. Having an initial layout keeps the user from having to wait while the
layout converges and gives the dynamic algorithm a starting point from which it can work.
In the case of our prototype, we simply run for 200 iterations the adapted Furchterman-
Reingold algorithm slightly modified to also apply on each node the central gravitation
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force with its default value. This number of iterations was chosen arbitrarily.

Many properties of the layout are editable and accessible by the user through its prop-
erties panel, which can be seen in Figure 4.26. If the physics simulation is not paused, all
user alterations in the properties take effect immediately. The editable properties are:
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• time step

Specifies the frequency of timer events. These events are continuously triggered
in a specified frequency (i.e. every millisecond). Whenever they occur the physics
engine runs its procedures.

• damping

Real value that multiplies the total force of each node to gradually decrease their
magnitude and help the system converge.

• optimal distance value

Real value used to compute the optimal distance between nodes.

• maximum attraction force

Limits the total force that can be applied to any node to aid in the convergence of
the layout and make it more stable.

• temperature

Limits the movement of the nodes to help the convergence of the system.

• repulsion exponent

Used to control the strength of the repulsion force that exist between nodes.

• central gravitation

Magnitude of the gravitation force that pulls all nodes towards the center of the
workspace.

Figure 4.26: Layout properties panel.
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The properties panel also includes a box called "Easy Selection", which in the current
version of the prototype allows the user to select or center the camera on any node or
magnet by its name/id.

4.7 Final Comments

MagnetViz seizes on the physics metaphor of the popular force-directed algorithms to
allow users to shape layouts according to their needs. With MagnetViz, users are able to
perform queries in a manner similar to query languages, with the results being returned
visually instead of textually and displayed in a focus+context approach. Users are able to
see the way the graph relates to their query results by the way the layout adapts itself to
the modifications inflicted on the physical system by the movement of the nodes attracted
by magnets that are inserted into the scene. It is important to note, though, that MagnetViz
does not have the same power of expression as traditional query languages and was not
designed as a substitute for them, since the options for query composition are limited.

The latest version of the prototype is the fourth major revision. The first version
was a simple proof of concept written in C++ and DirectX, which contained limited user
interaction. The second version was a more complete implementation using Python and
Qt, being practically feature-complete. Due to Python’s interpreted nature, though, it
suffered from performance issues. This version was used to refine the technique and its
related algorithms and then ported to C++ and Qt. Performance gains were achieved, but
Qt’s built-in rendering engine proved to be a major bottleneck. Therefore, a rendering
engine was built from scratch using OpenGL, resulting in the current implementation,
which can easily handle graphs with several thousand nodes on a modest computer.

Despite this considerable speed increase, it can still be said that performance is this
technique’s major drawback, since it is naturally limited by current hardware capabilities.
Though current technology is already fast enough to allow for the handling of reasonably
large graphs (thousands of nodes and edges) in real time, the high complexity of the
physics algorithm impairs its scalability. The bigger a graph is, the more costly it is to
compute a layout and interact with it in real time.

In a 2 GHz Athlon 64 computer with 2 MB of DDR2 memory and an ATI 9700 Mobile
graphics card, the prototype was able to comfortably handle a graphs with 2800 nodes and
5724 edges (the CHI Co-authorship graph, seen in Figure 4.25). It should be noted that
while some performance considerations were taken into account, they were not priorities
in the implementation of this prototype and design of the technique’s layout algorithm.
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5 TOOL EVALUATION

One of the most important and complex aspects of developing a graph visualization
technique is its evaluation. While studies have provided some generally applicable guide-
lines that good techniques tend to follow, there is no hard rule. What works for one
application might not necessarily work for another, and this happens in all levels of a
technique - from layout to interaction scheme.

Based on empirical studies of human perception, some works described aesthetic
properties that increase the readability of a graph (namely, the amount of edge cross-
ings, edge bends, edge length, etc.) (BATINI; FURLANI; NARDELLI, 1985; COHEN
et al., 1994; PURCHASE; COHEN; JAMES, 1997). Guidelines also exist for 2D inter-
action and navigation schemes, being the longtime subject of intensive research in the
field of Human-Computer Interaction. While all of these guidelines can be used to build
a technique for graph visualization, though, they are by no means a guarantee of the
practical usefulness of the technique. With that in mind, to evaluate MagnetViz it was de-
cided to take two different approaches. The first, aiming to see how it fares in answering
generic graph-related questions, consists of putting it against a task taxonomy that was
proposed specifically for graph visualization applications (LEE et al., 2006). The second
approach consisted of applying the technique within a specific context and subsequently
performing user tests to evaluate its usefulness in a practical real-world application. The
application chosen for the users tests was the visualization of a social network - namely,
the co-authorship graph obtained from all the works published in 2007 by the UFRGS
professors, students and their external collaborators.

Section 5.1 describes the taxonomy-based evaluation while section 5.2 covers the user
tests.

5.1 Taxonomy-based Evaluation

Lee et al. (2006) have proposed a useful task taxonomy for graph visualization in
which it is defined a list of tasks that are commonly performed while exploring a graph.
To obtain an initial evaluation of the MagnetViz technique, it was measured against this
taxonomy on a task by task basis. By doing this it was possible to find out that most of
the tasks are inherently covered by the technique, while the ones that are not currently
supported can be made so by the adding of new features or the application of a comple-
mentary technique.

In their paper, Lee et al. (2006) divide graph visualization tasks in three categories:
general low-level tasks, graph-specific tasks and high-level tasks. The low-level tasks
are comprised of 10 general, not graph-specific, visual analytic tasks that were originally
described by Amar et al. (2005) and three other operations (of which one is exclusive to
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graphs) proposed by the authors themselves. Graph-specific tasks are further categorized
into topology-based, attribute-based, browsing and overview tasks, with most of these
being built on combinations of the low-level tasks.

Topology-based, attribute-based and browsing tasks are covered in detail in Subsec-
tions 5.1.2, 5.1.3 and 5.1.4. Overview tasks correspond to a compound exploratory task
performed in order to quickly get estimated values, such as the size of a graph or sub-
graph, or patterns that the graph (or parts of it) tends to have. Estimate values might
sometimes be more important than exact ones and often a simple look at an overview of
the graph might provide the desired information. Often topology tasks can also be cov-
ered by simple visual examination of the overview of the graph, especially if the layout
algorithm in use allows for easy visual recognition of clusters, connected components, or
any other element.

Lee et al. (2006) also mentions high-level tasks, which are not covered by the above
tasks. High-level tasks include application-specific tasks, as well as general comparison
of two graphs, identification of redundant/duplicate nodes (i.e. two nodes that represent
the same author), naming a group of nodes, choosing a node to represent a cluster, the
evolution of a graph over time, etc.. Due to their generic nature, overview and high-level
tasks are not directly covered by the study here presented.

The following subsections contain listings of low-level, topology-based, attribute-
based and browsing tasks (subsections 5.1.1, 5.1.2, 5.1.3 and 5.1.4, respectively), with
descriptions of how MagnetViz would (or not) be able to handle them. Sample questions
from the co-authorship network domain are used as examples throughout these subsec-
tions to illustrate each of the tasks. Subsection 5.1.5 contains a short discussion and the
preliminary conclusions obtained with this initial study.

5.1.1 Low-level Tasks

The low-level tasks are comprised of general, not graph-specific, visual analytic tasks
that were originally described by Amar et al. (2005) and complemented by Lee et al.
(2006). They are listed, described and commented below.

1. Retrieve Value

Given a specific set of cases, find attributes of those cases.

Example: In what conference was a certain paper published?

Comment:Though not exactly a part of the technique, this task is supported in the
prototype, since the information contained in the attributes of the nodes and edges
can be accessed by clicking on them.

2. Filter

Given some concrete conditions on attribute values, find data cases satisfying those
conditions.

Example: Which authors are faculty members?

Comment:This task is inherently supported by the technique by the simple appli-
cation of magnets associated with criteria. It is important to note that this is not the
same as visually filtering the graph, which would mean omitting all nodes and/or
edges that do not meet the desired criteria .
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3. Compute Derived Value

Given a set of data cases, compute an agregate numeric representation of those
data cases, (e.g. average, median, and count).

Example: What is the average number of papers of all faculty members of a given
institution in a certain year?

Comment:This task is not supported by MagnetViz.

4. Find Extremum

Find data cases possessing an extreme value of an attribute over its range within
the data set.

Example: What author has the most collaborators?

Comment: In its current version, the prototype does not directly support this task,
but MagnetViz could be made to handle it by providing the user with the option
of using maximum and minimum values in the comparisons of the Node/Edge Nu-
merical Attribute Value and Degree criteria. A workaround to accomplish this task
in the current version of the prototype is to guess a value that could be near the
desired extremum and manually and gradually increase or decrease such value until
the extremum is found (see Section 6.2).

5. Sort

Given a set of data cases, rank them according to some ordinal metric.

Example: Order authors by number of publications.

Comment:This task is not currently supported by MagnetViz, but can be made so
by extending it with a new tool, a Sorting Magnet (see Section 6.2).

6. Determine Range

Given a set of data cases and an attribute of interest, find the span of values within
the set.

Example: Which authors published between 2004 and 2008?

Comment:This task is inherently supported by MagnetViz. According to Amar et
al. (2005) this task is equivalent of enumerating all unique values in a set.

7. Characterize Distribution

Given a set of data cases and a quantitative attribute of interest, characterize the
distribution of that attribute’s values over the set.

Example: What is the distribution of the number of publications of authors?

Comment: This task is not currently supported by MagnetViz, but can be made
to partially support it through a Sorting Magnet (see Section 6.2), which would
visually organize nodes according to the amount of a given quantitative attribute
they have.



64

8. Find Anomalies

Identify any anomalies within a given a set of data cases with respect to a given
relationship or expectation, e.g. statistical outliers.

Example: Is there a professor who has not published?

Comment:This task is partially supported, depending as much on the dataset and
its semantics and on what is considered an exception by the users as on the features
of MagnetViz. While some questions related to anomalies can be answered, it may
not be possible to answer others.

9. Cluster

Given a set of data cases, find clusters of similar attribute values.

Example: Which professors have published in a given conference?

Comment: Clustering is MagnetViz’s specialty, being inherent to the technique,
since through magnets users are able to find all nodes that fulfill their criteria.

10. Correlate

Given a set of data cases and two attributes, determine useful relationships between
the values of those attributes.

Example: Is there a correlation between number of publications and whether the
author is a professor or a student?

Comment:This task is mostly supported by MagnetViz, since magnets can be used
to explore the dataset in order to find correlations. In the case of the mentioned ex-
ample, for instance, a magnet can be used to attract all author-nodes that have more
than a given number of publications and other magnets parented to this first one can
be used to see which and how many of those authors are students/professors.

11. Find Adjacent Nodes

Given a node, find its adjacent nodes.

Example: Which authors have collaborated with a given author?

Comment: MagnetViz fully supports this task through the Path Length criterion.
Node-link diagrams inherently support this as well, since they show the nodes and
the edges that link them. To make adjacent nodes clearer to the user, they are always
highlighted when a node is clicked on the prototype.

12. Scan

Quickly review the list of items.

Example: What authors belong to a certain institution?

Comment:This task is currently supported by using the appropriate magnets. Ac-
cording to Lee et al. (2006) this task is similar to the "Retrieve Value" task but
differs from it in the sense that it requires the visualization of many items at once
but not necessarily the retrieval of their exact values.
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13. Set Operation

Given multiple sets of nodes, perform set operations on them.

Example: What authors have collaborated with two given professors?

Comment: Set operations are inherently supported by MagnetViz, being one of
its strong points. Using the magnet-based criterion and magnet intersection along
with the topology and semantic criteria, users can find sets of nodes and perform
operations on them.

5.1.2 Topology-based Tasks

The topology-based tasks described by Lee et al. (2006) are listed, described and
commented below.

1. Adjacency

• Find the set of nodes adjacent to a node.

Example: Which authors have collaborated with a particular author?

Comment:Using MagnetViz, this task can be accomplished by using a mag-
net with a Path Length criterion set to attract all nodes with path length of one
from the desired node.

• How many nodes are adjacent to a node?

Example: How many people have collaborated with a certain author?

Comment:This task can be simply accomplished either by using the magnet
as described above and seeing how many nodes have been attracted or by
simply clicking on the node in question and seeing what is its degree.

• Which node has a maximum number of adjacent nodes?

Example: What is the author with the highest number of collaborators?

Comment:As showed in Subsection 5.1.1, the prototype does not yet provide
full support for the Finding Extremum low level task. This task can still be
solved using MagnetViz, though, by using a magnet with a degree criterion
and incrementally increasing the target value of such criterion until the maxi-
mum is found. An extension is already planned to be able to fully support this
task (see Section 6.2).

2. Accessibility (direct or indirect connection)

• Find the set of nodes accessible from a node.

Examples:Who are a certain author’s collaborators, their own collaborators,
and so son?

Comment:MagnetViz can be used to handle this task through a magnet with a
Path Length criterion. This criterion should be set to attract all nodes with path
length from the target node equal or lower to the maximum path length found
for that node. The prototype does not yet provide this option, but the answer
can be found nonetheless by iteratively increasing the criterion’s comparison
value. An extension is already planned to be able to fully support this task
(see Section 6.2).
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• How many nodes are accessible from a node?

Example: How many authors can be reached from a certain author’s collabo-
rators, their collaborators, and so on?

Comment: This task can be executed with MagnetViz by using the proper
magnet as described above and subsequently verifying how many nodes were
attracted.

• Find the set of nodes accessible from a node where the distance is less than or
equal ton.

Example: Which authors have collaborated with a certain author’s collabora-
tors?

Comment:This task can be accomplished with MagnetViz by inserting a mag-
net with a Path Length criterion set to attract all nodes with a distance less or
equal ton to the target node.

• How many nodes are accessible from a node where the distance is less than
or equal ton?

Example: How many authors have collaborated with a certain author’s col-
laborators?

Comment:This task can be simply accomplished with MagnetViz by insert-
ing the magnet as described in the previous task and verifying the number of
nodes that are attracted.

3. Common Connection

• Given nodes, find a set of nodes that are connected to all of them.

Example: Find all authors who have collaborated with two given authors.

Comment:There are several ways this task can be accomplished with Mag-
netViz. Considering the given example, for instance, one simple approach
is to use just one magnet with a requirement for each author, resulting in a
magnet that has to attract everyone who has collaborated with all the desired
authors.

4. Connectivity

• Find the shortest path between two nodes.

Example:Which authors comprise the shortest connection between two given
authors?

Comment:One way in which MagnetViz can be used to accomplish this task
is by first using a magnet to attract one of the two nodes and then another
magnet with a Path Length criterion set to attract all nodes with a distance
equal or lesser than 1 from the first node. The shortest path length would
be found by iteratively increasing the target value of the path length criterion
until an intersection would be found between the two magnets. The nodes
that comprise the shortest path would be amongst the nodes attracted by this
second magnet.
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• Identify clusters (subgraphs of connected components whose nodes have high
connectivity).

Example:Find groups of authors who frequently collaborate with each other.

Comment: Connected subgraphs and connected components can be easily
found using magnets with the Connected Subgraph criterion. High density
nodes can be found by visually examining the attracted nodes or maybe using
a magnet with a Degree criterion parented to the first magnet.

• Identify connected components (maximal connected subgraphs).

Example: Find groups of collaborating authors that are not linked to other
groups. In which of these groups every author collaborated with every other
author?

Comment:Connected subgraphs can be found with the Connected Subgraph
criterion. Connected components can be found by selecting the correspondent
option within the Connected Subgraph criterion dialog. This will ensure that
all subgraphs attracted are maximally connected (and thus connected compo-
nents).

• Find bridges.

Example: By which common publication two distinct groups of frequently
collaborating authors are linked?

Comment:MagnetViz does not support this task, but can help in its execution
by allowing the user to somewhat isolate the two distinct groups of nodes
through magnets assigned with topology-based criteria such as Degree and
Path length or, depending on the dataset, attribute-based criteria. The graph
can than be visually inspected for the bridge.

• Find articulation points.

Example: Who is the author through whom two distinct groups of frequently
collaborating authors are linked?

Comment:MagnetViz does not support this task, but can help in its execution
by doing as described in the above task.

5.1.3 Attribute-based Tasks

The attribute-based tasks described by Lee et al. (2006) are listed, described and
commented below.

1. On the Nodes

• Find the nodes having a specific attribute value.

Example: What authors have more than 5 publications?

Comment:MagnetViz fully supports this task through the atribute-based cri-
teria.

• Review the set of nodes.

Example: What authors belong to a certain institution?

Comment:This task is basically the low level Scan task. See Subsection 5.1.1
for a description of how this can be accomplished with MagnetViz.
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2. On the Edges

• Given a node, find the nodes connected only by certain types of edges.

Example: Which authors have collaborated with a certain author in papers
published in a given conference?

Comment:MagnetViz can be used to perform this task by inserting a magnet
with two requirements. The first one would be a Path Length requirement
that ensures that the attracted nodes have a path length of 1 to the given node.
The second would be an Edge Has Attribute With Given Substring/Numerical
Value requirement, which would establish the type of edges that the nodes
should have to be attracted by the magnet.

• Which node is connected by an edge having the largest/smallest value?

Example: What author has the most cited publication?

Comment: This task is not yet fully supported by MagnetViz, since it does
not yet allow for comparisons with maximum/minimum values. If it allowed
for these operations, though, this task could be executed by inserting a mag-
net with a Edge Has Attribute With Numerical Value set to attract the maxi-
mum/minimum value for the wanted attribute. In the current implementation,
this task can be accomplished by inserting this same criterion, but iteratively
increasing the compared value until the maximum/minimum is found.

5.1.4 Browsing Tasks

The browsing tasks described by Lee et al. (2006) are listed, described and com-
mented below.

1. Follow Path

• Follow a given path.

Example: Find an author that has published with a certain authors that has
published with yet another given author.

Comment:MagnetViz does not directly support this task, but can help in its
execution. One manner in which it can be used is by first creating a magnet
that attracts the first node’s neighbors and subsequently using other magnets
to attract the neighbors of the neighbors, and so on. It is important to note that
paths are not yet highlighted in the MagnetViz prototype.

2. Revisit

• Return to a previously visited node.

Example: What other authors have published with the given author of the
example of the task above? And with this author’s collaborators? And with
these collaborators’ own collaborators?

Comment: MagnetViz does not directly support this task, but aids the user
through the visual reorganization of the graph provoked by the previous queries.
Depending on what magnets the user inserted, the visualization might make it
easier to go back to the first node and explore another path in its tree.
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5.1.5 Discussion and Preliminary Conclusions

Tables 5.1.5, 5.1.5, 5.1.5 and 5.1.5 summarize the previous subsections, listing each
task and indicating whether it is supported by MagnetViz. In these tables, a task can
be supported, partially supported, not directly supported or not supported. Tasks that
are supported can be fully accomplished with MagnetViz. Partially supported tasks are
mostly supported, but might have some variations that are unsupported or require some
element beyond MagnetViz. Tasks that are not directly supported by MagnetViz cannot be
accomplished with the technique’s tools, but these can nonetheless aid in their execution.
Tasks that are not supported are simply not aided by MagnetViz in any way.

From Subsection 5.1.1 and Table 5.1.5, it is possible to see that 8 of the low level
tasks are fully supported by the MagnetViz technique, while 2 other tasks are partially
supported. One of these two partially supported tasks (the Finding Extremum task) can
be easily made supported by minor alterations in the MagnetViz prototype, since it is con-
ceptually supported by the technique itself. From Subsection 5.1.1 it can also be verified
that tools such as magnet boundary shapes and the ability to operate on magnets them-
selves (through magnet-based criteria) are natural fits for clustering and set operations.

Of the three low-level tasks that are not supported by the technique, two (namely, the
Sort and Characterize Distribution tasks) could be made at least partially supported by
some small additions to the prototype and/or technique. These additions would be im-
proving some of the already available criterion types, the implementation of new criteria
and the extension of the technique with new tools. Section 6.2 discusses how the current
limitations of MagnetViz will be dealt with in the future, providing some details of the
planned improvements.

Regarding graph specific tasks, MagnetViz also provides adequate support for the user
in carrying out most tasks. Out of a total of 19 tasks, 13 are fully supported, with other 2
asks being partially supported and further 4 being aided by the technique, but not directly
supported. None of the graph specific tasks is not aided in any way by the MagnetViz
technique.

As can be verified in subsections 5.1.2, 5.1.3 and 5.1.4, the majority of the graph
specific tasks can be easily carried out by relying simply on the placement ofmagnets

Task Level ofSupport
1 Retrieve Value Supported
2 Filter Supported
3 Compute Derived Value NotSupported
4 FindExtremum PartiallySupported
5 Sort NotSupported
6 DetermineRange Supported
7 Characterize Distribution NotSupported
8 FindAnomalies PartiallySupported
9 Cluster Supported
10 Correlate Supported
11 Find AdjacentNodes Supported
12 Scan Supported
13 SetOperations Supported

Table 5.1: Low-level tasks.



70

Subcategory Task Level ofSupport

1 Adjacency

Find the set of nodes adjacent
to anode.

Supported

How many nodes are adjacent
to anode?

Supported

Which node has a maximum
number of adjacentnodes?

PartiallySupported

2 Accessibility

Find the set of nodes accessi-
ble from anode.

Supported

How many nodes are accessi-
ble from anode?

Supported

Find the set of nodes acces-
sible from a node where the
distance is less than or equal
to n.

Supported

How many nodes are acces-
sible from a node where the
distance is less than or equal
to n?

Supported

3 CommonConnection
Given nodes, find a set of
nodes that are connected to all
of them.

Supported

4 Connectivity

Find the shortest path be-
tween twonodes.

Supported

Identify clusters (subgraphs
of connected components
whose nodes have high
connectivity).

Supported

Identify connected compo-
nents (maximal connected
subgraphs).

Supported

Findbridges. Not DirectlySupported
Find articulationpoints. Not DirectlySupported

Table 5.2: Topology-based tasks.
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Subcategory Task Level ofSupport

1 On theNodes
Find the nodes having a spe-
cific attribute value.

Supported

Review the set ofnodes. Supported

2 On theEdges

Given a node, find the nodes
connected only by certain
types ofedges.

Supported

Which node is connected
by an edge having the
largest/smallest value?

PartiallySupported

Table 5.3: Attribute-basedtasks.

Subcategory Task Level ofSupport
1 Follow Path Follow a givenpath. Not DirectlySupported

2 Revisit
Return to a previously visited
node.

Not DirectlySupported

Table 5.4: Browsing tasks.

with the proper combination of topology, attribute and magnet-based criteria, followed
by a visual inspection of the layout obtained with the modifications. This makes the
technique particularly well suited for topology and attribute-based tasks.

Out of 13 topology-based tasks, it can be verified from Subsection 5.1.2 and Table
5.1.5 that 10 are fully supported, while 1 being partially supported and 2 are not directly
supported. From Subsection 5.1.3 and Table 5.1.5 it can also be seen that out of 4 tasks,
3 are fully supported and 1 is partially supported.

Since they can be inserted to make sure that the nodes that fulfill certain criteria are
within a certain region, magnets make it easier for the users to find nodes, providing the
visualization with some node position predictability. Therefore, browsing and overview
tasks are also aided by MagnetViz, though not directly supported.

One interesting aspect of MagnetViz is that it can be used to easily explore graph
datasets by building queries through the specification of magnets and their criteria, and
performing set operations on them, becoming thus an intuitive and simplified alternative
to query languages or filtering operations, which can be too complex for most end-users,
who do not necessarily have advanced programming and computer skills.

For the tasks that MagnetViz is unable to cover, a possible solution is simply com-
bining it with other interaction and navigation techniques, such as fish-eye-like visualiza-
tions, overview windows, node search, etc.

5.2 Case Study on Social Network Visualization

To evaluate MagnetViz within a practical context, it was decided to perform a case
study on social network visualization, due to this field’s growing relevance. There has
been a great surge in popularity of social networking applications in the past few years,
in part due to websites such as Facebook, MySpace, Orkut and Flickr. This has gener-
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ated a greater interest in the analysis of these networks, which has proved to be neces-
sary in many fields, including social and behavioral sciences, economy and marketing
(WASSERMAN; FAUST; IACOBUCCI, 1994). While this can be done using statistical
studies and other procedures that do not have a visual output, it is often the case that
producing a visual representation of the network might make the same information more
accessible and reveal new traits and relationships that were previously undetectable. With
all of this in mind, as a case study it was chosen to visualize the co-authorship graph
generated from all the works published in 2007 by the professors and students of the In-
formatics Institute of the Federal University of Rio Grande do Sul (UFRGS) and their
external collaborators.

The graph built with the UFRGS dataset contains 474 nodes and 1252 edges. Each
node represents an author while each edge represents all the publications between two
authors. From the GraphML file, a graph is built where nodes and edges have several
attributes. Each node contains:

• author’s name;

• category (whether they are faculty members, students or external collaborators).

• degree (number of edges connected to it);

• total number of publications;

• number of publications in conference proceedings;

• number of publications in journals;

• number of publications in books;

Each edge contains:

• the id of their two nodes;

• the years of the two authors’ common publications;

• the types of the publications (journal, conference proceedings or book);

• the number of common publications.

A list of query tasks pertinent to this dataset was compiled for this case study by
UFRGS database researchers and the prototype was first put to test by being used to an-
swer them. User tests were then performed, with the users having to answer the questions
using the prototype and subsequently a questionnaire concerning their opinions about the
technique and its usefulness in this particular context.

Subsection 5.2.1 contains a description of known limitations of the prototype and
dataset. Subsection 5.2.2 shows the questions and a description of how they can be an-
swered (or not) using the technique, while Subsection 5.2.3 contains a description of the
tests performed with users and the results obtained from them.
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5.2.1 Limitations of the Prototype and Dataset

It is important to note that while all the questions examined in Subsection 5.2.2 can be
answered with the technique itself, the prototype does not support some of them. Since
the prototype was used as is, without being adapted in any way for the specific case of
co-authorship network visualization, some of these questions would require small adap-
tations of the prototype software to be answered with the proposed technique. Whenever
that is the case, we point out exactly why the generic version of the technique cannot be
used and which modifications are needed to better reach a solution.

As of this writing the prototype does not fully support some low-level tasks (includ-
ing a few that would be conceptually supported by the technique itself). These tasks
could have been dealt with by some types of criteria and/or tools, and support for them
would have proven useful (and occasionally necessary) to the answering of some of the
questions. Whenever this is the case, it is also pointed out. Section 6.2 described the
modifications that would allow these to be handled.

It is also worth noting that some potentially interesting questions could not be asked
due to limitations of the dataset (i.e. lack of information on conferences and paper titles,
dataset containing only information on one year, etc.) and the prototype itself. Supposing,
for example, the dataset also contained information from other years and the conference
of each paper, and that we wanted to obtain all the authors that have published on certain
conferences in a certain year, we could not directly obtain an answer with our current
prototype. The prototype does not contain a mechanism for linking a conference to a year
- they are just two strings containing conference names and years separated by commas.
Therefore, we can obtain all the authors who have published on the desired conferences
and that have publications in the desired year, but not necessarily all the authors who have
published in those conferences in that specific year.

Chapter 6 addresses some of this limitations by describing the plans for future devel-
opment of the MagnetViz technique.

5.2.2 Questions Concerning the UFRGS Co-Authorship Network

Below is a listing of the proposed questions and a description of how each can be an-
swered using the technique. It is important to note that some questions might be answered
in many different ways aside from the ones described below.

1. What is the faculty member with the highest amount of collaborators?

The number of collaborators of any author is their node’s degree on the graph.
Therefore, to find out what faculty member has the largest amount of collaborators
we can insert on the scene a magnet that attracts the node with the highest possible
degree amongst the nodes of faculty members. To do so, we first create a magnet
that has a requirement to attract all nodes that have the attribute "category" with the
value "faculty" and then create another magnet parented to the first one that has a
requirement to attract the node with the highest possible degree. The answer, which
can be seen in can be seen in Figure 5.1, is professor Ricardo Augusto da Luz Reis,
with 51 collaborators.

The current implementation lacks a criterion/requirement for the attraction of the
node with the highest possible degree, so in the prototype one has to use a regular
degree criterion and keep editing it until the largest is found. Still, the highest
possible degree criterion is a small modification that will be implemented for a
subsequent version of the tool.
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Figure 5.1: Faculty member with the highest amount of collaborators.

2. Which is the faculty member with the highest amount of external collaborators?

To discover who amongst all faculty members has the largest number of external
collaborators, we could create a magnet that attracts all faculty members and an-
other one that attracts all external collaborators. We could then create yet another
magnet parented to one that attracts faculty members and set it to attract the node
with the highest possible amount of edges to nodes that are attracted by the external
collaborators magnet.

The prototype does not include yet a criterion/requirement for the attraction of
nodes that have a certain number of edges (within a given range or the highest
possible) to nodes that are attracted by a certain magnet. Using this same imple-
mentation, the answer to this question could be obtained by changing the dataset to
include as a node attribute the number of collaborators of each category.

3. Which students have worked with both professors Carla Freitas and Luciana Nedel?

To answer this question, we can first find out all the collaborators that the two pro-
fessors have in common and then see, amongst these, who are students. We can
do this by creating a magnet that attracts all of the first professor’s collaborators by
using a requirement that targets all nodes that have path length of 1 to this professor.
We then create a similar magnet for the second professor - with the difference that
this one is parented to the first’s magnet. This way we find all of the first’s profes-
sor’s collaborators that are also collaborators of the second, and have "student" as
their "category" attribute.

In Figure 5.2, Luciana Nedel’s collaborators are the green nodes while all of her
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collaborators who are students and also collaborate with Carla Freitas are inside the
boundary shape, being Marta Villamil the answer for the question.

Figure 5.2: Common student collaborators of professors Carla Freitas and Luciana Nedel.

4. Which is the student with the highest amount of publications in journals?

We can find the answer to this question by creating a magnet with two requirements:
one to attract all nodes with the "category" attribute being a student and the other to
attract the node with the highest value for the attribute "journals." This would result
in the single node that represents the student with the most publications in journals.

Since in the current implementation we do not have an attraction criterion/requirement
for the node that has the highest amount of a certain attribute, we can answer this
question by finding all the students who have at least one publication in journals and
keep refining our search from there by then looking for students who have at least
two publications, and so on. The answer to this question is the student Luciano
Volcan Agostini, who can be seen in Figure 5.3 as the node inside the boundary
shape.

5. Which are the researchers that have publications in both conference proceedings
and journals?

This question can be answered by simply inserting a magnet with two requirements,
one for all nodes that have the attribute "journals" higher than 0 and the other anal-
ogous, but for the attribute "proceedings." The answer to this question can be seen
in Figure 5.4 as the nodes inside the boundary shape.
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Figure 5.3: Student with the highest amount of publications in journals.

6. What external collaborators have worked with more than one faculty member?

To answer this question using the technique itself, we can begin by creating one
magnet with a requirement that attracts all nodes that have the attribute "category"
with the value "professor". We could then insert another one with requirements that
target the nodes that have the attribute "category" with the value "external" and that
share more than one edge with a node attracted by the first magnet.

In its current state the prototype doesn’t support this question. To be able to answer
it, it would need a criterion/requirement for the attraction of nodes that have a cer-
tain number of edges (within a given range) to nodes attracted by another magnet.

7. What are the groups of less than 20 authors who have worked only with other mem-
bers of the same group?

We can find the answer to this question by simply creating a magnet that attracts
connected subgraphs with less than 20 nodes. The answer can be seen in Figure
5.5.

8. What faculty members have never worked with any student?

To answer this question, we can create a magnet that has a requirement for all
nodes with value "student" for the attribute "category" and another one that has two
requirements, one for all nodes with value "professor" for the attribute "category"
and another for all nodes that have 0 as the number of edges shared with nodes
attracted by the other magnet. Even though this question can be answered with
the technique, it is not yet supported by the prototype, for the same reason as in
question 6.
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Figure 5.4: Researchers who published in both conference proceedings and jounals.

Figure 5.5: Groups of less than 20 authors.
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5.2.3 User Tests for Subjective Evaluation

The technique was tested by a group of 14 subjects with ages between 20 and 50. Most
alleged having little experience with visualization in general and progressively less with
visualization of graphs social networks, with only one claiming to be very experienced
with graph and social network visualization. The subjects were all students and faculty
members of the Informatics Institute of the UFRGS, therefore being potential users for
the technique with the test dataset.

The experiment began with a brief presentation of the technique. To better familiarize
the subjects with MagnetViz, they were given simple tasks described step-by-step that
guided them through most of the tools and functionalities of the prototype.

After this training session, they were asked to use the prototype to answer the ques-
tions described in Subsection 5.2.2 and were subsequently given a questionnaire (Ap-
pendix B) about their opinions on several aspects of the technique.

The questionnaire was comprised of 35 positive affirmations and the subjects had to
indicate whether and how much they agreed with what was stated by ticking in a corre-
sponding check box. If they had not used the feature referred to by an affirmation, users
could tick a box that indicated so.

Table 5.5 shows the affirmations and the average, mode and standard deviation of
the level of agreement indicated by the subjects, with the an average value closer to 5
indicating a higher agreement. The table is sorted first by average and then by mode.
Note that table 5.5 is only partial, showing only the statements with the highest level of
agreement - the full table can be found in Appendix A.

As a technique, MagnetViz is comprised mostly of the magnet metaphor, their con-
figuration through requirements and criteria, and their use for layout manipulation. It can
be said, then, that the key features of the technique are magnets, the application of re-
quirements and criteria, and boundary shapes. Based on tables 5.5, A.1, A.2 and A.3 (see
Appendix A), it is possible to see that these key elements are all validated by the subjects
in terms of their concept and usefulness.

From the grades given by the subjects, it can be observed that the magnet metaphor
is clear and mostly useful for graph exploration (affirmations 5, 6, 33, 34 and 35). The
subjects were easily able to understand the difference between criteria and requirements
(affirmation 13) and found those useful for the exploration of the graph (affirmations 15,
16, 17, 18, 19, 20, 21, 22, 23, 24 and 25). The concept of boundary shapes was also easily
understood and found to be useful (affirmations 7 and 8). They also gave a high grade
for the usefulness of MagnetViz in the visualization of social networks (affirmation 34).
While this user evaluation in effect validates MagnetViz’s approach for graph visualiza-
tion, at least conceptually and within the context of social networks exploration, it is also
quite clear that the technique still has some details that need to be better worked out.

As can be seen from the results, in general subjects somewhat disliked the way inter-
sections are handled (affirmations 26, 27, 29), even though they found it to be reasonably
useful for the exploration of the graph (affirmation 28). The special icon for intersec-
tion nodes received just average marks (affirmation 26) and while most have found the
colored lines useful (affirmation 27), there seems to be a reasonable margin for improve-
ment. Also, gravity spots were found by subjects to be of limited utility - users understood
what they stood for, but found no use for them (affirmation 12).

There also seems to be some margin for improvement in areas not directly related to
the technique, but essential for its application and the overall user-experience, such as
layout and interface elements (affirmations 2, 3, 4, 9, 30, 31 and 32). Concerning the
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# Affirmations Av erage Mode Standard Deviation
5 I clearly understand what a

magnet can be used for.
4.92 5.00 0.27

24 The criterion of type "Node
Textual Attribute Value" is
useful.

4.92 5.00 0.27

23 The criterion of type "Node
Numerical Attribute Value" is
useful.

4.92 5.00 0.27

21 The criterion of type "Node
Degree" isuseful.

4.92 5.00 0.27

13 I clearly understand the
difference between require-
ments andcriteria.

4.92 5.00 0.27

15 Criteria and requirements are
useful for the exploration of
thegraph.

4.77 5.00 0.43

6 Magnets are useful for the ex-
ploration of thegraph.

4.62 5.00 0.64

7 I clearly understand what a
boundary shape can be used
for.

4.54 5.00 0.65

34 The technique is useful for
the exploration of social net-
works.

4.38 5.00 0.96

20 The criterion of type "Mag-
nets" isuseful.

4.38 5.00 0.76

8 Boundary shapes are useful
for layout reorganization.

4.31 5.00 0.74

25 The criterion of type "Path
Length" isuseful.

4.31 5.00 1.39

16 The criterion of type "Con-
nected Subgraph" isuseful.

4.31 5.00 1.01

35 Manipulating the graph
makes it possible to dis-
cover situations that were
previously unknown.

4.15 4.00 0.86

33 Manipulating the graph
makes it possible to explore
it and discover relationships
between thenodes.

4.08 4.00 0.62

4 The alterable properties of the
layout are useful for control-
ling the physics simulation
that determines the layout of
thegraph.

4.00 5.00 1.04

Table 5.5: Statistics about the subjects’ level of agreement with statements related to
characteristics of the technique.
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layout, the great majority of subjects found the initial layout clear, but thought general
traits of nodes and edges could be made clearer. They had the same opinion about the
visual results of a query after the layout is modified with the provided tools. Concerning
interface elements, while an overwhelming majority of users gave high marks for ease of
requirement and criteria insertion and editing, a couple of subjects gave very low grades.
The layout properties that can be altered and the function and use of the boundary shape’s
gravity multiplier were also not very clear for the subjects, though the former were found
by the subjects to be important for the control of the physics simulation that determines
the layout.

Since the technique was user-tested only within the context of social network visu-
alization, it is only possible to evaluate how the criterion types fared within this specific
context and dataset. Also, the questions the subjects had to answer not necessarily re-
quired the use of all criterion types. Given that, subjects in general gave high marks for
node-related attribute and topology-based criteria (affirmations 21, 23 and 24), with the
magnet criterion, which they had to use to perform set operations, (affirmation 20) re-
ceiving good grades as well. Topology-based criteria in general, such as path length and
connected subgraph, also fared well (affirmations 16 and 25). Edge-related criteria got
lower marks, as they were less necessary to answer the given questions (affirmations 17,
18 and 19). Overall the users thought the provided criteria types were mostly adequate
for the tasks they were given (affirmation 14), but in the comments they provided after
the test they expressed the need to have a few more varieties to make the unanswerable
questions possible. Some of these concerns were already expected and solutions for them
were already foreseen (see Subsection 5.2.1 and Chapter 6).

Aside from filling the questionnaire, users were asked to give comments and sug-
gestions for the future improvement of the technique. Several subjects pointed out bugs
found in the prototype (especially in the selection of objects) and gave suggestions regard-
ing interface elements, such as the way node and edge attributes are shown. One subject
pointed out the layout changes too much after a query is executed, confusing the user’s
mental map of the graph. Such comments are addressed in Chapter 6.
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6 CONCLUSIONS AND FUTURE WORK

6.1 Summary and Conclusions

This work presented MagnetViz, a physics-based technique for the interactive manip-
ulation of graph visualizations. The main contribution of this work was the innovative
approach taken when dealing with the problem of graph visualization and manipulation.
While most techniques are concerned with visualizing a static, previously generated lay-
out, MagnetViz allows users to adapt a layout to better fit their needs by giving them tools
to establish regions for nodes that fulfill desired semantic or topological criteria.

The technique was built upon the physics metaphor of the popular force-directed graph
layout algorithms. They were extended to support the concept of magnets, which are the
key element of MagnetViz. Magnets are inserted into the scene by the user and associated
to attraction criteria. When a magnet’s attraction force is set, the physics systems re-
evaluated the layout, changing it so that this magnet’s attracted nodes move closer to it.
To make visualization clearer, users can define regions where the attracted nodes should
be through the use of boundary shapes. These are simply geometric shapes in which
attracted nodes are forces to stay and from which not attracted nodes are made to leave.

MagnetViz was initially presented in detail and subsequently evaluated. This evalu-
ation happened in two stages, with the first consisting of verifying how it fared against
a task taxonomy developed for graph visualization applications. While it did not apply
directly to all general low-level tasks, it could directly handle most of the higher level,
graph-specific tasks, being an especially natural fit for the ones that involve clustering
and set operations.

The second stage of the evaluation process consisted of putting MagnetViz into a prac-
tical setting by performing a case study. For such it was decided to apply it within the
ever more relevant context of social network visualization. The co-authorship graph gen-
erated by the 2007 publications of the UFRGS professors and students and their external
collaborators was chosen as dataset, and questions were elaborated about this network to
be answered through the use of the technique. During tests it was found that two ques-
tions were not directly answerable with the technique for two reasons: the prototype was
not adapted for this specific context and some planned features that would support these
questions were still not implemented.

To further validate the technique, a group of 14 subjects was asked to use MagnetViz
to answer the same questions. The subjects subsequently received a questionnaire which
contained affirmations about the relevance of the technique itself and the usability of its
features which they had to rate according to their level of agreeance with them. In gen-
eral, users seem to have approved the technique and its usefulness, finding the metaphor
intuitive and relevant to social network and graph visualization. From the answers to the
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questionnaire, though, while it could be seen that there are still some rough spots that
need to be worked out (especially when it comes to the developed prototype) it was found
that conceptually the technique itself was mostly approved by the users that tested it. The
only shortcoming that involved the core technique that users claimed to have experienced
was regarding the way magnet intersections was handled. Intersections were found to be
dealt in a not very intuitive manner and the visual result of their treatment was not found
to be very clear.

The technique presented in this work is by no means adequate to all domains of graph
visualization. MagnetViz, however, constitutes an important step, contributing with an
innovative approach that can be verifiably useful within the real, practical context of so-
cial network analysis. This same approach might also be useful for other areas, such as
visualizing software structures (e.g. function call graph) or the Wikipedia (e.g. the graph
of citations between articles). It is thus another potentially useful tool in the arsenal of
software designers that need to tackle the problem of interactive graph visualization.

While there are strong indications that the basic concept of MagnetViz is valid, there
are still aspects that can be improved and the technique itself has potential to be extended
in different ways. Section 6.2 details the future work that is already foreseen.

6.2 Future Work

Both the prototype and the MagnetViz technique itself can be improved and extended
in many different ways. The planned future work includes both extensions to the tech-
nique and improvement of features that were already part of it, as well as continued de-
velopment and amelioration of the prototype.

Amongst planned extensions to the technique are the following tools:

• Sorting Magnet

The sorting magnet would be a special kind of magnet that would place attracted
nodes in orbits around it based on their (or one of their edge’s) value for of a certain
attribute. The highest the value, the closer to the magnet it stays.

• Collector

The collector would be an improvement over the currently available Gravity Spots.
It would be a magnet with boundary shape that attracts all nodes that cross the
shape’s boundary. These nodes would be then kept inside the boundary, being thus
effectively collected by this magnet. An option would be to allow the user to asso-
ciate requirements and criteria to selectively collect nodes as well, differing from
the regular magnet in the sense that only nodes over which the user positions the
boundary shape would be effectively attracted.

• Selection Magnet

This would be a special kind of magnet that would not have criteria and require-
ments associated with it. Instead, the user would be able to manually select the
nodes that will be attracted.

• Probe

Aimed at searching the graph for nodes/edges that fulfilled certain criteria, the probe
would work as a selective fish-eye tool. Users would associate requirements and
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criteria to a probe, much like they do with a magnet, and would move it around the
workspace to find nodes/edges in desired regions that have the desired properties.

Aside from these tools that would increment the technique, from the user evaluation
it was clear that way the manner magnet intersections is handled has to be improved.
Another useful amelioration would be to allow a list of exceptions for each magnet, so
that users can chose certain nodes and edges to be ignored by the magnet even if they
fulfill the criteria and requirements.

To complete the fulfillment of the graph visualization tasks as described in Section 5.1
the following criterion types should be altered in the prototype:

• Node/Edge Numerical Attribute Value

This criterion should be changed to allow for comparisons with the maximum and
minimum values of a certain numerical attribute of all the graph’s nodes and of the
nodes attracted by the current magnet’s parent.

• Node Degree

This criterion should be changed to allow for comparisons with the maximum and
minimum degrees of all the graph’s nodes and of the nodes attracted by the current
magnet’s parent.

For the two criterion types shown above it would also be useful to allow the user to
chose a tolerance for the target value (a range from the target attribute value within which
the node’s value should be) and to set the nodes with the closest possible value to be
attracted if the targeted ones are not found.

Some tasks could not be accomplished in the evaluation and case study because some
potentially useful criteria were not available in the prototype. Therefore, the following
new types should be added in order to support these tasks:

• Path Length to Magnet

This criterion type would work analogously to the "Path Length" type. Instead of
being used to attract the nodes that are within a certain path length from another
node, it would attract the nodes that are within a certain path length from their
closest connected node that is attracted by a target magnet.

• Number of Edges to a Magnet’s Nodes

This criterion type would attract all nodes that have a number of edges to nodes
attracted by a specified magnet within a certain user-specified range.

• Connected Groups

This criterion would attract groups of nodes that are highly connected with each
other but are not necessarily disconnected from the rest of the graph. This would
allow for the easier finding of clusters, bridges and articulation points.

The prototype needs as well to have its interface improved. Certain features should be
made clearer and easier to use and some elements should be made more easily accessible,
such as the properties of scene objects (magnets, nodes edges, etc.), which could appear
in a tooltip whenever the user positions the cursor over one of them. The possibility of
showing and hiding node and edge labels would also improve the visualization, as well as
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node and edge filtering. Other layout techniques should be experimented with, also, and
used as basis for potential new algorithms better suited for MagnetViz.

All the mentioned additions and modifications should be thoroughly evaluated, through
the graph visualization task taxonomy, case studies and user tests. It is important to put the
MagnetViz technique within a practical context to verify its applicability and usefulness
for real applications and further refine it.



85

REFERENCES

ABELLO, J.; VAN HAM, F. Matrix Zoom: a visual interface to semi-external graphs. In:
INFOVIS ’04: PROCEEDINGS OF THE IEEE SYMPOSIUM ON INFORMATION VI-
SUALIZATION, 2004, Washington, DC, USA.Proceedings. . .IEEE Computer Society,
2004. p.183–190.

ABELLO, J.; VAN HAM, F.; KRISHNAN, N. ASK-GraphView: a large scale graph
visualization system.Visualization and Computer Graphics, IEEE Transactions on,
[S.l.], v.12, n.5, p.669–676, Sept.-Oct. 2006.

ABELLO, J.; KORN, J. MGV: a system for visualizing massive multidigraphs.IEEE
Transactions on Visualization and Computer Graphics, Piscataway, NJ, USA, v.8,
n.1, p.21–38, 2002.

AMAR, R.; EAGAN, J.; STASKO, J. Low-Level Components of Analytic Activity in
Information Visualization. In: INFOVIS ’05: PROCEEDINGS OF THE PROCEED-
INGS OF THE 2005 IEEE SYMPOSIUM ON INFORMATION VISUALIZATION,
2005, Washington, DC, USA.Proceedings. . .IEEE Computer Society, 2005. p.15.

ARCHAMBAULT, D.; MUNZNER, T.; AUBER, D. Grouse: feature-based, steerable
graph hierarchy exploration. In: EUROGRAPHICS/ IEEE-VGTC SYMPOSIUM ON VI-
SUALIZATION, 2007.Proceedings. . .Eurographics Association, 2007. p.67–74.

ARCHAMBAULT, D.; MUNZNER, T.; AUBER, D. GrouseFlocks: steerable exploration
of graph hierarchy space.IEEE Transactions on Visualization and Computer Graph-
ics, Piscataway, NJ, USA, v.14, n.4, p.900–913, 2008.

ARIS, A.; SHNEIDERMAN, M.-B. Network Visualization by Semantic Substrates.
IEEE Transactions on Visualization and Computer Graphics, Piscataway, NJ, USA,
v.12, n.5, p.733–740, 2006.

BACHMAIER, C. . Gravisto: graph visualization toolkit. , [S.l.], v.3383, p.502–503,
2005.

BALZER, M.; DEUSSEN, O.; LEWERENTZ, C. Voronoi treemaps for the visualization
of software metrics. In: SOFTVIS ’05: PROCEEDINGS OF THE 2005 ACM SYMPO-
SIUM ON SOFTWARE VISUALIZATION, 2005, New York, NY, USA.Proceedings. . .
ACM, 2005. p.165–172.

BARNES, J.; HUT, P. A hierarchical O(N log N) force-calculation algorithm.Nature,
[S.l.], v.324, n.6096, p.446–449, December 1986.



86

BATINI, C.; FURLANI, L.; NARDELLI, E. What is a Good Diagram? A Prag-
matic Approach. In: FOURTH INTERNATIONAL CONFERENCE ON ENTITY-
RELATIONSHIP APPROACH, 1985, Washington, DC, USA.Proceedings. . . IEEE
Computer Society, 1985. p.312–319.

BATTISTA, G. D.; EADES, P.; TAMASSIA, R.; TOLLIS, I. G.Graph Drawing . Upper
Saddle River, NJ, USA: Prentice Hall, 1999.

BERTAULT, F. A force-directed algorithm that preserves edge-crossing properties.Inf.
Process. Lett., Amsterdam, The Netherlands, v.74, n.1-2, p.7–13, 2000.

BIEDL, T. C.; KANT, G. A Better Heuristic for Orthogonal Graph Drawings. In: ESA
’94: PROCEEDINGS OF THE SECOND ANNUAL EUROPEAN SYMPOSIUM ON
ALGORITHMS, 1994, London, UK.Proceedings. . .Springer-Verlag, 1994. p.24–35.

CARD, S. K.; MACKINLAY, J. D.; SHNEIDERMAN, B. (Ed.).Readings in informa-
tion visualization: using vision to think. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1999.

CARRIERE, J.; KAZMAN, R. Research report: interacting with huge hierarchies: be-
yond cone trees. In: INFOVIS ’95: PROCEEDINGS OF THE 1995 IEEE SYMPOSIUM
ON INFORMATION VISUALIZATION, 1995, Washington, DC, USA.Proceedings. . .
IEEE Computer Society, 1995. p.74.

COHEN, R. F.; EADES, P.; LIN, T.; RUSKEY, F. Three-Dimensional Graph Drawing.
In: GRAPH DRAWING, 1994.Proceedings. . .Springer, 1994. p.1–11. (Lecture Notes
in Computer Science, v.894).

CUI, W. et al. Geometry-Based Edge Clustering for Graph Visualization. In: IEEE
TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (PROCEED-
INGS VISUALIZATION / INFORMATION VISUALIZATION 2008), 2008. Proceed-
ings. . . [S.l.: s.n.], 2008. v.14, n.6.

DAVIDSON, R.; HAREL, D. Drawing graphs nicely using simulated annealing.ACM
Trans. Graph., New York, NY, USA, v.15, n.4, p.301–331, 1996.

DWYER, T.; KOREN, Y. DIG-COLA: directed graph layout through constrained energy
minimization. In: INFOVIS ’05: PROCEEDINGS OF THE PROCEEDINGS OF THE
2005 IEEE SYMPOSIUM ON INFORMATION VISUALIZATION, 2005, Washington,
DC, USA.Proceedings. . .IEEE Computer Society, 2005. p.9.

EADES, P. A. A heuristic for graph drawing.Congressus Numerantium, [S.l.], v.42,
p.149–160, 1984.

EADES, P. Drawing Free Trees. In: BULLETIN OF THE INSTITUTE FOR COMBINA-
TORICS AND ITS APPLICATIONS, 1992.Proceedings. . .[S.l.: s.n.], 1992. p.10–36.

EIGLSPERGER, M.; FEKETE, S. P.; KLAU, G. W. Orthogonal graph drawing. , London,
UK, p.121–171, 2001.

FRICK, A.; LUDWIG, A.; MEHLDAU, H. A Fast Adaptive Layout Algorithm for Undi-
rected Graphs. In: GD ’94: PROCEEDINGS OF THE DIMACS INTERNATIONAL
WORKSHOP ON GRAPH DRAWING, 1995, London, UK.Proceedings. . .Springer-
Verlag, 1995. p.388–403.



87

FRISHMAN, Y.; TAL, A. Multi-Level Graph Layout on the GPU.Visualization and
Computer Graphics, IEEE Transactions on, [S.l.], v.13, n.6, p.1310–1319, Nov.-
Dec. 2007.

FRUCHTERMAN, T. M. J.; REINGOLD, E. M. Graph drawing by force-directed place-
ment.Softw. Pract. Exper., New York, NY, USA, v.21, n.11, p.1129–1164, 1991.

FURNAS, G. W.The Fisheye View: a new look at structured files. [S.l.]: Bell Laborato-
ries, 1981.

GAJER, P.; GOODRICH, M. T.; KOBOUROV, S. G. A multi-dimensional approach to
force-directed layouts of large graphs.Comput. Geom. Theory Appl., Amsterdam, The
Netherlands, v.29, n.1, p.3–18, 2004.

GAJER, P.; KOBOUROV, S. G. Grip: graph drawing with intelligent placement.Journal
of Graph Algorithms and Applications , [S.l.], v.6, p.2002, 2000.

GANSNER, E. R.; KOUTSOFIOS, E.; NORTH, S. C.; VO, K.-P. A Technique for Draw-
ing Directed Graphs.IEEE Trans. Softw. Eng., Piscataway, NJ, USA, v.19, n.3, p.214–
230, 1993.

GANSNER, E. R.; NORTH, S. C. An open graph visualization system and its applications
to software engineering.Softw. Pract. Exper., New York, NY, USA, v.30, n.11, p.1203–
1233, 2000.

GANSNER, E. R.; NORTH, S. C.; VO, K. P. DAG—a program that draws directed
graphs.Softw. Pract. Exper., New York, NY, USA, v.18, n.11, p.1047–1062, 1988.

GEORGII, J.; ECHTLER, F.; WESTERMANN, R. Interactive Simulation of Deformable
Bodies on GPUs. In: SIMULATION AND VISUALISATION 2005, 2005.Proceed-
ings. . . [S.l.: s.n.], 2005. p.247–258.

GHONIEM, M.; FEKETE, J.-D.; CASTAGLIOLA, P. A Comparison of the Readability
of Graphs Using Node-Link and Matrix-Based Representations. In: INFOVIS ’04: PRO-
CEEDINGS OF THE IEEE SYMPOSIUM ON INFORMATION VISUALIZATION,
2004, Washington, DC, USA.Proceedings. . .IEEE Computer Society, 2004. p.17–24.

GHONIEM, M.; JUSSIEN, N.; FEKETE, J.-D. VISEXP: visualizing constraint solver
dynamics using explanations. In: FLAIRS’04: SEVENTEENTH INTERNATIONAL
FLORIDA ARTIFICIAL INTELLIGENCE RESEARCH SOCIETY CONFERENCE, (
MIAMI BEACH, FL, 2004), AAAI, 2004.Proceedings. . .press, 2004.

GODSIL, C.; ROYLE, G.Algebraic Graph Theory. New York, NY: Springer-Verlag,
2001.

GRAPHML. [S.l.:s.n.: 200-]. Available in: <http://graphml.graphdrawing.org>. Accessed
on: 7 Oct. 2008.

HENDLEY, R. et al. Case study: narcissus: visualising information.Information Visu-
alization, IEEE Symposium on, Los Alamitos, CA, USA, v.0, p.90, 1995.



88

HENRY, N.; BEZERIANOS, A.; FEKETE, J.-D. Improving the Readability of Clus-
tered Social Networks using Node Duplication. In: INFOVIS ’08: PROCEEDINGS
OF THE 2008 IEEE SYMPOSIUM ON INFORMATION VISUALIZATION (INFOVIS
’08), 2008, Washington, DC, USA.Proceedings. . .IEEE Computer Society, 2008.

HENRY, N.; FEKETE, J.-D. MatrixExplorer: a dual-representation system to explore
social networks.IEEE Transactions on Visualization and Computer Graphics, Pis-
cataway, NJ, USA, v.12, n.5, p.677–684, 2006.

HENRY, N.; FEKETE, J.-D. Matlink: enhanced matrix visualization for analyzing social
networks. In: INTERNATIONAL CONFERENCE INTERACT, 2007.Proceedings. . .
[S.l.: s.n.], 2007.

HENRY, N.; FEKETE, J.-D.; MCGUFFIN, M. NodeTrix: hybrid representation for ana-
lyzing social networks.ArXiv e-prints , [S.l.], v.705, May 2007.

HERMAN, I.; SOCIETY, I. C.; MELANÇON, G.; MARSHALL, M. S. Graph visual-
ization and navigation in information visualization: a survey.IEEE Transactions on
Visualization and Computer Graphics, [S.l.], v.6, p.24–43, 2000.

HYUN, Y. Walrus. [accessed on October 7, 2008], website.

J. Q. WALKER, I. A node-positioning algorithm for general trees.Softw. Pract. Exper.,
New York, NY, USA, v.20, n.7, p.685–705, 1990.

JIA, Y. et al. On the Visualization of Social and other Scale-Free Networks. In: INFOVIS
’08: PROCEEDINGS OF THE 2008 IEEE SYMPOSIUM ON INFORMATION VISU-
ALIZATION (INFOVIS ’08), 2008, Washington, DC, USA.Proceedings. . .IEEE Com-
puter Society, 2008.

JUNGMEISTER, W.-A.; TURO, D. Adapting Treemaps to Stock Portfolio Visualization.
, [S.l.], 1992.

KAMADA, T.; KAWAI, S. An algorithm for drawing general undirected graphs.Inf.
Process. Lett., Amsterdam, The Netherlands, v.31, n.1, p.7–15, 1989.

KOREN, Y. On Spectral Graph Drawing. In: IN COCOON 03, VOLUME 2697 OF
LNCS, 2003.Proceedings. . .Springer-Verlag, 2003. p.496–508.

LAMPING, J.; RAO, R. The Hyperbolic Browser: a focus+context technique for visualiz-
ing large hierarchies.Journal of Visual Languages Computing, [S.l.], v.7, n.1, p.33–55,
march 1996.

LAMPING, J.; RAO, R.; PIROLLI, P. A focus+context technique based on hyperbolic
geometry for visualizing large hierarchies. In: CHI ’95: PROCEEDINGS OF THE
SIGCHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, 1995,
New York, NY, USA.Proceedings. . .ACM Press/Addison-Wesley Publishing Co., 1995.
p.401–408.

LEE, B.; PLAISANT, C.; PARR, C. S.; FEKETE, J.-D.; HENRY, N. Task taxonomy for
graph visualization. In: BELIV ’06: PROCEEDINGS OF THE 2006 AVI WORKSHOP
ON BEYOND TIME AND ERRORS, 2006, New York, NY, USA.Proceedings. . .ACM,
2006. p.1–5.



89

MUNZNER, T. H3: laying out large directed graphs in 3d hyperbolic space. In: IN-
FOVIS ’97: PROCEEDINGS OF THE 1997 IEEE SYMPOSIUM ON INFORMATION
VISUALIZATION (INFOVIS ’97), 1997, Washington, DC, USA.Proceedings. . .IEEE
Computer Society, 1997. p.2.

NOACK, A. Energy models for drawing clustered small-world graphs. [S.l.]: Bran-
denburg University of Technology at Cottbus, 2003.

NOACK, A. An energy model for visual graph clustering. In: INTERNATIONAL SYM-
POSIUM ON GRAPH DRAWING (GD 2003), LNCS 2912, 11., 2004.Proceedings. . .
Springer-Verlag, 2004. p.425–436.

NOACK, A. Energy-Based Clustering of Graphs with Nonuniform Degrees. In: INTER-
NATIONAL SYMPOSIUM ON GRAPH DRAWING (GD 2005, 13., 2005.Proceed-
ings. . . Springer-Verlag, 2005. p.309–320.

NOIK, E. G. Layout-independent fisheye views of nested graphs. In: VL’93: IEEE SYM-
POSIUM ON VISUAL LANGUAGES, 1993.Proceedings. . .[S.l.: s.n.], 1993. p.336–
341.

NORTH, S. C.; KOUTSOFIOS, E. Applications of Graph Visualization. In: GRAPHICS
INTERFACE, 1994, Banff, Canada.Proceedings. . .[S.l.: s.n.], 1994.

PARKER, G.; FRANCK, G.; WARE, C. Visualization of Large Nested Graphs in 3D:
navigation and interaction.Journal of Visual Languages and Computing, [S.l.], v.9,
p.299–317, 1998.

PATRIGNANI, M.; VARGIU, F. 3DCube: a tool for three dimensional graph drawing. In:
GRAPH DRAWING (PROC. GD ’97), VOLUME 1353 OF LECTURE NOTES COM-
PUT. SCI, 1998.Proceedings. . .Springer, 1998. p.284–290.

PISANSKI, T.; SHAWE-TAYLOR, J.Characterizing graph drawing with eigenvec-
tors. [S.l.]: J. Chem. Inf. Comput. Sci, 1998.

PRETORIUS, A. J.; WIJK, J. J. van. Multidimensional Visualization of Transition Sys-
tems. In: IV ’05: PROCEEDINGS OF THE NINTH INTERNATIONAL CONFERENCE
ON INFORMATION VISUALISATION, 2005, Washington, DC, USA.Proceedings. . .
IEEE Computer Society, 2005. p.323–328.

PRETORIUS, A. J.; WIJK, J. J. van. Visual Analysis of Multivariate State Transition
Graphs.IEEE Transactions on Visualization and Computer Graphics, Piscataway,
NJ, USA, v.12, n.5, p.685–692, 2006.

PROTOHAUS.Fidg’t . [S.l.:s.n.: 200-]. Available in: <http://www.fidgt.com>. Accessed
on: 2 Nov. 2008.

PUPPE, T.Spectral Graph Drawing. Germany: VDM Verlag Dr. Muller Aktienge-
sellschaft Co. Kg, 2008.

PURCHASE, H. C.; COHEN, R. F.; JAMES, M. I. An experimental study of the basis for
graph drawing algorithms.J. Exp. Algorithmics, New York, NY, USA, v.2, p.4, 1997.



90

QT SOFTWARE INC.Qt 4.4. [S.l.:s.n.: 200-]. Available in: <http://www.trolltech.com>.
Accessed on: 7 Oct. 2008.

REINGOLD, E.; TILFORD, J. Tidier Drawings of Trees.Software Engineering, IEEE
Transactions on, [S.l.], v.SE-7, n.2, p.223–228, March 1981.

REKIMOTO, J.; GREEN, M. The information cube: using transparency in 3d informa-
tion visualization. In: IN PROCEEDINGS OF THE THIRD ANNUAL WORKSHOP
ON INFORMATION TECHNOLOGIES SYSTEMS (WITS’93), 1993.Proceedings. . .
[S.l.: s.n.], 1993. p.125–132.

ROBERTSON, G. G.; MACKINLAY, J. D.; CARD, S. K. Cone Trees: animated 3d vi-
sualizations of hierarchical information. In: CHI ’91: PROCEEDINGS OF THE SIGCHI
CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, 1991, New
York, NY, USA. Proceedings. . .ACM, 1991. p.189–194.

RODRIGUES JR., J. F. et al. SuperGraph Visualization. In: ISM ’06: PROCEEDINGS
OF THE EIGHTH IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA, 2006,
Washington, DC, USA.Proceedings. . .IEEE Computer Society, 2006. p.227–234.

RODRIGUES JR., J. F. et al. GMine: interactive browsing of large graphs. , [S.l.], 2008.

RODRIGUES JR., J. F.; TONG, H.; TRAINA, A. J. M.; FALOUTSOS, C.; LESKOVEC,
J. GMine: a system for scalable, interactive graph visualization and mining. In:
VLDB’2006: PROCEEDINGS OF THE 32ND INTERNATIONAL CONFERENCE ON
VERY LARGE DATA BASES, 2006.Proceedings. . .VLDB Endowment, 2006. p.1195–
1198.

ROSS, E.Spectral Graph Drawing: a survey. Burnaby, BC, Canada: Simon Fraser
University, 2004.

SAMET, H.The Design and Analysis of Spatial Data Structures. Reading, MA, USA:
Addison-Wesley, 1990.

SHILOACH, Y. Arrangements of Planar Graphs on the Planar Lattices. 1976. Tese
(Doutorado em Ciência da Computação) — Rehovot, Israel: Weizmann Institute of Sci-
ence,.

SHNEIDERMAN, B. Tree visualization with tree-maps: 2-d space-filling approach.
ACM Trans. Graph. , New York, NY, USA, v.11, n.1, p.92–99, 1992.

SILLICON GRAPHICS INC.3D File System Navigator. [S.l.:s.n.: 1992]. Available in:
<http://www.sgi.com>. Accessed on: 7 Oct. 2008.

SPRITZER, A. S.; FREITAS, C. M. D. S. Interaction and Navigation in Graph Visualiza-
tions.Revista de Informática Teórica e Aplicada, [S.l.], v.15, n.1, p.111–137, Mar 2008.

SPRITZER, A. S.; FREITAS, C. M. D. S. A physics-based approach for interactive ma-
nipulation of graph visualizations. In: AVI ’08: PROCEEDINGS OF THE WORKING
CONFERENCE ON ADVANCED VISUAL INTERFACES, 2008, New York, NY, USA.
Proceedings. . .ACM, 2008. p.271–278.



91

SPRITZER, A. S.; VOLQUIND, F. P.; FREITAS, C. M. D. S. Case Study of Co-
authorship Networks Using a Tool for Graph Visualization. In: WORKSHOP ON IN-
FORMATION VISUALIZATION AND ANALYSIS IN SOCIAL NETWORKS (WIVA
2008), 2008.Proceedings. . .SBC, 2008.

STOREY, M.-A. D. et al. A. On Integrating Visualization Techniques for Effective Soft-
ware Exploration. In: INFOVIS ’97: PROCEEDINGS OF THE 1997 IEEE SYMPO-
SIUM ON INFORMATION VISUALIZATION (INFOVIS ’97), 1997, Washington, DC,
USA. Proceedings. . .IEEE Computer Society, 1997. p.38.

SUGIYAMA, K.; MISUE, K. Graph Drawing by Magnetic-Spring Model. [S.l.]: Fu-
jitsu Laboratories, ISIS, 1994.

SUGIYAMA, K.; MISUE, K. A Simple and Unified Method for Drawing Graphs:
magnetic-spring algorithm. In: GD ’94: PROCEEDINGS OF THE DIMACS INTERNA-
TIONAL WORKSHOP ON GRAPH DRAWING, 1995, London, UK.Proceedings. . .
Springer-Verlag, 1995. p.364–375.

SUGIYAMA, K.; TAGAWA, S.; TODA, M. Methods for Visual Understanding of Hier-
archical Systems Structures. In: IEEE TRANSACTIONS ON SYSTEMS, MAN AND
CYBERNETICS, 1981.Proceedings. . .[S.l.: s.n.], 1981. v.1, n.2, p.109–125.

TAMASSIA, R.; TOLLIS, I. Planar grid embedding in linear time.Circuits and Systems,
IEEE Transactions on, [S.l.], v.36, n.9, p.1230–1234, Sep 1989.

TEJADA, E.; ERTL, T. Large Steps in GPU-based Deformable Bodies Simulation.Sim-
ulation Practice and Theory. Special Issue on Programmable Graphics Hardware,
[S.l.], v.13, n.9, p.703–715, 2005.

TUNKELANG, D. A Numerical Optimization Approach to General Graph Drawing .
1999. Tese (Doutorado em Ciência da Computação) — School of Computer Science,
Carnegie Mellon University.

VAN HAM, F.; WATTENBERG, M. Centrality Based Visualization of Small World
Graphs. In: EUROVIS ’08: PROCEEDINGS OF THE 2008 EUROGRAPHICS/IEEE-
VGTC SYMPOSIUM ON VISUALIZATION (EUROVIS’2008), 2008, Washington, DC,
USA. Proceedings. . .IEEE Computer Society, 2008.

VERLET, L. Computer "Experiments" on Classical Fluids. I. Thermodynamical Proper-
ties of Lennard-Jones Molecules.Phys. Rev., [S.l.], v.159, n.1, p.98, Jul 1967.

WASSERMAN, S.; FAUST, K.; IACOBUCCI, D.Social Network Analysis: methods
and applications (structural analysis in the social sciences). [S.l.]: Cambridge University
Press, 1994.

WATTENBERG, M. Visualizing the stock market. In: CHI ’99: CHI ’99 EXTENDED
ABSTRACTS ON HUMAN FACTORS IN COMPUTING SYSTEMS, 1999, New York,
NY, USA. Proceedings. . .ACM, 1999. p.188–189.

WATTENBERG, M. Visual exploration of multivariate graphs. In: CHI ’06: PROCEED-
INGS OF THE SIGCHI CONFERENCE ON HUMAN FACTORS IN COMPUTING
SYSTEMS, 2006, New York, NY, USA.Proceedings. . .ACM, 2006. p.811–819.



92

YI, J. S.; MELTON, R.; STASKO, J.; JACKO, J. A. Dust & magnet: multivariate in-
formation visualization using a magnet metaphor.Information Visualization , [S.l.], v.4,
n.4, p.239–256, 2005.

ZHAO, S.; MCGUFFIN, M.; CHIGNELL, M. Elastic hierarchies: combining treemaps
and node-link diagrams.Information Visualization, 2005. INFOVIS 2005. IEEE Sym-
posium on, [S.l.], p.57–64, Oct. 2005.



93

APPENDIX A USER EVALUATION TABLE

Tables A.1, A.2 and A.3 show the complete tabulation of the answers given by the
users in the evaluation questionnaire they filled after testing MagnetViz’s prototype, as
described in Chapter5.

# Affirmations Av erage Mode Standard Deviation
5 I clearly understand what a

magnet can be used for.
4.92 5.00 0.27

24 The criterion of type "Node
Textual Attribute Value" is
useful.

4.92 5.00 0.27

23 The criterion of type "Node
Numerical Attribute Value" is
useful.

4.92 5.00 0.27

21 The criterion of type "Node
Degree" isuseful.

4.92 5.00 0.27

13 I clearly understand the
difference between require-
ments andcriteria.

4.92 5.00 0.27

15 Criteria and requirements are
useful for the exploration of
thegraph.

4.77 5.00 0.43

6 Magnets are useful for the ex-
ploration of thegraph.

4.62 5.00 0.64

7 I clearly understand what a
boundary shape can be used
for.

4.54 5.00 0.65

34 The technique is useful for
the exploration of social net-
works.

4.38 5.00 0.96

20 The criterion of type "Mag-
nets" isuseful.

4.38 5.00 0.76

8 Boundary shapes are useful
for layout reorganization.

4.31 5.00 0.74

Table A.1: Affirmations and statistics about the subjects’ level of agreement (part 1).
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# Affirmations Av erage Mode Standard Deviation
25 The criterion of type "Path

Length" isuseful.
4.31 5.00 1.39

16 The criterion of type "Con-
nected Subgraph" isuseful.

4.31 5.00 1.01

35 Manipulating the graph
makes it possible to dis-
cover situations that were
previously unknown.

4.15 4.00 0.86

33 Manipulating the graph
makes it possible to explore
it and discover relationships
between thenodes.

4.08 4.00 0.62

4 The alterable properties of the
layout are useful for control-
ling the physics simulation
that determines the layout of
thegraph.

4.00 5.00 1.04

1 The graph’s initial layout is
clear.

3.85 4.00 0.66

31 In general, magnets are easy
to use.

3.82 5.00 1.04

32 It is easy to specify and edit
criteria.

3.77 4.00 1.25

14 The criterion types provided
in the prototype are adequate
for the layout modifications
necessary to answer the given
questions.

3.69 4.00 1.07

3 It is clear which properties of
the layout arealterable.

3.69 3.00 1.01

28 Magnet intersection is inter-
esting for the exploration of
thegraph.

3.62 4.00 1.65

2 It is possible to clearly ob-
serve aspects of the layout
and general traits of nodes
andedges.

3.58 4.00 0.96

22 The criterion of type "Node
Has Attribute" isuseful.

3.38 5.00 1.74

18 The criterion of type "Edge
Numerical Attribute Value" is
useful.

3.38 5.00 2.03

Table A.2: Affirmations and statistics about the subjects’ level of agreement (part 2).
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# Affirmations Av erage Mode Standard Deviation
30 The layout obtained after the

manipulation allows for a
clear view of the query’s re-
sult.

3.31 4.00 1.28

26 The icon used for the nodes of
a magnet intersection allows
for their easyidentification.

3.31 4.00 1.50

19 The criterion of type "Edge
Textual Attribute Value" is
useful.

3.23 5.00 2.13

27 The colored lines make per-
ception of magnet intersec-
tion easier.

3.23 3.00 1.25

9 I clearly understand what
the boundary shape’s gravity
multiplier can be used for.

2.92 3.00 1.27

17 The criterion of type "Edge
Has Attribute" isuseful.

2.54 4.00 1.86

10 The gravity multiplier is use-
ful to better control layout
modification.

2.54 2.00 1.51

11 I can clearly see the differ-
ence between magnets and
gravity spots.

2.54 0.00 2.24

29 Magnet intersection is ad-
equately represented in the
layout.

2.31 4.00 1.55

12 Gravity spots are useful to
control thelayout.

1.54 0.00 1.83

Table A.3: Affirmations and statistics about the subjects’ level of agreement (part 3).
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APPENDIX B USER EVALUATION QUESTIONNAIRE

The list below shows the affirmations contained in the evaluation questionnaire that
was handed to users after they experimented with the MagnetViz prototype. The affirma-
tions are shown in the same order as they were in the original questionnaire.

1. The graph’s initial layout is clear.

2. It is possible to clearly observe aspects of the layout and general traits of nodes and
edges.

3. It is clear which properties of the layout are alterable.

4. The alterable properties of the layout are useful for controlling the physics simula-
tion that determines the layout of the graph.

5. I clearly understand what a magnet can be used for.

6. Magnets are useful for the exploration of the graph.

7. I clearly understand what a boundary shape can be used for.

8. Boundary shapes are useful for layout reorganization.

9. I clearly understand what the boundary shape’s gravity multiplier can be used for.

10. The gravity multiplier is useful to better control layout modification.

11. I can clearly see the difference between magnets and gravity spots.

12. Gravity spots are useful to control the layout.

13. I clearly understand the difference between requirements and criteria.

14. The criterion types provided in the prototype are adequate for the layout modifica-
tions necessary to answer the given questions.

15. Criteria and requirements are useful for the exploration of the graph.

16. The criterion of type "Connected Subgraph" is useful.

17. The criterion of type "Edge Has Attribute" is useful.

18. The criterion of type "Edge Numerical Attribute Value" is useful.
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19. The criterion of type "Edge Textual Attribute Value" is useful.

20. The criterion of type "Magnets" is useful.

21. The criterion of type "Node Degree" is useful.

22. The criterion of type "Node Has Attribute" is useful.

23. The criterion of type "Node Numerical Attribute Value" is useful.

24. The criterion of type "Node Textual Attribute Value" is useful.

25. The criterion of type "Path Length" is useful.

26. The icon used for the nodes of a magnet intersection allows for their easy identifi-
cation.

27. The colored lines make perception of magnet intersection easier.

28. Magnet intersection is interesting for the exploration of the graph.

29. Magnet intersection is adequately represented in the layout.

30. The layout obtained after the manipulation allows for a clear view of the query’s
result.

31. In general, magnets are easy to use.

32. It is easy to specify and edit criteria.

33. Manipulating the graph makes it possible to explore it and discover relationships
between the nodes.

34. The technique is useful for the exploration of social networks.

35. Manipulating the graph makes it possible to discover situations that were previously
unknown.
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APPENDIX C RESUMO E CONTRIBUIÇÕES

Esta dissertação apresenta MagnetViz, uma técnica baseada em física para a mani-
pulação interativa de visualizações de grafos. A principal contribuição deste trabalho é a
abordagem utilizada para modificar o layout do grafo. Enquanto a maior parte das técnicas
se preocupa em visualizar umlayoutestático previamente gerado, MagnetViz permite que
os usuários adaptem interativamente olayoutusando ferramentas para o estabelecimento
de regiões para nodos que preenchem determinados critérios topológicos ou semanticos.
Desta forma, consultas aos dados representados pelo grafo são realizadas interativamente
e tem efeito no layout seguindo o mesmo algoritmo usado para gerar o layout inicial.

A técnica foi construída sobre a metáfora de física dos conhecidos algoritmos delay-
out dirigidos por forças (C.1a). Eles foram estendidos para suportar o conceito de imãs,
que são o elemento chave do MagnetViz. Imãs, ilustrados nas figuras C.1b e C.2 são in-
seridos na cena pelo usuário e a eles são associados critérios de atração. Critérios podem
serrequerimentos(todos devem ser satisfeitos por um nodo para que este seja atraído) ou
critérios simples(se houver critérios, ao menos um deve ser satisfeito). Pode-se definir
uma área onde os nodos atraídos devem permanecer através de umaboundary shape, que
é simplesmente uma forma geométrica (no caso, um círculo) que limita esta área.

Figure C.1: a) Maior componente do grafo de co-autorias da conferência AVI em seu
layout inicial (26 nodos e 78 arestas); b) Um imã em ação, atraindo nodos de grau 3.
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Figure C.2: Um imã.

Quando a força de atração de um imã é configurada, o sistema de física reavalia o
layout, o alterando de forma que os nodos atraídos por este imã se movam em sua direção.
Caso um imã possua umaboundary shape(Figura C.3) os nodos atraídos são forçados a
ficar dentro dela, enquanto os não-atraídos são forçados a permanecer fora. Vários imãs
podem ser inseridos, inclusive sendo possível criar uma hierarquia de imãs. Quando um
mesmo nodo e atraído por dois imãs, o usuário é chamado a decidir como deve ser o
posicionamento final do mesmo em relação aos imãs o atráem.

O algoritmo utilizado como base para o protótipo desenvolvido para prova de conceito
e testes é uma combinação do algoritmo clássico de Fruchterman-Reingold (1991) com
a técnica desenvolvida por Barnes e Hut (1986) para simulação de n-corpos, como feito
por Tunkelang (1999). Um layout de um grafo mais complexo gerado com este algoritmo
pode ser visto na figura C.4.

Figure C.3: Um imã comboundary shape.

A avaliação da técnica foi realizada em duas etapas, com a primeira consistindo da
verificação das possibilidades de uso do MagnetViz em relação à taxonomia de tarefas
desenvolvida para aplicações de visualização de grafos que foi proposta por Lee et al.
(2006). Através deste estudo foi possível constatar que apesar de não poder ser aplicado
diretamente em todas as tarefas como descritas na taxonomia, MagnetViz pôde lidar di-
retamente com a maior parte delas, sendo especialmente bem apropriado para as de mais
alto nível, específicas para grafos, e de natural utilização para as que envolvemclustering
e operações de conjuntos.

A segunda etapa da avaliação consistiu em colocar MagnetViz em um ambiente prático
através de um estudo de caso. Para isso foi decidido aplicar a técnica no cada vez mais
relevante contexto de análise e visualização de redes sociais. O grafo de co-autorias ge-
rado pelas publicações de 2007 dos professores e alunos da UFRGS e seus colaboradores
externos foi escolhido como conjunto de dados a ser visualizado, e perguntas foram ela-
boradas sobre essa rede para serem respondidas fazendo uso da técnica. Durante testes foi
descoberto que duas questões não podiam ser respondidas diretamente por duas razões:
o protótipo não estava adaptado para este contexto específico e algumas funcionalidades
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Figure C.4: Exemplo de layout gerado com o algoritmo utilizado (grafo de co-autorias da
conferência AVI, com 416 nodos e 628 arestas).

planejadas que seriam necessárias para dar suporte a essas perguntas ainda não foram
implementadas.

Para a avaliação experimental da técnica, foi planejado um ensaio de interação com
um grupo de 14 pessoas que usaram o MagnetViz para responder as mesmas questões
sobre a rede de co-autorias. Os sujeitos subsequentemente receberam um questionário
com afirmações sobre a relevância da técnica e a usabilidade de suas funcionalidades.
Estas afirmações deveriam ser avaliadas com notas que deveriam ser dadas de acordo
com o nível de concordância do usuário com o que estava sendo afirmado.

Em geral, os usuários aprovaram a técnica e sua utilidade, achando a metáfora intuitiva
e relevante para a visualização de redes sociais. A partir das respostas do questionário,
entretanto, apesar de poder-se concluir que a técnica tem alguns pontos que necessitam
ser melhorados (especialmente quanto ao protótipo desenvolvido), foi verificado que con-
ceitualmente a técnica em si foi validada pelos usuários que a testaram. O único ponto
deficiente envolvendo a técnica apontado pelos usuários foi sobre a forma como as inter-
secções de imãs são tratadas. Os usuários acharam que a solução dada para ressaltar os
nodos atraídos por mais de um imã não foi muito intuitiva, e que o resultado visual do
tratamento aplicado não ficou muito claro.

Com a possibilidade de estabelecer critérios de rearranjo do layout com base nos atri-
butos semânticos dos nodos e arestas, além dos topológicos, a técnica é de certa forma
genérica. Entretanto, o protótipo (tal como está hoje) não contém um processador de
consultas que permita sua aplicação a qualquer domínio.

MagnetViz, entretanto, contribue com uma abordagem inovadora que pode ser aper-
feiçoada para se tornar realmente genérica. A técnica é, assim, outra ferramenta po-
tencialmente útil paradesignersde softwareque necessitam lidar com o problema de
visualização de grafos interativa.

O restante deste texto foi organizado expandindo-se as publicações realizadas ao longo
do período: o artigo tutorial apresentado no SIBGRAPI 2007 e publicado recentemente
(SPRITZER; FREITAS, 2008a) é a base do capítulo sobre conceitos e trabalhos rela-
cionados (capítulos 3 e 4); o artigo publicado na International Working Conference on
Advanced Visual Interfaces (SPRITZER; FREITAS, 2008b) foi o ponto de partida do
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capítulo 5, que descreve a técnica e o protótipo MagnetViz, e de parte do capítulo 6; e o
mais recente, publicado no Workshop on Information Visualization and Analysis in Social
Networks (SPRITZER; VOLQUIND; FREITAS, 2008), deu origem à seção de avaliação
experimental (capítulo 6).


