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ABSTRACT

Because of the continuous and overwhelming growth of scientific data in the last few
years, data-intensive analysis on this vast amount of scientific data is very important to
extract valuable scientific information. The GRIB (GRIdded Binary) scientific data for-
mat is widely used within the meteorological community and is used to store historical
meteorological data and weather forecast simulation results. However, current libraries
to process the GRIB files do not perform the computation in a distributed environment.
This situation limits the analytical capabilities of scientists who need to perform analysis
on large data sets in order to obtain information in the shortest time possible using of all
available resources. In this context, this work presents an alternative to data processing in
the GRIB format using the well-know Manager-Worker pattern, which was implemented
with the Actor model provided by the Akka toolkit. We also compare our proposal with
other mechanisms, such as the round-robin, random and an adaptive load balancing, as
well as with one of the main frameworks currently existing for big data processing, Apache
Spark. The methodology used considers several factors to evaluate the processing of the
GRIB files. The experiments were conducted on a cluster in Microsoft Azure platform.
The results show that our proposal scales well as the number of worker nodes increases.
Our work reached a better performance in relation to the other mechanisms used for the
comparison particularly when eight worker virtual machines were used. Thus, our pro-
posal upon using metadata achieved a gain of 53.88%, 62.42%, 62.97%, 61.92%, 62.44%
and 59.36% in relation to the mechanisms: round-robin, random, an adaptive load bal-
ancing that used CPU, JVM Heap and mix metrics, and the Apache Spark respectively,
in a scenario where a search criteria is applied to select 2 of 27 total parameters found in
the dataset used in the experiments.

Keywords: Actor model. Big data. Manager-Worker. GRIB. Akka.





RESUMO

Devido ao contínuo crescimento dos dados científicos nos últimos anos, a análise intensiva
de dados nessas quantidades massivas de dados é muito importante para extrair informa-
ções valiosas. Por outro lado, o formato de dados científicos GRIB (GRIdded Binary) é
amplamente utilizado na comunidade meteorológica para armazenar histórico de dados e
previsões meteorológicas. No entanto, as ferramentas atuais disponíveis e métodos para
processar arquivos neste formato não realizam o processamento em um ambiente distri-
buído. Essa situação limita as capacidades de análise dos cientistas que precisam realizar
uma avaliação sobre grandes conjuntos de dados com o objetivo de obter informação no
menor tempo possível fazendo uso de todos os recursos disponíveis. Neste contexto, este
trabalho apresenta uma alternativa ao processamento de dados no formato GRIB usando
o padrão Manager-Worker implementado com o modelo de atores fornecido pelo Akka
toolkit. Realizamos também uma comparação da nossa proposta com outros mecanis-
mos, como o round-robin, random, balanceamento de carga adaptativo, bem como com
um dos principais frameworks para o processamento de grandes quantidades de dados
tal como o Apache Spark. A metodologia utilizada considera vários fatores para avaliar
o processamento dos arquivos GRIB. Os experimentos foram conduzidos em um cluster
na plataforma Microsoft Azure. Os resultados mostram que nossa proposta escala bem à
medida que o número de nós aumenta. Assim, nossa proposta atingiu um melhor desem-
penho em relação aos outros mecanismos utilizados para a comparação, particularmente
quando foram utilizadas oito máquinas virtuais para executar as tarefas. Nosso trabalho
com o uso de metadados alcançou um ganho de 53.88%, 62.42%, 62.97%, 61.92%, 62.44%
e 59.36% em relação aos mecanismos round-robin, random, balanceamento de carga adap-
tativo que usou métricas CPU, JVM Heap e um combinado de métricas, e o Apache Spark,
respectivamente, em um cenário onde um critério de busca é aplicado para selecionar 2
dos 27 parâmetros totais encontrados no conjunto de dados utilizado nos experimentos.

Palavras-chave: Modelo de atores, Big data, Manager-Worker, GRIB, Akka.
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1 INTRODUCTION

Currently we are living the Big Data era (CHEN; ZHANG, 2014), (DOBRE;
XHAFA, 2014), which is a result of the continuous and overwhelming increase of data
generated from different sources, sensors, simulations, and logs, among many others. Such
is the case of the scientific community, that generates huge amounts of data day-to-day.
This data growth leads to the need for a lot of resources and a better use of these resources
to store and process the gathered data in order to perform simulations and data-intensive
analysis.

In turn, it is necessary to have applications that can take advantage of the infor-
mation contained in these large data sets. In the scientific community, it is done with
the goal to understand phenomena in meteorology, seismology, and health, among other
areas.

In this sense, the sequential programming model is not enough to cope with the
requirements of these application types. So the parallel and distributed programming
model becomes more valuable in order to process large amounts of data within a timely
manner (CHEN; ZHANG, 2014), (KAMBATLA et al., 2014).

There are many efforts for processing and performing data analysis on the datasets
generated by the scientific community in distributed and parallel environments. These ef-
forts are focused mainly on scientific data formats such as NetCDF (LI et al., 2003),
(ZHAO et al., 2010), (BUCK et al., 2011), (DUFFY et al., 2012), (WANG; JIANG;
AGRAWAL, 2012), (PALAMUTTAM et al., 2015) and HDF5 (WANG; JIANG; AGRAWAL,
2012), (BLANAS et al., 2014).

However, there are other scientific data formats, such as the GRIB format (WMO,
2003) which is used widely within the meteorological community for exchanging and
storing historical and forecast weather data. Nevertheless this format does not support
random access (FORTNER, 1995), while both NetCDF and HDF5 are random access
format. Thereby, the GRIB format is not easily accessible (CANDANEDO; PARADIS;
STYLIANOU, 2013) and lacks research in methodology and tools for processing a large
numbers of GRIB files in a reasonable amount of time.

In the Center for Weather Forecasting and Climate Research (CPTEC1) different
models of weather forecasts are performed periodically, covering South America and adja-
cent oceans. The information resulting from these forecasts and the initial model condition
are provided twice a day. All of this scientific data contains the state of the atmosphere
and is in the GRIB format.

Thus, in the pre-processing phase of the BRAMS (Brazilian Regional Atmospheric
Modeling System) execution, which is a numerical weather prediction model used to sim-
ulate atmospheric conditions, the GRIB files have to be converted into an intermediary
file that contains the input data for the model (MARQUES, 2009), however this pre-

1http://www.cptec.inpe.br/
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processing is performed using a sequential manner (CARREÑO, 2015), taking a consid-
erable time of the overall process, which depends mainly the time period and the data
packing method to be processed.

The current libraries to process the GRIB files do not perform the computation
in a distributed environment and the data analysis performed is taking into account only
one individual GRIB file. In this context, we propose an alternative way to process and
perform data analysis on large datasets in the GRIB format over a distributed environ-
ment by implementing the Manager-Worker pattern using the Akka toolkit, which is an
implementation of the Actor model (HEWITT; BISHOP; STEIGER, 1973). It is based on
single kind of object called Actor. Despite the fact that the idea of this model originated
in 1973, the Actor model has been gaining a significant importance during the last years
in the concurrent and distributed programming (TASHAROFI; DINGES; JOHNSON,
2013), since there is no shared state between actors and the communication is exclusively
through asynchronous message passing and therefore conceptually there are no problems
such as critical sections, deadlocks, race conditions (Lightbend Inc, 2016). Thus, for exam-
ple, two of the main Big Data processing frameworks, such as Apache Spark (ZAHARIA
et al., 2010) and Apache Flink (ALEXANDROV et al., 2014) use the Akka toolkit for its
distributed communication (ROSÀ; CHEN; BINDER, 2016).

1.1 Document Structure

The remaining text of this document is organized as follows:

• Chapter 2 introduces the basics concepts for a better understanding of this work,
such as the GRIB scientific data format, the Actor model, the Akka toolkit – one
of the main implementations of the Actor model, the Manager-Worker model of
communication.

• Chapter 3 presents relevant related work.

• Chapter 4 details our proposal for processing large amounts of GRIB files in a dis-
tributed environment. This chapter also presents other approaches used to compare
our proposal.

• Chapter 5 introduces the environment used to perform the experiments and details
the dataset utilized in the experiments, presents the evaluation methodology and
finally, the experimental results.

• Chapter 6 presents the conclusions of this work, highlights the main contributions
and outlines ideas for future work.
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2 BACKGROUND

This chapter presents concepts for a better understanding of the following chapters
of this dissertation. Thus, Section 2.1 introduces a global overview of the GRIB messages
and their structure. Section 2.2 details the ideas behind the Actor Model. Section 2.3
discusses some basis concepts and common terminology related to the Akka Toolkit, one of
the main implementations of the Actor Model. Section 2.4 describes the Manager-Worker
model of communication, utilized on our proposal. Section 2.5 covers a brief introduction
to the Apache Spark.

2.1 GRIB

GRIB (GRIdded Binary) is a scientific data format, created by the World Meteo-
rological Organization (WMO)1. It was designed to be a general purpose, self-describing,
bit-oriented data exchange format, machine-independent transmission and storage of me-
teorological data (WMO, 2003), (FORTNER, 1995). This scientific data format is widely
utilized by the meteorological community, it is commonly used to store weather and
weather forecast data (MARKIEWICZ et al., 2013), generally the data stored in this
format comes from satellite images or simulations of the weather (FORTNER, 1995).

It is worth highlighting that this format is not easily accessible (CANDANEDO;
PARADIS; STYLIANOU, 2013), since this format does not support a random access (FORT-
NER, 1995), unlike other scientific data formats such as NetCDF (REW; DAVIS, 1990)
or HDF (The HFD5 Format, 2002). Nevertheless, the GRIB format as well as other scien-
tific data formats are still used in their respective communities because since their initial
adoption there has been investment in time and resources which makes it difficult to fully
migrate to another data format (BUCK, 2014).

There are three versions of this format, versions 0, 1 and 2. However, the version
0 was deprecated and the version 2 was proposed to enable the representation of new
parameters, which for the version 1 was no longer possible (WMO, 2003). The definition
of these parameters are found as part of the standard and not as part of the GRIB message,
so that, the GRIB message stores a reference to information defined on an external table.
For example, Table 2.1 presents the Product disciplines available for a GRIB message,
where code is the value found in the GRIB message, and description is the value specified
by the standard.

Thus, the files in the GRIB format are denominated as GRIB files, in turn, these
files are composed of GRIB messages, and each one of these messages may contain sub-
messages allowing the creation of hierarchical and ordered structures (MARKIEWICZ et
al., 2013).

1https://www.wmo.int/
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Table 2.1: GRIB2 Code Table 0.0 - Discipline (NCEP WMO GRIB2 Documentation,
2016).

Code Description
0 Meteorological products
1 Hydrological products
2 Land surface products
3 Space products

4-9 Reserved
10 Oceanographic products

11-191 Reserved
192-254 Reserved for local use

255 Missing

2.1.1 GRIB Structure

The GRIB message provides information necessary to decode the message without
knowing the grid size and structure in advance (HIBBARD et al., 2002).

According to the standard defined by the WMO, each GRIB message contains
logical divisions called sections. Concretely for the GRIB edition 2 there are nine types
of sections, numbered 0 through 8. Figure 2.1 depicts the structure for a GRIB2 message
and Appendix A shows the sample of a GRIB2 message.

Figure 2.1: GRIB2 Message Structure.

Section 0: Indicator Section

Section 1: Identification Section

Section 2: Local Use Section

Section 3: Grid Definition Section

Section 4: Product Definition Section

Section 5: Data Representation Section

Section 6: Bit-Map Section

Section 7: Data Section

Section 8: End Section

The Indicator Section: Marks the beginning of the message with the text “GRIB”
and contains the Product Discipline (e.g., Discipline 0 corresponds to Meteorological prod-
ucts) of the data in the message – as detailed in Table 2.1 –, GRIB Edition number (e.g.,
2) and the total length of the message in bytes.
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The rest of the sections except the last, contain the length of each section in bytes
at the byte location from 1 to 4 and the section number at the byte location 5.

The Identification Section: Contains information that apply to all stored data
in the messages, such as originating centre, sub-centre, significance of reference time (e.g.,
Analysis, Start of forecast, etc), reference time of data, type of processed data (e.g.,
Analysis products, Forecast products, etc), among others.

The Local Use Section: This section is optional and contains information for
local use by the originating meteorological centres.

TheGrid Definition Section: Contains the number of data points, the grid type,
among others. The grid definition template code is found at the byte location from 13
to 14, this code refers to a row on the Table GRIB2 Code Table 3.1 - Grid Definition
Template Number2. This table contains a list of defined grid types and also has rows
reserved for future grid types for general and local use. Table 2.2 shows some grid types
of a 65535 total rows.

Table 2.2: GRIB2 Code Table 3.1 - Grid Definition Template Number (NCEP WMO
GRIB2 Documentation, 2016).

Code Description
0 Latitude/Longitude (Template 3.0)
1 Rotated Latitude/Longitude (Template 3.1)
2 Stretched Latitude/Longitude (Template 3.2)
3 Rotated and Stretched Latitude/Longitude (Template 3.3)
4 Variable Resolution Latitude/longitude (Template 3.4)
5 Variable Resolution Rotated Latitude/longitude (Template 3.5)

6-9 Reserved
10 Mercator (Template 3.10)

Besides, each row indicates the Template to use from the byte location 15. For
example, the structure for the Template 3.0 (Latitude/Longitude)3 would be placed at
the byte location from 15 to 72, while that for the Template 3.1 (Rotated Latitude/Longi-
tude)4 would be placed at the byte location from 15 to 84. Each Template has a different
structure.

The Product Definition Section: Presents the nature of the data stored in
the Data Section. The product definition template code is found at the byte location
from 8 to 9, this code refers to a row on the Table GRIB2 Code Table 4.0 - Product
Definition Template Number5, which can be Analysis or forecast at a horizontal level or
in a horizontal layer at a point in time (Template 4.0)6, and others.

2http://www.nco.ncep.noaa.gov/pmb/docs/grib2/grib2_table3-1.shtml
3http://www.nco.ncep.noaa.gov/pmb/docs/grib2/grib2_temp3-0.shtml
4http://www.nco.ncep.noaa.gov/pmb/docs/grib2/grib2_temp3-1.shtml
5http://www.nco.ncep.noaa.gov/pmb/docs/grib2/grib2_table4-0.shtml
6http://www.nco.ncep.noaa.gov/pmb/docs/grib2/grib2_temp4-0.shtml
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The Data Representation Section: Describes how the data values are repre-
sented. The data representation template code is found at the byte location from 10 to
11, this code refers to a row on the Table GRIB2 Code Table 5.0 - Data Definition Tem-
plate Number7. This table contains a list of defined data packing methods and also has
rows reserved for future data packing methods for general and local use. Table 2.3 shows
some data packing methods of a 65535 total rows.

Table 2.3: GRIB2 Code Table 5.0 - Grid Definition Template Number (NCEP WMO
GRIB2 Documentation, 2016).

Code Description
0 Grid Point Data - Simple Packing (Template 5.0)
1 Matrix Value at Grid Point - Simple Packing (Template 5.1)
2 Grid Point Data - Complex Packing (Template 5.2)
3 Grid Point Data - Complex Packing and Spatial Differencing (Template 5.3)

The Bit-Map Section: Indicates the presence or absence of data at each grid
point.

The Data Section: Contains the data values for each grid point, and it is the
longer of each message.

The End Section: Contains the code “7777” which marks the ending of each
message.

It is worth mentioning, that besides the data values stored within the Data Section,
the values with more significance for the GRIB messages are: Discipline, Category and
Name, which are organized in branches, these three values allow to identify the parameter
stored in the message. For instance, whether the message is defined for the Discipline 0
which is for Meteorological products, the categories for this discipline could be Category
0: Temperature, Category 1: Moisture, etc. Thus, when Category 0 is defined within the
message being processed the Names available could be Temperature, Virtual Temperature,
and Potential Temperature, among others.

2.2 Actor Model

The Actor Model is a mathematical theory of concurrent computation that dates
back to 1973. This was proposed as an object-oriented model to be used in the Arti-
ficial Intelligence area which required a high computing power and in parallel systems,
based on a single kind of object called Actor (KOSTER; CUTSEM; MEUTER, 2016).
In this model, everything can be represented as actors and, each actor is an active com-
putational entity, the communication between actors is performed through asynchronous
message passing, besides actors have a behavior which specifies how the message should be

7http://www.nco.ncep.noaa.gov/pmb/docs/grib2/grib2_table5-0.shtml
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processed (HEWITT; BISHOP; STEIGER, 1973). Even in the Actor Model, the control
structures could be represented as a pattern of message passing among actors (HEWITT,
1977), the theory of the semantics for programming languages based on the actor model
had been exposed in (CLINGER, 1981), conceptual implementations for a minimal actor
language and the basis for a transition system for actor systems were proposed in (AGHA,
1986).

An actor can perform three operations for each message that is received (AGHA,
1986), these actions are as follows:

– Send a finite set of messages to other actors,

– Create a finite set of new actors; and,

– Define a new behavior, which specifies how the message will process the next mes-
sage.

An actor only processes the tasks whose target is the mail address of this actor, a
Task can be represented as a 3-tuple (AGHA, 1986), these tuple elements are as follows:

– Tag: To identify among the actors in the system,

– Target: It is the mail address of the actor to which the message is sent; and,

– Communication (immutable message): Contains information which is made available
at the target actor. Likewise, the message is considered as a tuple of values (e.g.
mail address, data types or even actors).

In addition, when an actor accepts a message and subsequently must send other
communication, it has to know the target of the recipient (HEWITT; BAKER, 1977), and
there are three possible ways to know this mail address (AGHA, 1986):

– The actor already knew the target before to accept the message,

– The message contains the mail address of the target; and,

– The mail address of the new actor is known by the actor that created it.

Basically, each actor has a behavior that indicates how to process the message
received and, a mail queue which must be large enough to contain all the messages.
The messages are sent by asynchronous message passing, and placed in the mail queue
according to the order of arrival, it is also possible in this model that an actor could send
messages to itself.

According to Gul Agha (AGHA, 1986), an actor can be represented abstractly
as in the Figure 2.2, the actor machine contains information of the actor behavior and
processes one message at a time, thus, when the actor machine accepts the message at the
position n of the mail queue it can not process information from other communications.
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Figure 2.2: An abstract representation of an actor.

1
Mail
queue

2
...

n

...
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Source: Adapted from (AGHA, 1986).

As aforementioned, an actor can perform three types of actions, and they are rep-
resented in the Figure 2.3. Assuming that the mail queue has n + 1 buffered messages,
when the actor machine Xn accepts the message at the position n in the mail queue,
it creates a new actor machine Xn+1, in turn, this new actor machine will replace the
behavior of the actor, however, this “new” behavior will not be necessarily different from
the previous one, since could be the same. Formally, an actor must change its behavior to
accept the next message (AGHA, 1986). This new actor machine will process the message
at the position n + 1 in the mail queue, the actor machine Xn will not receive more com-
munications neither will replace the actor behavior again, each actor machine according
to its behavior can create its own actors or tasks. The actors created concurrently by
an actor may know the mail addresses but do not have access to the properties of other
actors (AGHA, 1986).

Figure 2.3: Actions an actor may perform.
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An initial configuration of an actor system may be composed of some actors and
tasks unprocessed, however, there are two other types of actors, which may be part or
related to the actor system. Receptionists, actors capable of receiving messages from out-
side the actor system and, external actors, actors that do not belong to the actor system
from which they receive messages (AGHA, 1986).

It is important to mention that the actors are autonomous entities and, given that
their communication is purely asynchronous, actors do not need to share memory among
them, therefore conceptually in the Actor Model there are no problems related to locking
and synchronization, such as critical sections, deadlocks, race conditions (Lightbend Inc,
2016).

In the ages when the concept of the Actor Model was conceived, there was no the
computing power that currently exists, for instance the Intel processor 4040, introduced
in 1974, barely had 3000 transistors and a maximum CPU clock speed of 750 kHz, and
therefore, it was not possible to achieve the advantages of this model. However actually
we can now talk about many-core architectures, clusters of computers, cloud computing,
fog computing, Internet of things; thus, the Actor Model has recently gained substantial
acceptance in academy and industry (TASHAROFI; DINGES; JOHNSON, 2013), (ZA-
SADZINSKI; MUNTÉS-MULERO; SIMO, 2017). Even, Carl Hewitt mentions that the
Actor model could be useful for the standardization of the Internet of Things (HEWITT,
2015). This popularity is supported for the achievements of the Erlang8 language, which
implements the Actor Model. Erlang was used in Ericson to develop the AXD301 high-
performance switch, this project achieved the nine nines reliability (99.9999999%) (ARM-
STRONG, 2003). This model is the basis of many programming languages, being the most
popular Erlang, and the Akka Toolkit which is is strongly inspired by Erlang.

2.3 Akka Toolkit

Akka implements the already aforementioned Actor Model, and is written in Scala9,
a programming language originated at the École Polytechnique Fédérale de Lausanne
(EPFL) and that runs on the Java Virtual Machine (JVM). This toolkit comes as a library
to be used with Scala, and not as part of the programming language, however, there are
APIs for both Scala and Java programming language. Akka toolkit allows building highly
concurrent, reactive, distributed, asynchronous, and fault tolerant applications.

There is a need to build applications that consider the parallelization of their algo-
rithms from the beginning of development (ROSE; NAVAUX, 2003). In this sense, imple-
mentations of the Actor Model, such as Erlang or Akka, allow to implement applications
that are considered parallelizable from their inception.

An Akka actor has an actor reference, state, behavior, mailbox, actor childs and a

8https://www.erlang.org/
9http://www.scala-lang.org/
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supervisor strategy (Lightbend Inc, 2016).

• Actor Reference, represents an actor, thus, other actor uses this actor reference to
communicate with a particular actor, in this way, the actor state is protected from
other actors.

• State, refers to variables, which may maintain the state of the actor. This state can
be modified for an actor only in response to a message received.

• Behavior, refers to a function, which defines the actions to be executed in response
to an incoming message. An actor may change its behavior at runtime according to
the computation logic.

• Mailbox, stores the incoming messages to an actor. An actor can have a unique
mailbox, and the messages are processed on arrival order.

• Child actors, an actor can create new actors from its own context, so those new
actors will be its children.

• Supervisor strategy, every actor has only one supervisor, and the supervisor strategy
defines how the supervisor handles the failures of the children. The supervisor may
resume, restart, stop the subordinate actor, or even escalate the failure to its super-
visor actor. There are two strategies to which the mentioned actions are applicable:
One-For-One and All-For-One, the first only applies to the actor who failed, and
the second strategy means that the action applies to all subordinate actors.

2.3.1 The actor system

It is a heavyweight structure composed of a set of actors, that may allocate from
1 to N threads, so it is recommended to create just one per application (Lightbend Inc,
2016). The actor system houses a collection of actors, allows to create, stop, look up actors,
and manages their life cycles. Actors created by an application reside only within an actor
system. Likewise, an actor system has a default configuration, which may be modified to
enable or disable settings of the actors, in this configuration is possible to define the actor
properties, network communication protocol, mailbox type, serializer, dispatcher, router
strategies, remoting, clustering, among others options. This configuration is shared for all
the actors running in an actor system and may be defined in a file (application.conf ) or
in the application code.

During the creation of an actor system, three top-level actors are created, as il-
lustrated in Figure 2.4, the User Guardian, also known as the Guardian Actor, which
contains all the actors created by the application, the System Guardian that contains the
actors created by the system (e.g. logging, dead-letters), it is shut down automatically
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when the User Guardian is terminated, and the Root Guardian, which is the parent of the
System Guardian and the User Guardian.

The actor system involves a hierarchical group of actors, where each actor created
has a parent, or even a grandparent. Thus, for example, in Figure 2.4, the actor named
Manager has two actor children, Worker1 and Worker2, so the Manager actor supervises
its children. Thus, the supervision model and the actor hierarchy allow Akka to be fault
tolerant (VERNON, 2015).

Figure 2.4: Akka Actor Hierarchy.
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2.3.2 Actor Messaging

The way how internally works the messaging in Akka is explained briefly below
and illustrated in Figure 2.5. In this figure the sender is not necessarily an actor, however
the receiver or target have to be an actor.

Figure 2.5: Actor Model in Akka.
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Figure 2.6 presents the code snippet of the object class called MainProgram, where
it is created an ActorSystem, a JobManager actor, and a message is sent to JobManager.
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• An ActorSystem is initialized, and a name is assigned to it (Line 3).

• Through the actor system, a reference to the JobManager is created, using the
actorOf method, which takes in Props the name of the actor class to be created.
This reference in the sample was called jobManager (Line 4).

• The JobRequest message is sent to the jobManager ActorRef, using the bang oper-
ator (!) (Line 7).

• The ActorRef delegates responsibility for handling the messages to the Dispatcher.

• The Dispatcher places the messages in the mailbox of the target actor.

• The mailbox dequeues the message and deliveries the message to actor.

• The actor accepts the message on the receive method according to its behavior, and
processes the message.

Figure 2.6: Actor sample: Main program code.

1 object MainProgram extends App {
2 p r i n t l n ( " Main Program ")
3 va l system = ActorSystem (" sample " )
4 va l jobManager = system . ac to rOf ( Props [ JobManager ] , name="jobManager " )
5 va l f i l e s : L i s t [ S t r i n g ] = L i s t ( " f i l e 1 " , " f i l e 2 " , " f i l e 3 " )
6 p r i n t l n ( s " jobManager : ${ jobManager . path }")
7 jobManager ! JobManager . JobRequest ( f i l e s )
8 }

2.3.3 Creating Actors

Using Scala, an actor class is defined by extending the Actor10 base trait and im-
plementing the abstract method receive, in this method are declared all the message types
that an actor can handle by its default behavior. The definition of an actor class is illus-
trated in Figure 2.7, where the default behavior (receive method) handles the JobRequest
message, and the processing behavior handles the WorkerResult message.

Firstly, to create actors, it is necessary to have an actor system in which the actors
can reside. Actors are not created directly, instead the actor system is used to create them,
however, this does not return the instance of an actor, instead, it returns a reference to
the actor created, and allows to interact with the actor. Thus, an actor is created using
the actorOf method of the ActorSystem11 class, which returns an ActorRef12.

10http://doc.akka.io/api/akka/current/index.html#akka.actor.Actor
11http://doc.akka.io/api/akka/current/index.html#akka.actor.ActorSystem
12http://doc.akka.io/api/akka/current/index.html#akka.actor.ActorRef
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It is important to point out that in Figure 2.6 in the line 4, the created actor will
be placed under the User Guardian, due to this actor was created using the ActorSystem.
Besides, as aforementioned, an actor may create other actors, the manner of creating
an actor as child of an existing actor is shown in the line 7 of the Figure 2.7, where
the JobManager actor creates three JobWorker actors. The JobWorker class is defined in
Figure 2.8. For this other case, the actors are created using the actorOf method of the
ActorContext13 class, which represents the context of an actor.

Figure 2.7: Actor sample: JobManager actor code.

1 c l a s s JobManager extends Actor {
2
3 def rece ive = {
4 case JobManager . JobRequest ( f i l e s ) => {
5 p r i n t l n ( s " JobRequest : ${ f i l e s }")
6 f o r ( i <− 0 u n t i l f i l e s . l e n g t h ) {
7 va l jobWorker = con t e x t . a c to rOf ( Props [ JobWorker ] , name=s "

jobWorker$ { i +1}")
8 jobWorker ! JobWorker . Proces sTask ( f i l e s ( i ) )
9 }
10 con t e x t . become ( p r o c e s s i n g )
11 }
12 }
13
14 def p r o c e s s i n g : Rece i v e = {
15 case JobManager . WorkerResu l t ( f i l e name , worker ) => {
16 p r i n t l n ( s "${ f i l e n a m e } was p r o c e s s e d by ${ worker . path }")
17 }
18 case _ => p r i n t l n ( " Unknown message " )
19 }
20 }

Every actor has a name and also belongs to a hierarchical collection of actors, in
this sense, each actor has a path, which represents the sequence of actor names since the
User Guardian towards the actor itself including the ActorSystem name. For example,
the jobManager’s path is akka://sample/user/jobManager, and the jobWorker1 which is the
jobManager’s child, has the path akka://sample/user/jobManager/jobWorker1. Besides, when
the system involves remote actors, the path also contains the communication network
protocol, hostname and port used, thus, for example the path for a remote actor could
be: akka.tcp://sample@hostname:port/user/remoteJobWorker. This fashion to identify an actor
is very useful in Akka as it provides a location transparency for actors.

13http://doc.akka.io/api/akka/current/index.html#akka.actor.ActorContext
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Figure 2.8: Actor sample: JobWorker actor code.

1 c l a s s JobWorker extends Actor {
2
3 def rece ive = {
4 case JobWorker . Proces sTask ( f i l e n a m e ) => {
5 p r i n t l n ( s " ProcessTask : ${ f i l e n a m e }")
6 sender ! JobManager . WorkerResu l t ( f i l e name , s e l f )
7 }
8 }
9 }

2.3.4 Sending and receiving messages

The actor communication is performed through asynchronous message passing, in
Akka, messages may be any kind of object, however it should be an immutable object.
For this, reason, when Akka is used with Scala, it is preferable to use the case classes
or case objects which are immutable data-holding objects and may be pattern matched.
Thus, for example, in Figure 2.9 are defined the messages that can be processed for the
JobManager actor, JobRequest and WorkerResult (Lines 2-3), and the messages that can
be processed for JobWorker actor, Processtask (Line 7).

Figure 2.9: Actor sample: JobManager and JobWorker messages.

1 object JobManager {
2 case c l a s s JobRequest ( f i l e s : L i s t [ S t r i n g ] )
3 case c l a s s WorkerResu l t ( f i l e n a m e : S t r i ng , worker : Acto rRe f )
4 }
5
6 object JobWorker {
7 case c l a s s ProcessTask ( f i l e n a m e : S t r i n g )
8 }

The foremost way to send a message is using the bang operator (!), also referred to
as tell, it follows the philosophy “fire and forget”, send a message and return immediately,
in other words, there is no blocking, the sender actor does not wait for the message to
be processed from the recipient actor, the Tell method barely enqueues the message in
the target’s mailbox. Every time a message is sent, Akka implicitly attaches the sender
reference within the message, it is useful when the target actor after processing the message
requires to send back a message to the sender. Line 7, 8 and 6 in the Figure 2.6, 2.7 and
2.8 respectively illustrate the manner to send messages in Akka. In this first case due to
MainProgram is not an actor, there is no sender itself and implicitly within the message
an ActorRef.noSender is passed. The second case, JobManager is effectively an actor,
thus, when a message is sent to a JobWorker actor, the context.self reference implicitly
is passed together with the message. For the latter case, the JobWorker actor sends back
a message to the sender (JobManager actor).
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A second way to send messages in Akka is using the forward method, there is a
mediator in this case, which may be a router, a load balancer, or a replicator, it means that
the target actor does not recognize to the mediator as sender but rather to the original
sender (Lightbend Inc, 2016).

A third way is using the ask operator (?), it sends a message to the target actor
and waits for a response as a future message.

2.3.5 Modifying the actor behavior

At this point, it is necessary to explain briefly the codes shown above, to illustrate
some basic concepts related to the creation of actors and the message sending between
actors in Akka. Thus, the code snippet in Figure 2.6 creates an actor system, next the
JobManager actor, and at the last a JobRequest message is sent to JobManager, this
message contains a list of three strings. In the JobManager actor, code snippet in the
Figure 2.7, receives the JobRequest message at the initial behavior, iterates the list of
strings, and for each one creates a JobWorker actor, and subsequently sends a Processtask
message to the created actors. After that, the JobManager changes its behavior from
default to processing, using the context.become method, that takes the name of the new
behavior, it basically means that the next messages received for the JobManager actor
will be attended for the processing method. Next, the ProcessTask message is received for
the default behavior of the JobWorker actor, code snippet in the Figure 2.8, here could
be performed some type of processing, and subsequently a WorkerResult message is sent
back to the JobManager.

Figure 2.10: Actor sample: Terminal output.

1 Main Program
2 jobManager : akka :// sample / u s e r / jobManager
3 JobRequest : L i s t ( f i l e 1 , f i l e 2 , f i l e 3 )
4 ProcessTask : f i l e 1
5 ProcessTask : f i l e 3
6 f i l e 1 was p r o c e s s e d by akka :// sample / u s e r / jobManager / jobWorker1
7 f i l e 3 was p r o c e s s e d by akka :// sample / u s e r / jobManager / jobWorker3
8 ProcessTask : f i l e 2
9 f i l e 2 was p r o c e s s e d by akka :// sample / u s e r / jobManager / jobWorker2

In the JobManager actor, which now has active the processing behavior, receives
the WorkerResult messsage and prints on the terminal the string and the path of actor
that processed the message. Any type of message received for the JobManager actor that
does not match with the WorkerResult message will be ignored, although it could be
handled if required, as illustrated in the line 18 of Figure 2.7, where a message Unknown
message is printed on the terminal. Finally, Figure 2.10 shows the output result in the
terminal after to compile and execute the sample utilized.
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2.3.6 Clustering

Akka cluster nodes may have different types of roles, it is useful to group actors
that perform a specific work, these roles are defined in a configuration file, besides it is
also possible to define other parameters related to the Akka cluster, such as the minimum
number of nodes of a specific role necessaries to start an application, the maximum number
of actors allowed per node, the maximum allowed number of actors that can run in the
cluster, a list of seed nodes, among others.

The seed nodes are initial reference points for new nodes joining the cluster, the
first seed node declared in the configuration file is in charge of forming the cluster. This
first seed node will be the leader of the cluster, but if this node fails, it will be removed,
and any other node will become the leader, taking into account that only one leader can
exist at a time (ROESTENBURG; BAKKER; WILLIAMS, 2016).

Akka uses the Gossip protocol and an automatic failure detector to provide a
membership service based on the Amazon Dynamo model (DECANDIA et al., 2007),
which is fault-tolerant descentralized peer-to-peer and without a single point of failure
(Lightbend Inc, 2016). The cluster state is communicated to all nodes of the cluster
using a Gossip protocol, where each node gossips to other randomly chosen nodes its
current state and the state of other nodes that it has observed. It allows to the nodes to
know about the state of the other nodes in the cluster, achieving a gossip convergence
at a node at certain points in time. Besides, Akka uses the Phi Accrual Failure Detector
(HAYASHIBARA et al., 2004) to detect unreachable nodes.

2.3.7 Routers

Akka provides several built-in router strategies to send the messages among a
group of actors which can be local or remote actors, the target actors are denominated
as routees. This distribution aims balance the load over the different actors involved in a
job, a router in Akka, is also an actor which encapsulates a routing logic and defines the
settings to be used for the router, this settings can be declared in the code or loaded from
a configuration file. Some of the available router strategies in Akka are the following:

– RoundRobin sends the received messages to its routees in a round-robin fashion.

– Random sends the received messages to its routees in a randomly order.

– Broadcast sends the received messages to all its routees.

– AdaptiveLoadBalancing uses the latest cluster metrics collected of the cluster
nodes to decide which node is most suitable to receive messages. Based on the
cluster metrics, the router sends the messages to the nodes with a lower weight,
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since a lower weight means a high probability of available resources (Lightbend Inc,
2016). There are four type of metrics:

– heap, it is based on the remaining JVM heap. The formula for calculating the
weights is:

(max− used)/max

Where:
max: Maximum JVM heap memory.
used: Used JVM heap memory.

– cpu, it is based on the CPU utilization percentage. The formula for calculating
the weights is:

1− (User + Sys + Nice + Wait)
Where:

User: Percentage of CPU utilization that occurred while ex-
ecuting at the user level (application).

System: Percentage of CPU utilization that occurred while
executing at the system level (kernel).

Nice: Percentage of CPU utilization that occurred while ex-
ecuting at the user level with nice priority.

Wait: Percentage of time that the CPU or CPUs were idle
during which the system had an outstanding disk I/O request.

– load, it is based on the Unix system load average. The formula for calculating
the weights is:

1− (load/processors)
Where:

load: Unix system load average.
processors: Number of processors.

– mix, it is based on the combination of the heap, cpu and load metrics.

Likewise, there are two categories of routers, both share the router logic (e.g.
round-robin logic), the difference lies in the management of the routees.

– Group uses routees created previously on the nodes. The path of the all routees
must be declared on the router’s configuration before the router is initialized. It is
not responsible for the life cycle of the routees, besides the routees may be shared
with other router or routers.

– Pool creates its own routees as children, it means, a Pool router manages the life
cycle of the routees, and routees are not shared among other routers.
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2.4 Manager-Worker Pattern

This model of communication is based on a dynamic task distribution, composed of
a manager and a set of workers (CHANDY; TAYLOR, 1992), the Figure 2.11 illustrates the
design of this parallel programming model. The manager, or also named master process
(BALAJI, 2015), is responsible for partitioning in sub-problems the problem to solve,
these sub-problems are the tasks which are distributed among a group of workers. The
workers are the responsible for processing the received tasks and returning the results to
the manager.

Figure 2.11: Manager-Worker model of communication.
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Source: Adapted from (CHANDY; TAYLOR, 1992)

Thus, the manager partitions the work into small tasks, stores a record of those
tasks, and initiates the execution of the workers, each worker send a request asking a task
to be processed, the manager will choose a task to be sent to the worker in response to
the request. The workers execute the tasks independently and return the partial result
to the manager, at this point, the worker also requests a new task from the manager.
This cycle continues until there are no more pending tasks on the manager, when this
happens the manager sends a message for each worker’s request, notifying that all tasks
were processed. Thereafter, the manager computes the final result from the partial results
sent from the workers (CHANDY; TAYLOR, 1992). Finally, when all processing is done,
the workers could be removed followed by the manager (JANSSEN; NIELSEN, 2008).

It is worth noting that this model may be used both for uniform and for non-
uniform tasks, besides the main advantage is that provides implicitly a load balancing
(BALAJI, 2015).

The Manager-Worker model is derived of the well-known Master-Slave pattern
(ORTEGA-ARJONA, 2004), the difference lies in that for the Master-Slave scheme, the
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manager assigns the task to the workers instances, and those workers no perform contin-
uous requests for new tasks to the manager (BUSCHMANN et al., 1996).

2.5 Apache Spark

Spark was originated at the UC Berkeley RAD Lab and later was included as a
open source top-level project of the Apache Software Foundation. Internally, it is composed
of different projects, such as Spark SQL, Spark Streaming, MLib for machine learning,
GraphX for graphs processing, and the Spark Core, which is responsible for scheduling,
distributing and monitoring tasks across the cluster (KARAU et al., 2015). It emerged
with the purpose of attending specially workloads that required to work with iterative
algorithms, interactive queries and stream processing, which were not suitable for working
with Apache Hadoop. Spark is written in Scala, and runs on the Java Virtual Machine,
however provides APIs to work with Java, Python and R.

Spark introduces the Resilient Distributed Dataset (RDD), which is an immutable
collection of elements partitioned among the worker nodes, besides this collection is per-
sisted in memory (ZAHARIA et al., 2012). There are two ways to create a RDD, the first
is parallelizing a collection in the driver program, and the second is loading datasets from
an external source, such as Hadoop Distributed File System (HDFS), Cassandra, or any
data source supported by the Hadoop API. Apache Spark allows to perform two types
of operations over a RDD, actions and transformations. The first type returns a value
as result of a calculation, while that the second returns a new RDD after to perform an
operation over a RDD, besides this type is lazy evaluation (ZAHARIA et al., 2010), it
means that the RDDs are computed only when an action is performed over them, The
combination of RDDs on a transformation is called as lineage, in this sense, the fault
tolerance is efficiently supported by Spark, since the lineage allows recompute a RDD
partition lost, it is for that reason that a RDD is resilient.

Apache Spark may be deployed on top of Apache YARN14, Apache Mesos15 or its
own cluster manager. The Figure 2.12 shows the components of Spark, the Driver program
contains a SparkContext, which represents the connection to a Spark cluster and primarily
serves to build RDDs. While the cluster manager starts and manages the executors on
the worker nodes, these executors run tasks scheduled by the driver program, store results
in memory or on disk. Apache Spark distributes the application code among the worker
nodes, and the SparkContext defines the RDDs in the cluster through transformations,
and sends the tasks to be performed for the executors when an action must be executed. In
this way, Apache Spark distributes the data stored in RDDs and parallelizes the operations
to perform over the RDDs.

However, limitations arise when the datasets largely exceed the memory capabili-

14https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
15http://mesos.apache.org/
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ties, when it happens in Apache Spark, it is necessary to store the RDDs on disk, causing
a downgrade in the performance or throwing JVM exceptions (GU; LI, 2013).

Figure 2.12: Spark components on a distributed environment.

Source: Adopted from (Spark Documentation, 2016).
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3 RELATED WORK

In relation to the GRIB scientific data format, there are libraries such as GRIB
API1, wgrib22, Climate Data Operators (CDO)3 that excel in the processing of GRIB
files and allow reading and writing GRIB messages (MARKIEWICZ et al., 2013). The
GRIB API and wgrib present support for pthreads and OpenMP, respectively, however
both have to be compiled with their respective flag to enable that support. Both libraries
to allow processing GRIB files in parallel in a compute node but the data packing and
unpacking methods are not parallelized, and the operations performed are over a single
GRIB file and not in a set of GRIB files.

On the other hand, there are many efforts to process and perform scientific data
analysis over scientific data formats in a parallel and distributed environment, mainly for
scientific data formats, such as NetCDF (REW; DAVIS, 1990) and HDF5 (The HFD5
Format, 2002) formats.

Thus, Li et al. (LI et al., 2003) proposed a parallel interface for reading and writ-
ing NetCDF files. Modifications to the serial NetCDF interface to support parallel data
access were performed in that work. The parallel data access was based on MPI-IO. They
evaluated the performance and scalability of their proposal against the serial NetCDF,
and used a synthetic benchmark for reading and writing 64 MB and 1 GB of NetCDF
data. Their experimental environment was composed of 144 computer nodes, IBM SP-2,
each node had 4GB of memory, and 12 I/O nodes that used the General Parallel File
System (GPFS).

In Zhao et al. (ZHAO et al., 2010) is argued that storing terabytes of data to
search specific data in those large datasets subsequently is a key point in geoscience and
climate areas. In this way, they proposed a method to store and access over massive
NetCDF datasets based on MapReduce using Apache Hadoop version 0.19.1. However,
at an early stage the datasets need to be parsed and transformed into CDF (Common
Data Language) file – a text notation for NetCDF objects and data – to be stored in the
HDFS, thereby causing an overhead mainly in storage. They used subsets of 128 MB,
512 MB, 1.86 GB, 8.15 GB and 31.1 GB from the Argo (Array for Real-time Geostrophic
Oceanographic) data to evaluate the performance with different data scales, and subse-
quently with different number of reduce tasks. The performed job consisted of obtaining
the values of the pressure parameter. Their experimental environment was composed of
1 master node and 8 data nodes, each node had 8 cores, the master node had 4 GB of
memory whereas the data nodes had 8 GB of memory. Likewise HDFS was configured
with the data block size of 64 MB and a replication factor of 2.

Buck et al. (BUCK et al., 2011) implemented SciHadoop, a plugin over Apache
Hadoop version 0.21 that allows processing NetCDF files version 3 and executing queries

1https://software.ecmwf.int/wiki/display/GRIB/Home
2http://www.cpc.ncep.noaa.gov/products/wesley/wgrib2/index.html
3https://code.zmaw.de/projects/cdo
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over the logical data model. Furthermore, they extended the NetCDF-Java4 library from
Unidata to work with HDFS, and detailed five optimizations to be performed over the
NetCDF data stored (partitioned) in HDFS with the goal to reduce remote reads, total
data transfers and unnecessary reads. They used a synthetic dataset which had a total size
of 132 GB. One of the queries applied in that work was computing the median in a time-
range, in an area-range and in an elevation-range for the air pressure parameter. Their
experimental environment was composed of a cluster of 1 master node and 30 compute
nodes, each node had 2 cores, 8 GB of memory and four 250 GB local disks of which three
were dedicated for HDFS, which was configured with the data block size of 64 MB and
a replication factor of 3, and one was dedicated for the operating system and temporary
storage.

In Duffy et al. (DUFFY et al., 2012) was carried out an evaluation of MapReduce
applied in climate data analysis in order to improve the workflow for the analysis utilized
in the Soil Moisture and Ocean Salinity (SMOS) where datasets were analyzed using
MATLAB with the goal of finding locations on the earth which do not change considerably
over time and that serve to validate and calibrate their instruments. In that work, they
calculate the average of the surface temperature over 8 years of data using the NPANA 3D
data – a subset of the Modern Era Retrospective-Analysis for Research and Applications
(MERRA) data – whose total size was more than 300 GB. They used Apache Hadoop
version 1.0 and their experimental environment was composed of 2 head nodes which were
utilized for the Namenode and JobTracker, and 8 data nodes with two 1 TB file systems
using HDFS with a data block size of 640 MB and a replication factor of 3. Each node
had 4 cores and 8 GB of memory.

The SciMate Framework proposed by Wang et al. (WANG; JIANG; AGRAWAL,
2012) allows to process the scientific data formats, NetCDF and HDF5, as well as plain
text files, and may be extended to other scientific data formats by implementing an adapter
for data loading and processing. That framework was built on top of the Mate system
which was implemented in MPI and that allows to process data using the MapReduce-
style programming. The datasets utilized were of 16 and 8 GB, which were stored in the
Parallel Virtual File System (PVFS). Three data analysis algorithms were used: the K-
means clustering, the principal component analysis and the K-nearest neighbor search.
Furthermore, their experiments evaluated the scalability of their proposal on a full and
partial read scenario, since not all the variables of a dataset are always used in the ob-
servation centers, but rather only a subset of those. Their experimental environment was
composed of a cluster with 16 nodes, each node with 8 cores and 8 GB of memory.

Blanas et al. (BLANAS et al., 2014) presented the design of a prototype system
called SDS/Q that can perform scientific data analysis by processing queries directly
over datasets stored in the HDF5 format, executing the queries in-memory and using
the bitmap indexing to reduce the queries response time. They used a synthetic dataset

4http://www.unidata.ucar.edu/software/thredds/current/netcdf-java/
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and the Palomar Transient Factory (PFT) data, an automated survey of the sky for
transient astronomical events, which took about of 180GB stored in PosgtreSQL. Both
datasets were stored in GPFS upon using the SDS/Q. The synthetic data is used in a
first evaluation by comparing PostgreSQL with the SDS/Q taking into account two access
patterns, the full scan operation used to calculate the average of 12 variables, and the
point lookup operation used to calculate the average of those 12 variables taking into
account a specific attribute in common. A second evaluation was done by using the PFT
data to compare the SDS/Q with PostgreSQL and Apache Hive, in that evaluation were
considered 3 queries by applying filters and varying the time interval. The experimental
environment was composed of 64 compute nodes, each node with 8 cores and 24 GB of
memory, besides those nodes had no local disks.

In Palamuttam et al. (PALAMUTTAM et al., 2015) was proposed a framework
built on top of Apache Spark, the SciSpark, which allows to ingest scientific data formats,
such as NetCDF and HDF5 from different data sources as for example HDFS, OpenDap,
local file system. However, subsequently the data have to transformed into a data type
accessible in SciSpark, the Scientific Resilient Distributed Dataset (sRDD), that provides
methods to work with multi-dimensional arrays. They used the MERG dataset from the
Climate prediction center/NCEP/NWS for their experiments, likewise they also discusses
three approaches to parallelize the initial stages of the Grab 'em, Tag 'em, Graph 'em
(GTG) algorithm, a graph-theory based algorithm for identifying and tracking high pre-
cipitation events, using the Apache Spark’s API. Their experimental environment was
composed of a cluster of 4 compute nodes, each node with 32 cores, 240 GB of memory
and 100 GB local disk.

Table 3.1: Related work summary.

Format Operation DFS (*) Dataset size
Li et al., 2003 NetCDF read/write GPFS 64MB, 1GB
Zhao et al., 2010 NetCDF read HDFS / 64MB / 2 128MB, 512MB,

1.86GB, 8.15GB,
31.1GB

Buck et al., 2011 NetCDF median HDFS / 64MB / 3 132GB
Duffy et al., 2012 NetCDF average HDFS / 640MB / 3 over 300GB
Wang et al., 2012 NetCDF,

HDF5,
flat-files

K-means, PCA, K-
nearest neighbor

PVFS 8GB, 16GB

Blanas et al., 2014 HDF5 average GPFS –
Palamuttam et al., 2015 NetCDF,

HDF5
Grab 'em, Tag 'em,
Graph 'em

HDFS, OpenDap –

(*) DFS / block size / replication factor

Table 3.1 summarizes the related works presented which are focused mainly on
the NetCDF and HDF5 scientific formats. These works perform from basic operations
utilized in statistical applications to complex algorithms. Likewise these operations were
run over the entire dataset or even over a subset of data by applying filters to work just
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a few parameters of the entire dataset, in a time-range or an area-range which is more
utilized in real applications. The solutions were implemented using MPI, Apache Hadoop
or Apache Spark. And, the HDFS also was used as part of the solution when these last
two frameworks were employed. In addition to this, these works evaluate the performace
of their proposals in a distributed environment by varying the number of nodes and the
size of the dataset used in the experiments.
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4 AGRIB: PROCESSINGGRIB DATA IN DISTRIBUTED ENVIRONMENTS

WITH AKKA

As stated earlier the most of researches that works with scientific data are focused
in the NetCDF and HDF5 formats due to their popularity, however there are many ob-
servational centers that uses the GRIB format1,2. In this sense, this work proposes an
alternative way to process large data sets in the GRIB format in a distributed environ-
ment. Our work performs the average function over the datasets used in the experiments
which were stored in the Hadoop Distributed File System (HDFS), likewise two scenarios
were selected to process the GRIB files, one that uses all the parameters of the dataset
and one that evaluates just 2 of 27 total parameters found in the dataset. Our proposal is
referred to as aGRIB (actor GRIdded Binary), and utilizes the Manager-Worker pattern,
which is implemented with the Actor model, specifically the Akka toolkit implementation.
Subsequently, after analyzing the first experimental results we perform an improvement
over our proposal to achieve better performance. Additionally, we compare our proposal
with other mechanisms provided by the Akka toolkit as well as with one of the main
frameworks currently existing for big data processing.

This chapter is divided into five sections. Section 4.1 presents the module imple-
mented to parse and decode the GRIB messages, which is utilized in our proposal, as
well as in the comparison mechanisms. Section 4.2 details our initial proposal for pro-
cessing the GRIB files using the Manager-Worker pattern implemented with the Actor
model. Section 4.3 describes how the comparison mechanisms used to process the GRIB
files work, which use built-in router strategies provided by the Akka toolkit. Section 4.4
describes an improvement over our initial proposal, which uses metadata stored in an
NoSQL database to obtain better performance in processing the GRIB messages. Sec-
tion 4.5 presents another comparison mechanism to process the GRIB files using Apache
Spark.

4.1 Scala client module

Initially, it was necessary to implement a module to parse and decode the GRIB
messages, this module was implemented in the Scala programming language, because it
is more suitable for working with the Akka toolkit.

The implementation of this module was based on the WMO documentation (WMO,
2003), (NCEP WMO GRIB2 Documentation, 2016), and the Thredds library (UNIDATA,
2017), which is mainly utilized to work with NetCDF files, nevertheless, this one has a
module to parse GRIB files.

The GRIB messages on the dataset utilized in the experiments were version 2 GRIB
1https://www.wmo.int/
2http://www.cptec.inpe.br/
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message, and after analyzing the dataset, it was noted that the Grid type for all the GRIB
messages was the Latitude/Longitude type, the Product type was Analysis or forecast at a
horizontal level or in a horizontal layer at a point in time, similarly in relation to the data
packing method, only two methods were found, the Grid Point Data - Complex Packing
and the Grid Point Data - Complex Packing and Spatial Differencing. Therefore, the Scala
module client has been focused on the GRIB message version 2, and is just implemented
for these two data packing methods.

4.2 Using the Manager-Worker pattern

The Manager-Worker pattern explained previously in Section 2.4 was employed to
perform the job distribution, which means the manager partitions the work to do, and
sends the tasks to be performed by the workers as requested by them, in turn, the workers
request tasks from the manager and send the partial results to the manager, and at the
end the manager computes the final result from the partial results obtained. The whole
process is implemented using the characteristics of the Actor Model provided by the Akka
toolkit.

Thus, Figure 4.1 depicts the logical representation of the components in our pro-
posal, in this figure can be appreciated two types of machines, the Master and the Worker
machines. In addition, in order to build the cluster in Akka, three types of nodes were
deployed on these machines, the Seed 1 , Master 2 and Worker 3 role node. The first
two were contained inside the Master machine, and the third inside the Worker machines.
It bears noting that each one of those Akka cluster nodes are deployed on a separated
Java Virtual Machine (JVM).

– The Seed node is necessary to specify at least one node with this role in an Akka
cluster, since this node acts as an initial contact point for new nodes joining the
cluster.

– The Master role node is where the JobManager actor is performed.

– The Worker role node contains the JobWorker actors, and there can be one or more
JobWorker actors per worker role node. Likewise there can be one or more worker
role nodes per worker machine. This can be seen in the Subsection 5.3.1.

As mentioned previously, there are two actor types running inside our Akka cluster
nodes, and as depicted in Figure 4.1, there is a bidirectional relationship between the
JobManager actor and the JobWorker actors, however there is no communication among
the JobWorker actors.

– The JobManager distributes the tasks among JobWorker actors, receives the partial
results and computes the overall result from the partial results sent from the Job-
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Worker actors. This actor works as the Manager component of the Manager-Worker
model.

– The JobWorker is in charge of processing the tasks sent from the JobManager,
sending the partially computed result and requesting tasks of the JobManager. This
actor type acts as the Worker component of the Manager-Worker model.

Figure 4.1: Initial architecture: Using the Manager-Worker pattern.
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It is also important to mention that the dataset used in the experiments was stored
in the Hadoop Distributed File System (HDFS), so that all nodes involved in the GRIB
files processing may access the data, therefore, a Namenode and Datanodes were necessary
where the first was deployed inside the Master machine, and the latter were deployed on
the Worker machines. Figure 4.2 depicts the HDFS architecture, where the Namenode
stores the metadata about the file system, which contains information about the files
and the blocks location of each file distributed among the Datanodes, and the Datanode
stores blocks of files, those blocks are replicated among the Datanodes, so that a client
application may write and read files. Thus, in our case a client application may be a
JobManager or a JobWorker actor.

Figure 4.3 illustrates how the design of our proposal for processing GRIB files
works. The actions performed by the Driver program are as follows:
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Figure 4.2: HDFS Architecture. Figure adopted from (HOLMES, 2014).

– The necessary configurations are loaded, such as the HDFS URI, the path where
the dataset is stored, router type and other parameters used in the execution of the
experiments.

– A list with all the GRIB file names to be processed is obtained from the HDFS.

– Creates an ActorSystem, and a JobManager ActorRef.

– A JobRequest message is sent to JobManager with the list of names of GRIB files.

Figure 4.3: Design: Using the Manager-Worker pattern.
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Afterwards, in the JobManager actor, a router of the BroadcastPool type is created
and then, using this one router, a InitProcess message is sent to the JobWorker actors
created in the cluster nodes. However, only this first message will be sent through the
BroadcastPool router with the subsequent messages being sent through the JobManager
actor itself. After sending the message, the JobManager actor changes its behavior from
default to processing.

Subsequently, each JobWorker actor sends a RequestTask message to the JobMan-
ager asking to be registered as an actor capable of executing tasks and requests its first
task. Additionally, at this point the JobWorker also changes its behavior from default to
processing.

All of these messages received in the JobManager are enqueued in its mailbox
and attended to in arrival order. The JobManager obtains the next task and sends a
ProcessTask message to the JobWorker actor with information about the task to be pro-
cessed.

In this step, the JobWorker actor uses our Scala client module for processing the
GRIB messages stored in HDFS, and the output of each GRIB message processed is
merged to calculate the partial result which will be sent to the JobManager. Thus, a
PartialResult message is sent to the JobManager actor followed by other RequestTask
message.

In the JobManager, the partial result is stored in memory, and one new task is
sent to the JobWorker, through the ProcessTask message. This cycle continues until there
are no more tasks to process, and when this occurs, the JobManager sends a message
called AllDone to the JobWorker, who request an additional task. In addition to this,
the JobManager actor changes its behavior from processing to finish and sends a GetRe-
sult message itself, in order to calculate the final result from the partial results received
previously.

As will be explained in Subsection 5.3.2, the method of processing the GRIB mes-
sages of a file by each JobWorker actor may be completed in two ways, file-based and
message-based, the choice of one of these two types of processing is defined in a configu-
ration file, which is loaded at the Driver program. Hence, depending on which option was
defined, the JobManager actor will select the next task to be sent to the JobWorker actor,
being able to select the next file in the list (file-based) or the next group of messages of a
file (message-based), and so on until to finish of processing all the files defined in the list
sent in the JobRequest message. However, for this last strategy, it is necessary to parse
an entire GRIB file in the JobManager to know where each GRIB message starts in order
to be able to group messages.

In relation to the deploy, the application code is compiled and built in the master
machine and subsequently the executable JAR file is distributed manually to the worker
machines, and executed from a shell script called from the master machine.
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4.3 Using cluster-aware routers

With the goal of evaluating the performance of our proposal regarding the other
options provided by Akka, a second approach is considered. Contrary to our proposal
that uses the Manager-Worker pattern, in this second approach, the tasks are not sent
on-demand. The JobManager sends the tasks to JobWorker actors from the beginning
of the execution, at the default behavior. Thus, the built-in routers employed in this
approach were the RoundRobinPool, RandomPool and AdaptiveLoadBalancingPool. The
latter uses cluster metrics to distribute the tasks among the worker actors, and in this
case, three different cluster metrics were utilized: CPU, Heap and the Mix metric. These
metrics were collected using the Hyperic Sigar3, which is a native package library, that
provides more accurate metrics (VERNON, 2015). We chose to work with the Pool router
type, since these are recommended for CPU-intensive tasks (VERNON, 2015), and also
because for this type, it is not necessary to create the routees beforehand on cluster nodes,
but rather they are created on-demand.

Since, we use the built-in routers from Akka, the design for this variant is simpler
and the Figure 4.4 shows how this alternative approach works. In the same way as de-
scribed in the Section 4.2, the Driver program loads the configurations from a file where
these are stored, obtains the file names of all the GRIB files to be processed from HDFS,
and creates the JobManager actor. Then, the list of file names is sent through JobRequest
message to the JobManager actor.

Figure 4.4: Design: Using different cluster-aware routers.
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In the JobManager actor, a router will be created and will be in charge of dis-
tributing the ProcessTask messages to the JobWorkers in line with the logic of the router

3https://github.com/hyperic/sigar
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specified, and, after entrusting the processing of the first GRIB file, either as file-based
or message-based, the JobManager changes its behavior from default to processing.

The ProcessTask messages are then enqueued in each JobWorker mailbox, and
processed one by one by each JobWorker. At this point, the JobWorker actor uses our
Scala client module to process the GRIB messages, and the results of each task computed
are combined to calculate the partial result. Next, a PartialResult message containing this
result is sent to the JobManager actor. This process will continue until the JobManager
has entrusted all the tasks and the JobWorker actors have processed all the messages
received. Once this occurs, the JobManager changes its behavior from processing to finish
and sends a GetResult message itself to compute the final result from all of the partial
results received previously.

4.4 Using Metadata

After analyzing the initial experimental results, a difference was observed between
the file-based and message-based strategies. This difference refers to the time spent by the
Driver program and JobManager actor. And, since the performed work for both strategies
is indeed the same in the Driver program, the time difference occurs in the JobManager
actor.

This can be seen in the Figure 4.5, which contains on each bar the maximum time
spent by JobWorker actors and the time utilized by the Driver program and JobManager.
The x-axis represents the strategy utilized (both file-based and message-based), as well as
the number of cluster nodes used, the y-axis presents the time in seconds. Those results
are taking into consideration the best performance achieved for our proposal, both for the
file-based and for the message-based strategies.

As can be seen in the figure, there was a noticeable difference between file-based
and message-based strategy. For the file-based, each set of the operations performed by
driver program and JobManager actor took about 3 seconds, whereas this time for the
message-based was longer.

This difference is caused by the message-based strategy when the JobManager
selects the group of messages that will be sent to the JobWorkers, because the JobManager
actor must perform a pre-processing over a GRIB file in order to identify the beginning
of the first GRIB message per each group of messages. This operation is performed once
per GRIB file and on-demand in the JobManager. Obviously, this was reflected in a loss
of performance.

For that reason, an improvement over our initial proposal is explored, this opti-
mization consists of storing information about GRIB messages per file, such as the byte
location where each message starts in the GRIB file, a 3-tuple consisting of the discipline
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Figure 4.5: Initial results for file and message-based strategy using our proposal.
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code, the discipline category code, and the name code, which allow for the identification
of the GRIB parameter contained in each message.

Since we only plan to store just metadata, and then perform simple queries. We
choose to use MongoDB4, one of the most popular NoSQL databases, because in Parker
et al. (PARKER; POE; VRBSKY, 2013), MongoDB achieved a better performance than
SQL Server – a SQL relational database – for simple queries. Likewise, Abramova et
al. (ABRAMOVA; BERNARDINO, 2013) use the YCSB – Yahoo! Cloud Serving Bench-
mark (COOPER et al., 2010) to evaluate two NoSQL databases, both MongoDB and
Cassandra. And, MongoDB obtained better results for read operations in not very large
data sets, about 100.000 rows. Furthermore, MongoDB allows the storage of data as
“documents” of key-value pairs.

Thus, initially a pre-processing over all the GRIB files is performed to obtain the
necessary information, then, all the metadata obtained is stored in MongoDB, so it is no
longer necessary to parse each GRIB file during the selection of the next set of messages
to know where a message starts, since this information would be available in advance.

Figure 4.6 illustrates the complete architecture of our proposal with the improve-
ment, thus, in this variant, the JobManager performs a query by GRIB file to MongoDB,
to select only those messages that fulfil the condition set out (for example, 2 specific pa-
rameters of 27 total parameters), then divide it into groups of messages, which will be sent
to the JobWorker to be processed. The result for a query that requires just the parameters
Temperature (0,0,0) and Relative humidity (0,1,1) is shown in Figure 4.7, it is found in a

4https://www.mongodb.com/
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Figure 4.6: Architecture: Using metadata stored in MongoDB.
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JSON format, and contains the GRIB file name, its length in bytes, and for each message
belonging to the GRIB file, the start byte location and the 3-tuple mentioned above.

Due to Scala was used in the implementation of our proposal, at this stage it was
also necessary to use Casbah (CASBAH, 2016) to interact with MongoDB from Scala.
Casbah was basically used to insert and query data in MongoDB.

4.5 Using Apache Spark

In order to compare our proposal with one of the main frameworks currently ex-
isting for big data processing, another approach is presented in this section. For this case,
the first approach contemplated was to use our Scala client module to parse and decode
the GRIB files but saving all the decoded data in the RDDs. However, in this step, we
obtained JVM heap exceptions and, since the unpacked data values occupy much more
memory than available, we have opted to store only the results obtained from the Scala
client module in the RDDs, in the same way that it is performed in our proposal.

When Apache Spark is run in a distributed environment, it may be run mainly
on Apache YARN or Apache Mesos, which allow scheduling and management the re-
sources in the cluster. And, since Apache Hadoop was already installed to use HDFS to
store the dataset, we decided to use Apache YARN, so that, the Spark application is
submitted to Apache YARN in cluster mode making it necessary to execute the YARN



52

Figure 4.7: Sample: JSON output document from MongoDB.

1 {
2 " _id " : Ob j e c t I d ("58342 d6345e f6 f5c0c253271 ") ,
3 " f i l e n a m e " : "JULES_BRAMS05km_2015091200_2015091200 . g r i b 2 " ,
4 " l e n g h t " : NumberLong (70801650) ,
5 " msgs " : [
6 {
7 " s t a r t " : NumberLong (2696887) ,
8 " params " : "0 , 0 , 0"
9 } ,

10 {
11 " s t a r t " : NumberLong (5091511) ,
12 " params " : "0 , 0 , 0"
13 } ,
14 {
15 " s t a r t " : NumberLong (13100719) ,
16 " params " : "0 , 0 , 0"
17 } ,
18 ...
19 }

ResourceManager on the Master machine, and the YARN NodeManagers on the Worker
machines.

The first, keeps a register of the NodeManagers and schedules and manages the
available resources, named containers. The NodeManagers manage the processes running
in containers, and these containers run the application-specific tasks.

This implementation with Apache Spark uses the SparkContext’s binaryFiles func-
tion to read the GRIB binary data stored in HDFS, which returns a map of RDDs for
each GRIB file, where the key is the path to file, and the value is a PortableDataStream
object, the latter being used as input for our Scala client module. Thereafter, a new map
of RDDs is defined containing the file name as key, while that the map values would be the
results obtained from the Scala client module, and finally the final results are calculated
from these map values.

Apache Spark is employed to perform the tasks in the cluster, however, this imple-
mentation to process the data is totally dependent upon our Scala client module to parse
and decode the GRIB messages. In this case, RDDs just store the result of the Scala client
module and not the entire unpacked data values, otherwise there would be JVM heap ex-
ceptions, since Apache Spark needs to have the data stored in memory before performing
an operation, this works perfectly when the data fits in memory, but when this does not
happen, Apache Spark have a loss of performance or even a JVM heap exception (GU;
LI, 2013).
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5 EXPERIMENTAL EVALUATION

In this chapter the experimental evaluation of our proposal for processing the GRIB
files and the other approaches explored in this work are described. Section 5.1 describes the
experimental environment in which the experiments were performed. Section 5.2 details
the dataset utilized in the experiments. Section 5.3 presents the factors considered in the
experimental methodology. Finally, Section 5.5 presents the experimental results and an
analysis of these results.

5.1 Experimental Environment

The experiments were conducted on a cluster in Microsoft Azure, which was se-
lected since, in Roloff et al. (ROLOFF et al., 2012), Azure gave better results in relation
to cost efficiency and performance compared to Amazon and Rackspace cloud services,
and also because the GPPD research group currently counts with access to an account in
Microsoft Azure. The experimental cluster was composed of nine A6 instances, which has
4 virtual cores, 28 GB of memory and 285 GB local disk for instance, running a 64-bit
Ubuntu 14.04 LTS operating system. An instance was dedicated for the Master machine,
and the other eight instances were assigned to the Worker machines.

It must be highlighted that, the dataset used in the experiments was stored in
HDFS in just four virtual machines as illustrated in Figure 5.1. HDFS was configured
with a replication factor of two and with a data block size of 128 MB.

Master node

Worker nodes

Master

Worker1

HDFS

Worker2

HDFS

Worker3

HDFS

Worker4

HDFS

Worker5 Worker6 Worker7 Worker8

HDFSMongo

Figure 5.1: Cluster in Microsoft Azure.

As mentioned previously in Section 4.2, during the experiments using Akka, the
Seed node, Master role node and NameNode were performed in the Master machine, and
the Worker role node and DataNode were performed in the Worker machines. Likewise,
since one of the experiments was executed using Apache Spark which utilized Apache
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YARN, it was necessary to run the ResourceManager in the Master machine, and the
NodeManager in the Worker machines.

The versions of the software utilized in this work are listed in Table 5.1.
Table 5.1: Overview of the software components.

Software Version
Apache Maven 3.3.3
SBT 0.13.9
Java 1.8.0_60
Scala 2.11.7
Akka 2.4.4
Casbah 3.1.1
MongoDB 3.2.10
Apache Hadoop 2.6.0
Apache Spark 1.3.1

5.2 Dataset Description

The dataset used in the experiments contains 184 GRIB files, and each of these
files is composed of 175 GRIB2 messages, giving a total of 32200 GRIB2 messages, all of
this for just for three months. These files were obtained from the CPTEC’s FTP1, which
were organized into two folders per day, one of them released at 00:00 and the other at
12:00.

The total size in a raw format is 13 GB, but if it is transformed into text-plain
containing the unpacked data values, it will have a size of 378 GB, which greatly exceeds
the amount of available memory in the cluster utilized. It is important to note that,
this dataset size was chosen to speed up the execution of the experiments. Latitude-
longitude is the grid type found for all the GRIB messages in the dataset, where each file
is composed of 14 GRIB2 messages using the Complex packing and 161 GRIB2 messages
with the Complex packing and spatial differencing data packing method. Most messages
contain 1,584,353 data points or values each. Likewise, upon analyzing the entire dataset
27 different types of parameters stored in the GRIB2 messages were found. Thus, for
example, Temperature, Relative humidity, Total precipitation had in total 3864, 3496 and
184 occurrences respectively.

5.3 Experimental Methodology

The experimental methodology considers several factors to process the GRIB files,
and these are presented as follows.

1ftp://ftp1.cptec.inpe.br/modelos/io/tempo/regional/BRAMS05km/grib/
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5.3.1 Configurations

As noted in Section 4.2, several JobWorker (JW) actors may be deployed for Worker
role node (WN). Table 5.2 shows the number of JobWorker actors that there will be for
each set of Virtual Machines in the experiments.

Thus, the first configuration 1WN-4JW means that for each virtual machine 1 Worker
role node will be deployed and each one will have 4 JobWorker actors, then one VM will
have a total 4 JWs, two VMs will have 8 JWs, four VMs will use 16 JWs and finally eight
VMs will contain 32 JWs. In the same way, the configuration 4WN-2JW means that for each
virtual machine 4 Worker role nodes will be deployed and each one will have 2 JobWorker
actors, giving a total of 8 JW for 1 VM, for 2 VMs there will be 16 JWs, for 4 VMs there
will be 32 JWs and for 8 VMs there will be 64 JWs in total. This configuration 2WN-8JW

means that for each virtual machine 2 Worker role nodes will be deployed and each one
will have 8 JobWorker actors, thus one VM will have a total of 16 JW, two VMs will have
32 JWs, four VMs will use 64 JWs and finally eight VMs will contain 128 JWs. It is worth
mentioning that each Worker role node is performed in a single JVM.

Table 5.2: Configurations: Total number of JobWorkers per set of VMs.

Configuration 1 VM 2 VMs 4 VMs 8 VMs

1WN - 4JW 4 8 16 32
2WN - 2JW 4 8 16 32
4WN - 1JW 4 8 16 32
1WN - 8JW 8 16 32 64
2WN - 4JW 8 16 32 64
4WN - 2JW 8 16 32 64
2WN - 8JW 16 32 64 128
4WN - 4JW 16 32 64 128

In short, the total number of JobWorker actors per set of virtual machines may be
calculated by Equation 5.1, where wn is the number of Worker role nodes deployed, jw

represents the number of JobWorker actors for each Worker role node, and vm represents
the number of virtual machines running in the cluster.

Total of JobWorker actors = #wn×#jw ×#vm (5.1)
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5.3.2 Grouping messages

Furthermore, for each one of the combinations mentioned in Subsection 5.3.1, the
processing of the GRIB files can be accomplished in two different ways, such as file-based
and message-based. The first indicates that each JobWorker actor will process an entire
file with its 175 GRIB2 messages, and in the second way the JobManager will split the file
into groups of messages, where this number can vary from 22, 44 or 88 messages, and this
additional step is completed in the JobManager actor. These numbers were selected to
divide each file as equitably as possible. Thus, if the number of messages to be processed
by each task is 22, one GRIB file could be processed for 8 JobWorkers, seven of them
will process 22 messages and one would receive 21 messages to process, and if the number
of messages by each task is 44, 4 JobWorkers could process all the messages of a GRIB
file, three of them will receive 44 messages to process and one would process 43 messages,
and finally if the number of messages to be processed by each task is 88, one GRIB file
would be processed for 2 JobWorkers, one of them would process 88 messages and the
other would process 87 messages.

5.3.3 Mechanisms

In order to evaluate the performance of our proposal in relation to the other alter-
natives provided by Akka, all the experiments were run using 6 mechanisms: Our proposal
referred to as aGrib, which uses the Manager-Worker pattern. The round-robin and ran-
dom router strategy denoted here as rr and ra respectively, which use the RounRobinPool
and RandomPool router. The other three mechanisms use the AdaptiveLoadBalancing-
Pool router, the cmc which uses the CPU cluster metric, cmh, that utilizes the JVM
Heap cluster metric, and the cmm which combines CPU, load and JVM Heap cluster
metric.

Thus, for each mechanism 32 combinations in total were performed, which vary the
number of JobWorker actors by Worker role node, being these: 1WN-4JW, 2WN-2JW, 4WN-1JW,
1WN-8JW, 2WN-4JW, 4WN-2JW, 2WN-8JW, 4WN-4JW, and each one of these varying the size of the data
to be processed for JobWorker, 22, 44, 88 (message-based) and 175 messages (file-based).

5.3.4 Varying dataset

Since there are different applications that perform queries considering just one or a
few parameters of the entire dataset, as already mentioned in Chapter 3, the experiments
in this work were addressed in two scenarios. A first scenario, that calculates the average
value for the Temperature and Relative humidity parameters, and a second scenario
that calculates the average value for all parameters in the dataset.
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5.4 Baseline

Initially, the execution time of our Scala module client serial version was measured
without using the Akka Toolkit and with the dataset stored in disk, the execution time
for the first scenario, which only takes into account two parameters was 1851.48 seconds
and for the second scenario which takes into account all the parameters the execution
time was 5258.92 seconds. In addition to this, it also measured the execution time used
by GRIB API (version 1.13.0) for processing the GRIB files, thus, for the first scenario the
runtime was 2139.81 seconds and for the second scenario it was 5537.92 seconds, however
the GRIB API not only calculates the average but also performs other operations over
the data values, such as, maximum, minimum and standard deviation. For this reason,
we decided to use the serial version of the ScaGrib module as our baseline, to guarantee
a fair comparison.

5.5 Experimental Results

All the experiment results in this section show the average over 5 runs. The results
related to the first scenario were run in a cluster located in West Europe Azure region,
whereas the results related to the second scenario were run in a cluster located in North
Europe Azure region. Besides, the initial experiments were considering the following con-
figurations: 2WN-2JW, 4WN-1JW, 2WN-4JW, 4WN-2JW, 2WN-8JW and 4WN-4JW, which were performed
in the same cluster, whereas the configurations: 1WN-4JW and 1WN-8JW were performed on
different clusters.

In addition, for each task processed for a JobWorker actor, we logged the number
of received tasks, received messages, processed messages, the time spent reading the GRIB
file from HDFS, the time spent processing the GRIB messages with our module client,
the worker machine where was deployed the actor. Likewise, we use the sysstat2, a suite
of monitoring tools for the Linux operating system, which was used to collect information
about of the CPU and memory usage in an interval of 5 seconds. All this was done with
the aim to understand better the why of some results.

It is worth noting that the performed experiments with the mechanisms: rr, ra, cmc,
cmh and cmm using the file-based strategy did not complete their execution correctly.
Likewise, experiments using the 1WN-16JW configuration failed during their execution, due
to the JVM run out of memory, so it was not possible to have 16 JobWorker actors per
Akka worker node.

2https://github.com/sysstat/sysstat



58

5.5.1 First scenario: Using two parameters

This subsection covers the results of processing just two parameters of the dataset.
The total execution times considering the best and worst cases for each mechanism using
1, 2, 4 and 8 worker virtual machines are shown in Figure 5.2, where the error bars
represent the standard deviation. Nonetheless, all the execution times for this scenario
are presented in the Figures B.1, B.2, B.3, and B.4, which are found in Appendix B.

Figure 5.2: First scenario: Best and worst configuration for each mechanism.
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Thus, taking into account only when 1 worker virtual machine was used. The
rr obtained the best performance from all mechanisms using the 1WN-8JW-88 configuration
with a time spent of 450.28 seconds. The same had a gain of 3.08% and 80.98% in relation
to its second best and worst cases 2WN-4JW-88 and 4WN-1JWW-44 respectively. This latter
configuration also had the worst time from all mechanisms.

The second best time from all mechanisms resulted from using aGrib, which spent
a time of 456.38 seconds. The 1WN-8JW-88 configuration obtained the best performance,
which had a gain of 1.38% and 20.46% with regard to the second best and worst cases
2WN-4JW-175 and 4WN-1JW-22 respectively.
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In addition to this, for all mechanisms, the difference between the best and second
best cases ranged from 0.33% to 3.08%. Likewise, the best performance achieved for aGrib
had a loss of 1.34% in relation to the rr mechanism, and a gain of 3.54%, 1.56%, 4.28%
and 4.15% in relation to the best cases reached for the ra, cmc, cmh and cmm mechanisms
respectively.

Nevertheless, when we examined the total execution times and the time spent by
the JobWorker actors, a difference in time between message-based aGrib and the other
approaches including file-based aGrib was found. As mentioned in Section 4.4, we refer
to this time difference as the time spent by the Driver program and JobManager actor.
Thus, this time ranged from 11 to 29 seconds for the message-based aGrib, being the
configurations 1WN-4JW, 2WN-2JW, 4WN-1JW, 1WN-8JW, 2WN-4JW and 4WN-2JW which took a longer
time, whereas it was about 3 seconds for the file-based aGrib, and it ranged from 3 to
8 seconds for the other mechanisms, being the configuration 4WN-4JW-88 which took more
time. Taking into consideration only the best cases, this time was 20.06 seconds for the
message-based aGrib. And, it was between 3 and 4 seconds for the best cases of the other
mechanisms.

The reason for this time increment in the message-based aGrib was because the
JobManager actor needs to parse a GRIB file with the aim to know the beginning of the
first message of each group of messages that will be sent in response for each JobWorker
request, all of this producing a bottleneck in the JobManager. This was not the case for
the file-based aGrib, where the list of GRIB files to be processed are known beforehand.
When the message-based strategy for the other five approaches is used, the job carried
out by the JobManager is performed from the beginning of the processing in parallel to
the JobWorker operations, as described in Section 4.3.

As can be seen in the figure, the rr mechanism had a poor performance with the
4WN-1JW-44 configuration. This was because the messages, that correspond to Temperature
and Relative humidity variables have a fixed position in all the GRIB files, so there are
actors that receive a number of messages but do not necessarily decode all the GRIB
messages, it may even be the case that the actor does not decode any of the received
messages. Similar behavior was seen with the configurations: 1WN-4JW, 2WN-2JW, 4WN-1JW,
1WN-8JW, 2WN-4JW, 4WN-2JW when processing groups of 22 messages and the configurations:
1WN-4JW, 2WN-2JW, 4WN-1JW for tasks grouping 44 messages.

For example, both Table 5.3 and Table 5.4 detail the number of received and
processed messages using the rr and aGrib with the 4WN-1JW-22 configuration. In both
tables, the first iteration for rr and aGrib is taken in consideration. Thus, for the rr
mechanism (see Table 5.3), 3 actors received 8096 tasks and 1 actor received 7912, the
first three processed 2576, 1840 and 2944 messages respectively while the latter processed
0 messages. The actor named as c4 did not decode any messages, but utilized a time of
90.36 seconds to parse the assigned GRIB messages to know whether it corresponded with
either of the two parameters (Temperature or Relative humidity) to be evaluated, while
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the actor characterized as c3 used a time of 715.78 seconds to parse and decode the GRIB
messages.

Table 5.3: Number of received and pro-
cessed messages using round-robin for
the 4WN-1JW-22 configuration.

Actor Received Processed
c1 8096 2576
c2 8096 1840
c3 8096 2944
c4 7912 0

Table 5.4: Number of received and pro-
cessed messages using aGrib for the
4WN-1JW-22 configuration.

Actor Received Processed
c1 8504 1805
c2 8309 1803
c3 7879 1830
c4 7508 1922

On the other hand, for aGrib (see Table 5.4), all the actors processed a similar
number of messages and had an uniform time for parsing and decoding the GRIB mes-
sages, which indicates that there was a better balancing of the tasks using aGrib. This
can be clearly seen in Figure 5.3, which depicts the time spent by the JobWorker actors,
for both rr and aGrib mechanisms using the 4WN-1JW configuration.

Figure 5.3: Time spent by the JobWorkers using the 4WN-1JW configuration with rr and
aGrib.
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When 2 worker virtual machines were used. The best performance from all
mechanisms was obtained using the 1WN-8JW-175 configuration of aGrib, where the time
spent for this configuration was 249.53 seconds. Likewise, the gain with regard to the
second best and worst cases of this mechanism was 1.53% and 26.59%, 2WN-4JW-175 and
4WN-1JW-22 respectively.

The second best mechanism resulted from using the rr with the 1WN-8JW-88 con-
figuration, which had a gain of 0.98% and 158.83% with respect to its second best and
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worst cases, 2WN-4JW-88 and 1WN-4JW-22, respectively. This latter configuration had the worst
performance from all mechanisms.

The difference between the best and second best cases ranged from 0.05% to 1.98%
for all mechanisms. In addition, the best performance of aGrib reached a gain of 2.13%,
8.06%, 7.15%, 7.97% and 9.34% in relation to the best cases achieved for the rr, ra, cmc,
cmh and cmm mechanism respectively.

As in the previous case, there was a time difference between the message-based
aGrib and the file-based aGrib for the work performed by the JobManager. This time
ranged from 11 to 29 seconds for the message-based aGrib, using the configurations
1WN-4JW, 2WN-2JW, 4WN-1JW, 1WN-8JW, 2WN-4JW and 4WN-2JW which took a longer time, whilst
the file-based aGrib was about 3 seconds, and it was between 3 and 15 seconds for the
other mechanisms, using the 4WN-4JW-88 configuration which took more time. Considering
only the best cases, this time was 17.45 seconds for the message-based aGrib, and between
3 and 6 seconds for the best cases of the other mechanisms.

Once again, in this specific case, the rr mechanism had a poor performance when
used the configurations: 1WN-4JW, 2WN-2JW, 4WN-1JW and the tasks processed group of mes-
sages of 22 and 44. This was because there were actors that processed a significantly
smaller number of messages (even none at all) than other actors. This can be seen in Fig-
ure 5.4, which shows the number of messages processed per task upon using the 1WN-4JW

configuration and the time spent by the JobWorker actors for both aGrib and rr.

Figure 5.4: Time spent by the JobWorkers of the rr and aGrib mechanism using the
1WN-4JW configuration.
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When 4 worker virtual machines were utilized. The aGrib obtained the best
performance among all mechanisms using the 1WN-8JW-175 configuration and an execution
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time of 139.60 seconds, which had a gain of 1.25% and 33.74% regarding its second best
and worst cases, 2WN-4JW-175 and 4WN-1JW-22 respectively.

The second best mechanism was the rr, which achieved its best time using the
2WN-8JW-88 configuration, while its second best time was achieved using the 2WN-4JW-88

configuration with a time increment of 0.19% and its worst performance was using the
4WN-1JW-22 configuration with an increase in time of 140.74%. The worst case of this
mechanism had, once again, the worst case among all mechanisms.

In general for this case, for all mechanisms, except aGrib, the gain between the
best and second best cases was less than 1%. The best time of the aGrib reached a gain
of 5.88%, 11.91%, 13.28%, 11.84% and 12.03% in relation to the best cases obtained for
the rr, ra, cmc, cmh and cmm mechanisms respectively.

Figure 5.5: Time spent by the JobWorkers of the rr and aGrib mechanism using 1WN-8JW,
2WN-4JW, 2WN-8JW in 4 VMs.
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When four worker machines were used, the time difference between the total ex-
ecution time and the maximum time utilized by the JobWorker actors had a substan-
tial increase for all mechanisms. Thus, this time was between 20 and 81 seconds for the
message-based aGrib, using the configurations 1WN-8JW, 2WN-4JW, 4WN-2JW, 2WN-8JW and 4WN-4JW

which took a longer time, whereas it was about 3 seconds in the case of file-based aGrib
and ranged from 3 to 96 seconds for the other mechanisms, using the same configuration
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as the message-based aGrib which had the increase in time, most notably when using the
2WN-8JW configuration.

Concerning only the best cases, this time was 45.69 seconds for the message-based
aGrib. The best case for rr used a time of 96.40 seconds by the JobManager operations,
however, this was not the case for the other rr configurations, such as 2WN-4JW-88 and
4WN-1JW-22 where the operations used 33.32 (second best case) and 4.77 (worst case) sec-
onds respectively. And, it ranged from 37 to 56 seconds for the other mechanisms.

Recall that the 1WN-8JW-175 configuration using the file-based aGrib achieved the
best performance, whereas the 2WN-8JW-88 configuration achieved the best time upon using
the rr mechanism, and the 2WN-4JW-88 configuration obtained the best performance for the
message-based aGrib. Figure 5.5 shows the time spent by the JobWorker actors for those
3 configurations using four worker machines. As can be seen in this figure, the 2WN-8JW-88

configuration of rr had a better performance among the other configurations, however, the
operations carried out in the Driver program and JobManager actor have a large influence
in the total runtime.

We chose some of the results as similar as possible to compare the time utilized
by the JobWorker actors for both aGrib and rr mechanisms upon using the 2WN-8JW-88

configuration, which has 64 JobWorker actors in total. The information shown in Table 5.5
details the number of received and processed messages for each actor, the file reading
time from HDFS and the time spent for processing GRIB messages using our client
module per each JobWorker. As can be seen in the table, the time taken with aGrib was
considerably greater than those with the rr for a similar number of received and processed
messages. This could explain why the JobWorkers had better performance upon using the
rr mechanism with the 2WN-8JW-88 configuration. However, a further analysis is necessary
to determine the reason of this result which may be due to the fact that although they
have similar tasks, the number of data points may not be the same.

Table 5.5: Time spent for the processing the GRIB files using the 2WN-8JW-88 configuration.

Mechanism Machine Actor Received Processed HDFS Time GRIB Time
rr worker1 c50 435 95 262 30224
rr worker1 c58 435 95 265 28541
aGrib worker3 c43 435 95 436 65736
rr worker2 c13 528 126 567 41267
rr worker3 c9 528 126 1105 41316
aGrib worker3 c49 525 120 462 56099
aGrib worker4 c14 527 124 3079 59183
rr worker4 c48 522 114 290 34763
aGrib worker4 c32 522 114 469 63248

When 8 worker virtual machines were used. The aGrib reached the best
performance from all mechanisms using the 1WN-8JW-175 configuration with a time spent
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of 77.11 seconds. This configuration had a gain of 2.46% and 67.63% with respect to its
second best and worst cases, 2WN-4JW-175 and 4WN-4JW-88 respectively.

The second best mechanism was once again the rr, where its best performance
resulted from using the 2WN-2JW-88 configuration. Nonetheless, it also had the worst per-
formance in general when each task processed groups of 22 messages.

Thus, the best performance for this specific scenario was reached by the file-based
aGrib, which obtained a gain of 38.54%, 46.24%, 46.73%, 45.78% and 46.25% in relation
to the best cases achieved by the rr, ra, cmc, cmh and cmm mechanisms respectively. In
addition to this, the time difference between the best and second best cases for the rr, ra,
cmc, cmh and cmm mechanisms was 0.25%, 0.71%, 1.67%, 0.77% and 0.17%, respectively.

When eight worker machines were used, there was also a time difference between
the total runtime and the maximum time utilized by the JobWorker actors, thus, the time
employed by the JobManager actor was between 31 and 81 seconds for the message-based
aGrib, whereas it was between 3 and 4 seconds for the file-based aGrib, and it ranged
from 4 to 85 seconds for the other mechanisms, giving the configurations 1WN-8JW, 2WN-8JW
and 4WN-4JW which took more time. And, taking into consideration only the best cases, this
time was 35.67 seconds when the message-based aGrib was used, while it was 3.44 seconds
when the file-based aGrib was used. On the other hand, the rr spent a total time of 30.57
seconds in the operations performed for the Driver program and the JobManager, whilst
this time was between 40 and 64 seconds when the alternative approaches were used.

Figure 5.6 and Figure 5.7 display the average CPU usage as a percentage consider-
ing the use of 8 virtual machines for aGrib and round-robin, respectively. The CPU usage
plotted is only of the worker machines and not of the master machine. The two figures
contain all the configurations utilized, as well as the group of messages processed per task.
As can be appreciated in both figures, the aGrib with the file-based strategy made better
use of the resources, especially with the 1WN-8JW-175 configuration, regarding the other
approaches experimented in this work. As can also be seen in the figures, configurations
which required less worker role nodes, also used less resources at the deploying phase,
as there were less JVMs to deploy, this also applied at the beginning of the processing
for the message-based strategy. In addition to this, the first few seconds (3-4) were time
employed by the Driver program to obtain the information of the GRIB files from HDFS,
and subsequently the creation of JobWorker actors from the JobManager actor.
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Figure 5.6: First scenario: CPU utilization for the aGrib using 8 worker machines.
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Figure 5.7: First scenario: CPU utilization for the round-robin using 8 worker machines.
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Figure 5.8 depicts the average memory usage as a percentage over time by em-
ploying the aGrib. In the figure, it can be appreciated that the less worker role nodes we
have, the less memory will be utilized, as indeed less memory will need to be allocated
by a JVM than by two JVMs. Thus, configurations 1WN-4JW and 1WN-8JW maintained an
approximate memory usage of 25%, whereas the configurations: 2WN-2JW, 2WN-4JW, 2WN-8JW
maintained an approximate peak memory usage of 45%, and the configurations: 4WN-1JW,
4WN-2JW, 4WN-4JW reached a peak approximate memory usage of 60%. The same behavior
was observed in the other mechanisms.

Figure 5.8: First scenario: Memory utilization for the aGrib using 8 worker machines.
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Figure 5.9 shows the speedup achieved in the experiments for all mechanisms,
taking into account the best and worst cases. The baseline utilized was our Scala client
module, which is used internally for aGrib and the other mechanisms utilized in the
experiments. Thus, considering the best cases, results show that increasing the number
of cluster nodes causes all of the mechanisms to obtain good scalability, especially our
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proposal. However the speed gain diminishes slightly after 4 VMs for aGrib, and this gain
diminishes considerably for the other mechanisms.

Figure 5.9: First scenario: Best and worst speedup for each mechanism.
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Summary: The processing of the GRIB files with aGrib obtained the best per-
formance using the 1WN-8JW configuration. Thus, when 1 VM was used, it was better at
processing groups of 88 GRIB messages per task, whereas the file-based strategy had bet-
ter results upon using 2, 4 and 8 VMS. This means that for our proposal, it was better to
have 8 JobWorker actors running in just one worker role node. Nonetheless, our proposal
did not achieved the best performance upon using 1 VM, this was due to the fact that
aGrib with the 1WN-8JW-88 configuration utilized a longer time in the JobManager actor
compared with the best case obtained using round-robin.

In relation to the message-based strategy, the aGrib and rr mechanisms achieved
better results by processing tasks with groups of 88 GRIB messages, whereas the cmc, cmh
and cmm mechanisms had better results by processing groups of 22 and 44 GRIB messages
per task, this indicates that those which used the adaptive load balancing presented better
performance with smaller tasks.

When 1 and 2 worker virtual machines were used, the time spent for the rr, ra, cmc,
cmh and cmm mechanisms in the Driver program and JobManager actor was minimum
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in relation to the utilized for the message-based aGrib. Likewise, the 1WN-8JW configuration
achieved better results for these cases.

On the other hand, when 4 and 8 worker virtual machines were used, the time spent
by the JobManager actor experienced a significant increase, especially for the configura-
tions: 1WN-8JW, 2WN-8JW and 4WN-4JW. This happened because there were a greater number of
JobWorker actors running in the cluster, so the tasks performed by the JobWorker actors
were accomplished faster than the task distribution by the JobManager actor itself. Like-
wise, by using 2 Akka worker nodes presented better times and we observed that if only
the time spent by the JobWorker actors is taken into account, the 2WN-8JW configuration
obtained better performed the work in a shorter time, however the total execution time
was influenced by the time used by the distribution of tasks in the JobManager actor.
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5.5.2 Second scenario: Using all parameters

In this scenario, all parameters into the dataset are evaluated. The total run times
considering the best and worst cases for each mechanism upon using 1, 2, 4 and 8 worker
virtual machines are shown in Figure 5.10, besides the error bars represent the stan-
dard deviation. Nonetheless, all the run times for this scenario are detailed in the Fig-
ures B.5, B.6, B.7, and B.8, which are found in Appendix B.

Figure 5.10: Second scenario: Best and worst configuration for each mechanism.
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Thus, when 1 worker virtual machine was used. The best performance from all
mechanisms was reached by the cmh using the 1WN-8JW-44 configuration with a time spent
of 1204.70 seconds. This configuration had a gain of 2.20% and 36.52% in relation to its
second best and worst cases, 1WN-8JW-22 and 4WN-1JW-44, respectively.

The second best mechanism resulted from using the rr, its best time was obtained
using the 1WN-8JW-88 configuration, with a gain of 0.47% and 47.34% with respect to the
second best and worst cases, the 1WN-8JW-44 and 4WN-1JW-44 configuration, respectively, the
latter one was also the worst case among all mechanisms.
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Regarding the ra, the best performance was obtained through the 1WN-8JW-88 con-
figuration, followed by the 1WN-8JW-44 while the 4WN-1JW-88 configuration had the worst
case. The best performance of this mechanism had a gain of 1.40% in relation to its
second best case and 29.71% with regard to its worst case.

The aGrib reached its best performance using the 1WN-8JW-175 configuration with
a time spent of 1254.68 seconds, which had a gain of 0.52% and 22.95% regarding the
second best and worst cases, 1WN-8JW-88 and 4WN-1JW-22 respectively. The best performance
according to aGrib had a loss of 3.98%, 2.84% and 0.69% in relation to the best cases for
the cmh, rr and ra mechanisms respectively, and a gain of 0.86% and 2.37% with respect
to the best cases reached by the cmc and cmm mechanisms.

Taking into consideration the best cases for these experimental results, the time
used by the Driver program and JobManager actor in relation to the message-based aGrib
was 17.64 seconds, whereas this time ranged from 3 to 4 seconds for the message-based
rr, ra, cmc, cmh and cmm, and file-based aGrib.

Figure 5.11 illustrates the times involved by all JobWorker actors taking into ac-
count the best mechanisms upon using 1 virtual machine as worker. The JobManager sent
736, 368 and 184 tasks when using the 1WN-8JW-44, 1WN-8JW-88 and 1WN-8JW-175, respectively.

Figure 5.11: Second scenario: Best cases using 1 worker virtual machine.
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As shown in Figure 5.11, the task distribution for aGrib was performed more
uniformly than the other mechanisms. Thus, considering just the first iteration of the
experiments for this scenario, each JobWorker upon using the 1WN-8JW-175 configuration
processed 4025 GRIB messages, whereas with the 1WN-8JW-88 configuration processed be-
tween 4023 and 4027 GRIB messages in the case of aGrib. On the other hand, the cmh
mechanism with its 1WN-8JW-44 configuration processed a number of GRIB messages rang-
ing from 3541 to 4770, while the best case of the rr mechanism processed between 4002
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and 4048 GRIB messages. However, aGrib did not achieved the best case among all mech-
anisms, so that a further analysis is required to determine the reason why the performed
tasks using aGrib took a longer time for this scenario.

When just 2 worker virtual machines were used. The best performance among
all the mechanisms was obtained using aGrib with the 1WN-8JW-88 configuration, the time
spent for this configuration was 652.19 seconds. This configuration had a gain of 1.19% and
31.18% with regard to its second best and worst performances, 1WN-8JW-44 and 4WN-1JW-22

respectively.
The second best mechanism resulted from using the rr with the 1WN-8JW-44 con-

figuration, followed by the 1WN-8JW-88 configuration. The 4WN-1JW-22 configuration had the
worst performance with an increase in time of 51.64% regarding the best time. It was the
worst case among all the mechanisms using two virtual machines.

The best performance of aGrib reached a gain of 2.37%, 4.47%, 4.5%, 3.66% and
5.86% in relation to the best cases obtained for the rr, ra, cmc, cmh and cmm mecha-
nism respectively. Additionally, the time difference between the best and second best case
ranged from 0.37% to 2.69% considering all mechanisms.

For these results, it was also pointed out that there was a difference in the time
taken by the JobManager actor between the message-based aGrib and the other ap-
proaches. This time utilized in the message-based aGrib was 14.34 seconds, whilst for the
other mechanisms it was between 3 and 5 seconds.

Figure 5.12 depicts the times spent by the JobWorkers in the best cases when
2 worker virtual machines were used. This figure presents the file and message-based
strategy for aGrib, as well as rr, cmh and ra mechanisms. As can be seen in the figure,
regarding the time spent by the actor groups in worker1 and worker2, there is not a wide
variation for aGrib, whilst for rr this variation is noticeable, and it is even higher for the
other mechanisms.

Figure 5.12: Second scenario: Best cases using 2 worker virtual machines.
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When four virtual machines were used. The aGrib achieved the best perfor-
mance among all mechanisms using the 1WN-8JW-88 configuration with a time spent of
364.41 seconds, which had a gain of 0.84% and 26.20% in relation to its second best and
worst cases, 1WN-8JW-44 and 4WN-1JW-22 respectively.

The second best mechanism was using the rr with its 1WN-8JW-88 configuration,
which had a gain of 1.36% and 51.78% with respect to the second best and worst case of
the rr mechanism, 1WN-4JW-88 and 4WN-1JW-22 respectively.

The best time of the aGrib achieved a gain of 1.19%, 9.18%, 9.85%, 11.76% and 9%
regarding the best cases reached by the rr, ra, cmc, cmh and cmmmechanisms respectively.
Likewise, the difference in time between the best and second best cases for all mechanisms
was between 1.35% and 3.33%. Just as when 4 worker virtual machines were used in the
first scenario, the second scenario also presented an increase in the time spent by the
JobManager actor. Thus, the JobManager spent a time between 11 and 29 seconds when
using the message-based aGrib, and it was between 3 and 20 seconds when the built-
in routers from Akka were utilized. Additionally, if only the best cases are taken into
consideration, the message-based aGrib spent a time of 14.52 seconds, whilst it ranged
from 3 to 9 seconds for the other message-based mechanisms.

When 8 virtual worker machines were used to process the entire dataset of
GRIB files. The best performance from all mechanisms resulted from using aGrib with
its configuration 1WN-8JW-44, taking a time of 204.77 seconds. This configuration achieved
a gain of 0.29% and 26.61% regarding the second best and worst cases of the aGrib
mechanism, which were 1WN-8JW-22 and 4WN-1JW-22 respectively.

The second best mechanism was once again the rr, the 1WN-8JW-88 configuration
obtained the best time for this mechanism. This configuration had a gain of 2.44% and
41.55% in relation to its second best and worst cases, 1WN-4JW-88 and 4WN-1JW-22 respec-
tively.

Thus, the best performance for this scenario was reached by the message-based
aGrib strategy, which obtained a gain of 1.04%, 15.22%, 11.56%, 14.49% and 15.58%
in relation to the best cases obtained for the rr, ra, cmc, cmh and cmm mechanisms
respectively.

For this case, a time increment for the operations performed by the JobManager
upon using the message-based strategy was also observed. Considering only the best cases,
the time spent by the JobManager using the message-based aGrib was 20.84 seconds, as
opposed to 3.40 seconds for the file-based aGrib. On the other hand, it took a time of
11.05 seconds when using rr, and this time ranged from 6 to 14 seconds when using the
other mechanisms. Nonetheless, the 2WN-8JW-44 and 2WN-8JW-88 configurations of the aGrib
mechanism spent 74.08 and 48.34 seconds, respectively, while the 2WN-8JW-88 configuration
of the rr mechanism took 39.26 seconds.

The time used by the JobWorkers considering the best cases of the aGrib, rr, cmc
and cmh mechanisms are shown in Figure 5.13. As this figure implies, the message-based
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aGrib presents a more uniform distribution than the other approaches. And, considering
the first iteration of the best cases obtained upon using 8 virtual machines, each of the
64 JobWorkers for aGrib with 1WN-8JW-88 configuration received between 10 and 13 tasks
and processed between 438 and 569 GRIB messages, while that the JobWorkers for aGrib
with 1WN-8JW-175 configuration received between 2 and 3 tasks and processed between 350
and 525 GRIB messages. On the other hand, the JobWorkers in the best case of the
rr mechanism received between 5 and 6 tasks and processed between 435 and 528 GRIB
messages. And, regarding the cmc and cmh mechanisms, their JobWorker actors processed
218-743 and 284-702 GRIB messages, respectively.

Figure 5.13: Second scenario: Best cases using 8 worker virtual machines.
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As similarly presented for the first scenario, Figure 5.14 and Figure 5.15 display
the average CPU usage as a percentage considering the use of 8 virtual machines for aGrib
and round-robin, respectively. We can observe in those figures that the resource utilization
had a more sustained use in comparison with the graphics shown for the first scenario
(Figure 5.6 and Figure 5.7), except in the case of round-robin when tasks contained groups
of 22 and 44 messages. Additionally, for this scenario, the average memory usage showed
a behavior similar to that observed in the first scenario illustrated in Figure 5.8.
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Figure 5.14: Second scenario: CPU utilization for the aGrib using 8 worker machines.
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Figure 5.15: Second scenario: CPU utilization for the round-robin using 8 worker machines.
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The speedup achieved taking into account the best and worst cases for this scenario
is shown in Figure 5.16, the baseline utilized was also our Scala client module. As might be
expected, processing the GRIB files considering the full set of parameters presented better
results than the previous scenario for all mechanisms. A better scalability was reached by
processing all the variables for all the mechanisms utilized. This is notable because there
were no GRIB messages parsed needlessly for applying a search criteria on each message
and there were also no unnecessary reads from HDFS.

Summary: For our proposal, the aGrib, the best cases were obtained using the
1WN-8JW configuration, however when just 1 VM was used, the 1WN-8JW-175 was not the
best case among all of the performed mechanisms. Nonetheless, aGrib achieved the best
performance among all mechanisms upon using the 1WN-8JW-88, 1WN-8JW-88 and 1WN-8JW-44

for 2, 4 and 8 VMs, respectively. A key point to note is that the aGrib and the round-robin
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Figure 5.16: Second scenario: Best and worst speedup for each mechanism.
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had a similar number to performed by the JobWorker actors. As in the first scenario,
regarding the message-based strategy, the cmc, cmh and cmm mechanisms had better
results by processing groups of 22 and 44 GRIB messages per task, obtaining a better
performance with smaller tasks. Whereas the aGrib presented better times by processing
groups of 88 GRIB messages per task when 1, 2 and 4 worker machines were used, and
groups of 44 messages per task upon using 8 worker machines.

Furthermore, it was noted that in most cases, the best times for each mechanism
were achieved by varying the size of the message groups processed by a task using the same
configuration. So for example, when using 8 worker virtual machines and the message-
based aGrib, the best performance was achieved by using the 1WN-8JW-44, the second best
case was 1WN-8JW-22, and third best case was the 1WN-8JW-88 configuration.

Additionally, when using 1, 2, 4, and 8 virtual machines as workers, there was a
pattern in the time spent for processing the GRIB files. When there was the same number
of JobWorker actors (4, 8 ,16) by worker virtual machine, it was better to have less
worker role nodes by worker machine. Thus, 1WN-4JW obtained a better performance than
2WN-2JW, and this latter one was better than 4WN-1JW. In the same way, 1WN-8JW had a better
performance than 2WN-4JW, and this last one had was better than 4WN-2JW. Consequently,
2WN-8JW resulted in being better than 4WN-4JW.
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5.5.3 Using Metadata

The pre-processing of the GRIB files and the insertion of the metadata in MongoDB
took a total time of 179.47 seconds, however it must be taken into account that this pre-
processing is performed only once and can be used multiple times to process GRIB files.

Figure 5.17 shows the speedup achieved for aGrib without the optimization (file
and message-based strategies), round-robin and aGrib with the optimization. The x-axis
shows the number of cores utilized while that of the y-axis shows the respective speedup.
As can be appreciated in the figure, while the speedup keeps growing for the message-based
aGrib using metadata and the file-based strategy, this is not the case for the message-
based aGrib without using metadata and round-robin, where the speedup did not hold
that constant from 16 cores (4 VMs).

Figure 5.17: First scenario: Speedup achieved for aGrib, round-robin and aGrib using
metadata.
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Since, the first scenario only evaluates 2 – Temperature and Relative humidity –
of 27 total parameters. And, there are 21 and 19 GRIB messages that corresponds with
the Temperature and Relative humidity parameters, respectively, per GRIB file. The fact
of processing a GRIB file in groups of 88 GRIB messages per task does not provide any
benefit, since upon using the metadata, the maximum of messages that can be processed
by a GRIB file would be 40 GRIB messages. So, the best times were obtained with the
configurations: 1WN-4JW-44, 1WN-8JW-44, 1WN-8JW-22 and 1WN-8JW-22 when using 1, 2, 4 and 8
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worker virtual machines, respectively. In addition, for this case, the time spent by the
Driver program and the JobManager actor ranged from 4 to 5 seconds.

The aGrib using metadata obtained a better performance in contrast to the
other three cases, thus, when 1 VM was used with regard to file-based aGrib and message-
based strategy the gain was 8.06% and 6.58% respectively. With 2 VMs regarding the
file-based strategy, the optimization achieved a gain of 6.68%, and when 4 and 8 VMs
were used, the gain was slightly better, giving values of 12.35% and 11.07%, respectively.
Nonetheless, in relation to aGrib and round-robin message-based when using 8 worker
virtual machines, the gains became even greater, giving values of 58.3% and 53.88%,
respectively. Although there is no a great gain between the best cases of the initial proposal
and the optimization, there does exist a considerable gain compared to the results obtained
using the message-based strategy, especially when we refer to the experiments run in a
cluster of 4 and 8 virtual machines, which was the motivation for this improvement.

The Table 5.6 presents the execution time and the standard deviation obtained
considering the aGrib using metatada, as well as the aGrib without the optimization
for both file and message-based strategies and the round-robin which obtained the best
performance when just 1 VM was used.

Table 5.6: First scenario: Summary of the results for aGrib, round-robin and aGrib using
metadata

Mechanism #VMs Configuration Exec. Time (StDev)
aGrib with Metadata 1 1WN-4JW-44 428.19 (± 3.035)
file-based aGrib 1 2WN-4JW-175 462.69 (± 3.929)
message-based aGrib 1 1WN-8JW-88 456.38 (± 3.639)
round-robin 1 1WN-8JW-88 450.28 (± 5.657)
aGrib with Metadata 2 1WN-8JW-44 233.90 (± 3.395)
file-based aGrib 2 1WN-8JW-175 249.53 (± 7.061)
message-based aGrib 2 1WN-8JW-88 253.36 (± 3.852)
round-robin 2 1WN-8JW-88 254.86 (± 2.202)
aGrib with Metadata 4 1WN-8JW-22 124.25 (± 0.971)
file-based aGrib 4 1WN-8JW-175 139.60 (± 4.617)
message-based aGrib 4 2WN-4JW-88 152.19 (± 1.663)
round-robin 4 2WN-8JW-88 147.81 (± 2.410)
aGrib with Metadata 8 1WN-8JW-22 69.42 (± 1.122)
file-based aGrib 8 1WN-8JW-175 77.11 (± 1.545)
message-based aGrib 8 2WN-2JW-88 109.90 (± 1.513)
round-robin 8 2WN-2JW-88 106.82 (± 0.905)
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5.5.4 Using Apache Spark

At this point, we present a comparison between our proposal and our version that
processes the GRIB files using Apache Spark. According to the experiments conducted
with Spark, we use the default configurations. The cluster had 1 virtual machine as master,
and 8 virtual machines as workers. The experiments took into consideration 1 executor
per worker virtual machine and 4 cores per executor. In addition to this, each executor
had 24GB of memory allocated.

Figure 5.18 displays the speedup reached for the first scenario on the left side, as
well as for the second scenario on the right side, both considering the best cases of our
proposal and the results obtained with Apache Spark. Since aGrib with the optimization
just was applied over the first scenario, it does not appear in the figure for the second
scenario. The x-axis shows the number of cores utilized and the y-axis shows the respective
speedup.

With regard to the first scenario the aGrib without the optimization reached
a gain of 10.65%, 10.33%, 12.44% and 43.48% when using 1, 2, 4 and 8 VMs, respectively.
Obviously, the aGrib with the optimization reached a better performance with a gain
of 17.94%, 17.71%, 26.32 and 59.36% when 1, 2, 4 and 8 VMs were utilized, respectively.
And for the second scenario, aGrib achieved a gain of 5.35%, 9.56%, 11.26% and 33.84%
upon using 1, 2, 4 and 8 worker virtual machines, respectively.

Figure 5.18: Speedup achieved for aGrib and Apache Spark in the two scenarios.
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One explanation for the fact that there is a great difference between the results
using 4 and 8 VMs, is that the GRIB files were initially stored in the HDFS using just
4 nodes, so that for 8 nodes a greater data transmission was necessary causing a loss
of performance in Apache Spark, which in its default behavior needs to have all the
data in memory before performing any operation. This would indicate that Apache Spark
performs poorly when it does not have direct access to data.

Table 5.7 and Table 5.8 summarize the results obtained in the two scenarios for
each set of virtual machines, both tables present the best configurations using the aGrib
and the number of executors and cores per executor utilized for the Spark’s execution,
the time spent and standard deviation considering aGrib, as well as Apache Spark.

Table 5.7: First scenario: Summary of the results for aGrib and Apache Spark.

Mechanism #VMs Configuration Exec. Time (StDev)
aGrib 1 1WN-8JW-88 456.38 (± 3.639)
Spark 1 1 executor - 4 cores 505.00 (± 10.131)
aGrib 2 1WN-8JW-175 249.53 (± 7.061)
Spark 2 2 executors - 8 cores 275.32 (± 4.601)
aGrib 4 1WN-8JW-175 139.60 (± 4.617)
Spark 4 4 executors - 16 cores 156.96 (± 1.106)
aGrib 8 1WN-8JW-175 77.11 (± 1.545)
Spark 8 8 executors - 32 cores 110.63 (± 2.292)

Table 5.8: Second scenario: Summary of the results for aGrib and Apache Spark.

Mechanism #VMs Configuration Exec. Time (StDev)
aGrib 1 1WN-8JW-175 1254.68 (± 8.254)
Spark 1 1 executor - 4 cores 1321.76 (± 28.398)
aGrib 2 1WN-8JW-88 652.19 (± 4.428)
Spark 2 2 executors - 8 cores 714.51 (± 15.343)
aGrib 4 1WN-8JW-88 364.41 (± 4.269)
Spark 4 4 executors - 16 cores 405.44 (± 1.586)
aGrib 8 1WN-8JW-44 204.77 (± 1.449)
Spark 8 8 executors - 32 cores 274.06 (± 1.60)
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6 CONCLUSION

Due to the overwhelming growth of scientific data in the last few years, data-
intensive analysis on this vast amount of scientific data is very important to extract
valuable scientific information. GRIB is a widely adopted format within the meteorolog-
ical community and is used to store historical meteorological data and weather forecast
simulation results. However, current options for processing the GRIB files do not perform
the computation in a distributed environment. This situation limits the analytical capa-
bilities of scientists who need to perform analyses on large data sets in the shortest time
possible.

In this sense, we propose an alternative way to process large datasets in the GRIB
scientific data format. Our proposal uses the implementation of the Actor model provided
by the Akka toolkit to implement the well-know Manager-Worker pattern. In this pattern,
the manager component partitions and distributes the work to do by the worker compo-
nents and computes the final result from the partial results obtained from the workers,
and the worker component is charged of processing the work sent from the manager, send-
ing the results of each executed work to the manager, as well as requesting tasks of the
manager. Furthermore, we compare our proposal with built-in router strategies provided
by the Akka toolkit used to distribute the tasks among the workers, the round-robin,
random and an adaptive load balancing were the strategies chosen, as well as we compare
our proposal with one of the main frameworks currently existing for big data processing,
the Apache Spark.

In addition to this, our proposal could be performed on an individual computer, a
cluster of machines or in the cloud without having to modify the code or recompile it, in
contrast with the current options to process the GRIB format.

The results presented in Chapter 5 show that our proposal scales well with increas-
ing number of worker nodes. We have considered two different scenarios for processing the
GRIB files. Thus, our proposal reached a better performance by using 8 worker virtual
machines upon being compared with other approaches evaluated in this work, especially
when is applied a filter to select only 2 of 27 total parameters found in the datasets,
for this case our proposal reached a gain of 38.54%, 46.24%, 46.73%, 45.78%, 46.25%
and 43.28% in relation to the best cases obtained for the rr, ra, cmc, cmh, cmm mech-
anisms and the Apache Spark, respectively. On the second scenario that evaluates all
the parameters of the dataset, our proposal obtained a gain of 1.04%, 15.22%, 11.56%,
14.49%, 15.58% and 33.84% with respect to the best cases obtained for the rr, ra, cmc,
cmh, cmm mechanisms and the Apache Spark, respectively. Likewise, after analyzing the
first experimental results we perform an improvement over our proposal to achieve better
performance, that improvement uses metadata stored in a NoSQL database to avoid the
overhead caused for the time utilized in the manager component to distribute the tasks
among their workers, thus, for this case our proposal by using 8 worker virtual machines
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achieved a gain of 53.88%, 62.42%, 62.97%, 61.92%, 62.44% and 59.36% in relation to the
best cases obtained for the rr, ra, cmc, cmh, cmm mechanisms and the Apache Spark,
respectively.

Finally, we conclude that a tool that is able to monitor the execution of the actors
during their life cycle in the different Java threads would be very useful for a better
understanding, and subsequently a better exploitation of the Actor model implemented
in the Akka toolkit.

As future work, we plan to extend the Manager-Worker patter to have a hierarchy
of actors which will be responsible for the task distributions among the workers, as well
as to generalize our implementation, so that it can be applied to other scientific data
formats. Thus, initially we plan to extend the prototype to support the NetCDF data
format using the Java NetCDF library from Unidata.

Furthermore, it would also be advantageous to improve the current deploy method,
probably by using containers, such as the Docker containers.
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Appendix A — GRIB SAMPLE

This Appendix presents a sample of the GRIB2 format. The Data section presents
only some values, due to it would be extensive to place all values.

Section
Octet

Message
Octet

Value Meaning

Indicator Section
1-4 1-4 GRIB "GRIB"
5-6 5-6 0 Reserved
7 7 0 This GRIB2 message contains Meteorological prod-

ucts (the product discipline)
8 8 2 The GRIB Edition Number is 2
9-16 9-16 427018 The total length of this GRIB message is 427018 bytes

Identification Section
1-4 17-20 21 This Section is 21 bytes long
5 21 1 This is Section 1
6-7 22-23 255 Missing value
8-9 24-25 0 There is no originating/generating sub-centre
10 26 1 GRIB Master Tables Version implemented on 7

November 2001
11 27 0 Local tables not used. Only table entries and tem-

plates from the current Master table are valid.
12 28 0 Analysis
13-14 29-30 2015 Year: 2015
15 31 7 Month: 7
16 32 5 Day: 5
17 33 0 Hour: 0
18 34 0 Minute: 0
19 35 0 Second: 0
20 36 0 This GRIB2 message contains Operational products
21 37 0 This GRIB2 message contains Analysis products

Local Use Section
1-4 38-41 0 This Section is 0 bytes long

Grid Definition Section
1-4 38-41 72 This Section is 72 bytes long
5 42 3 This is Section 3
6 43 0 Grid Specified in Code table 3.1
7-10 44-47 1584353 There are 1584353 data points in this grid
11 48 0 There is no optional list of numbers defining number

of points
12 49 0 There is no appended list
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Table A.1 – A GRIB message sample
Section
Octet

Message
Octet

Value Meaning

13-14 50-51 0 The Grid Definition Template Number is 3.0: Lati-
tude/longitude projection

15 52 6 Earth assumed spherical with radius of 6,371,229.0 m
16 53 All 1’s There is no scale factor for the radius of the spherical

earth
17-20 54-57 All 1’s There is no scaled value of the radius of the spherical

earth
21 58 All 1’s There is no scale factor of major axis of oblate spheroid

earth
22-25 59-62 All 1’s There is no scaled value of major axis of oblate

spheroid earth
26 63 All 1’s There is no scale factor of minor axis of oblate spheroid

earth
27-30 64-67 All 1’s The scaled value of minor axis of oblate spheroid earth
31-34 68-71 1159 There are 1159 points along a parallel (Ni)
35-38 72-75 1367 There are 1367 points along a meridian (Nj)
39-42 76-79 0 The basic angle for all latitudes and longitudes is 1

degree
43-46 80-83 All 1’s The unit of the subdivisions of basic angle for all lat-

itudes and longitudes is 10−6 degrees
47-50 84-87 -4.7E7 The latitude of the first grid point (La1) is -47.0 de-

grees
51-54 88-91 2.77867008E8 The longitude of the first grid point (Lo1) is 277.867

degrees
55 92 00110000 x (i) direction increments given, y (j) direction incre-

ments given. Resolved u and v components of vector
quantities relative to easterly and northerly directions

56-59 93-96 1.10196E7 The latitude of the last grid point is 11.0196 degrees
60-63 97-100 3.330968E8 The longitude of the last grid point is 333.0968 degrees
64-67 101-104 47694.0 The i direction increment is 0.047694 degrees
68-71 105-108 42474.0 The j direction increment is 0.042474 degrees
72 109 01000000 Points in the first row or column scan in the +y (+j)

direction
Product Definition Section

1-4 110-113 34 This Section is 34 bytes long
5 114 4 This is Section 4
6-7 115-116 0 There are no coordinate values after the Product Def-

inition Template
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Table A.1 – A GRIB message sample
Section
Octet

Message
Octet

Value Meaning

8-9 117-118 0 The Product Definition Template Number is 4.0:
Analysis or forecast at a horizontal level or in a hori-
zontal layer at a point in time

10 119 3 The parameter category is 3: Mass
11 120 5 The parameter number is 5: Geopotential height (in

gpm)
12 121 All 1’s No information on the type of generating process is

provided
13 122 All 1’s There is no background generating process identifier
14 123 All 1’s There is no analysis or forecast generating process

identifier
15-16 124-125 3 The observational data cut-off was 3 hours after the

reference time
17 126 All 1’s There is no minutes of observational data cut-off after

reference time
18 127 1 The time is given in hours
19-22 128-131 12 The forecast time is 12 hours after the reference time
23 132 1 The first fixed surface is Ground or water surface
24 133 All 1’s There is no scale factor of first fixed surface
25-28 134-137 All 1’s There is no a scaled value of first fixed surface
29 138 All 1’s There is no second fixed surface
30 139 All 1’s There is no scale factor of second fixed surface
31-34 140-143 All 1’s There is no a scaled value of second fixed surface

Data Representation Section
1-4 144-147 49 This Section is 49 bytes long
5 148 5 This is Section 5
6-9 149-152 1584353 There are 1584353 data points for which values are

specified in Section
10-11 153-154 3 The Data Representation Template Number is 5.3:

Grid point data - complex packing and spatial dif-
ferencing

12-15 155-158 -1.0000001E-
20

The reference value (R) is -1.0000001E-20 (IEEE 32-
bit floating-point value)

16-17 159-160 1 The binary scale factor (E) is 1
18-19 161-162 0 The decimal scale factor (D) is 0
20 163 9 9 bits are used for each packed value in the Data Sec-

tion
21 164 0 The original field values were floating point numbers
22 165 1 The method General Group Splitting is used
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Table A.1 – A GRIB message sample
Section
Octet

Message
Octet

Value Meaning

23 166 0 No explicit missing values included within the data
values

24-27 167-170 0 Primary missing value substitute
28-31 171-174 0 Secondary missing value substitute
32-35 175-178 23230 23230 groups of data values into which field is split
36 179 0 Reference for group widths
37 180 4 4 bits used for the group widths
38-41 181-184 1 Reference for group lengths
42 185 1 Length increment for the group lengths
43-46 186-189 705 True length of last group
47 190 10 Number of bits used for the scaled group lengths
48 191 2 Second-Order Spatial Differencing is used
49 192 2 Number of bytes required in the data section to specify

extra descriptors needed for spatial differencing
Bitmap Section

1-4 193-196 6 This Section is 6 bytes long
5 197 6 This is Section 6
6 198 255 A bit map does not apply to this product

Data Section
1-4 199-202 426816 This Section is 426816 bytes long
5 203 7 This is Section 7

...
324.0
344.0
366.0
386.0
404.0
416.0
422.0
416.0
396.0
360.0
...

End Section
1-4 427015-

427018
7777 Indicates the end of the message
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Appendix B — PERFORMANCE EVALUTION

This Appendix presents the total execution times obtained from the experiments.
Figure B.1, B.2, B.3, B.4 depict the total execution times for the first scenario (process-
ing just 2 parameters) upon using 1, 2, 4 and 8 worker virtual machines, respectively.
Whereas Figure B.5, B.6, B.7, B.4 depict the total execution times for the second sce-
nario (processing all the parameters) upon using 1, 2, 4 and 8 worker virtual machines,
respectively. Besides, the total execution times using metadata on 1, 2, 4 and 8 worker
virtual machines are shown in Figure B.9.

Each figures presents all mechanisms utilized (aGrib and the other five approaches),
the strategies utilized (file-based and message-based), and each one of sub-graphics presents
the configurations in the x-axis and the time spent in the y-axis.
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Figure B.1: First scenario: Execution time using 1 worker machine.
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Figure B.2: First scenario: Execution time using 2 worker machines.
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Figure B.3: First scenario: Execution time using 4 worker machines.
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Figure B.4: First scenario: Execution time using 8 worker machines.
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Figure B.5: Second scenario: Execution time using 1 worker machine.
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Figure B.6: Second scenario: Execution time using 2 worker machines.

22 44 88 175

0
100
200
300
400
500
600
700
800
900
1000

0
100
200
300
400
500
600
700
800
900
1000

0
100
200
300
400
500
600
700
800
900
1000

0
100
200
300
400
500
600
700
800
900
1000

0
100
200
300
400
500
600
700
800
900
1000

0
100
200
300
400
500
600
700
800
900
1000

aG
rib

rr
ra

cm
c

cm
h

cm
m

1
W
N
-
4
J
W

2
W
N
-
2
J
W

4
W
N
-
1
J
W

1
W
N
-
8
J
W

2
W
N
-
4
J
W

4
W
N
-
2
J
W

2
W
N
-
8
J
W

4
W
N
-
4
J
W

1
W
N
-
4
J
W

2
W
N
-
2
J
W

4
W
N
-
1
J
W

1
W
N
-
8
J
W

2
W
N
-
4
J
W

4
W
N
-
2
J
W

2
W
N
-
8
J
W

4
W
N
-
4
J
W

1
W
N
-
4
J
W

2
W
N
-
2
J
W

4
W
N
-
1
J
W

1
W
N
-
8
J
W

2
W
N
-
4
J
W

4
W
N
-
2
J
W

2
W
N
-
8
J
W

4
W
N
-
4
J
W

1
W
N
-
4
J
W

2
W
N
-
2
J
W

4
W
N
-
1
J
W

1
W
N
-
8
J
W

2
W
N
-
4
J
W

4
W
N
-
2
J
W

2
W
N
-
8
J
W

4
W
N
-
4
J
W

Configuration

T
im

e
(s
)

aGrib rr ra cmc cmh cmm



102

Figure B.7: Second scenario: Execution time using 4 worker machines.
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Figure B.8: Second scenario: Execution time using 8 worker machines.
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Figure B.9: First scenario: Total execution times of our proposal by using metadata.
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