
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

FÁBIO FEDRIZZI BERNARDON

Function Statistics Applied to Volume
Rendering: Transfer Functions Design and
Computational Issues on Discrete Functions

Thesis presented in partial fulfillment
of the requirements for the degree of
Master of Computer Science

Prof. Dr. João Luiz Dihl Comba
Advisor

Prof. Dr. Cláudio Silva
Coadvisor

Porto Alegre, July 2008

CIP – CATALOGAÇÃO NA PUBLICAÇÃO

Bernardon, Fábio Fedrizzi

Function Statistics Applied to Volume Rendering: Trans-
fer Functions Design and Computational Issues on Discrete
Functions / Fábio Fedrizzi Bernardon. – Porto Alegre: PPGC
da UFRGS, 2008.

112 f.: il.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2008. Advisor: João Luiz Dihl Comba; Coadvisor: Cláudio
Silva.

1. Volume Rendering. 2. Transfer Function. 3. Volume Sim-
plification. 4. Image Processing. I. Comba, João Luiz Dihl.
II. Silva, Cláudio. III. Title.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. José Carlos Ferraz Hennemann
Vice-Reitor: Prof. Pedro Cezar Dutra Fonseca
Pró-Reitora de Pós-Graduação: Profa. Valquíria Linck Bassani
Diretor do Instituto de Informática: Prof. Flávio Rech Wagner
Coordenadora do PPGC: Profa. Luciana Porcher Nedel
Bibliotecária-Chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“That is all, folks! ”
— LOONEY TOONS

ACKNOWLEDGMENTS

I would like to acknowledge the following people and institutions for supporting this
work.

The Brazilian National Council of Scientific and Technological Development (CNPq)
and the Scientific Computing and Imaging Institute (SCI) from the University of Utah for
partially founding this research.

Bruno Notrosso (Eletricite de France) for the Super Phoenix (SPX) dataset.
Steve Callahan (University of Utah) for the HAVS code and several datasets.
João Comba, Cláudio Silva and Mike Kirby for the guidance when I needed.
My friends from the CG group,
Carlos Dietrich, Christan Pagot, Leandro Fernandes and Renato Silveira, for the sup-

port and productive discussions along the development of this work;
Rafael Torchelsen for all great barbecues;
Vitor Pamplona for organizing weekly soccer matches;
André Spritzer, Marcos Slomp, Leonardo Schmitz, Rodrigo Barni, Giovani Kuhn,

Denison Linus and Sérgio Fuji for the fun and happy hours.
And specially
Sonia Lugo for the love and understanding;
and my parents, Lurdes and Clemir Bernardon for all the love, care and guidance

through my live, and the freedom to take my own choices and follow my own path.
Thank you.

TABLE OF CONTENTS

LIST OF ABBREVIATIONS AND ACRONYMS 9

LIST OF FIGURES . 11

ABSTRACT . 13

RESUMO . 15

1 INTRODUCTION . 17

2 VOLUME VISUALIZATION . 21
2.1 Datasets . 22
2.2 The Visualization Pipeline . 23
2.2.1 The Graphics Pipeline . 26
2.3 Cell Projection . 28
2.3.1 Splatting . 30
2.4 Ray Casting . 30
2.5 Texture-Based Direct Volume Rendering 32
2.6 Time-Varying Techniques . 34
2.7 Discussion . 36

3 TRANSFER FUNCTIONS . 37
3.1 Introduction and Related Work . 37
3.2 Histograms for Transfer Function Interaction 40
3.3 Transfer Function Ensembles . 42
3.3.1 Blending Strategies . 43
3.4 Time Varying Transfer Functions . 45
3.5 Discussion . 46

4 DATA SIGNATURE ANALYSIS . 49
4.1 Introduction and Related Work . 49
4.2 Gradient . 50
4.3 Synthetic Case Study . 51
4.3.1 Ideal Boundary . 52
4.4 Sampling Issues . 53
4.4.1 Structured Datasets . 54
4.4.2 Unstructured Datasets . 54
4.4.3 Influence of Boundary Width . 56
4.5 Approximation Methods . 56

4.5.1 Central Differences . 57
4.5.2 Least Squares . 58
4.5.3 Reconstruction Analysis . 60
4.6 Smoothing . 64
4.6.1 Other Unstructured Grids Issues . 69
4.7 Discussion . 71

5 APPLICATIONS . 73
5.1 Feature Extraction . 73
5.2 Transfer Functions Revisited . 75
5.3 Discussion . 76
5.4 Future work . 76
5.4.1 Other Boundary Models . 76
5.4.2 Dataset Simplification . 77

6 CONCLUSION . 79

REFERENCES . 81

APPENDIX A THE TRANSFER FUNCTION DESIGN PROGRAM 89
A.1 Scalar Range Mapping . 89
A.2 Evaluation . 93

APPENDIX B ESTATíSTICAS DE FUNÇÕES APLICADAS A VISUALIZA-
ÇÃO VOLUMÉTRICA: CUIDADOS ESPECIAIS EM FUNÇÕES
DISCRETAS . 95

B.1 Visualização Volumétrica . 95
B.2 Funções de Transferência . 96
B.2.1 Histogramas . 97
B.2.2 Agrupamentos de Funções de Transferência 98
B.2.3 Dados Dinâmicos . 99
B.3 Análise da Assinatura de Dados . 100
B.3.1 Amostragem . 102
B.3.2 Aproximação . 104
B.3.3 Suavização . 107
B.4 Aplicações . 109
B.5 Trabalhos Futuros . 111
B.6 Conclusão . 111

LIST OF ABBREVIATIONS AND ACRONYMS

CAT Computer-Assisted Tomography

CoV Coefficient of Variation

CPU Central Processor Unit

DVR Direct Volume Rendering

GP Geometry Processor

GPU Graphics Processor Unit

HAVS Hardware-Assisted Visibility Sorting

HRC Hardware-Based Ray Casting

LOD Level-of-Detail

LS Least Squares

MLS Moving Least Squares

MPVOMesh Polyhedra Visibility Ordering

MRI Magnetic Resonance Imaging

pdf Probability Density Function

pixel picture element

TFE Transfer Function Ensemble

voxel volume element

VP Vertex Processor

WLS Weighted Least Squares

WSG Weighted Sweep Graph

LIST OF FIGURES

Figure 2.1: Example of structured datasets. 23
Figure 2.2: Example of unstructured datasets. 23
Figure 2.3: The volume pipeline. 24
Figure 2.4: Example of LOD . 24
Figure 2.5: Composition ordering . 25
Figure 2.6: Diagram of the current Graphics Pipeline. 26
Figure 2.7: Projected Tetrahedra Decomposition 28
Figure 2.8: Example of cycle . 29
Figure 2.9: Ray Casting on structured and unstructured grids 31
Figure 2.10: Depth peeling for ray casting . 32
Figure 2.11: Different strategies for sampling texture-based DVR 33
Figure 2.12: 2D representation of a TSP-Tree . 35

Figure 3.1: Example of widgets for TF interaction 38
Figure 3.2: Histograms used to provide users with underlying dataset information 40
Figure 3.3: TJet volume rendering using TF specified with different histograms . 41
Figure 3.4: Gradient-Magnitude histogram for structured and unstructured datasets 41
Figure 3.5: Extrusion of 1D to a 2D transfer function 43
Figure 3.6: Dimensional reduction from a 2D transfer function to a 1D one. . . . 43
Figure 3.7: Blending strategies . 44
Figure 3.8: Time-varying user interface. 45

Figure 4.1: Gradient vectors computed over a 2D scalar field 50
Figure 4.2: Gradient as the normal of an iso-line 51
Figure 4.3: Synthetic dataset used as case study 51
Figure 4.4: Error function and its respective 1st and 2nd derivatives 52
Figure 4.5: Analytic evaluation of f versus f ′ and f versus f ′′ with random samples 53
Figure 4.6: Gradient-magnitude histograms of the blurred structured sphere dataset 54
Figure 4.7: Regular distribution of samples on an unstructured blurred sphere . . 55
Figure 4.8: Irregular blurred sphere with samples spread in homogeneous regions 55
Figure 4.9: Spread of samples in the boundary of the unstructured blurred sphere 56
Figure 4.10: Influence of boundary width on the histogram quality 57
Figure 4.11: Prewitt and Laplacian filters . 57
Figure 4.12: Prewitt and Laplace histograms of f ′ and f ′′ in structured grids . . . 58
Figure 4.13: LS gradient-magnitude histograms for structured grids 59
Figure 4.14: LS gradient-magnitude histograms for unstructured grids 60
Figure 4.15: Gradient-magnitude deviation for LS and Prewitt in regular grids . . . 62
Figure 4.16: Dot product between analytic and reconstructed vectors in regular grids 63

Figure 4.17: Equivalence of different weighting parameters for LS 63
Figure 4.18: Gradient-magnitude deviation for LS and WLS in unstructured grids . 64
Figure 4.19: Dot product of analytic and approximated vectors in irregular grids . 65
Figure 4.20: Features identified over different concentration of points in the Engine. 66
Figure 4.21: Engine gradient-magnitude histogram with several blurring levels. . . 66
Figure 4.22: Body gradient-magnitude histogram with several blurring levels. . . . 67
Figure 4.23: Gradient-magnitude histograms of several F117 blurring levels. . . . 68
Figure 4.24: Gradient-magnitude histogram for San Fernando blurring levels. . . . 68
Figure 4.25: Gradient-magnitude histogram for SPX blurring levels. 69
Figure 4.26: Use of statistical filters to improve histogram quality for TJet dataset. 70
Figure 4.27: Use of statistical filters to improve histogram quality for Jets dataset. . 70

Figure 5.1: Viewer that correlates the histogram and spatial domains. 74
Figure 5.2: Viewer of histogram samples along with volume rendering. 75
Figure 5.3: Comparison between standard and enhanced histograms. 75
Figure 5.4: Transfer functions for unstructured grids. 76
Figure 5.5: Different boundary shape in Fighter dataset. 77

ABSTRACT

Transfer function design is an important problem that receives much attention from
the visualization community. Several researches have inspired the creation of better tools
and techniques to deal with volumetric datasets. There are two major classes of datasets,
namely structured and unstructured grids. Most of the previous work has only addressed
structured data. This work presents two groups of contributions of different nature. The
first contribution is related to the general problem of transfer function design. It introduces
the concept of ensembles, which are complex transfer functions created from standard
types. It also presents a key-frame based approach to handle time-varying sequences.
The second group of contributions is related with a study on several characteristics of
unstructured data. Problems have been discovered and addressed to allow a seamless
integration of classical structured grids tools to unstructured data. This work includes
results that show improvements on a statistical analysis of the data, as well as the devel-
oped transfer function design system. Further work is suggested to take advantage of the
enhanced version of the gradient-magnitude histogram, and explore different boundary
model.

Keywords: Volume Rendering, Transfer Function, Volume Simplification, Image Pro-
cessing.

RESUMO

Estatísticas em Funções Aplicadas a Visualização Volumétrica: Detalhes
Computacionais em Funções Discretas

O projeto de funções de transferência é um interessante problema que recebe muita
atenção da comunidade de visualização. Diversas pesquisas tem sido conduzidas para
criar melhores ferramentas e técnicas que trabalham com dados volumétricos. Existem
duas grandes classes de dados: volumes estruturados e volumes não-estruturados. A mai-
oria dos trabalhos anteriores apenas se refere a dados estruturados. Este trabalho possui
dois grupos de contribuições. O primeiro diz respeito ao problema clássico de especifi-
cação de funções de transferência. Primeiramente é desenvolvido o conceito de Ensem-
bles, que são funções de transferência desenvolvidas a partir da combinação de funções
anteriores e mais simples. Também é apresentada uma abordagem de key-framing para
manipular dados que variam no tempo. O segundo grupo de contribuições é um estudo
aprofundado sobre o comportamento de dados não-estruturados. Problemas críticos foram
descobertos e tratados para permitir uma integração quase perfeita de ferramentas usadas
para dados estruturados em dados não-estruturados. Os resultados mostram a melhoria de
qualidade de histogramas, e também o sistema de desenvolvimento de funções de trans-
ferência. Trabalhos futuros são sugeridos para utilizar a versão melhorada do histograma
de gradiente-magnitude, assim como a exploração de novos modelos de bordas.

Palavras-chave: Visualização Volumétrica, Funções de Tranferência, Simplificação de
Volumes, Processamento de Imagens.

17

1 INTRODUCTION

The continuous advance in technology has made available unprecedent amounts of
data. Scanning equipments are able to capture lots of information from the real world,
and computer simulations are incredibly complex and sophisticated. With so much infor-
mation, researchers need advanced techniques to efficiently analyze and understand this
information.

Among the scientific areas that take advantage of digital technology to improve the
quality of its work two must be emphasized. The first one is Medicine, that utilizes tech-
niques such as Magnetic Resonance Imaging (MRI) and Computer-Assisted Tomography
(CAT) to acquire information about patients. This data is then analyzed and helps doc-
tors to better plan their course of action. They are used to diagnose diseases and plan
surgeries, among other uses.

Another area that takes advantage of digital technology is Engineering, that uses phys-
ical modeling and simulation techniques. Fast processors are used to generate simulations
that help scientists to understand natural phenomena. Other simulations are used to help
design products, offering a safe environment where engineers can test their hypothesis
without risking people’s live and the environment, as well as reducing significantly the
investment necessary to develop these new solutions.

Visualizing these large volumes of data is a powerful way to easy their comprehen-
sion. Visual exploration may result in an intuitive understanding of the data properties,
if performed correctly. But providing insightful visualizations is a difficult task by itself
and even today it is subject to many research.

Different visualization methods have been developed to deal with specific types of
data (SILVA et al., 2005). For the areas described above, the information usually presents
itself in the continuous 3D space, usually as a function f : <3 → <, and may have an
additional temporal characteristic associated. For this type of data, the interesting features
may be located over its extern boundary or anywhere inside it, or even in specific temporal
locations. Volumetric visualization was developed to enable scientists to visualize the
inner structures of these datasets, by for instance rendering the whole volume with semi-
transparent colors.

Several methods for enhancing interesting issues of these volumes have been devel-
oped. Among them one that has great impact and has also been subject of many researches
is the specification of transfer functions. Transfer functions are mappings that associate
data characteristics (temperature, density, etc) with optical properties (usually color and
opacity). These mappings are used by rendering methods to convert data properties into
visual features that can be easily identified by researchers, providing them information
about its spatial location, shape, density and so on. Just as in the visualization case,
several approaches have been proposed to easy the creation of transfer functions (PFIS-

18

TER et al., 2001). Some of these techniques do not provide any information to users,
leaving them in a try-and-error environment. Other techniques rely on data signature to
automatically detect and enhance interesting data features. A third class of methods uses
information of the volumes to guide users when they create these mappings.

Volumetric datasets must balance two conflicting characteristics: the accuracy of its
information and its raw size. While we want to keep data as accurate as possible, we also
want the dataset to be as small as possible, so it can be easily manipulated on commodity
computers. Information that can be approximated using more elementary data is often
excluded from the normal representation, providing a way to balance accuracy and size.
If the suppressed data is required, one can approximate it using reconstruction methods.

The quality of an approximated information is directly dependent on two principal
characteristics of the datasets: sample location and the reconstruction method used. Intu-
itively one can say that we need more samples where the interesting features are located,
while homogeneous non-interesting regions can be sparsely sampled. In spite of being
important, this also impacts the quality of approximation methods and restrict which ones
can be used.

Different approximation methods can be used to reconstruct data from discrete sam-
ples. Here a trade-off between accuracy and computational cost of using a given method
must be faced (MAVRIPLIS, 2007). Also, according to some characteristics of the datasets,
some methods may have similar quality to more robust solutions.

There are several applications that use this type of information. One example is the
already mentioned transfer function design. It also can be applied to guide the simplifi-
cation of unstructured datasets, by reducing the amount of data stored while keeping the
required information to compute the data for analysis purpose.

This work address these areas, and its contributions are basically divided in two cate-
gories. First, for transfer function specification methods, it presents the concept of Ensem-
bles, that allow combining existing transfer functions to produce a new one that enhance
or deemphasize issues of the previous ones. Ensembles can be used to perform boolean
operations during dataset visualization, through the manipulation of how data are mapped
to optical properties. This work also presents a key-framing approach to help the visual-
ization of time-varying datasets. In the second category, this dissertation presents a study
on function statistics. It details the impact of different reconstruction methods and sam-
pling distributions. It also presents how this analysis helps transfer function design, as
well as simplification techniques for datasets.

The structure of this dissertation follows. A brief review of volume rendering tech-
niques is presented in Chapter 2, since they are the main application for transfer functions
and serve as the main motivation for this work. Firstly the visualization pipeline is pre-
sented, with all stages usually implemented by visualization techniques. An overview
of all major paradigms for volume visualization is presented next, with a review of the
state-of-the-art for volume rendering.

Transfer function design is explored in Chapter 3. The contributions to transfer func-
tion specification is explained, with detailed description of Ensembles and the solution
to visualize time-varying data. This discussion also motivates chapters of this work that
follow.

Some issues found during the transfer function work led to the exploration of data
signatures, as explained in Chapter 4. This work exposes an explanation about Function
Statistics and what information they expect to provide. A synthetic case study is devel-
oped to isolate the source of errors and correctly analyze how sampling and approximation

19

affect the result. This chapter exposes an analysis about the issues on how to compute and
present Function Statistics. Details are presented on how different characteristics affect
the resulting quality of computations, as well as how to improve it.

Once the computation of Function Statistics satisfy certain quality requirements the
transfer function framework is revisited, now fixing the issues previously found. This
is discussed in Chapter 5, which also describes how to use the computed information to
perform mesh simplification. Other applications and further research are also commented
in Chapter 5.

Final conclusions about the work are presented in Chapter 6, summarizing up all con-
tributions and discussing possible extensions of this work.

Appendix A shows the transfer function design system and some characteristics that
have not been previously mentioned in this document. Appendix B has a summary of this
dissertation written in the Portuguese language.

20

21

2 VOLUME VISUALIZATION

The exploration of inner structures of objects in volumetric data is required to fully
understand and analyze certain classes of problems. Questions as how does the heat
spread inside an engine or what is the spatial relationship of tissues inside a person’s
foot require a visualization technique that shows the spatial placement of materials with
different properties. Volume visualization has been developed to display the inner region
of a material and its border (DREBIN; CARPENTER; HANRAHAN, Avg. 1988). It
is a huge area of computer graphics, responsible for developing methods to allow the
exploration of data that presents the aforementioned characteristics.

The main objective of volume rendering is to compute how light behaves inside a
semi-transparent object. At any position inside the volume, the light intensity may be
affected by three distinct types of interaction:

• Emission: the material emits light, increasing the amount of luminous energy inside
the volume.

• Absorption: the material absorbs light, thus reducing the luminous energy propa-
gated through the volume.

• Scattering: the material changes the direction of the light, causing it to spread.
Spread light will be reflected and/or absorbed by other elements inside the volume
other than the source of spread, unless the scattered light leaves the volume.

Most volume visualization techniques take into account only the first two items. This
is the frequently called Emission-Absorption Optical Model (also known as Density-
Emitter Model). It is widely used when performing volume rendering due to its compu-
tational efficiency and good quality result. The shape of the Volume-Rendering Integral,
as shown in equation 2.1 (HEGE; HöLLER; STALLING, 1993; MAX, 1995), is a result
of the use of this optical model:

I(sk) = I(sk−1)e
−
∫ sk

sk−1
k(s)ds

+

∫ sk

sk−1

q(s)e−
∫ sk

s k(s)dsds (2.1)

In this equation, k(s) is the absorption component, q(s) is the emission component,
I(sk) is the light intensity at position sk. The optical depth

τ(s0, s1) =

∫ s1

s0

k(s)ds (2.2)

is interpreted as the distance that light may travel before it is absorbed. This way
e−τ(s0,s1) represents the transparency of the volume material.

22

Several methods have been developed to efficiently compute the volume-rendering
integral. These techniques implement the visualization pipeline, as we explain in Sec-
tion 2.2. In order to provide interactivity to volume visualization many of the proposed
solutions considered restrictions imposed by the traditional rendering pipeline, as we
show in Section 2.2.1. The classical graphics pipeline has been developed for many
years and was primarily designed to support the rendering of the boundary of 3D objects.
Although not fully designed to address volume visualization requirements, its develop-
ment incorporated several stages and characteristics that we can use to accelerate volume
visualization.

Before looking at the volume visualization pipeline one must understand how the vol-
umetric data is represented. There are basically two different approaches to store this
information, and each requires visualization methods specifically developed for it. Sec-
tion 2.1 addresses the main differences between these two data representation: Structured
and Unstructured datasets.

According to the data representation chosen different sets of rendering methods will be
available. For unstructured datasets one can use the Cell Projection technique, described
in Section 2.3. This technique process one data element at a time, projecting them against
the image. The Ray Casting method addressed in Section 2.4 is well suited for both
classes of datasets. This technique process every pixel of the final image independently,
allowing an efficient parallel implementation. Section 2.5 presents a final technique called
texture-based direct volume rendering. It was designed specifically for a type of structured
dataset, namely 3D textures.

2.1 Datasets

A scalar field is a function φ : <3 → < that assigns one or more scalar value to posi-
tions in a volumetric space (ENGEL et al., 2006). Although being continuously defined, a
scalar field usually results from computational simulations or scanning procedures. Both
approaches usually use and/or result in a discrete 3D field, thus requiring methods to
represent and store this information.

Scanning methods have been used in Medical areas for some time. Procedures such
as Magnetic Resonance Imaging (MRI) and Computer-Assisted Tomography (CAT) have
been used to acquire volumetric information from patients (DREBIN; CARPENTER;
HANRAHAN, Avg. 1988). These methods frequently scan the 3D space on a regular
pattern, producing discrete samples stored as Structured Grids.

The most common type of structured dataset (also called regular grids) is the 3D im-
age. An image in 2D space is commonly represented by a collection of squared elements
called pixels (short from “picture elements”), regularly disposed in a rectangular region.
Analogously for 3D, a 3D image is represented by a collection of voxels (short for “vol-
ume elements”), regularly distributed inside a box-shaped region. Voxels can be seen as
cubes that have a given attribute associated to a single point (Figure 2.1(a)) or to its entire
volume (Figure 2.1(b)).

Structured datasets do not need to explicitly store connectivity information for their
elements since they have a regular, well-defined pattern. The only information needed is
how is the regular placement, which is implicit for most common representations.

More flexible volume representations are required in other situations. Computational
Fluid Dynamics (CFD) and Finite Element Modeling (FEM) require a data representation
that adapts itself to the problem, avoiding the waste of computational resources (GAR-

23

(a) Voxel-centered (b) Volumetric voxel

Figure 2.1: Example of structured datasets.

RITY, 1990). Unstructured Datasets are employed to model the scalar field used in most
computer simulations in these areas.

Unstructured datasets (also known as irregular grids) allow gross representation for
uninteresting or homogeneous regions while increasing data samples in regions of inter-
est. This flexibility in distributing sample points is what makes these datasets widely used
in computer simulations.

(a) Irregular grid (b) 3D tetrahedral mesh

Figure 2.2: Example of unstructured datasets.

This type of dataset requires the explicit definition of the connectivity between the
sample points since it may have any possible connection scheme (as illustrated by Fig-
ure 2.2(a)). Even being this flexible, irregular grids are often formed by the same type of
element, usually the simplex of the space where they are defined (like tetrahedral meshes
in the 3D space, as shown in Figure 2.2(b)).

The simplicity of structured datasets allows them to be easily manipulated. They have
the fastest rendering methods, and lots of techniques have been developed and shown
to work around regular grids (although the fundamentals of such techniques can also be
applied to unstructured datasets).

The scalar values for the spatial points not explicitly represented in both classes of
datasets are approximated using an interpolation method while computing the volume
rendering integral. The next section explains how the Visualization Pipeline is used to
perform its computation using different types of datasets we just discussed.

2.2 The Visualization Pipeline

The volume visualization pipeline is a series of steps that are usually taken to compute
the volume rendering integral presented in equation 2.1. The pipeline described here is

24

one of several possible pipelines used to perform volume rendering. It is a free interpre-
tation of a pipeline presented by Engel et. al. (ENGEL et al., 2006). Figure 2.3 illustrates
these steps.

Figure 2.3: The volume pipeline.

The first stage in this pipeline, Data Traversal, defines how to sample the volume
data. The way that sampling is performed will determine how the continuous rendering
integral will be discretized and solved. The sampling strategy varies according to the
type of the dataset, visualization method and the purpose of the visualization. Structured
datasets frequently have an associated geometry responsible for sampling its scalar field.
Unstructured datasets, on the other hand, frequently use its own geometric information as
a sampling structure. Some rendering techniques may have a sampling strategy indepen-
dent of the data representation, like Ray Casting (Section 2.4).

Another factor that determines how the scalar field will be sampled is the purpose of
the visualization. Reducing the visual accuracy enables faster visualizations, resulting in
a technique called Level-of-Detail (LOD). This method often drops some elements from
the sampling geometry in order to reduce the computational cost of evaluating the volume
visualization integral at a point. It assumes that the variation of the scalar field at that
position can be interpolated from the previous and next evaluated points, as illustrated by
Figure 2.4.

Figure 2.4: Example of LOD: only the black lines are used to sample the volume, while
the green lines are skipped to increase performance.

If the sample positions do not correspond to the elements of the discrete volume, an
interpolation technique (or filtering) must be used to approximate such values. This is
the second stage of the visualization pipeline. Filters also have to balance accuracy and
speed. High-order approximation methods, such as B-Spline curves (PARENT, 2001)
have a computational cost significantly higher than less precise methods, like trilinear
interpolation, and are less frequently used.

Once defined how to sample the scalar field, the evaluation of the volume rendering
integral can take place. For every two consecutive points over the same viewing ray,

25

the color and opacity contributions are computed. This is the third stage of the pipeline,
Shading and Illumination. This stage can be further refined into two different procedures:

• Classification: this stages classify the volume material, assigning visual properties
to it. This stage frequently uses a custom mapping that converts the values of the
scalar field to a color and opacity. This is called a Transfer Function, and will be
further detailed in Chapter 3

• Gradient Computation: the gradient is a vector that indicates the direction of the
scalar variation inside the volume. It is associated with a scalar value and is often
used for computing illumination in volume rendering. Although being widely used
for illumination, it holds other important properties as explained in Chapter 4. Sec-
tion 4.2 further describes the gradient and Section 4.5 presents several methods to
compute it.

Once the data has been classified and the illumination component evaluated, they
are added into a single contribution element that must be combined with the previously
evaluated portions of the integral. Compositing is the last stage of the pipeline and is
responsible for it. There are basically two different implementations possible to the com-
positing stage, selected accordingly to the visualization method used, and are illustrated
in Figure 2.5:

Figure 2.5: The two possible composition orders to produce a volume rendered image.

• Back-to-front: these methods combines the integral portions starting from the one
farthest away from the eye position successively up to the closest one. The Texture-
Based Direct Volume Rendering (Section 2.5) method frequently uses this compo-
sition method.

• Front-to-back: starting from the eye position, the integral portions are combined
consecutively up to the farthest position from the eye. Ray Casting (Section 2.4) is
an example of visualization technique that uses this composition scheme.

Not all stages presented in this pipeline are required. The gradient computation for
illumination is an example of a stage that can be dropped to further increase performance.

26

This pipeline has not a direct implementation in commodity graphics cards. Re-
searches have done much effort to implement it on rendering methods that take advantage
of resources presented in the graphics pipeline. The next section explains what features
are available in the graphics pipeline. Some of these features are important to accelerate
volume visualization techniques.

2.2.1 The Graphics Pipeline

The graphics pipeline has been developed for many years. From time to time the
graphics pipeline is revisited to incorporate changes that increase its flexibility and add
new technologies. Just like the visualization pipeline, there are more than a single repre-
sentation of the graphics pipeline. The one presented in this work has most of the recent
technologies added to it, since it allows faster volume visualization. The diagram in Fig-
ure 2.6 shows the stages of this pipeline.

Figure 2.6: Diagram of the current Graphics Pipeline.

The Memory block (Red) is not a pipeline stage, but it represent the graphics memory.
The arrows pointing to it indicate what stages have write access to the memory. Similarly,
arrows leaving it indicate what stages have memory read access. Yellow stages are only
configurable, so users have control over a predefined set of states, while the blue stages
are programmable and execute custom programs written by developers.

The first stage of the pipeline is the Vertex Assembly. Its function is to gather all
required vertex elements to start the rendering process. These elements include the vertex
position, normal, color and texture coordinates among others. Once a vertex is assembled
it is dispatched to the Vertex Processor.

The Vertex Processor (VP) is the second stage in the graphics pipeline, but the first

27

programmable one. Its function is to apply geometric transformations to vertices, modify
its position, normals, etc. It can also be used to compute per-vertex illumination like
Gouraud Shading (AKENINE-MöLLER; HAINES, 2002), but its use for this purpose
has been significantly reduced by the implementation of higher quality procedures.

The Geometry Processor (GP) is the second programmable stage. It has been recently
added to the graphics pipeline, and enables the creation and removal of vertices, since it
has information about its neighborhood. It also can change the attributes of vertices, just
like the VP does. Currently it only works with the same primitive type it received as input,
and supports a very limited set of primitives.

The fourth stage is called Stream Output. It is a optional stage, and acts as a shortcut
for programs that intend to update only a buffer in memory, avoiding the overhead of
going through the remaining stages of the pipeline. It can write to memory, but can not
read from it.

The Primitive Assembly stage is responsible for gathering the vertices emitted by the
VP or the GP and assembling the geometric primitive being rendered. It also performs
a series of optimizations to reduce the computational cost of rendering, as well as some
other operations:

• Face culling: remove primitives whose vertices do not conform with a user-specified
order in the clipping space, usually clockwise or counter-clockwise.

• Clipping: remove vertices that are outside the view frustum, replacing them with
other vertices over the frustum border. The same procedure is used to handle user-
defined clipping planes.

• Projection: Before generating the fragments, all of the vertices are mapped to the
same projection image plane through the division of all its components by the ho-
mogeneous coordinate.

• Early-Z test: to reduce the overhead of processing fragments that are occluded
by other fragments already processed a depth test is performed in this stage. If a
fragment program is set to modify the fragment’s depth position then this test is
disabled.

The primitive rasterization occurs before the early-z test, right after projecting the
primitives to the same image plane. It produces the fragments that are sent further down
the pipeline.

The last programmable stage in the pipeline is the Fragment Processor. It usually is
the unit with the fastest operation frequency. This is a very important unit for several
volume rendering methods, since it has hardware support for 3D textures, with differ-
ent interpolation filters available. It also has fast memory access due to efficient cache
policies, increasing its use among techniques that require lots of memory reads.

The last stage in the pipeline is the Output Merger. It is the only stage with allowed
read-write operations to memory. Among the operations it performs before writing the
fragment to the rendering buffer are the following:

• Depth test: check the depth value of the current fragment against the one previously
written in the same position, using a comparison function. If the test fails, the
current fragment is discarded.

28

• Stencil test: similar to the depth test, but here the comparison is against an arbitrary
mask, that is updated accordingly to a configured state.

• Alpha test: discard fragments whose color alpha value fail to pass a preset function.

• Blending: performs the color combination of the current fragment with the previ-
ously written one to a given position. It is another important stage for volume ren-
dering, and corresponds to the composition stage in the volume rendering pipeline
(Figure 2.3). It has several parameters that can be configured to match the desired
composition function.

Besides not being developed with volume visualization as a primary goal, the graphics
pipeline implemented in most Graphics Processor Units (GPU) has several stages that can
be used to increase the performance of volume visualization techniques. The following
sections will discuss different strategies to render volumetric datasets.

2.3 Cell Projection

The visualization of volumetric data requires the rendering of internal features of ob-
jects, but the traditional rendering pipeline described in Section 2.2.1 was optimized for
the rendering of boundary triangular meshes.

A volume visualization techniques designed to fit in this rendering model is the Pro-
jected Tetrahedra algorithm (SHIRLEY; TUCHMAN, 1990). The volume data for this
method is discretized in a tetrahedral mesh. Each tetrahedra is classified according to its
projection in the view plane, and decomposed into triangles that are efficiently processed
by the graphics hardware (see Figure 2.7). The color and opacity contributions are com-
puted for each vertex and interpolated for the remaining elements of the dataset. This
method is best suited for smoothly-changing data, since it has some visual artifacts result-
ing from the linear interpolation of the colors. The visual quality can be improved by the
use of texture tables, reducing the amount of visual artifacts (STEIN; BECKER; MAX,
1994), perspective-correct interpolation and pre-integration (KRAUS; QIAO; EBERT,
2004; MORELAND; ANGEL, 2004).

Figure 2.7: Decomposition of cells used by the Projected Tetrahedra method. The tetra-
hedra projection cases are shown above the line, and the associated triangles are shown
below.

The cell projection method needs the elements to be drawn in a specific order, usually
back-to-front (see Figure 2.5). The Mesh Polyhedra Visibility Ordering (MPVO) algo-
rithm enables a fast ordering of a convex set of convex polyhedra (WILLIAMS, 1992),

29

creating a Direct Acyclic Graph (DAG) for a given viewpoint on a particular mesh. An
extended version of the MPVO (XMPVO) handles non convex meshes and even discon-
nected meshes without using heuristics previously used on the original MPVO that did not
ensure order accuracy. The view-dependent DAG can be replaced by a view-independent
structure that further increases the performance of sorting mesh elements (COMBA et al.,
1999). A layer-based technique can also be used to sort the primitives using successive
rendering steps, similar to a depth-peeling approach (KRISHNAN; SILVA; WEI, 2001;
EVERITT, 1999).

None of the previous techniques are robust enough to deal with mesh cycles without
the use of other algorithms. Figure 2.8 illustrates a cycle problem, where an order of the
letters “S”, “C” and “I” can not be automatically established.

Figure 2.8: Example of a cycle: an ordering can not be implicitly established for the
letters “S”, “C” and “I”, since each letter overlaps another one and is overlapped by the
remaining letter.

The ZSWEEP algorithm (FARIAS; MITCHELL; SILVA, 2000) handle cycles in meshes
and is faster than previously described methods. It uses a sweep plane to process each
vertex from the one closest to the view plane up to the farthest one. When the plane en-
counters a vertex all faces incident to it that extend themselves away following the sweep
direction are projected, creating a list of intersections with its respective z-coordinate.
After this, the mesh is projected and the color contribution is finally computed. This
technique is efficiently parallelized, using a tile-based approach (FARIAS; SILVA, 2001).
The image plane is divided in several tiles that are independently processed. When a tile
is done, the processor moves to the next available one. This process is repeated until all
tiles are processed.

Another solution for cycles is the use of an additional buffer to solve the cycle prob-
lem for each polygon individually, reducing the contribution of the obstructing region to
the final image (KRAUS; ERTL, 2001). These images are rendered interlaced with the
polygons to mask out the obstructed region, thus leading to a correct color composition.

A recent approach for rendering unstructured grids is the Hardware-Assisted Visibility
Sorting (HAVS) (CALLAHAN et al., 2005). This technique considers the faces of the
volume elements. For a face shared by two elements, only one instance is processed.
The faces are partially sorted by their centroids on the CPU before rendering, so they are
rendered in nearly optimal order. The elements that are slightly out of their position are
placed in the correct order by a final sort that takes place in a per-fragment basis on the
GPU, using a structure called the k-buffer which can correct elements that are out of their
place by up to k positions.

The HAVS method can be used along with LOD techniques (CALLAHAN et al.,

30

2005) that allow interactive manipulation of large datasets, balancing performance and
render quality. It works by discarding internal faces from the dataset, reducing the amount
of elements to sort and render. There is no need to store topological information since no
connectivity is required. Different metrics for assigning importance to faces can be used,
and an user can select one that is best suited for a particular dataset.

Another extension to HAVS allows it to handle time-varying data (BERNARDON,
2005; BERNARDON et al., 2006). The time-varying data is hierarchically decomposed
and compressed using vector quantization (LINDE; BUZO; GRAY, 1980), taking ad-
vantage of the temporal coherence between consecutive time steps. The quality of this
compression approach can be increased by expanding the quantization tables, allowing a
flexible compromise between storage space and reconstruction quality. This framework
was extended to take advantage of multiple cores, trying to maximize the efficiency of the
massively parallel architecture of current commodity computers (BERNARDON et al.,
2007).

A somewhat similar rendering technique to Cell Projection is to project the volume
sampling point itself against the image plane, as described next.

2.3.1 Splatting

The rendering of a geometric primitive fills a region in the image place correspondent
to its projection. The continuous volume is discretized into sampling points, which are
non-dimensional elements. To render such elements, a data structure that associated such
points with geometric data to produce the final image is used. The idea behind Splatting
is to associate a “region of effect” for every point (WESTOVER, 1990).

It works by sorting the samples for projection, similar to the standard Cell Projec-
tion technique. But instead of rendering a geometry associated to the sampling points, a
reconstruction kernel is used to fill a region around the projection of the point.

This method is robust enough to handle both classes of datasets. Structured grids
can be traversed voxel-by-voxel in the order required to render, eliminating the cost of
explicitly sorting its elements. Unstructured datasets require a sorting method since its
samples are arbitrarily scattered. Splatting techniques have become a large and active
area of research (GROSS; PFISTER, 2007).

2.4 Ray Casting

Another method commonly used to render geometry instead of raster polygonal faces
is the Ray Casting method. This method is a variation of a more complex technique,
called Ray Tracing (WHITTED, 1980; PURCELL et al., 2002). Ray tracing works by
launching a ray for every pixel in the image plane, starting from the eye position. When
a ray hits a surface, it can be reflected and refracted in one or more directions, simulating
scattering effects. After a number of iterations the final color is produced and stored in its
associated pixel. This technique is particularly useful for computing specular highlights
and inter-object reflections.

The Ray Casting method is a simplified version of Ray Tracing. It does not allow
ray reflection or refraction, keeping the ray direction constant, and usually terminates its
computation after finding the first intersection point against the geometry. For volumetric
visualization, though, a ray is processed until its color contribution results in an opaque
value. Figure 2.9 shows an example of rays being casted through structured (2.9(a)) and
unstructured (2.9(b)) volumes.

31

(a) Structured grid (b) Unstructured grid

Figure 2.9: Example of Ray Casting through both structured (a) and unstructured (b)
grids.

The first implementations of Ray Casting for volume visualization did not traverse the
scalar field directly. Instead, it traverses a regular color and opacity volumes created using
a transfer function that maps scalar data to color and opacity (LEVOY, 1988, 1989).

A technique to traverse unstructured data was developed shortly after the first visual-
izations of structured grids (GARRITY, 1990). It was used on datasets with elements that
share faces (like tetrahedra). For two elements that share a face, only one is considered,
eliminating errors caused by duplicated faces.

Regular grids can be efficiently stored using a multiresolution representation based in
wavelets (WESTERMANN, 1995). It exploits the spatial coherence of data to reduce the
size of a compressed volume. This technique was posteriorly revisited and a variation was
proposed where vector quantization was used to select the most representative difference
vector for each hierarchical level, except the base level (SCHNEIDER; WESTERMANN,
2003). Its decompression phase has the advantage of executing inside modern graphics
hardware, reducing the rendering time.

Before modern commodity GPUs were able to efficiently manipulate regular datasets
a technique was developed to convert them into unstructured grids (LüRIG; GROSSO;
ERTL, 1997). It has the advantage that homogeneous regions can be merged together
into larger elements. Since ray integration is performed from face to face the merging
procedure reduces the amount of data to be processed, reducing the cost of ray integra-
tion. Non-convex and non-connected meshes can be processed using a plane-sweep ap-
proach to capture re-entrance points for rays that leave a connected mesh region (SILVA;
MITCHELL, 1997).

An alternative implementation of ray casting for unstructured meshes stores a list of
faces for each pixel (BUNYK; KAUFMAN; SILVA, 1997). The final color contribution
for a pixel is only computed after listing all faces for that pixel, that are sorted and tra-
versed in a predefined order.

Object importance can be used to selectively render a feature of a dataset with con-
text information around it, but without obstructing the feature (VIOLA; KANITSAR;
GRÖLLER, 2004). In a pre-processing phase the maximum importance for each ray is
found. Rays traverse the material without accumulating the color and opacity until it
reaches the region with higher importance. Once the region is reached, the ray integration
is normally performed as usual.

High performance Ray Casting computation can be achieved using a GPU imple-
mentation (WEILER et al., 2003). The Hardware-based Ray Casting (HRC) technique
encodes mesh geometry into textures that are retrieved and processed in the fragment
processor. Each fragment corresponds to a ray, where the only information available is
the cell the ray is currently hitting. Using this information, the remaining description of

32

the cell is accessed using texture fetches and the exit point for that ray is computed, and
the next cell determined. An invalid element index is used to mark when a ray left the
mesh.

A problem with the original HRC approach was handling non-convex meshes. In
fact, it only handled convex (or convexified) meshes. This problem was solved using
a technique called depth-peeling (EVERITT, 1999). Through a preprocessing step the
algorithm captures the re-entrances of convex regions, as shown in Figure 2.10 (WEILER
et al., 2004; BERNARDON et al., 2006).

Figure 2.10: The use of depth peeling allows the Hardware-based Ray Casting to handle
non-convex meshes.

More efficient structures where used to increase the computational efficiency of the
algorithm (KRUEGER; WESTERMANN, 2003; BERNARDON, 2005):

1. mesh encoding: reduce memory access cost for HRC, using a more compact and
efficient data structure based on 2D textures.

2. tiles: divide the screen in tiles, producing fragments (and consequently rays) only
for portions of the screen that are still processing.

3. early ray termination: stop processing rays before they leave the mesh if their accu-
mulated opacity exceeds the opaque threshold.

Another use for Ray Casting is the computation of iso-surfaces. Iso-surfaces are sur-
faces created in regions of the scalar field with a specific value (called iso-value). Using a
technique called Volumetric Depth-Peeling, a Ray Casting program can efficiently render
interior and exterior iso-surfaces in a single rendering pass.

Although being robust enough to handle unstructured and structured grids, ray casting
is not the most widely-used rendering method. For structured datasets, texture-based
direct volume rendering is the most widespread technique. It will be discussed in the next
section.

2.5 Texture-Based Direct Volume Rendering

Texture-Based Direct Volume Rendering is a class of rendering methods developed
exclusively for regular grids. Data is represented using a 3D texture (as the name sug-
gests), or a set of 2D textures with the same dimension. The methods under this category
use planes to traverse and sample the scalar field. The planes can be aligned with the
dataset axis, the viewing direction or transformed to different spaces, as illustrated in
Figure 2.11.

The first techniques to use these methods pre-classified the volume materials, aligned
it with a viewing axis and then orthogonally projected it into the image plane, as shown in

33

(a) Axis-aligned planes (b) View direction aligned planes (c) Shear space planes

Figure 2.11: Different strategies for sampling the scalar field: (a) axis-aligned planes, (b)
view direction aligned planes and (c) shear space planes.

figure 2.11(a) (DREBIN; CARPENTER; HANRAHAN, Avg. 1988). It produces artifacts
when changing the axis the planes are aligned to, and changing the axis is necessary to
avoid planes parallel to the viewing direction (which causes holes in the final image).

Another method to sample regular grids represented as 3D textures is to draw planes
always aligned with the viewing direction, as shown in figure 2.11(b). The Weighted
Sweep Graph (WSG) generates slicing polygons aligned with the viewing direction (DI-
ETRICH et al., 2004). It is used to correctly generate vertices and texture coordinates for
sampling the scalar field, resulting in geometry only inside the volume dimensions.

The shear-space technique has a simple and efficient projection of slicing planes, as
shown in figure 2.11(c) (LACROUTE; LEVOY, 1994). For orthogonal projection only
a translation of the slice planes is necessary. For perspective projection, a scale must be
applied along with the translation. An intermediate image aligned with the volume is used
as a base plane, where all slicing planes will be projected in a direction perpendicular to
the image plane. This image is then warped to the final image plane.

Several methods have been developed to further improve the rendering efficiency.
Wavelet-based compressed hierarchical representation of regular grids can be used to
reduce the size of datasets at the cost of accuracy, so larger datasets can be efficiently
processed and visualized (GUTHE et al., 2002). It allows different decompression levels
according to a LOD controlled by the user. An extension to this approach performs a hi-
erarchical volume decomposition coupled with a covariance analysis and vector quantiza-
tion to minimize memory usage to store regular grids (SCHNEIDER; WESTERMANN,
2003). The compressed data is stored as textures, which allows fast decompression us-
ing the GPU. Other optimizations include volume subdivision and skipping of transparent
regions, efficient use of transfer functions, clipping and lighting (LI; MUELLER; KAUF-
MAN, 2003; ROETTGER et al., 2003).

Direct rendering of compressed volumes may result in lower quality images not only
due to the loss resulting from the compression method, but also for lacking operations
available to non-compressed ones, like filtering. To solve this problem one can use a
deferred filtering algorithm (FOUT et al., 2005). This method decompress two to four
consecutive texture slices in a first pass, and render sampling slices between them in a
second pass, taking advantage of hardware interpolation in the decompressed textures
and manual interpolation from these to the sampling point.

Direct volume rendering can be combined with other rendering methods (such as iso-
surfacing and non-photorealistic rendering) to enhance the final image, in an approach
known as Two-Level volume rendering (HADWIGER; BERGER; HAUSER, 2003). It
uses multiple render passes for each visualization method, and compensates occlusion
using a shared depth buffer priorly computed. The images produced by the individual
methods are blended together at a final stage, producing a final image that combines the

34

different rendering methods.
Another method proposed the combination of characteristics using different fusion

algorithms (MANAGULI; YOO; KIM, 2005). These methods were developed to handle
different types of ultrasound imaging:

1. Composite Fusion: rendering of RGB values, in contrast with the other two fusion
techniques. Good depth cue but assign artificial colors to the volume.

2. Post Fusion: volumes rendered independently and fused in a post-process using
alpha blending. Good correlation between materials, but lack depth information.

3. Progressive Fusion: volume composition occurs at several stages, during and af-
ter rendering. Has depth information and preserves the color, but results in more
opaque volumes than the two other techniques.

Fusion methods are going to be explored in chapter 3 in the context of transfer function
creation instead of direct volume rendering.

Texture-based DVR also has methods developed for High Dynamic Range Volume
Visualization (YUAN et al., 2005, 2006). High precision structures (such as textures
and buffers) are used during rendering to produce a final image with a high range of
values. Tone mapping is applied to adjust the image range so standard display devices
can display details. High resolution transfer functions must be used to avoid missing
details and producing mapping artifacts (such as the degradation that usually results from
color quantization).

Texture-based DVR probably is the most used visualization method. It is simple yet
robust to handle structured data. This technique and the others we have previously de-
scribed in sections 2.3 and 2.4 can also handle time-varying data, as next section shows.

2.6 Time-Varying Techniques

All three previously described volume rendering methods can be extended to handle
time-varying data. The main challenge faced when using multiple time instances is to
handle the massive amounts of data. Brute force methods can be easily implemented, but
they usually hit bottlenecks faster than more advanced techniques.

A data structured developed to efficiently solve some problems of handling time-
varying data is the Time-Space Partitioning (TSP) tree (SHEN; CHIANG; MA, 1999).
This structure address the problem of visualizing multiple time instances of regular grids.
It uses an octree that stores in each node the spatial and temporal information of the
dataset. The temporal information is stored in a Binary Space Partitioning (BSP) tree,
that is located in each node of the octree. Octree leaves are independently rendered us-
ing a ray casting (though it could use another rendering method) and merged together
in a latter stage. Rendering speed can be improved if consecutive time steps have rela-
tively homogeneous data and the user has not changed the viewing properties. Figure 2.12
presents the concept of the TSP-tree, using an analogous structure in 2D space.

Another data structure is based solely on the octree (MA; SHEN, 2000). Spatial quan-
tization is performed to compress the dataset information. Consecutive time steps are
stored as a difference from the previous one, further compressing the data. Incremen-
tal rendering is used in a similar fashion to the one of the TSP-Tree, reusing previous
rendering in temporal homogeneous regions.

35

Figure 2.12: A TSP-tree is an octree (quadtree in this representation) created over the spa-
tial domain of the dataset, where each leaf has an associated BSP-tree that stores temporal
information.

Data quantization was also combined with hierarchical decomposition to render static
data (SCHNEIDER; WESTERMANN, 2003). Dataset information is spatially compres-
sion using vector quantization, and the quantized lookup tables are reused in consecutive
time-steps.

Unstructured datasets received little attention of researchers concerning time-varying
data. A recent work presented an approach to compress unstructured scalar data that ex-
ploits temporal coherence (BERNARDON, 2005). Hierarchical decomposition is applied
to consecutive time-steps, and the difference vectors are compressed using vector quan-
tization. Two different rendering algorithms were modified to support this extension. A
texture-encoded scheme was used to integrate this approach to a Hardware-based Ray
Casting, decompressing the necessary information on-the-fly. The HAVS algorithm was
also modified to incorporate these changes, using the CPU to decompress the data and
send it to the GPU (BERNARDON et al., 2006).

The previously described system only handles time-varying scalar fields, while the
grid is the same for all time steps. A solution for time-varying geometry is to use a key-
frame based approach (DOLEISCH et al., 2005). Significant time steps are chosen and the
position of the intermediate meshes is assumed to vary linearly. No solution to efficiently
handle time-varying topology besides a brute force approach has been found during the
research of this work.

Strategies to efficiently exploit I/O and parallelism (multithreading and distributed
computing) using time-varying data have been recently developed for both structured and
unstructured datasets (YU; MA; WELLING, 2004; BERNARDON et al., 2007).

The analysis of time-varying data is constantly increasing according to the available
computational resources. It is a fairly important area for volume visualization since most

36

phenomena in the real life vary in time.

2.7 Discussion

This chapter presented a large area of computer graphics: volume visualization. The
correct comprehension of its properties and its usefulness are fundamental to understand
the remaining chapters of this work.

Several techniques have been developed around different ideas to explore (or not,
according to the goals of the research) the graphics pipeline to solve the volume rendering
integral. Section 2.2.1 presented a quick review of some volume rendering methods, and
larger explanations and surveys can be found on the literature (SILVA et al., 2005).

Cell projection techniques have good rendering performance, since most of them ex-
ploit the benefits of traditional GPUs to solve the volume rendering integral. Ray casting
is largely recognized by the quality of its result, with high quality images. It is powerful
enough to handle both classes of datasets, but it is generally not as fast as other rendering
methods. The texture-based DVR is probably the most used rendering method. Medical
data generally comes in a format similar to 3D textures which are supported by modern
GPUs and results in straightforward implementations.

Similar to all these techniques is the use of Transfer Functions to assign optical prop-
erties to different characteristics of the volume. Transfer function design will be described
in the following chapter, and it holds the first set of contributions presented in this work.

37

3 TRANSFER FUNCTIONS

3.1 Introduction and Related Work

The previous chapter described which methods exist to perform volumetric visualiza-
tion and suggested the need of Transfer Functions to produce the final images. Datasets
are sets of scalar values measured over one or more conditions of a phenomena people
want to study. Transfer Functions are mappings that translate such scalar information
(density, temperature, etc) into optical properties. They are very important for volume
visualization, since they are very flexible and allow the exploration of features from the
underlying data (KINDLMANN, 2002).

The various methods for designing transfer functions can be classified under one of
four paradigms (PFISTER et al., 2001):

1. Trial and error: users have no cue or information extracted from the dataset while
specifying the transfer function;

2. Data centric without data model: create the transfer function automatically, without
assuming an underlying model for the features;

3. Data centric with data model: (semi)-automatically creates transfer functions, as-
suming a specific data model, such as border detection.

4. Image centric: users interact directly with the final product of volume rendering,
created with automatically generated transfer functions.

The first and last paradigms are less common since they require too much or too little
knowledge from the users, respectively. Data centric models are more studied, since there
is a good compromise between user effort and automation.

Trial and error techniques leave users alone to explore the entire transfer function
space. The image centric paradigm presents images to users, and use them to refine trans-
fer function creation. Design galleries (MARKS et al., 1997) is an image centric tech-
nique that uses genetic algorithms to improve the transfer function. Users select images
produced using some initially guessed mappings, and the respective transfer functions are
used as input to a refinement process. Since users have no explicit control over transfer
function creation, some features may never be enhanced if the combining routine was
poorly conceived.

For data centric methods that do not assume an underlying model the histograms try
to present simple information to users, without trying to capture specific features. Scalar
histogram shows how the scalar data is distributed over the entire scalar range. Often, this
histogram presents an accumulation over one (or a few) scalar regions, while the largest

38

part of the histogram is presented as a thin line. One can use a logarithmic scale instead
of a linear one to reduce this problem (POTTS; MÖLLER, 2004).

The paradigm that assumes an underlying data model is widely used. The definition
of a boundary model is important for this work, and will be detailed in Chapter 4. This
boundary model was previously used to define a semi-automatic procedure to create trans-
fer functions (KINDLMANN; DURKIN, 1998), where the gradient-magnitude histogram
is used to guide users about the location of boundaries. A similar approach was also used
to define a three material transition model for virtual colonoscopy (SERLIE et al., 2003).
It was used to classify and increase the quality of the visualization.

Several techniques that use histograms as a dual domain for the scalar field have been
developed to easy transfer function specification (KNISS; KINDLMANN; HANSEN,
2001, 2002; MULTIDIMENSIONAL TRANSFER FUNCTIONS FOR VOLUME REN-
DERING, 2005). Users can draw and edit widgets over the histogram to specify multidi-
mensional mappings, similar to those as shown in Figure 3.1. Transfer functions created
with widgets can be applied to traditional rendering using the emission-absorption model
or be combined with non-photorealistic rendering (SVAKHINE; EBERT; STREDNEY,
2005).

Figure 3.1: Example of two different widgets available in the system developed that are
used to interact with histograms.

Histograms may present the same information with different properties. While the
gradient-magnitude histogram presents transitions between materials as arc-like shapes,
the LH (Low-High) histogram shows them as a region with high concentration of points
(SERLIE et al., 2003; SEREDA et al., 2006). In the LH histogram, a value lies inside
a material or in the boundary of two materials, and it does not differentiate these two
situations. Also, its use is not recommended to enhance boundaries formed by three or
more materials.

A drawback of working with the gradient-magnitude histogram is that it does not
preserve the information about the spatial location of features, since it is basically a 2D
structure. But one can use the color of the histogram to represent the spatial information
(ROETTGER; BAUER; STAMMINGER, 2005), resulting in an easier interpretation of
how the histogram features correspond to the 3D scalar field.

Besides being common, TF creation using widgets is not the only option. A high-
level interaction approach (TZENG; LUM; MA, 2005) allows users to select a region of
the dataset rendered using maximum intension projection. This region is then expanded
using region growing, in a process similar to image segmentation.

Algorithms for transfer function specification for HDR datasets have been developed
along with HDR volume visualization (SCHULZE; CHOURASIA, 2006), as presented
in section 2.5. It is fairly important so transfer functions do not impose a limit for features
that have a high precision domain.

39

Transfer functions have also been used to compute lighting between two materials,
leaving the opacity to illustrate the thickness of homogeneous regions (LUM; MA, 2004).
Other application is its use to simulate illustrations for education using non-photorealistic
rendering and annotations (BRUCKNER; GRöLLER, 2005). These methods will not be
extensively described since they are considered to be outside the scope of this work.

Another important subject when dealing with transfer functions is time-varying data.
Some works have addressed this issue, but they are far less than the ones describing
solutions for static data.

Time-varying series can be classified into statistically static datasets or statistically
dynamic ones (AKIBA; FOUT; MA, 2006). Statistically static datasets present persistent
histograms along the time, with little variation, allowing the use of a single transfer func-
tion for all time series. On the other hand, statistically dynamic datasets may require a
specific transfer function for each time step, presenting high frequency features along the
temporal line.

One of the first works on this topic proposes to analyze a dataset to extract features that
vary in time (SILVER; WANG, 1998). Features that meet a certain criteria are selected
and a region growing algorithm is used to expand the selection to an entire dataset feature.
Maximums of the current time are used to accelerate convergence in consecutive time
steps, increasing computational efficiency when handling statistically static datasets. Due
to the fact that this approach uses a possibly different transfer function for every time step,
it can also be used for statistically dynamic datasets.

Different strategies to handle transfer function creation for statistically static data have
been proposed on the literature (JANKUN-KELLY; MA, 2001). The following strategies
have been developed to produce a single transfer function intended to be used for all time
series:

• average: calculates the average of all opacity maps;

• union: unite all individual transfer functions, capturing features that exist only over
small time intervals;

• single representative: a TF created for a single time step is used during the whole
time series;

• coherence-based: favor opacity values that are homogeneous in time over features
that suffer high fluctuation, smoothing out high frequency features. Uses the Coef-
ficient of Variation to perform the temporal analysis.

The coefficient of variation was also used to control the change of multiple transfer func-
tions in the same time series. It uses interval thresholds to verify if the current transfer
function is well suited for that time step or if a new one must be used, handling statistically
dynamic data.

A histogram that fairly illustrates what happens in a time-varying sequence is the time
histogram. It is the concatenation of a series of 1D scalar histograms, and as a result
shows how the scalar field behaves over time. This histogram can be used to classify a
time-varying dataset in one of the previously described categories.

The transfer function design tool proposed in this work was designed around the con-
cepts of histograms that try to capture underlying data information, as described in the
next section, and widgets to provide interaction with the transfer function domain. Us-
ing this paradigm as a basic approach the concept of Ensembles that combine different

40

transfer functions is developed in section 3.3. This work also proposes a method for han-
dling time-varying datasets using a key-framing approach, a method commonly used for
standard computer animation, described in section 3.4.

3.2 Histograms for Transfer Function Interaction

As described in the introduction of this chapter, this work uses histograms to capture
underlying data information and display it to users. This approach has been chosen so
users are not left alone to explore the transfer function space while not imposing too
many restrictions on how they can interact with it.

Four different histograms have been used to present information to users. These his-
tograms are intended to capture different information and display them to users. Fig-
ure 3.2 illustrates these histograms computed over the TJet unstructured dataset.

(a) 1D: Scalar (b) 2D: Scalar × Gradient-Magnitude

(c) 1D: Coefficient of Variation (d) 2D: Scalar × Coefficient of Variation

Figure 3.2: Four different histograms have been used to provide users with underlying
dataset information: scalar histogram (a) shows scalar concentration; scalar × gradient-
magnitude shows transitions between materials; coefficient of variation (c) shows scalars
accumulation on different expectations; scalar × coefficient of variation (d) shows which
scalars have higher variation. These histograms were computed over the TJet dataset.

Each histogram is used to quantify different properties of the dataset. The scalar
histogram shows which scalars have greater concentration of values, and how they are
distributed (figure 3.2(a)). It is useful to trivially isolate materials with high concentration
of samples. An example of a volume rendering using a transfer function created over this
type of histogram is shown in Figure 3.3(a).

The gradient-magnitude histogram is widely used for enhancing transitions between
regions of relatively homogeneous materials. These transitions are identified as arcs in
this histogram. The maximum value of the arc represents the scalar value of the transition
region, along with its neighborhood. The intuition behind this fact will be explained in
Chapter 4. Figures 3.2(b) and 3.4(a) shows the gradient-magnitude histogram of the TJet
dataset. Contrary to what would be expected this histogram does not present arc shapes
like the one in figure 3.4(b). It rather displays a line in the bottom of the histogram. This
does not happens only with the TJet dataset, but also with other unstructured datasets.
These issues are further studied in Chapter 4.

The coefficient of variation (CoV) histogram is useful for checking the distribution
of scalars through time, verifying if the amount of scalars with time-varying properties is

41

(a) Scalar (b) Coefficient of Variation (c) Scalar × Coefficient of Vari-
ation

Figure 3.3: Volume rendering of the TJet dataset using transfer functions created with
different histograms.

(a) TJet (b) Engine

Figure 3.4: Scalar versus Gradient-Magnitude histograms for an unstructured and struc-
tured datasets.

significant compared to static ones. It is computed over scalars of the entire time series.
It has already been used to create transfer functions for time-varying data (JANKUN-
KELLY; MA, 2001; AKIBA; FOUT; MA, 2006), but they used an approach different
from the one presented in this work. To correctly understand the meaning of the CoV, one
must understand the concept of Expectation and Variance of Expectation.

Consider n time-steps for sample values s of an independent random variable X . The
expectation (or mean) E at that position is expressed as

E[X] =
n∑
1

s(P {X = s}) (3.1)

where P {X = s} is the probability of picking a random value in X , and whose value in
this case is 1/n. The variance of the expectation V ar can now be expressed as

V ar[X] = E[X2]− E2[X] =
n∑
1

(
s2

n

)
−

(
n∑
1

s

n

)2

(3.2)

which is the spread of scalars around their mean. The CoV can now be computed as the
ratio between the standard deviation to the expectation:

Cv[X] =

√
V ar[X]

E[X]
(3.3)

The CoV is useful to measure the dispersion of probability distributions with widely
differing means. It is a dimensionless measure, and can not be used to construct confi-
dence intervals to the mean. These characteristics allow the CoV to be used to compare
all values against each other.

42

The first histogram used with the CoV is a simple 1D histogram, depicted in Fig-
ure 3.2(c). This histogram can be used to enhance time-varying features independently of
its relation to the scalar value, as illustrated in figure 3.3(b).

The last histogram correlates the scalar value with the CoV, as shown in Figure 3.2(d).
It is useful to enhance time-varying features with different optical properties, according to
the associated scalar value. Figure 3.3(c) shows the volume rendering of the TJet dataset
using a transfer function created using this histogram. Besides the result being similar to
the scalar histogram, it is easier to understand where the time-varying features are.

Histograms have been used here so users can initially define transfer functions using
a widely known and used method. After creating initial and relatively simple mappings,
more advanced tools can be used to produce more complex transfer functions. The trans-
fer function ensembles technique explained in the next section is an example of such
advanced tools

3.3 Transfer Function Ensembles

Users can draw widgets over different histograms to create transfer functions, as de-
scribed in the previous section. But a single histogram is often used to enhance a particular
feature of the dataset, like the boundary of relatively homogeneous regions. Users should
be able to display in a single transfer function features that are easily enhanced by two
or more types of histograms. This is the concept behind Transfer Function Ensembles
(TFE): the composition of transfer functions to create a single, complex transfer function.

The combination of transfer functions has been mentioned in the literature, and some
attempts have been made to use it. It has been used before to combine different nodes
of a graph that stores a visualization history in a system (MA, 1999). Operations such
as addition, difference and intersection are mentioned but not described. Other method
suggests fusing features of different transfer function through interaction with final images
(WU et al., 2006a). It allows the selection of regions in the final image that will be
preserved while combining different transfer functions. Different from previous works,
the idea presented here is that TFEs provide a versatile and robust method for dataset
exploration. Using different blending operations, transfer functions are combined in a
boolean-like manner, resulting in interesting visualization boolean operations.

To perform transfer function composition, transfer functions must be defined in com-
mon spaces (like the scalar space). Up to 3 different dimensions can be used, but this
constraint is only applied due to limitations of the GPU (since the resulting transfer func-
tion is stored as 1D, 2D or 3D textures).

A lower-dimensional transfer function can be combined with higher-dimensional ones
by using extrusion to fill the missing space. For instance, to combine a TF defined over
a scalar histogram (1D) with a gradient-magnitude histogram (2D), one can replicate the
scalar TF table for all values of the other dimension. Figure 3.5 illustrates this idea.

When the objective is to produce a transfer function with a lower dimensionality one
can apply a dimensional reduction (FODOR, 2002). The application of dimensional re-
duction usually loses information. This work uses a simple dimensional reduction, where
the intensity of the color and opacity for a given region of the transfer function is modu-
lated accordingly to the amount of samples that project into the same region. For instance,
if two samples will project into the same bin in the final transfer function and only one of
them is affected by the 2D transfer function, the final color and opacity will be modulated
by half, as shown in Figure 3.6.

43

Figure 3.5: Extrusion of a 1D transfer function defined over a scalar range (left) to a 2D
transfer function (right). This process allows the blending of 1D transfer functions with
2D (or 3D) ones.

Figure 3.6: Analogously to extrusion, a transfer function can suffer dimension reduction
to enable blending with lower dimensional transfer functions. We modulate opacity and
color intensities according to the ratio between the amount of samples covered by the
transfer function and the total amount of samples at that region.

Once all transfer functions share the same space we can combine them to produce
a single transfer function that (de)emphasizes features of all original mappings. This
composition is performed using a blending strategy, each one with different properties
and useful in different scenarios.

3.3.1 Blending Strategies

The tool this work presents for transfer function specification allows three different
blending operations, though more can be added with easy. Common to all blending strate-
gies is a weighting factor individual to each transfer function. This weight represents the
importance of that transfer function to the final composition. It is a user-controlled value
that multiplies the color and opacity prior to the composition. Figure 3.7(f) illustrates the
importance of the weighting factor to emphasizes a feature and preserve context informa-
tion.

The following blending description applies to two transfer functions at a time (fig-
ures 3.7(a) and 3.7(b)). If more transfer functions are to be added, the blending operations
are applied sequentially.

1. ADD: this blending operation results in a transfer function that combines features
of both input transfer functions. The result r for color C and opacity α of a lookup
table entry i for transfer functions 1 and 2 is the following:

Cr(i) = C1(i) + C2(i)

αr(i) = α1(i) + α2(i)

44

(a) TF1 (b) TF2 (c) TF1 add TF2

(d) TF1 and TF2 (e) TF1 xor TF2 (f) 0.5 X TF1 add 1.0 X TF2

Figure 3.7: The combination of transfer function (a) and (b) using diverse blending strate-
gies: simple addition in (c), AND operation in (d), XOR operation in (e). The effect of
weighting is shown in (f).

This mode is useful to enhance interesting regions while preserving the context.
Figure 3.7(c) shows the result of simply adding two transfer functions. Figure
3.7(f) shows the result of applying different blending weights before combining
both transfer functions.

2. AND: this operation produces a transfer function that emphasize features enhanced
by both input mappings. The result can be expressed using the same notation as
above:

Cr(i) = Max(C1(i), C2(i))

αr(i) = Min(α1(i), α2(i))

The maximum of each color channel is used to keep the color intensity, and the
minimum alpha removes areas where both transfer functions are less common, as
illustrated by figure 3.7(d). Again one ca use standard alpha-blending methods to
combine the color channels.

3. XOR: this is a complementary operation related to the previous one:

Cr(i) = (C1(i) ∧ C2(i)) ∨ (C1(i) ∧ C2(i))

αr(i) = (α1(i) ∧ α2(i)) ∨ (α1(i) ∧ α2(i))

If a features is enhanced by both transfer functions, it will be left out or the result-
ing transfer function (as shown in figure 3.7(e)). This is very useful for removing
features from a more complex transfer function, as demonstrated in Figure 3.7(e).

45

Combining a set of predefined transfer functions can be a powerful tool. In medi-
cal visualization, for instance, if a doctor has several predefined transfer functions that
enhance different organs (heart, bones, muscles, etc), he can easily combine them to pro-
duce a single transfer function that emphasizes all features he wants to using the ADD
operation. Similarly, he can use the subtraction capabilities of AND and XOR to produce
unique transfer functions from existing ones.

Ensembles have been developed to easy data exploration and transfer function creation
primarily for static scalar fields. When one deal with time-varying data there are other
situations that must be considered when creating a meaningful visualization, as described
int the next section.

3.4 Time Varying Transfer Functions

The beginning of this chapter described techniques for transfer function creation, and
Section 3.3 described how one can combine them to produce new functions and explore
the scalar field. These methods have primarily addressed static scalar fields. Considering
that most interesting phenomena in real life have variation in time, time-varying transfer
function specification should receive more attention from researchers than it has received
so far.

The use of single transfer functions for the whole time series or individual transfer
functions per time step presents some drawbacks. In the first case, a single transfer func-
tion may not capture important information from specific time steps if it presents transient
information not captured initially by the transfer function. The use of different transfer
functions per time-step, on the other hand, may result in visual discontinuities and can
potentially confuse users.

This work advocates the use of key-framing (PARENT, 2001) to easy the specification
of transfer functions for dynamic datasets. The approach developed allows users to create
a series of transfer functions and assign them to specific time steps, creating intervals. The
remaining time steps will use a custom transfer function corresponding to the interpolation
of the transfer functions that limits its interval. This interpolation is controlled by a user-
defined transition curve presented in the left of Figure 3.8.

Figure 3.8: User interface allows user interaction and control over dataset playback and
transfer function manipulation. Transition curve (on the right) enables customized transi-
tion between key-frames.

This approach is intended to minimize the problems previously described. It allows
single transfer functions to be used for determined intervals whose features do not vary
dramatically. When a new transfer function must be used, users can determine how much

46

time it will take for moving from the current function to the next one. Visual discontinu-
ities caused by transfer function changes are minimized by the customizable interpolation
scheme.

A key-frame based approach was also used to animate features on static datasets (WU
et al., 2006b). It is used to increase focus in certain areas of the dataset. This technique
has been developed in parallel with the one presented in this work, and illustrates the use
of key-framing for volume visualization.

3.5 Discussion

Transfer functions are very useful for volume visualization since they are mainly re-
sponsible for assigning optical properties to data values. Users must be able to interact
with the transfer function space to explore the dataset and identify interesting features.

This work chose to use histograms to guide users by presenting underlying data, as
described in section 3.2. Different from other approaches that do not try to help users or
impose restrictions to their interaction, the histogram approach presents underlying data
and offers direct interaction with the transfer function space.

Although widely used, histogram-based methods can still be difficult to create more
complex transfer functions. To easy this burden, this work contributes by introducing the
concept of ensembles in section 3.3, and defining operations required to produce them.
Ensembles combine different transfer functions into a single and more complex transfer
function using a blending operation. Section 3.3.1 described three different methods for
combining the transfer functions to create new mappings. The ADD operation is useful to
combine features enhanced by both transfer functions. AND is useful to focus on specific
features enhanced simultaneously by both transfer functions. Opposed to AND, the XOR
operation is used to remove features of a transfer function, removing details enhanced by
both.

When features that users are analyzing vary in time they may require more than one
transfer function to effectively capture features. The second contribution of this work
explains how to use key-framing to manage multiple transfer functions in a time-varying
sequence. It has the advantage of minimizing visual discontinuities that occur when the
transfer function changes by mixing both transfer functions of an interval. This combina-
tion is controlled by users, using a customizable transition curve.

These contributions have been integrated into a tool for designing transfer functions
and interacting with volume visualization. The system is described in Appendix A, in-
cluding some contributions not related to this document. Other systems have been pro-
posed on the literature, like the VolumePro (KÖNIG; GRÖLLER, 2001), but there is
no consensus on the adoption of a common interface. The development of the system
described in Appendix A may be considered a contribution itself, although more valida-
tion is required to fully verify its efficacy and efficiency with end users. Expert reviews
(TORY; MÖLLER, 2005; TORY; POTTS; MÖLLER, 2005) have been performed with
some users, and they found it suitable for its purpose.

While developing the transfer function tool, the histogram did not behave as expected.
The gradient-magnitude histogram for unstructured datasets did not present the arc struc-
ture that characterizes transitions between homogeneous regions. Figure 3.4 illustrates
the gradient-magnitude histogram computed over an unstructured dataset (figure 3.4(a))
and over a structured one (figure 3.4(b)). Notice the clear arc shape on the structured
dataset contrasting with the line at the bottom of the unstructured one. This behavior was

47

a big surprise, since it is based on a solid theory. The following chapter presents a study
on why this happens and how one can deal with it to present meaningful information.

48

49

4 DATA SIGNATURE ANALYSIS

4.1 Introduction and Related Work

In the previous chapters we presented approaches to help users explore scalar fields.
One important limitation concerning the computation of the traditional gradient-magnitude
histogram was presented in section 3.2: unstructured datasets did not present the clear and
characteristic arc-like shape similar to structured grids. This chapter is going to address
the main differences between these two classes of datasets in the context of extracting
underlying data information.

This work defines data signatures as the meaningful information that can be computed
from a dataset. This information presents important characteristics directly related to its
source. It is useful to better understand and analyze the problem.

Most of the techniques for computing data signature have been developed consider-
ing only datasets with regular sampling patterns. These datasets usually present desired
properties, like a large amount and regular placement of samples. On the other hand,
unstructured datasets are often composed by a reduced amount of samples irregularly
distributed in space when compared with its respective counterpart. The extension of
previously developed methods is not as intuitive as someone might expect. Characteris-
tics of these datasets must be considered when one develops methods for computing and
extracting statistical measures in unstructured grids.

Data signature has been extensively used for data analysis. The Contour Spectrum
(BAJAJ; PASCUCCI; SCHIKORE, 1997) is a data signature formed by scalar data and
contour attributes extracted from the dataset, such as surface area, volume and gradient
integral. It is used in multidimensional unstructured grids, providing underlying data
information without an assumed model to help users while designing a transfer function.

High Order Moments (HOM) are also model-independent statistical signatures (TENG-
INAKAI; LEE; MACHIRAJU, 2001). They have been used as estimators of central ten-
dency of data distributions. By measuring the chance of a distribution to cluster around
a particular value, it identifies possible salient iso-values, used to extract an iso-surface
from a volumetric dataset. The Mean Shift procedure (SHAMIR, 2003) was similarly
used for clustering. It combines functional and spatial domains for feature extraction,
data exploration and partitioning, identifying the spatial location of a feature selected in
the functional domain.

Data signature was used in previous works to enhance user experience while manipu-
lating volumetric datasets. It is concerning that few works have mentioned difficulties in
handling unstructured data for feature extraction and analysis. Most works regarding the
use of unstructured grids come from finite elements simulations. They state that the shape
of elements is crucial for good results in reconstruction techniques (SHEWCHUK, 2002,

50

2003), and discretization errors are closely linked to interpolation errors. The influence
of one bad element is usually felt at locations near the bad element.

The remaining of this chapter will analyze possible sources of errors that exist and
degrade the quality of data signature. The gradient is probably the most used signature
method, and a brief introduction to it is presented in section 4.2.

Section 4.3 presents the synthetic case study used to isolate sampling issues analyzed
in section 4.4 from approximation issues, discussed in section 4.5. Section 4.6 explores
the effect of smoothing samples prior to histogram computation. Section 4.7 discusses
results from this work, and presents possible new models in section 5.4.1.

4.2 Gradient

This work has previously described the use of the gradient-magnitude histogram for
transfer function specification (section 3.2) and the gradient itself, but has not yet pre-
sented a formal definition. The gradient of a scalar field is the directional derivative of a
scalar field. For a scalar field f(x, y, z) in the Euclidean space it is defined as

∇f(x, y, z) =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
(4.1)

When applied to a point p in the scalar field, the gradient results in the directional
derivative of the scalar field at p. It is important to notice that the magnitude of the gradient
vector indicates the rate of change of the scalar towards the gradient vector direction.
Figure 4.1 shows two examples of gradient vectors in 2D.

(a) (b)

Figure 4.1: Gradient vectors computed over two different 2D scalar fields: (a) linear
scalar variation results in gradient vectors with constant direction and magnitude; and (b)
spherical non-linear scalar variation results in gradient vectors with different directions
and magnitudes.

When the gradient vector is computed over a point on a line or surface associated
with an iso-value, it corresponds to the normal of that point regarding the line or surface.
Figure 4.2 illustrates the correspondence of the gradient vector to the normal of an iso-
line.

Another useful measure is the second derivative of the scalar field, the Laplacian:

51

Figure 4.2: For lines (surfaces) defined over an iso-value, the gradient results in the normal
of the line (surface).

∇2f(x, y, z) =

(
∂2

∂x2
,
∂2

∂y2
,
∂2

∂z2

)
(4.2)

The Laplacian represents the divergence of the gradient. It is used along with the mag-
nitude of the gradient for data analysis, and is important for the definition of a boundary,
as described in the next section

4.3 Synthetic Case Study

A synthetic dataset was created for analysis purposes. The reason for using it is that
it provides full control over the environment of the experiments, representing an ideal
situation. This control allows the separation of sampling and approximation issues.

The dataset is composed of a sphere inside a box, whose centers coincide, as illustrated
in figure 4.3. The box has dimensions ranging from 0 to 1 in all three main axis of the
Cartesian coordinate system. The radius of the sphere is 1

3
, so the boundary of the sphere

does not intersect the bounding box. The function value inside the sphere is 0, outside the
sphere is 1 and the boundary has a smooth transition between these values. The dataset
domain is limited by the surrounding box.

Figure 4.3: 2D representation of the synthetic dataset used as case study in this work.

52

The reason for using a sphere as the study case is that it presents gradients pointing
to all directions. Different samples over the boundary region will present different direc-
tional derivatives. The description of an ideal boundary is fundamental to understand the
shapes expected in the histograms, and is described next.

4.3.1 Ideal Boundary

The analysis of this work, just like the one presented by Kindlmann and Durkin
(KINDLMANN; DURKIN, 1998), is based in the characterization of an ideal bound-
ary. A smooth transition must be present to provide different gradient magnitudes and
allow the resulting histogram to present a particular shape.

The use of a step function to represent the boundary transition presents two major
drawbacks. First and most important, real datasets suffer from low boundary quality
inherent to the acquisition process. Second, if boundaries were well defined, one would
be able to precisely identify them without the need for statistical measures.

To better simulate real datasets the Error Function (erf) is used to represent the bound-
ary behavior. Equation 4.3 and figure 4.4(a) show it. The yellow region of the histograms
presented in this chapter is used only to provide context information.

erf(x) =
2√
π
×
∫ x

0

exp−t
2

dt (4.3)

The erf is the result of convolving a Step function with a Gaussian function. Its use
is straightforward since it represents what happens with real datasets. The erf is always
sampled inside the interval [−6..6] because these limits result in values close enough to
−1 and 1.

(a) f(x) (b) f(x)× f ′(x) (c) f(x)× f ′′(x)

Figure 4.4: Error function used as boundary behavior (f(x)) (a) and it plotted against the
magnitude of its first directional derivative (f ′(x)) (b) and second derivative (f ′′(x)) (c)
(plots b and c are normalized).

Important for this analysis is that the analytic solution for the first and second deriva-
tives of the erf are also known. The first derivative is the normal distribution, a Gaussian
function of the form:

erf ′(x) =
2√
π
× exp−x

2

(4.4)

and its plot is shown at figure 4.4(b). The second derivative is the combination of a
Gaussian function with an Hermite polynomial:

53

erf ′′(x) =
4√
π
× (−x)× exp−x

2

(4.5)

and its plot is shown in figure 4.4(c).
In the discussion that follows this work evaluates the impact of sampling and approx-

imation issues when detecting boundary transitions.

4.4 Sampling Issues

It is important to disconnect sampling from other possible distortion sources to pre-
cisely identify how it affects the histogram. Since the expected boundary has been defined
as a known erf function (section 4.3.1), it is possible to find all required sample values
analytically, thus avoiding negative effects from other error sources.

Consider f(x) the function that will be analyzed, x as a coordinate in an arbitrary
space (this work will focus on the <3 space). f ′(x) represents the magnitude of the direc-
tional derivative of f(x) (the gradient of f(x)). f ′′(x) is the second directional derivative
of f(x).

Every sample in the domain Ω of the function F (x) = (f(x), f ′(x), f ′′(x)) ([0..1]3 ∈
<3 for this work) has an assigned value for f(x) ∈ [a1, a2], f ′(x) ∈ [b1, b2] and f ′′(x) ∈
[c1, c2]. As the function is well defined for all its domain, it can be seen as the process
of a continuous random variable moving through Ω. Thus, the histogram represents a
discretized form of a probability density function (pdf) of the random process F , whose
quality depends of Ma, Mb and Mc bins for [a1, a2], [b1, b2] and [c1, c2] respectively, and
the number of samples used to measure the function.

A sampling method must be used to approximate the pdf of F because there is no
prior known information about it. One can use the Monte Carlo sampling approach
(L’ECUYER, 2003), since it is well known and useful to solve these problems. Fig-
ure 4.5 shows the resulting histograms of first (a, b) and second (c, d) derivatives with
100.000 and 400.000 samples, respectively.

(a) (b) (c) (d)

Figure 4.5: Analytic evaluation of f versus f ′ (a, b) and f versus f ′′ (c, d) on the sphere
dataset with 105 and 4 × 105 samples. Notice the absence of gaps when enough samples
are used.

The analysis of emphasized regions presented in figures 4.5 demonstrates that 100.000
samples were not enough to produce a histogram without gaps, while 400.000 samples
resulted in a continuous shape for histograms with resolution of 5122.

Sampling behaves differently according to the disposition of samples in a dataset.
Sections 4.4.1 and 4.4.2 analyze how sampling behaves in structured and unstructured

54

datasets, respectively. Section 4.4.3 analyzes how different boundary widths affect the
quality of produced histograms.

4.4.1 Structured Datasets

Quasi-Monte Carlo methods are commonly used to accelerate convergence and in-
crease computational efficiency of numerical methods. These methods take advantage of
specially chosen collection of points, using some specified metric. The uniform distri-
bution of points in a regular grid is a form of Quasi-Monte Carlo. Previous works have
benefited from the regular lattice of structured datasets, generating useful histograms with
resolutions between 802 and 2562.

(a) (b) (c) (d)

Figure 4.6: Gradient-magnitude of the blurred sphere dataset. Histograms were created
using approximately 105 samples inside regular grids with resolutions of 1283 (a, c) and
5123 (b, d).

The experiment with structured grids computed histograms with resolution of 5122.
Figures 4.6a and 4.6c show the resulting histograms of sampling the function using a
regular distribution of points inside a volume of 1283. This sampling shows the problems
with insufficient representation of a domain, since large gaps appear in both histograms.
Figures 4.6b and 4.6d present histograms computed with samples regularly distributed
inside a volume with resolution of 5123. Notice the better quality achieved by choosing
a good sampling strategy for a domain. Both histograms where generated using 100.000
samples.

While structured grids usually present a large amount of samples with a regular dis-
tribution, unstructured datasets usually offer less samples irregularly placed. Next section
analyses this class of datasets.

4.4.2 Unstructured Datasets

Scientists working with unstructured datasets are binded to a fixed number of samples
corresponding to the quantity of vertices in the mesh. Rarely these vertices present regular
or semi-regular patterns, so there is no control on the sampling points of the function to
build a pdf. To analyze how sampling affects these datasets three distinct distribution of
points have been used, all of them with 100.000 samples.

The first distribution used is a regular pattern. Despite the fact it is an unusual dis-
tribution, it is interesting to notice how it behaves when comparing to structured grids.
A mesh with 463 vertices regularly distributed was built inside the procedural volumetric
dataset. Figure 4.7a shows a 2D slice of the 3D mesh. By observing figures 4.7b and
4.7c one will notice that the same problems presented by structured datasets are present:
the accumulation of points in a few bins and long gaps between samples. Just like in the

55

structured case, this is directly related to the resolution of the mesh used. Unfortunately,
increasing the number of samples (vertices) will inflate considerably the total size of the
unstructured datasets.

(a) (b) (c)

Figure 4.7: Regular mesh created over the sphere dataset (left) with 97k samples, its
gradient-magnitude histogram (center) and second derivative histogram (right). This reg-
ular pattern presents the same problems as structured grids.

The second distribution used is a mesh with no regular pattern. In this case the samples
are concentrated in homogeneous regions, leaving transition regions (edges) with coarse
points. See figure 4.8a for an image of a slice of this dataset. Histograms presented in
figures 4.8b and 4.8c show that the gap length between samples on the histogram have
been reduced, mostly due to the irregular distribution of samples, but it still does not
correspond to the well defined shape this work aims for.

(a) (b) (c)

Figure 4.8: Sphere mesh refined at homogeneous regions (left) with 100k samples, its
gradient-magnitude histogram (center) and its second derivative histogram (right). Irreg-
ularly samples reduce gap lengths on histograms.

The last distribution used produces a mesh refined at boundary transitions. Homoge-
neous regions now present coarse resolution. Figure 4.9a shows a slice of this dataset.
Histograms generated by this distribution present a higher quality level than the other two
previous strategies, as figures 4.9b and 4.9c show. This is due to the high concentration
of samples in regions that present the interesting characteristic this work tries to identify.

The three previously described scenarios show the “average”, “worst” and “best” case
respectively. One could argue that the second dataset produced better samples, since they
were irregularly placed. Although it is true for this particular test case, in a more general
scenario there are greater chances of a regular distribution present samples across different
boundary zones.

56

(a) (b) (c)

Figure 4.9: Sphere mesh refined at boundary regions (left) with 100k samples, its
gradient-magnitude histogram (center) and its second derivative histogram (right). No-
tices how this distribution provided good histograms.

Fortunately, the “best” scenario also is the most common one. Simulation researches
usually produce meshes whose geometry captures sharp gradients. This way, the most
common source of unstructured meshes naturally attempt to create and refine sampling
densities at sharp features. Features that this work attempts to identify and enhance.

Although unstructured meshes usually present less samples than regular grids, these
samples will often present better distribution. The quality of the samples will be similar,
if not better, than the one of structured grids.

4.4.3 Influence of Boundary Width

The characterization of an ideal boundary assumed in this work was presented in
section 4.3.1. Figure 4.3 presents a 2D version of the dataset we have been using this far.
This section shows results on varying the boundary width b and verifies how it affects
histograms.

It is important to notice that the sampling range of the erf ([−6..6]) has not been
changed. The only change is how the area of influence of this result is mapped over the
boundary of the dataset. Mathematically what happens is a modification of the variance
in the Gaussian function that we use to convolve the step function.

Examining figure 4.10 one can notice that an increase in boundary width is associated
with an increase in histogram quality. It demonstrates that the boundary width is an
important factor when computing histograms. Larger boundaries will be easily detected,
while thinner boundaries will be challenging to deal with.

Real datasets may not present a large boundary, but a thin one. For these situations,
one can apply a blurring filter to increase the boundary width. This has been used in
previous works (KINDLMANN; DURKIN, 1998) to increase the quality of histograms
and easy the identification of model features.

4.5 Approximation Methods

After discussing which sample distributions produce acceptable histograms, this work
will focus on how to compute (or approximate) data to create the histograms.

According to the data format (a lattice or irregular structure) different methods can be
used to compute approximations of f ′ and f ′′.

Next section explains a method commonly used for computing the gradient vector
in structured grids. Section 4.5.2 presents the Least Squares technique, robust enough

57

Figure 4.10: Effects of different boundary widthes for regular (1st row), homogeneous
(2nd row) and edge (3rd row) distributions: 0.05 (2nd column), 0.09375 (3rd column)
and 0.2 (4th column) boundary width. Larger boundaries produce better histograms.

to deal with structured and unstructured datasets. These two methods are analyzed in
section 4.5.3.

4.5.1 Central Differences

The lattice nature of the first class of datasets makes it suitable for applying classical
image processing algorithms. A relatively fast method for computing different measures
on these structures is the use of convolution kernels with some well known operator.

Central differences are easily applied using a 3D version of the Prewitt mask, whose
2D horizontal version is shown in figure 4.11(b) (GONZALEZ; WOODS, 2007). This
filter results in good approximations of f ′, as presented in Figure 4.12(a). To compute f ′′

one can apply the previous filter twice, using the resulting values of the first computation
as input for the second pass (Figure 4.12(b)). Another approach is to use the Laplacian fil-
ter presented in figure 4.11(d) (GONZALEZ; WOODS, 2007) for direct f ′′ computation,
as illustrated on Figure 4.12(c).

-1 0 1

(a) 1D Prewitt

-1 0 1
-1 0 1
-1 0 1

(b) 2D h. Prewitt

1 1 1
0 0 0

-1 -1 -1
(c) 2D v. Prewitt

-1 -1 -1
-1 8 -1
-1 -1 -1
(d) Laplacian

Figure 4.11: 2D representation of the horizontal (b) and vertical (c) Prewitt filters for
computing f ′, extended from a 1D representation (a). The Laplacian filter (d) is used for
direct computation of f ′′. Both filters can be applied in structured grids.

58

The filters presented in figure 4.11 have been extended to 3D as follows. Both masks
can be seen as a cube with with 27 elements. In the Prewitt case, all elements whose index
in the axis being analyzed is smaller than the current one receive weight−1. All elements
whose index are greater than the current one receive weight 1. All elements with the same
index as the current one receive weight 0. In the case of the Laplacian filter, the current
value has a weight of 26, while all surrounding values receive weight −1. Results using
these configurations are presented in figure 4.12.

(a) Prewitt f × f ′ (b) Prewitt f × f ′′ (c) Laplacian f × f ′′

Figure 4.12: Gradient-magnitude histograms using approximations of f ′ and f ′′ us-
ing Prewitt, Prewitt applied over previous result, and Laplacian operators, respectively.
Sphere regular grid with 1283 samples.

Since unstructured grids may not have well distributed neighbors these filters are not
directly applied to them. Instead it employed the Least Squares method, used for com-
puting f ′ for both regular and irregular structures. This technique is explained in the
following section.

4.5.2 Least Squares

The Least Squares (LS) technique is widely known for finding a good fit for a set of
points. It has been used on the literature to reconstruct the gradient of scalar fields and
perform filtering (HASELBACHER, 2001).

There are two types of least squares: linear and non-linear. This work will only use
the linear least squares, since we want to find a direction (represented by a straight line).
It works by finding adjustable values in a vector β such that the residualR2 is a minimum:

R2 =

p∑
i=1

(yi − f(xi, β))2 (4.6)

where the dependent variable yi is associated to the independent variable xi through
the function f . To be a minimum, R2 must satisfy

∂(R2)

∂rj
= 0, j ∈ [1..n] (4.7)

In the case of linear least squares, the parameters of β are linearly combined with xi,
such that

f(xi, β) =
n∑
j=1

xijβj (4.8)

59

Combining equations 4.6, 4.7 and 4.8 resultis in p linear equations

∂(R2)

∂rj
= −2

p∑
i=1

xij

(
yi −

n∑
j=1

xijβj

)
(4.9)

p∑
i=1

xikyi =

p∑
i=1

n∑
j=1

xikxijβj (4.10)

Equation 4.10 can be written in matrix notation as

XTy =
(
XTX

)
β (4.11)

This work uses equation 4.11 to find the gradient vector β using sample points dis-
tributed around the one analyzed.

Besides the classification into linear and non-linear, the least squares method can use
a weighting parameter to try to compensate some distortions, like the distribution of sam-
ples. This results in the Weighted Least Squares (WLS):

R2 =

p∑
i=1

(yi − f(xi, β))2 × wi (4.12)

where wi is a weighting parameter associated to the data point xi. When the weighting
parameter is applied to a specific sample, biasing the calculation toward that value it is
called Moving Least Squares (MLS). Several researches suggest that the use of weighted
least squares produces better results than the unweighted version (MAVRIPLIS, 2003,
2007). Such works also suggest the use of the inverse of the distance between samples as
a good choice for the weighting parameter.

Six neighbors have been used in the fitting process for each sample of a regular scalar
field. Since all samples are taken at a fixed distance from the central sample both LS and
WLS present the same result (the distance to the central sample was used as the weighting
metric for the MLS method). Resulting histograms can be seen on Figure 4.13. Notice
the presence of gaps due to the disposition of samples, as discussed in section 4.4.1.

(a) f × f ′ (b) f × f ′′

Figure 4.13: Gradient-magnitude histograms using approximations of f ′ and f ′′ using
Least Squares. Sphere regular grid with 1283 samples.

The computation for unstructured grids uses a prefixed amount of neighbors around
the one being analyzed, to ensure the best fidelity while approximating the original func-
tion at that sample and a reasonable computational cost. The dataset used for these exper-

60

iments was the sphere with samples concentrated in the boundary of the sphere, as illus-
trated in figure 4.9. of section 4.4.2. Several works rely on this technique to compute the
gradient for unstructured grids (MAVRIPLIS, 2007; SHEWCHUK, 2002). Figure 4.14
shows the result of using both LS and WLS with 32 neighbors per sample.

(a) LS f × f ′ (b) LS f × f ′′ (c) WLS f × f ′ (d) WLS f × f ′′

Figure 4.14: Gradient-magnitude histograms using approximations of f ′ and f ′′ with
least squares and moving least squares. Sphere unstructured grid with dense boundary
and 100k samples.

Analyzing figures 4.14(a) and 4.14(c) one can see that it is easier to recognize the
arc-like shape of the histogram with MLS than with LS, since there are more samples
scattered in the top of the arc, although both methods are not as clear as the structured
case. Computed over the result of f ′, the histogram for f ′′ accumulates that error twice,
resulting in bad shapes for both techniques.

The quality of the (M)LS will be further analyzed in the next section, along with the
Prewitt method for structured grids.

4.5.3 Reconstruction Analysis

Sections 4.5.1 and 4.5.2 presented different methods to approximate f ′ and f ′′. This
section discusses the quality of these reconstruction methods.

In the moving least squares method, both the simple inverse of the distance 1
di

and the
normalized inverse of the distance dc

di
have been analyzed, where dc is the distance of the

point closest to the analyzed sample.
Four metrics have been used to compare the reconstruction methods with the analytic

solution:

• Difference in magnitudes (DM): corresponds to the module of the difference be-
tween the reconstructed and analytic solutions. Small differences represent more
accurate and robust solutions;

• Ratio between magnitudes (RM): compute analytic over reconstructed solutions.
Better methods results in ratios close to 1;

• Length of difference in the gradient vector (LDV): compute the difference vector
of reconstructed and analytic gradients. Small values represent more accurate an-
swers;

• Dot product (DP): measure the angle difference between analytic and reconstructed
normalized gradient vectors. More accurate solution should present values closer
to 1.

61

Table 4.1 presents the maximum and minimum values for the above metrics computed
for structured and unstructured techniques. This comparison was performed for the com-
putation of f ′, the gradient vector. Least squares and weighted least squares with both
weights yield the same results for structured datasets, so they have been displayed in a
single column.

Table 4.1: Result of the comparison between the analytic and reconstruction methods
according to several metrics: difference in magnitude of the gradient vector(DM), ratio
between the magnitudes (RM), length of the difference vector of gradients (LDV) and the
dot product between the gradient vectors (DP). Results measured in the structured sphere
dataset with 1283 samples and the unstructured sphere dataset with dense boundary and
100k samples.

Structured Unstructured
(M)LS Prewitt LS MLS (1

di
) MLS (dc

di
)

DMMin 0.000000 0.000000 0.000000 0.000000 0.000000
DMMax 0.156699 0.252082 0.623909 0.549086 0.549126
RMMin 0.000000 0.000000 0.000000 0.000000 0.000000
RMMax 1.185967 1.101218 6.009077 3.970824 2.799576
LDVMin 0.000000 0.000000 0.000000 0.000000 0.000000
LDVMax 0.162731 0.252089 0.661233 0.572888 0.572865
DPMin 0.636256 0.669197 -0.999983 -0.999462 -0.999609
DPMax 1.000000 1.000000 1.000000 1.000000 1.000000

This work now separates the analysis of structured and unstructured grids for better
comprehension. The next section analyzes the methods described for regular grids, while
section 4.5.3.2 analyzes unstructured grids results.

4.5.3.1 Structured Grids

The values presented in table 4.1 for structured grids have two interesting outcomes.
First, the least squares method seems to better approximate the magnitude of the gradient,
while the Prewitt technique better approximates the gradient vector itself.

The histograms presented in Figures 4.15(a) and 4.15(b) show the deviation of the
magnitude of the gradient from the analytic solution for the Least Squares and Prewitt
methods. Figures 4.16(a) and 4.16(b) show the cosine of the angle between the analyti-
cally computed and approximated gradient. The difference-histogram between these two
reconstruction methods can be seen in Figures 4.15(c) and 4.16(c).

The first set of histograms (figure 4.15) confirms the superior quality of the least
squares method for approximating the magnitude of the gradient. The LS technique
presents a significant larger amount of samples with small deviation from the analytic
solution than the Prewitt method. So, for the case of transfer function specification the LS
method presents an arc-like shape closer to the analytic solution than the Prewitt method.

On the other hand, the second set of histograms (figure 4.16) show the better approx-
imation of the analytic gradient vector produced by the Prewitt filter. It has an expressive
amount of samples whose dot product is closer to 1 than the LS method. If an application
(such as fluid dynamics simulations) is more concerned with the gradient direction than
with its magnitude, one should use the Prewitt method instead of LS.

Besides the quality of the result, one may be interested in the computational cost of

62

(a) Least Squares (b) Prewitt

(c) Least Squares - Prewitt

Figure 4.15: Difference between analytic and approximated solutions in the magnitude of
the gradient vector: Least squares in (a) and Prewitt in (b). The difference between the
Prewitt and Least Squares methods is shown in (c). Here one can see that LS results in
better magnitude approximation than Prewitt, due to the concentration of positive samples
in the beginning of the difference histogram. Sphere regular grid with 1283 samples.

using Prewitt or LS. Due to the fact that the Prewitt filter can be applied using a convo-
lution kernel its computation is performed faster than LS, that needs to compute a matrix
inversion (if it is possible) to find the gradient vector. Applications that must run in real-
time and tolerate a deviation from the solution, the Prewitt filter offers good accuracy and
performance.

4.5.3.2 Unstructured Grids

Due to the irregular distribution of samples in the unstructured datasets, this work
does not have an unstructured version of the Prewitt mask. Instead, it just compares the
Moving Least Squares method with the original one, and verify the equivalence of two
different weighting factors.

The beginning of section 4.5.3 presented both weighting parameters analyzed in this
work: 1

di
and dc

di
. The maximum and minimum values for all four metrics presented in

table 4.1 have been similar, with the exception of the magnitude ratio. A closer look to
those values actually demonstrate that all metrics present a very similar distribution of
values, as displayed in figure 4.17.

All histograms presented in figure 4.17 oscillate inside a small range of less than 70
elements. The difference between the ratio of the magnitudes, that is the one with the
largest divergence between weighting parameters, oscillates in a 10 element range. This
clearly demonstrates that there is not a significant difference between both weightings for
this dataset. For the remaining of this work, both weighting techniques will be considered
the same and only moving least squares in general will be addressed.

The moving least squares technique has shown more accurate results than the original

63

(a) Least Squares (b) Prewitt

(c) Least Squares - Prewitt

Figure 4.16: Cosine of the angle between approximated gradient and the analytic solution:
Least squares in (a) and Prewitt in (b). The difference between the Least Squares and
Prewitt methods is presented in (c), which shows that the Prewitt method results in better
approximation of the direction of the gradient over the least squares method, since values
are concentrated in the negative region closer to 1. Sphere regular grid with 1283 samples.

(a) Difference in gradient-magnitude (b) Difference in magnitude ratio

(c) Difference in gradient vector (d) Difference in direction

Figure 4.17: These four images demonstrate the similarity of results using both weighting
parameters 1

di
and dc

di
. Notice that all histograms oscillates between both techniques in a

small range (less than 70 elements). Since these weighting parameters are so similar, the
remaining of this work will only address MLS in general.

64

least squares method according to table 4.1. But only analyzing the distribution of the
values one can confirm the superiority of one method. Figures 4.18 and 4.19 shows the
distribution of values for two of the analyzed metrics, and a comparison between the LS
and MLS solutions.

(a) Least Squares (b) Weighted Least Squares

(c) Least Squares - Weighted Least Squares

Figure 4.18: Difference between the analytic and approximated solutions in the magni-
tude of the gradient vector: Least squares in (a) and Moving Least Squares in (b). The
difference between the Least Squares and Moving Least Squares methods is presented
in (c). Here one can see that MLS results in better magnitude approximation than LS.
Unstructured sphere dataset with 100k samples.

The quality of the gradient-magnitude for unstructured datasets is better approximated
by the MLS method. This is comproved by looking at the high concentration of negative
values near zero, and how it is sustained for the first quarter of the histogram, as shown in
figure 4.18.

The accumulation of positive values near 1 in the histogram of figure 4.19 shows
that the standard least squares approach produces better directions for the sphere dataset.
Although one may argue that the advantage of LS only extends for a small amount of
the histogram, the following sequence of good MLS results also extends for a fairly short
range.

These results suggest that MLS produces more accurate magnitudes while lacking a
bit of accuracy for gradient direction. MLS appears to be more robust than standard LS,
since several parameters can be used for modulating the sampling points, and like many
works point out (MAVRIPLIS, 2003, 2007).

4.6 Smoothing

One important factor that affects the quality of gradient-magnitude histograms is the
smoothness of the boundary. This is due to two reasons:

65

(a) Least Squares (b) Moving Least Squares

(c) Least Squares - Moving Least Squares

Figure 4.19: Cosine of the angle between approximated gradient and the analytic solu-
tion: Least squares in (a), Moving Least Squares in (b). The difference between the LS
and MLS methods is presented in (c). Although its worse value is better than the LS
value, the MLS technique actually performs slightly worse in general than LS for direc-
tion approximation. Unstructured sphere dataset with 100k samples.

• smoother boundaries in a discretized domain will be larger than abrupt boundaries,
resulting in more samples over it. This will result in gap reduction between samples
in the f(x) dimension of the histogram;

• smoother transitions will produce a wide range of gradient magnitudes (according
to the boundary model presented in section 4.3.1). This will reduce the gap between
histogram samples in f ′(x) and f ′′(x) dimensions.

An example of the use of smoothing to increase the boundary width and the quality
of resulting histograms is the original work of semi-automatic transfer function gener-
ation (KINDLMANN; DURKIN, 1998). The authors of said work force smoothing by
blurring the scalar field prior to computing any histogram.

Some care must be taken when analyzing a histogram computed over a blurred scalar
field. Figure 4.20 shows what would be several materials densely concentrated in the side
of the Engine dataset.

Figure 4.20 shows nothing more than an effect caused by interpolation and low sam-
pling: the small amount of samples coupled with a reduced amount of gradient-magnitudes
produces “islands” of points. These islands can be mistakenly taken for distinct bound-
aries in this dataset. Increasing the amount of blur applied in the scalar field results in
the replication of islands, increasing the arc quality, as figure 4.21 shows. Eventually it
would result in a single arc representing the transition of air to the Engine material.

A drawback of applying Gaussian blur to increase the arc quality is its characteristic
of smoothing out small features (GONZALEZ; WOODS, 2007). Fast transitions in the

66

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Figure 4.20: Different concentration of points may suggest that there are several different
borders in the side of the Engine dataset, as presented above. This effect actually corre-
sponds to a single boundary that lack enough samples to produce a single arc, as discussed
in section 4.4.

(a) 0 blur passes (b) 1 blur pass (c) 2 blur passes (d) 3 blur passes (e) 4 blur passes

(f) 5 blur passes (g) 6 blur passes (h) 7 blur passes (i) 8 blur passes (j) 9 blur passes

Figure 4.21: Gradient-magnitude histograms computed over the Engine dataset under
different blurring levels. In (a) the original scalar field was used, and all following his-
tograms have been computed over an incrementally blurred scalar field. Notice how an
outer arc shape becomes more defined with more blurring levels. The Gaussian blur filter
used considered an inflection point at 2 samples away and a cut off limit 3 samples away
from the central sample.

67

dataset may be completely missed if their scalar value is close to the one of its neighbors.
Another problem is the production of artifacts just like the ones presented above.

The Body dataset (figure 4.22)is another good example of how blur can help enhance
present boundaries. Notice that the histogram computed over the original scalar field
presents only one identifiable arc structure, contrasting with several shapes easily rec-
ognized in the blurred histogram. Artifacts also appear, just like in the engine dataset,
although they are not as prominent as the previous ones.

(a) 0 blur passes (b) 1 blur pass (c) 2 blur passes (d) 3 blur passes (e) 4 blur passes

(f) 5 blur passes (g) 6 blur passes (h) 7 blur passes (i) 8 blur passes (j) 9 blur passes

Figure 4.22: The standard gradient-magnitude histogram for the Body dataset in (a)
presents only one identifiable arc structured. When filtering the volume one can read-
ily identify several other shapes (b - j). Similar to the Engine dataset, it also presents
artifacts when increasing the amount of blur applied.

Unstructured datasets also benefit from blurring, although the application of a blurring
filter is not as straightforward as in structured grids.

The blurring filter used analytically solves the Gaussian equation for each neighbor
of a sample, with a maximum quantity of 32 neighbors per sample. The Gaussian curve
is centered in each sample, and has an inflection point at a distance of 2× the dataset
mean edge and cut off threshold at 3× the mean edge. Since datasets may have different
scales, the individual mean edge was used to translate dataset-independent parameters to
the dataset domain.

Figures 4.23, 4.24 and 4.25 show examples of blurring effects in different unstructured
datasets. One can notice in all images an increased quality in the arc shapes following the
increase in the blurring level.

Just like in the structured case, unstructured datasets are also subject to artifacts. The
San Fernando earthquake simulation dataset, for instance, initially presents some identi-
fiable independent concentration of points. With the increase of blur these features break
into smaller pieces, suffering from the same quantization problem already stated for the
Engine dataset (figure 4.20).

Blurring is a powerful method for increasing the quality of the arc structure, according
to the boundary model adopted. The major drawback of using it is the appearance of
issues in the resulting histograms that may be misinterpreted. This work has identified
one of the possible artifacts, that will likely occur at thin boundaries that lack enough
samples to produce an arc without gaps.

68

(a) 0 blur passes (b) 1 blur pass (c) 2 blur passes (d) 3 blur passes (e) 4 blur passes

(f) 5 blur passes (g) 6 blur passes (h) 7 blur passes (i) 8 blur passes (j) 9 blur passes

Figure 4.23: Example of how blurring helps increasing the quality of arc-like shapes
in gradient-magnitude histograms for unstructured datasets. The original histogram for
F117 dataset in (a) presents lots of samples concentrated in the middle of the image.
Consecutive blurring steps help eliminating small sources of distortions and increase the
quality of recognizable boundaries ((b) to (j)). A maximum quantity of 32 neighbors near
the sample have been used to blur the scalar field, with the gaussian inflection point at
2×MeanEdge and cut off threshold at 3×MeanEdge.

(a) 0 blur passes (b) 1 blur pass (c) 2 blur passes (d) 3 blur passes (e) 4 blur passes

(f) 5 blur passes (g) 6 blur passes (h) 7 blur passes (i) 8 blur passes (j) 9 blur passes

Figure 4.24: Gradient-magnitude histograms of the San Fernando earthquake simulation
dataset under several blurring levels. The original gradient-magnitude histogram in (a) has
its main boundaries enhanced through the application of blurring in the scalar field prior
to computing it (images (b) to (j)). Blurring is applied with 32 samples per vertex with
the gaussian inflection point at 2×MeanEdge and cut off threshold at 3×MeanEdge.

69

(a) 0 blur passes (b) 1 blur pass (c) 2 blur passes (d) 3 blur passes (e) 4 blur passes

(f) 5 blur passes (g) 6 blur passes (h) 7 blur passes (i) 8 blur passes (j) 9 blur passes

Figure 4.25: The standard gradient-magnitude histogram in (a) for the Super Phoenix
(SPX) dataset barely has identifiable arc shapes. Successive blurring filter in (b) to (j)
increase the quality of identifiable boundaries using the model described in section 4.3.1.
The gaussian blur filter used has inflection point at 2×MeanEdge and cut off threshold
at 3×MeanEdge, with a maximum of 32 closest neighbors used for each sample.

4.6.1 Other Unstructured Grids Issues

One problem identified while processing several unstructured grids was the concen-
tration of samples in the bottom of the gradient-magnitude histogram. This is due to some
samples that are too far from the other ones in both gradient and spatial domains.

The large difference between the magnitude of the gradient of certain samples can be
largely avoided with the use of a Gaussian blur to remove high frequencies. However, the
implementation of the Gaussian blur filter of this work discards neighbor samples distant
more than 3 times the mean edge of the dataset. If a dataset has degenerated samples with
distant neighbors, the effects of blurring will be small or even insignificant.

In such situation this work proposes the use of statistical measures to discard some
data samples that are far different from the others. This approach works by computing
the mean gradient-magnitude for the entire dataset, as well as the standard deviation.
Next, all samples whose deviation from the mean is larger than n times the variance are
discarded. Figure 4.26 shows the use of this technique to compute the gradient-magnitude
histogram for the Turbulent Jet dataset. Notice how there are shapes clearly identifiable in
the histogram, contrasting with the original image. To produce these images all samples
whose distance to the mean are larger than 10 times the variance have been discarded.

The mean edge for the TJet is approximately 6.26, while the maximum edge has length
of 39.97. This results in a ratio of about 6.37 between the mean edge and the maximum
edge, so the solely application of blur does not help improving the histogram quality.

Another unstructured dataset that presents this same issue is the Jets dataset. This
dataset is a simulation of combustion of a rocket engine. Figure 4.27 shows the gradient-
magnitude histogram prior to the statistical filter and after applying it. This dataset has a
mean edge length of 7.99 and maximum edge length of 40.90, also a factor larger than 3
times between these two measures.

Different datasets may require specific values to correctly discard distorted values
while preserving good samples. If the variance multiplier parameter is too small standard
values may be dropped from the final histogram along with erroneous ones.

70

(a) (b) (c)

Figure 4.26: Only blurring the dataset is not enough to produce good results for the tur-
bulent jet dataset. The original gradient-magnitude histogram is presented in (a). Notice
how almost all samples are concentrated at the bottom of the histogram. (b) shows the
same histogram using the statistical filter to discard distorted samples. The same proce-
dure applied in a blurred version of the dataset is presented in (c).

(a) (b) (c)

Figure 4.27: Just like the TJet case, the Large Jets dataset suffers from distorted samples
that negatively affect the histogram. Just blurring the dataset is not enough again, and sta-
tistical filters must be used to discard erroneous samples. The original gradient-magnitude
histogram with almost all samples concentrated at its lower part is presented in (a). The
same histogram is shown in (b), this time using the statistical filter to discard distorted
samples. (c) shows a blurred version of this dataset along with the statistical procedure.

71

4.7 Discussion

The analysis of statistical signatures (aka, the gradient-magnitude histogram specif-
ically addressed in this work) can reveal insightful information about the features of
dataset.

Through a controlled environment, this work demonstrated what problems may arise
from different sampling strategies for both structured and unstructured datasets. Approx-
imation issues have also been analyzed, and includes a comparison of the quality of dif-
ferent approximation schemes against the analytical solution.

Blur has already been used in the literature to preprocess datasets and increase the
quality of histograms. Although its relatively widespread use, this practice has not been
a direct subject in researches, and issues caused by it have not been fully studied and
reported. This work recognize its benefits and also identified a relatively common source
of errors in the presence of thin boundaries.

The next chapter will discuss more direct applications of statistical signatures applied
to both datasets feature extraction and transfer functions specification.

72

73

5 APPLICATIONS

As already stated in section 4, statistical data signature have been extensively used
for feature detection and analysis throughout the literature. It is a powerful method for
unveiling underlying data features that may be hard to manually identify and enhance.

There is a large amount of applications that can benefit from function statistics. This
chapter is going to address two specific applications that use it for enhancing features
in volume rendering. Section 5.1 is going to specifically address the problem of finding
features in the volumetric dataset, while section 5.2 will explain how to solve the problem
identified in section 3.2 concerning the development of transfer functions for unstructured
volume rendering.

5.1 Feature Extraction

The first application for function statistics is feature detection and enhancement. An
user that wants to analyze a dataset without prior knowledge of both its features and where
such features are located will face two great problems: what do these features mean and
how to locate them.

The first problem is subjective and, actually, it is the greatest challenge the user must
face. It is inherent to the problem the user is studying.

The second difficulty can be eased by function statistics, that capture underlying data
information using a specific data model. Through a correspondence between the his-
togram space and the respective spatial position users can quickly identify the location of
possibly interesting features.

Figure 5.1 shows a program developed to display the relationship of histogram sam-
ples with the spatial domain. Users can assign different colors in the histogram and see
the associated points in the function domain. Program features include a zooming tool
and opacity control for the histogram. Using this tool users can quickly identify where
the features of interest are located in the spatial dataset domain.

Users can additionally specify a transfer function to be used with volume rendering
within the spatial domain, as illustrated in figure 5.2. This is interesting to demonstrate the
correlation between a designed transfer function and the respective histogram samples, as
well as to perform a possible focus+context visualization.

This may be an interesting functionality to analyze the dataset. But to actually analyze
the features of a volumetric dataset, more robust visualization techniques are required.
Next section is going to revisit the transfer function approach presented in section 3.2,
explaining how one can deal with specific issues of unstructured datasets.

74

(a) Zooming tool

(b) Histogram space (c) Main visualization

(d) Opacity control

Figure 5.1: This dataset viewer correlates the histogram space with the spatial domain.
Samples selected in the histogram have its respective counterparts enhanced in the 3D
space. In (a) is shown an example of the importance of zoom to distinguish the boundary
shapes on areas of high concentration of points. The histogram samples selected in (b)
have its spatial position displayed in (c). The opacity level can be interactively modified
to explore high concentration of samples, as presented in (d). This is a reduced version of
the Foot dataset, a CT scan of a human foot.

75

(a) (b) (c)

Figure 5.2: The viewer can also display a volume rendering of the dataset along with the
sample positions. (a) shows the gradient-magnitude histogram for the TJet dataset with
selected regions that are enhanced in (b) and (c) along with a volume rendering using a
custom transfer function.

5.2 Transfer Functions Revisited

When firstly introduced in section 3.2, the use of histograms for guiding user choices
when designing a transfer function presented issues in histograms for unstructured grids.
These issues led to an analysis of the properties in the classical boundary model for struc-
tured datasets and its extension to unstructured grids, described in chapter 4.

Once all issues concerning unstructured grids have been sorted out we can finally
revisit the proposed solution and verify the usefulness of gradient-magnitude histograms
for unstructured grids.

Figure 5.3 shows three different unstructured datasets that previously had no identifi-
able shape on the gradient-magnitude histogram. Notice how the quality of the gradient-
magnitude histograms have been consistently improved concerning the adopted boundary
model.

(a) TJet (b) SPX (c) Fighter

(d) TJet (e) SPX (f) Fighter

Figure 5.3: Comparison between standard computation of the gradient-magnitude his-
togram and the enhanced version (blurred scalars and distorted samples discarded). The
TJet dataset (a) and (d), the SPX dataset (b) and (e) and the Fighter dataset (c) and (f).

The transfer function design program introduced in chapter 3 has been used to produce
transfer functions using these histograms, as presented in figure 5.4. Using the enhanced
gradient-magnitude histogram users have more information about where widgets should
be placed to capture interesting features of those datasets.

With the specific issues of unstructured grids sorted out, the usefulness of gradient-
magnitude histograms is now fully available for irregular grids as well.

76

(a) TJet dataset (b) SPX dataset (c) Fighter dataset

Figure 5.4: Example of unstructured grids volume rendering with associated transfer
functions created using the gradient-magnitude histogram.

5.3 Discussion

Using the enhanced version of the gradient-magnitude histogram users can now take
advantage of tools previously created for structured datasets. Since several applications
rely on irregular grids, this extension has high potential for practical use.

This chapter described two applications for unstructured grids. Using a viewer to
inspect where sample points of the histogram correspond to spatial positions, users can
quickly identify interesting regions.

Another important application is transfer function design. Now that the problems
identified on the gradient-magnitude histogram have been sorted out, several works pre-
viously developed on structured grids can be applied to irregular meshes.

More applications than the ones here described can be developed. The next section
will explore interesting applications for the use of the gradient-magnitude on both struc-
tured and unstructured datasets.

5.4 Future work

There are several possible applications for function statistics. This work has previ-
ously described two different uses in sections 5.1 and 5.2, but others are possible.

The following applications have been briefly explored and need further study before
reaching a definitive conclusion. Section 5.4.1 describes the definition and use of other
boundary models. Section 5.4.2 presents a new metric to be used for unstructured dataset
simplification that preserves function statistics for latter analysis and study.

5.4.1 Other Boundary Models

This work has been using a boundary model based in the convolution of a step with
a Gaussian function, just like many other works do (KINDLMANN; DURKIN, 1998;
KINDLMANN, 2002; SERLIE et al., 2003). This results in an erf as the model of the
boundary, whose first and second derivatives are well known, as explained and motivated
in section 4.3.1. Although widely used, the erf boundary model is not a rule and there are
other possible boundary shapes.

77

Different shapes have been identified in the gradient-magnitude histogram that suggest
the presence of distinct boundary models. Figure 5.5 shows the gradient-magnitude his-
togram of the Fighter unstructured dataset along with the respective data points enhanced
in the 3D volume space.

(a) Pattern different from arc. (b) Selected boundary shape.

(c) Visualization of (a). (d) Visualization of (b).

Figure 5.5: Example of a different boundary shape in the Fighter dataset (a). The selected
points in the gradient-magnitude histogram in (b) are enhanced in the dataset in (c) and
(d).

Certain types of datasets may present a predominant specific shape associated with a
given boundary model. Other works have already stated that ark-like shape is the pre-
dominant boundary model in medical datasets (KINDLMANN; DURKIN, 1998), since
there is a well-defined transition between relatively homogeneous tissues. This property
of medical data is the reason why the boundary model described in section 4.3.1 was
firstly proposed and is widely accepted.

Although widely used, the assumption that boundaries are a smoothed out step func-
tion should not be the only alternative considered for boundary models. While it is true
for relatively large transitions between regions of homogeneous materials, boundaries
with other shapes have been identified in real datasets. Whether these boundaries rep-
resent useful information depends on the subject in study and its characteristics. Other
boundary models are an interesting subject for future research and development.

5.4.2 Dataset Simplification

Another possible application for function statistics specifically for unstructured grids
is a metric for data simplification.

Dataset simplification is often used to reduce the size of a mesh, reducing its mem-
ory footprint and saving processing time (WALTER; HEALEY, 2001). Techniques that

78

perform this kind of operation usually support a given metric to preserve a specific mesh
characteristic. The approach for using function statistics for dataset simplification is dis-
cussed next.

Firstly the gradient-magnitude histogram (or another histogram suited for capturing
underlying data features) is computed. Then all features to be preserved must be selected
in the histogram. This can be performed manually by an user or automatically, using an
algorithm that searches for specific patterns, such as a boundary model.

Next, the actual simplification process takes place. Vertices are sequentially removed
from the mesh if:

• removing such vertex do not propagates an error to its n nearest neighbors such that
they leave the zone selected in the histogram;

• they represent a point inside a selection zone.

Tests of using the Hough transform (ILLINGWORTH; KITTLER, 1988; FERNAN-
DES; OLIVEIRA, 2008) for automatically detecting arc-like shapes have been performed,
but its conclusion has been delayed due to time constraints.

Dataset simplification is another possible application for function statistics. Preserv-
ing interesting features in simplified data is important for posterior analysis of data, as
well as to increase the performance for manipulating volumetric datasets.

79

6 CONCLUSION

Volume rendering is an important tool for scientists to explore the 3D domain of sev-
eral problems. Although much research has been previously performed on this subject,
many challenging problems remain open.

The contributions of this work can be classified into two major groups. Firstly, for
the field of volume visualization, the development of new solutions to transfer function
design. The concept of Transfer Functions ensembles has been introduced in section 3.3,
where previously developed transfer functions can be combined to create completely new
ones. This is a powerful method for fast volume exploration, allowing users to create
complex transfer functions from simple ones.

Another contribution for volume visualization is a key-frame based approach for time-
varying transfer functions. Users can set independent transfer functions for different time
instances of a volumetric dataset. The transition between these key-frames is performed
using a user-defined transition curve, that controls the speed of a merge between these
maps. This a robust solution for both statistically static and statistically dynamic datasets.
A drawback of this technique is a possible visual discontinuity due to transfer function
changes. It is minimized by the configurable transition curve, but not completely avoided.
If it happens, users may become disoriented.

The second group of contributions consists of a deep study on boundary behavior.
When applying the classical boundary model on unstructured grids in an ad hoc fashion
a completely degenerated gradient-magnitude histogram was produced. To better under-
stand what was happening, this work analyzed the two main sources of errors: the sam-
pling and approximation issues. Sampling issues have been identified mostly in regular
datasets, although it can happen in any class. The use of blurring to increase the bound-
ary width prior to the computation of the histogram led to better results, although it can
introduce this same error it was trying to circumvent.

Approximation methods also have been analyzed. This study verifies the accuracy of
the Weighted Least Squares regression method as the best choice for gradient reconstruc-
tion in unstructured datasets. In regular grids, both WLS and central differences presented
good results.

Regardless of blurring, some unstructured grids also presented an abnormal concen-
tration of samples at the bottom of the gradient-magnitude histogram, as described in
section 4.6.1. This is due to samples too far from the other, what contributes to nullify
any high frequency removal that the Gaussian blur offers. To solve this problem, the
variance of the gradient-magnitude is computed, and samples whose variance is larger
than a given amount are discarded. This resulted in significantly better histograms, but
the definition of the variance multiplier is subjected to the analyzed dataset. Although
using subjective parameters, this approach makes over a decade of research on transfer

80

functions specification available for general unstructured grids.
Using the concepts previously developed, two application have been developed. The

first one correlates samples in the histogram with its counterpart in the 3D space. This
is useful to quickly explore the dataset and find the location of interesting histogram fea-
tures. The second application is the transfer function program developed for the first set
of contributions. This program also benefits from the teachings of the second set of con-
tributions. Other techniques that may also benefit from the enhanced gradient magnitude
histogram include a simplification algorithm for unstructured meshes and the proposi-
tion of different boundary models, that may occur and be common in certain classes of
problems.

Without correctly understanding what issues are presented by different classes of
datasets, a common approach for both of them will not succeed. Just after discovering
how to deal with such issues developers can truly elaborate a common solution for both
structured and unstructured grids. The use of the methods described in this work can also
improve the user experience while interacting with transfer function design tools.

81

REFERENCES

AKENINE-MöLLER, T.; HAINES, E. Real-Time Rendering - 2nd ed. [S.l.]: A. K.
Peters, 2002.

AKIBA, H.; FOUT, N.; MA, K.-L. Simultaneous Classification of Time-Varying Volume
Data Based on the Time Histogram. In: IEEE VGTC/EUROGRAPHICS SYMPOSIUM
ON VISUALIZATION, 2006. Proceedings. . . [S.l.: s.n.], 2006.

BAJAJ, C. L.; PASCUCCI, V.; SCHIKORE, D. R. The contour spectrum. In: IEEE VI-
SUALIZATION, 1997. Proceedings. . . [S.l.: s.n.], 1997. p.173, 539.

BERNARDON, F. et al. Interactive Volume Rendering of Unstructured Grids with Time-
Varying Scalar Fields. In: EUROGRAPHICS SYMPOSIUM ON PARALLEL GRAPH-
ICS AND VISUALIZATION, 2006. . . . [S.l.: s.n.], 2006. p.51–58.

BERNARDON, F. F. Ray Casting de Volumes Não-Estruturados com Dados Dinâmi-
cos usando Hardware Gráfico. Projeto de Diplomação em Ciência da Computação –
Instituto de Informática. UFRGS, Porto Alegre, RS.

BERNARDON, F. F. et al. GPU-based Tiled Ray Casting using Depth Peeling. Journal
of Graphics Tools, [S.l.], v.11, n.3, p.23–29, July 2006.

BERNARDON, F. F. et al. An adaptive framework for visualizing unstructured grids with
time-varying scalar fields. Parallel Comput., Amsterdam, The Netherlands, v.33, n.6,
p.391–405, 2007.

BRUCKNER, S.; GRöLLER, E. VolumeShop: an interactive system for direct volume
illustration. In: IEEE VISUALIZATION, 2005. Proceedings. . . [S.l.: s.n.], 2005. p.671–
678.

BUNYK, P.; KAUFMAN, A.; SILVA, C. Simple, Fast, and Robust Ray Casting of Irreg-
ular Grids. In: DAGSTUHL, 1997. Proceedings. . . [S.l.: s.n.], 1997. p.30–36.

CALLAHAN, S. et al. Hardware-Assisted Visibility Sorting for Unstructured Volume
Rendering. IEEE Transactions on Visualization and Computer Graphics, [S.l.], v.11,
n.3, p.285–295, 2005.

CALLAHAN, S. P. et al. Interactive Rendering of Large Unstructured Grids Using Dy-
namic Level-of-Detail. In: IEEE VISUALIZATION, 2005. Proceedings. . . [S.l.: s.n.],
2005. p.199–206.

82

COMBA, J. L. et al. Fast Polyhedral Cell Sorting for Interactive Rendering of Unstruc-
tured Grids. Computer Graphics Forum, Amsterdam, v.18, n.3, p.C–369–C–376, 1999.
Work presented in EUROPGRAPHICS, 1992.

DIETRICH, C. A. et al. Real-time interactive visualization and manipulation of the vol-
umetric data using GPU-based methods. In: SPIE MEDICAL IMAGING 2004 - VISU-
ALIZATION, IMAGE-GUIDED PROCEDURES AND DISPLAY, 2004. Proceedings. . .
[S.l.: s.n.], 2004. v.5, p.181–192.

DOLEISCH, H. et al. Interactive Feature Specification for Simulation Data on Time-
Varying Grids. In: CONFERENCE ON SIMULATION AND VISUALIZATION,
SIMVIS, 2005. Proceedings. . . [S.l.: s.n.], 2005. p.291–304.

DREBIN, R. A.; CARPENTER, L.; HANRAHAN, P. Volume Rendering. Computer
Graphics, New York, v.22, n.4, p.65–74, Aug. 1988. Work presented in SIGGRAPH,
1988.

ENGEL, K. (Ed.). Real-Time Volume Graphics. [S.l.]: A. K. Peters, 2006.

EVERITT, C. Interactive Order-Independent Transparency. [S.l.]: NVIDIA Corpora-
tion, 1999. White Paper.

FARIAS, R.; MITCHELL, J. S. B.; SILVA, C. T. ZSWEEP: an efficient and exact projec-
tion algorithm for unstructured volume rendering. In: IEEE SYMPOSIUM ON VOLUME
VISUALIZATION, 2000, New York. Proceedings. . . New York: ACM Press, 2000.
p.91–99.

FARIAS, R.; SILVA, C. T. Parallelizing the ZSWEEP Algorithm for Distributed-Shared
Memory Architectures. In: JOINT IEEE TCVG AND EUROGRAPHICS WORKSHOP,
VOLUMEGRAPHICS, 2001, Wien. Proceedings. . . [S.l.: s.n.], 2001. p.181–194.

FERNANDES, L. A. F.; OLIVEIRA, M. M. Real-time line detection through an im-
proved Hough transform voting scheme. Pattern Recogn., New York, NY, USA, v.41,
n.1, p.299–314, 2008.

FODOR, I. A Survey of Dimension Reduction Techniques. Livermore: Center for Ap-
plied Scientifc Computing, Lawrence Livermore National Laboratory, 2002.

FOUT, N. et al. High-Quality Rendering of Compressed Volume Data Formats. In: EU-
ROVIS, 2005. Proceedings. . . [S.l.: s.n.], 2005.

GARRITY, M. P. Raytracing Irregular Volume Data. Computer Graphics, New York,
v.24, n.5, p.35–40, Nov. 1990. Work presented in the Workshop on Volume Visualization,
1990, San Diego, US.

GONZALEZ, R. C.; WOODS, R. E. Digital Image Processing Digital Image Process-
ing. 3rd ed. [S.l.]: Prentice Hall, 2007.

GROSS, M.; PFISTER, H. (Ed.). Point-Based Graphics. [S.l.]: Morgan Kaufmann,
2007. 552p.

GUTHE, S. et al. Interactive rendering of large volume data sets. In: IEEE VISUALIZA-
TION, 2002. Proceedings. . . [S.l.: s.n.], 2002. p.53–60.

83

HADWIGER, M.; BERGER, C.; HAUSER, H. High-Quality Two-Level Volume Render-
ing of Segmented Data Sets on Consumer Graphics Hardware. In: IEEE VISUALIZA-
TION, 2003. Proceedings. . . [S.l.: s.n.], 2003. p.301–308.

HANSEN, C.; JOHNSON, C. (Ed.). Multidimensional Transfer Functions for Volume
Rendering. [S.l.]: Academic Press, 2005. p.189–210.

HASELBACHER, A. Discrete Filtering on Unstructured Grids Based on Least-
squares Gradient Reconstruction. Urbana, IL: Center for Simulation of Advanced
Rockets, University of Illinois at Urbana-Champaign, 2001.

HEGE, H.-C.; HöLLER, T.; STALLING, D. Volume Rendering - Mathematical Models
and Algorithmic Aspects. [S.l.]: ZIB, 1993.

ILLINGWORTH, J.; KITTLER, J. A survey of the Hough transform. Comput. Vision
Graph. Image Process., San Diego, CA, USA, v.44, n.1, p.87–116, 1988.

JANKUN-KELLY, T.; MA, K.-L. A Study of Transfer Function Generation for Time-
Varying Volume Data. In: VOLUME GRAPHICS WORKSHOP, 2001. Proceedings. . .
[S.l.: s.n.], 2001. p.51–65.

KINDLMANN, G. Transfer Functions in Direct Volume Rendering: design, interface,
interaction. [S.l.]: Scientific Computing and Imaging Institute, School of Computing,
University of Utah, 2002.

KINDLMANN, G.; DURKIN, J. W. Semi-Automatic Generation of Transfer Functions
for Direct Volume Rendering. In: IEEE SYMPOSIUM ON VOLUME VISUALIZA-
TION, 1998. Proceedings. . . [S.l.: s.n.], 1998. p.79–86.

KITWARE INC. Paraview. Disponível em: http://www.paraview.org/. Acesso
em: 2008.

KNISS, J.; KINDLMANN, G.; HANSEN, C. Interactive volume rendering using multi-
dimensional transfer functions and direct manipulation widgets. In: IEEE VISUALIZA-
TION, 2001. Proceedings. . . [S.l.: s.n.], 2001. p.255–262.

KNISS, J.; KINDLMANN, G.; HANSEN, C. Multi-Dimensional Transfer Functions for
Interactive Volume Rendering. IEEE Transactions on Visualization and Computer
Graphics, [S.l.], v.8, n.3, p.270–285, July 2002.

KÖNIG, A.; GRÖLLER, E. Mastering Transfer Function Specification by Using Volume-
Pro Technology. In: SPRING CONFERERENCE ON COMPUTER GRAPHICS, 2001,
Budmerice, Slovakia. Proceedings. . . Los Alamitos, CA: IEEE Computer Society, 2001.
p.279–286.

KRAUS, M.; ERTL, T. Cell-projection of cyclic meshes. In: IEEE VISUALIZATION,
2001. Proceedings. . . [S.l.: s.n.], 2001. p.215–222.

KRAUS, M.; QIAO, W.; EBERT, D. S. Projecting Tetrahedra without Rendering Arti-
facts. In: IEEE VISUALIZATION, 2004. Proceedings. . . [S.l.: s.n.], 2004. p.27–34.

KRISHNAN, S.; SILVA, C.; WEI, B. A Hardware-Assisted Visibility-Ordering Algo-
rithm With Applications to Volume Rendering. In: DATA VISUALIZATION, 2001. Pro-
ceedings. . . [S.l.: s.n.], 2001. p.233–242.

84

KRUEGER, J.; WESTERMANN, R. Acceleration Techniques for GPU-based Volume
Rendering. In: IEEE VISUALIZATION, 2003. Proceedings. . . [S.l.: s.n.], 2003.

LACROUTE, P.; LEVOY, M. Fast Volume Rendering Using a Shear-Warp Factoriza-
tion of the Viewing Transformation. In: ANNUAL CONFERENCE ON COMPUTER
GRAPHICS AND INTERACTIVE TECHNIQUES, SIGGRAPH, 1994. Proceedings. . .
New York: ACM, 1994. p.451–458.

L’ECUYER, P. Quasi-monte carlo methods in practice: quasi-monte carlo methods for
simulation. In: CONFERENCE ON WINTER SIMULATION, WSC, 2003. Proceed-
ings. . . New York: ACM, 2003. v.35, p.81–89.

LEVOY, M. Display of Surfaces from Volume Data. IEEE Computer Graphics and
Applications, [S.l.], v.8, n.3, p.29 – 37, May 1988.

LEVOY, M. Display of Surfaces from Volume Data. 1989. Thesis (PhD on Computer
Science) — University of North Carolina at Chapel Hill.

LI, W.; MUELLER, K.; KAUFMAN, A. Empty Space Skipping and Occlusion Clipping
for Texture-based Volume Rendering. In: IEEE VISUALIZATION, 2003. Proceedings. . .
[S.l.: s.n.], 2003.

LINDE, Y.; BUZO, A.; GRAY, R. An algorithm for vector quantizer design. IEEE Trans-
actions on Communications, [S.l.], v.1, p.84–95, Jan. 1980.

LÜRIG, C.; GROSSO, R.; ERTL, T. Implicit Adaptive Volume Ray-Casting. In:
GRAPHICON, 1997. Proceedings. . . [S.l.: s.n.], 1997. p.114–120.

LUM, E. B.; MA, K.-L. Lighting Transfer Functions Using Gradient Aligned Sampling.
In: IEEE VISUALIZATION, 2004. Proceedings. . . [S.l.: s.n.], 2004. p.289–296.

MA, K.-L. Image Graphs - A Novel Approach to Visual Data Exploration. In: IEEE
VISUALIZATION, 1999. Proceedings. . . [S.l.: s.n.], 1999. p.81–88.

MA, K.-L.; SHEN, H.-W. Compression and Accelerated Rendering of Time-Varying
Volume Data. In: INTERNATIONAL SYMPOSIUM WORKSHOP ON COMPUTER
GRAPHICS AND VIRTUAL REALITY, 2000. Proceedings. . . [S.l.: s.n.], 2000. p.82–
89.

MANAGULI, R.; YOO, Y. M.; KIM, Y. Multi-Volume Rendering for Three-Dimensional
Power Doppler Imaging. IEEE Ultrasonics Symposium, [S.l.], v.4, p.2046–2049, 2005.

MARKS, J. et al. Design Galleries: a general approach to setting parameters for computer
graphics and animation. Computer Graphics, [S.l.], v.31, p.389–400, 1997.

MAVRIPLIS, D. J. Revisiting the Least-squares Procedure for Gradient Reconstruc-
tion on Unstructured Meshes. [S.l.]: NASA Langley Research Center, 2003.

MAVRIPLIS, D. J. Unstructured Mesh Discretizations and Solvers for Computational
Aerodynamics. In: AIAA COMPUTATIONAL FLUID DYNAMICS CONFERENCE,
2007, Miami, FL, USA. Proceedings. . . [S.l.: s.n.], 2007.

MAX, N. Optical models for direct volume rendering. IEEE Transactions on Visualiza-
tion and Computer Graphics, [S.l.], v.1, n.2, p.99–108, June 1995.

85

MORELAND, K.; ANGEL, E. A Fast High Accuracy Volume Renderer for Unstruc-
tured Data. In: IEEE SYMPOSIUM ON VOLUME VISUALIZATION AND GRAPH-
ICS, 2004. Proceedings. . . [S.l.: s.n.], 2004. p.9–16.

NOKIA CORPORATION. Qt. Disponível em: <http://www.qtsoftware.
com/>. Acesso em: 2008.

PARENT, R. Computer Animation - Algorithms and Techniques. [S.l.]: Morgan Kauf-
mann, 2001.

PFISTER, H. et al. The Transfer Function Bake-Off. IEEE Computer Graphics and
Applications, [S.l.], v.21, n.3, p.16–22, 2001.

POTTS, S.; MÖLLER, T. Transfer Functions on a Logarithmic Scale for Volume Render-
ing. In: GRAPHICS INTERFACE, 2004. Proceedings. . . [S.l.: s.n.], 2004. p.57–63.

PURCELL, T. J. et al. Ray Tracing on Programmable Graphics Hardware. ACM Trans-
actions on Graphics, [S.l.], v.21, n.3, p.703–712, July 2002.

ROETTGER, S.; BAUER, M.; STAMMINGER, M. Spatialized Transfer Functions. In:
IEEE VGTC/EUROGRAPHICS SYMPOSIUM ON VISUALIZATION, 2005. Proceed-
ings. . . [S.l.: s.n.], 2005. p.271–278.

ROETTGER, S. et al. Smart Hardware-Accelerated Volume Rendering. In: EG/IEEE
TCVG SYMPOSIUM ON VISUALIZATION, VISSYM, 2003. Proceedings. . .
[S.l.: s.n.], 2003. p.231–238.

SCHNEIDER, J.; WESTERMANN, R. Compression Domain Volume Rendering. In:
IEEE VISUALIZATION, 2003. Proceedings. . . [S.l.: s.n.], 2003.

SCHULZE, J. P.; CHOURASIA, A. A user interface for high dynamic range transfer
function design. In: ACM SIGGRAPH, 2006. Research Poster. New York: ACM, 2006.

SEREDA, P. et al. Visualization of boundaries in volumetric datasets using LH his-
tograms. IEEE Transactions on Visualization and Computer Graphics, [S.l.], v.12,
n.2, p.208–218, March/April 2006.

SERLIE, I. et al. Computed Cleansing for Virtual Colonoscopy Using a Three-Material
Transition Model. In: INTERNATIONAL CONFERENCE OF MEDICAL IMAGE
COMPUTER–ASSISTED INTERVENTION, MICCAI, 2003, Montreal, Canada. Pro-
ceedings. . . Berlim: Springer, 2003. p.175–183.

SHAMIR, A. Feature-Space Analysis of Unstructured Meshes. In: IEEE VISUALIZA-
TION, 2003, Seatle, Washington. Proceedings. . . [S.l.]: IEEE Computer Society, 2003.
p.25.

SHEN, H.-W.; CHIANG, L.-J.; MA, K.-L. A Fast Volume Rendering Algorithm for Time-
Varying Field Using A Time-Space Partitioning (TSP) Tree. In: IEEE VISUALIZATION,
1999, San Francisco, CA. Proceedings. . . New York: IEEE, 1999. p.371–377.

SHEWCHUK, J. R. What Is a Good Linear Finite Element? - Interpolation, Con-
ditioning, Anisotropy, and Quality Measures. Berkley, CA: Department of Electrical
Engineering and Computer Sciences, University of California at Berkeley, 2002.

86

SHEWCHUK, J. R. Constrained Delaunay Tetrahedralizations, Bistellar Flips, and
Provably Good Boundary Recovery. Talk slides. Available from author’s web page at:
<http://www.cs.berkeley.edu/~jrs/papers/>. Visited on: 2008.

SHIRLEY, P.; TUCHMAN, A. A Polygonal Approximation to Direct Scalar Volume Ren-
dering. Computer Graphics, New York, v.24, n.5, p.63–70, Nov. 1990.

SILVA, C.; MITCHELL, J. The Lazy Sweep Ray Casting Algorithm for Rendering Irreg-
ular Grids. IEEE Transactions on Visualization and Computer Graphics, [S.l.], v.3,
n.2, p.142–157, 1997.

SILVA, C. T. et al. A Survey of GPU-Based Volume Rendering of Unstructured Grids.
Brazilian Journal of Theoretic and Applied Computing (RITA), [S.l.], v.12, n.2, p.9–
29, 2005.

SILVER, D.; WANG, X. Tracking scalar features in unstructured datasets. In: CON-
FERENCE ON VISUALIZATION, VIS, 1998. Proceedings. . . Los Alamitos, CA: IEEE
Computer Society Press, 1998. p.79–86.

STEIN, C. M.; BECKER, B. G.; MAX, N. L. Sorting and hardware assisted rendering
for volume visualization. In: SYMPOSIUM ON VOLUME VISUALIZATION, 1994.
Proceedings. . . New York: ACM, 1994. p.83–89.

SVAKHINE, N.; EBERT, D. S.; STREDNEY, D. Illustration Motifs for Effective Medical
Volume Illustration. IEEE Computer Graphics and Applications, [S.l.], v.25, n.3, p.31–
39, 2005.

TENGINAKAI, S.; LEE, J.; MACHIRAJU, R. Salient iso-surface detection with model-
independent statistical signatures. In: CONFERENCE ON VISUALIZATION, 2001.
Proceedings. . . Washington, DC: IEEE Computer Society, 2001. p.231–238.

TORY, M.; MÖLLER, T. Evaluating Visualizations: do expert reviews work? IEEE
Computer Graphics and Applications, [S.l.], v.25, n.5, p.8–11, 2005.

TORY, M.; POTTS, S.; MÖLLER, T. A Parallel Coordinates Style Interface for Ex-
ploratory Volume Visualization. IEEE Transactions on Visualization and Computer
Graphics, [S.l.], v.11, n.1, p.71–80, 2005.

TZENG, F.-Y.; LUM, E. B.; MA, K.-L. An Intelligent System Approach to Higher-
Dimensional Classification of Volume Data. IEEE Transactions on Visualization and
Computer Graphics, [S.l.], v.11, n.3, p.273–284, 2005.

VIOLA, I.; KANITSAR, A.; GRÖLLER, E. Importance-Driven Volume Rendering. In:
IEEE VISUALIZATION, 2004. . . . [S.l.: s.n.], 2004. p.139–145.

WALTER, J. D.; HEALEY, C. G. Attribute preserving dataset simplification. In: CON-
FERENCE ON VISUALIZATION, 2001. Proceedings. . . Washington, DC: IEEE Com-
puter Society, 2001. p.113–120.

WEILER, M. et al. Hardware-Based Ray Casting for Tetrahedral Meshes. In: IEEE VI-
SUALIZATION, 2003. Proceedings. . . [S.l.: s.n.], 2003. p.333–340.

87

WEILER, M. et al. Texture-Encoded Tetrahedral Strips. In: IEEE SYMPOSIUM ON
VOLUME VISUALIZATION AND GRAPHICS, 2004. Proceedings. . . Washington,
DC: IEEE Computer Society, 2004. p.71–78.

WESTERMANN, R. Compression Domain Rendering of Time-Resolved Volume Data.
In: IEEE VISUALIZATION, 1995. Proceedings. . . [S.l.: s.n.], 1995. p.168–174.

WESTOVER, L. Footprint evaluation for volume rendering. In: ANNUAL CON-
FERENCE ON COMPUTER GRAPHICS AND INTERACTIVE TECHNIQUES, SIG-
GRAPH, 1990. Proceedings. . . New York: ACM, 1990. p.367–376.

WHITTED, T. An improved illumination model for shaded display. Commun. ACM,
New York, NY, USA, v.23, n.6, p.343–349, 1980.

WILLIAMS, P. L. Visibility-Ordering Meshed Polyhedra. ACM Transactions on
Graphics, [S.l.], v.11, n.2, p.103–126, Apr. 1992.

WU, Y. et al. Fusing Features in Direct Volume Rendering Images. In: INTERNA-
TIONAL SYMPOSIUM ON VISUAL COMPUTING, 2006. Proceedings. . . [S.l.: s.n.],
2006. p.273–282.

WU, Y. et al. Focus + Context Visualization with Animations. In: IEEE PACIFIC-
RIM SYMPOSIUM ON IMAGE AND VIDEO TECHNOLOGY, 2006. Proceedings. . .
[S.l.: s.n.], 2006. p.1293–1302.

YU, H.; MA, K.-L.; WELLING, J. I/O Strategies for Parallel Rendering of Large Time-
Varying Volume Data. In: EUROGRAPHICS SYMPOSIUM ON PARALLEL GRAPH-
ICS AND VISUALIZATION, 2004. Proceedings. . . [S.l.: s.n.], 2004. p.31–40.

YUAN, X. et al. High dynamic range volume visualization. In: IEEE VISUALIZATION,
2005. Proceedings. . . [S.l.: s.n.], 2005. p.327–334.

YUAN, X. et al. HDR VolVis: high dynamic range volume visualization. IEEE
Transactions on Visualization and Computer Graphics, [S.l.], v.12, n.4, p.433–455,
July/August 2006.

88

89

APPENDIX A THE TRANSFER FUNCTION DESIGN PRO-
GRAM

The techniques described in chapter 3 have been integrated into a larger system de-
veloped to help users on designing transfer functions for unstructured grids. Later in the
development, the support for structured grids was integrated and it is functional for the
features described in the section 3. This system was not solely developed by the main
author of this document, so the features described in this appendix were left out of the
main text.

This program was developed to become a Transfer Functions Design Engine, so its
modules have been projected to be independent of the user interfar. To this end, the system
has a core module that retains all the functionality of the program, an interface module that
must be implemented along the user-interface code and a user-interface module written in
QT (TROLLTECH, 2008) and presented in figure A.1.

The following section explains the concept of range-mapping, developed by another
researcher for this visualization system.

A.1 Scalar Range Mapping

Volume data produced from scientific simulation typically contains a high dynamic
range (HDR) of floating point scalar values. In addition, a high percentage of the scalar
values are often contained in a small range of the histogram (see Figure A.2(a)). Conse-
quently, to expose details that may be contained in these small regions, a large number of
control points and a high resolution lookup table are required. There are two main issues
with traditional transfer function design when dealing with HDR data. First, the narrow
range of values makes specification difficult due to the low resolution of the features on
the histogram interface. Second, the limited resolution of the color and opacity lookup
table in graphics hardware is not sufficient to fully represent all the unique scalar values
in the data.

To overcome the resolution limitations of the histogram interface, tools like Par-
aView (KITWARE, 2008) incorporate user-controlled zooming widgets to assist with
transfer function specification over small regions of the data. Yuan et al. (YUAN et al.,
2006) recently introduced a 1D fish-eye visualization of the histogram based on a focus
and context concept, which allows simultaneous representation of global (context) and
detail (focus) information on the same histogram display. These approaches, based on
magnifying the range of interest in the user interface, greatly assist the user with HDR
transfer function design. However, the second issue is still a challenge. Ideally, the num-
ber of entries in the color and opacity lookup table should correspond to the number of

90

Figure A.1: The user interface for interactive transfer function specification is shown for
the time-varying Turbulent Jet dataset using a 2D time histogram.

unique scalar values in the volume. Yuan et al. (YUAN et al., 2006) leverage tone map-
ping and specialized high-precision graphics hardware to handle the high precision of
texture based volume rendering. With limits in texture size, this is not always sufficient
and may result in many scalar values being assigned to one entry in the table (see Fig-
ure A.2(b)). Instead, this work proposes range mapping, which redistributes the scalar
range non-linearly to spread the regions of interest more evenly across the lookup table
(see Figure A.2(c)). Range mapping is related to histogram equalization and is a common
approach in image processing for handling low contrast images. This feature facilitates
the design process by allowing focus and context zooming effects, while avoiding reso-
lution issues of a fixed-size lookup table. The result is a tool that is naturally capable of
extracting detailed features in the data, as shown in Figure A.3.

Based on the observation that the transfer function design difficulties of HDR data
are mainly due to the non-uniform distribution of scalar data, the proposed solution is to
redistribute the scalar range. This can be done automatically by performing histogram
equalization, which spreads out the clustered regions. Mathematically, histogram equal-
ization is performed by introducing a cumulative density function (CDF) as a sum of
probability density functions (PDFs) over normalized scalar inputs:

CDF (xi) =
∑
xj<xi

PDF (xj).

91

Figure A.2: (a) A high-dynamic range histogram (above) is shown with a corresponding
lookup table (below). (b) Zooming into the dense region of the histogram does not change
the resulting image due to the static resolution of the lookup table. (c) By range mapping
the scalar values, the high-dynamic range elements of the mesh can be spread more evenly
across the static lookup table, enhancing hidden features in the data.

Then, a simple mapping is performed on the normalized scalar input value x that yields a
new uniformly distributed normalized output y:

y = CDF (x).

Due to its speed and simplicity, it is common to use a discrete histogram equalization
and perform this mapping with a lookup table. This approach is automatic, but gives the
user very little control over the redistribution process and tends to break the continuities
of the scalar range. Range mapping, a generalization of histogram equalization, is based
on piecewise linear mapping functions and provides more control while maintaining the
continuity of the scalar range. The range mapping functions that map the input scalars
[x0 . . . xn] to a new scalar range [y0 . . . yn] are a class of piecewise continuous functions f
over the input range that satisfy the following conditions: f is a monotonically increasing
function, f(x0) = y0, and f(xn) = yn. Similar to histogram equalization, the new scalar
value y is computed as:

y = f(x).

Given this definition, the function can arbitrarily redistribute the scalar range while main-
taining the order and continuity.

In practice, this work use the linear range mapping functions that combine many
line segments, each of which performs mapping from a specific range [xi . . . xi+1] to
[yi . . . yi+1] by applying the linear mapping equation:

y =
x− xi
xi+1 − xi

(yi+1 − yi) + yi.

92

Figure A.3: Volume exploration on the San Fernando earthquake simulation through
range mapping. A predefined transfer function (left) is used to explore the data by remap-
ping the scalars (right). Only a non-linear remapping can enhance features that are hidden
in multiple spikes of the data.

These linear function are sufficient to represent all range mappings since any function can
be approximated using many piecewise linear functions.

Because the cost of the linear interpolation is relatively low, one can perform range
mapping interactively while the user is manipulating control points for the range. The
remapping process is performed in hardware by storing a 1D texture that contains one
entry for every control point of the remapping. When the mapping changes, to minimize
CPU to GPU transfer, only the new mapping texture is sent to the GPU. During rendering,
the normalized scalar values can then be remapped to normalized scalar values using a
single texture lookup with linear interpolation enabled. Thus, this extra remapping step
impacts the rendering performance very little and is flexible enough to be used in a variety
of volume rendering algorithms.

As illustrated in Figure A.2, range mapping yields a magnification effect that is dif-
ferent from a normal zooming effect, since the actual shape of the histogram changes
non-linearly. This helps the user exploit the real data distribution in narrow clusters of the
scalar range. Even without transfer function widgets, range mapping can be a powerful
exploration tool. Figure A.3 shows how range mapping can be used to explore the data
using a simple, pre-defined transfer function.

Creating a user interface that can fully exploit the power of range mapping is a chal-
lenge.

The proposed solution is a simple, intuitive interface that allows the user to choose
the range by adding control points and extend the range by dragging two control points
away from each other. This allows the user to continue adding control points between the
previous points to further probe important regions. The histogram and volume rendering

93

change interactively during this control point manipulation to provide visual feedback of
the remapping. In addition, the range and scalar value under the cursor are displayed to the
user to facilitate specification when there is a priori knowledge of the data. Figures A.1
and A.3 show snapshots of this interface.

A.2 Evaluation

An important consideration for a transfer function specification tool is that it does
not introduce additional computational overhead and thus adversely impact interactivity.
There is no measurable performance penalty when using the transfer function specifica-
tion tools. Thus, the interactivity of the rendering remains the same as the original volume
renderer.

To evaluate the usefulness of the proposed techniques, an informal expert evaluation
of the system has been performed. Expert reviews have been shown to be a useful means
of evaluation, and require fewer reviewers than standard user studies (TORY; MÖLLER,
2005). Comments and suggestions were collected from four experts with different rel-
evant backgrounds. The first expert develops open source visualization software. The
second performs research in the area of volume visualization. The third expert has used
existing volume visualization software in a clinical setting. Finally, the fourth expert is
a specialist in bioengineering and concentrates mostly on biomedical computing. These
experts were given a demonstration of the proposed system along with ParaView (KIT-
WARE, 2008), a freely available system that has some basic transfer function specification
abilities such as a zooming interface. The experts were then given the opportunity to per-
form their own explorations using both systems and asked a series of questions about their
experience with the system compared to ParaView and other systems that they have used
in the past.

Overall, the feedback was very positive and the reviewers feel that the proposed sys-
tem is useful for quick data exploration and that existing visualization systems would
benefit from some of the components introduced in the system. The reviewers also pro-
vided many suggestions that can be incorporated into the system. This work summarizes
some of the main advantages and disadvantages that the reviewers pointed out.
Advantages:

• The system provides fine-grain control of the data due to the resolution control that
range mapping provides.

• Interactive histogram information significantly improves the ability to place widgets
and to explore the volume.

• The histograms that update over time provide more information about the volume
than other systems provide.

• The ability to interpolate between transfer functions over time is very useful for
contextualizing the data.

Disadvantages:

• The interface could use some work to consolidate the concept of ensembles and
make it more intuitive.

94

• Though some of the features are more powerful, they may require longer to learn to
use if the user is unfamiliar with transfer function specification.

• Currently there is no undo for operations.

Beyond these general comments, some interesting comments about the usefulness of
the system from the reviewers unique perspectives was received. The first reviewer men-
tioned that when the application he develops moved from 8-bit data to higher precision,
he noticed problems associated with limits in the lookup table precision, though he had
not found a reasonable solution for the problem. After the evaluation, his plan is now
to add range mapping to his system. He also really liked the idea of creating transfer
functions using combinations of other transfer functions and is evaluating this addition
to his system as well. The third reviewer worked extensively with time-varying data that
changes substantially over time. He commented that the ability to define different trans-
fer functions for time steps and interpolate between them through keyframing would have
saved him enormous amounts of time. He also mentioned that the ability to keyframe the
range mapping would be a useful feature for these datasets. This feature is planned to be
added to the system as soon as possible. The fourth reviewer stated that he would like to
see the features presented in this system incorporated into the biomedical simulation soft-
ware that he and his collaborators use because it would facilitate the process of analysis
for time-varying volumes.

95

APPENDIX B ESTATÍSTICAS DE FUNÇÕES APLICADAS
A VISUALIZAÇÃO VOLUMÉTRICA: CUIDADOS ESPECI-
AIS EM FUNÇÕES DISCRETAS

Cada vez mais dados são utilizados por cientistas para estudar os mais diversos prob-
lemas. Simulações físicas são utilizadas por engenheiros para projetar novas soluções, as-
sim como imagens de ressonância magnética (MRI), entre outras técnicas, são utilizadas
por médicos para avaliar as condições de saúde de pacientes. Uma importante ferramenta
que acelera a compreensão desses tipos de dados é a visualização das informações.

Por tratarem-se de dados em 3D, a visualização desse tipo de dado é complexa e
depende diretamente do formato dos dados. A seção B.1 explica quais tipos de dados
existem e métodos que podem ser utilizados para visualizá-los.

O primeiro conjunto de contribuições deste trabalho é apresentado na seção B.2. O sis-
tema apresentado introduz o conceito de Agrupamento de funções, que são combinações
de funções de transferência relativamente simples para a produção de novos mapeamen-
tos mais complexos. Além disso, uma solução simples porém robusta para tratar dados
dinâmicos é descrita.

O segundo grupo de contribuições é, na verdade, um amplo estudo sobre a extração de
informações em conjuntos de dados volumétricos, apresentados na seção B.3. Técnicas
antes apenas utilizadas em uma das classes de dados são estendidas para funcionarem
com ambas. Além disso, a aparição de determinados padrões é estudada e sua origem
explicada.

O estudo realizado na seção B.3 possibilitou o desenvolvimento de aplicações de-
scritas na seção B.4. Outras possíveis aplicações são descritas na seção B.5, e a conclusão
do trabalho é apresentada na seção B.6.

B.1 Visualização Volumétrica

Visualização volumétrica é o nome dado ao tipo de visualização realizada em conjun-
tos de dados que possuem informações sobre seu interior, e objetivam justamente realçar
essas características. Para isso, técnicas especiais são utilizadas para desenhar esses ob-
jetos, e funções de transferência são utilizadas para mapear as diferentes propriedades
desses dados para cor e opacidade. Funções de transferência serão descritas na seção B.2.

Existem basicamente duas classes de dados volumétricos: malhas estruturadas e mal-
has não-estruturadas. A principal diferença entre esses tipos de dados é a forma como
os seus componentes estão organizados. Malhas estruturadas (ou regulares) possuem um
padrão regular na distribuição das suas amostras, e não precisam de informações sobre
a conectividade destes elementos. Volumes não-estruturados ou irregulares, por outro

96

lado, apresentam amostras com diferentes distribuições espaciais, possuindo regiões com
maiores e menores concentrações de dados. Por ter essa distribuição irregular, dados não-
estruturados precisam armazenar as informações a respeito de sua topologia (conexões
entre seus elementos). A figura B.1 apresenta exemplos destes tipos de dados.

(a) (b) (c) (d)

Figure B.1: Exemplo de dados estruturados em (a) e (b), e dados não-estruturados em (c)
e (d).

Diferentes métodos foram desenvolvidos para a visualização destes dados. A técnica
conhecida por Ray Casting (LEVOY, 1988, 1989) pode ser utilizada em ambos os tipos
de dados. Seu funcionamento consiste em emitir raios partindo do centro de uma câmera
virtual através dos pixeis da imagem, e calcular a intersecção desses raios com o conjunto
de dados, acumulando de forma seqüencial as contribuições de cor e opacidade dos ele-
mentos interseccionados. Figura B.2 mostra o princípio de funcionamento dessa técnica.

(a) Volume regular (b) Volume irregular

Figure B.2: Exemplo do método de Ray Casting aplicado para dados estruturados em (a)
e dados não-estruturados em (b).

A técnica de projeção de células (SHIRLEY; TUCHMAN, 1990) foi desenvolvida
para lidar exclusivamente com dados não-estruturados. Neste método, as amostras estão
organizadas na forma de células, geralmente tetraedros. Estas células são subdivididas em
triângulos, ordenadas do ponto de vista da câmera virtual, e projetadas ordenadamente no
plano de imagem.

Uma técnica amplamente utilizada para visualizar volumes regulares é a Visualiza-
ção Volumétrica Direta Baseada em Texturas (Texture-Based Direct Volume Rendering).
Este método usualmente cria planos de amostragem paralelos ao plano de projeção, e
estes são utilizados para amostrar o volume de dados que é armazenado como uma tex-
tura (DREBIN; CARPENTER; HANRAHAN, Avg. 1988). Figura B.3 ilustra essa téc-
nica.

Estes métodos de visualização utilizam funções de transferência para mapear pro-
priedades dos dados para cor e opacidade. Estas funções são explicadas a seguir.

B.2 Funções de Transferência

Os dados utilizados em visualização volumétrica são formados por algum tipo especí-
fico de medida (como a densidade dos materiais). Para visualizá-los, é necessário utilizar

97

Figure B.3: Em visualização volumétrica direta, a prática mais comumente utilizada é
desenhar planos alinhados ao plano de projeção para amostrar o volume regular.

um mapeamento do espaço do volume para um espaço de cor e opacidade. Esse é o
objetivo das funções de transferência.

Diversos métodos foram e ainda são desenvolvidos para auxiliar usuários na tarefa
de criar funções de transferência (PFISTER et al., 2001). Este trabalho advoga o uso de
widgtes desenhados sobre histogramas (seção B.2.1) para definir funções de transferência
básicas que podem ser combinadas em Agrupamentos (seção B.2.2). Agrupamentos (ou
funções simples) podem ser utilizadas para criar visualizações de dados dinâmicos, como
apresentado na seção B.2.3.

B.2.1 Histogramas

Histogramas podem revelar diferentes informações sobre os dados nos quais eles
foram computados. Este trabalho apresenta quatro diferentes histogramas usados para
guiar os usuários quando estes definem as funções de transferência. A figura B.4 exem-
plifica estes histogramas.

(a) Escalar (b) Escalar ×Magnitude do Gradiente

(c) Coeficiente de Variação (d) Escalar × Coeficiente de Variação

Figure B.4: Diferentes histogramas foram utilizados para guiar as escolhas dos usuários
quando estes definem funções de transferência: o histograma dos valores escalares em
(a), o escalar × magnitude do gradiente em (b), o coeficiente de variação para dados
dinâmicos em (c) e o escalar × coeficiente de variação em (d).

O histograma de valores escalares mostra como estes estão distribuídos no volume,
permitindo identificar uma possível concentração de amostrar ao redor de algum valor.

O histograma da magnitude do gradiente é amplamente utilizado para identificar tran-
sições entre materiais relativamente homogêneos. Nesse caso, uma forma de arco é clara-
mente identificada no histograma. O conjunto de dados TJet não apresentou essa carac-
terística, contrário ao esperado. Esse comportamento será avaliado na seção B.3.

O coeficiente de variação é uma medida útil para verificar se a quantidade de val-
ores dinâmicos no volume é significante quando comparada a totalidade total de valores.

98

Essa medida já foi utilizada em outros trabalhos relacionados a funções de transferên-
cia (JANKUN-KELLY; MA, 2001). O primeiro histograma a utilizá-la é útil para salien-
tar amostras com determinada variação temporal independentemente do seu valor escalar
associado. Por outro lado, o histograma de escalares × coeficiente de variação é útil para
salientar diferentes características dinâmicas utilizando diferentes característica ópticas.

Funções de transferência definidas utilizando esses histogramas podem ser combi-
nadas para produzir mapeamentos mais complexos. Esta técnica é explicada a seguir.

B.2.2 Agrupamentos de Funções de Transferência

O conceito de agrupamentos em funções de transferência é produzir novos mapea-
mentos a partir de funções já existentes. Outros trabalhos existentes já propuseram a
combinação de diferentes funções (MA, 1999; WU et al., 2006a). Todavia esses trabal-
hos não demonstram completamente o seu funcionamento ou o aplicam a casos bastante
específicos. Neste trabalho são explicadas diferentes formas para combinar as funções de
transferência, além se serem sugeridos exemplos de aplicações.

Para combinar diferentes funções, elas devem estar definidas sobre um mesmo domínio.
Duas situações derivam dessa situação. Primeiro, para produzir uma função cuja dimen-
são é a máxima entre as dimensões das duas funções, um processo de extrusão pode ser
aplicado para igualar as duas dimensões antes da combinação. Já no segundo caso, onde
o resultado deve possuir a mesma dimensão da função com menor dimensionalidade, um
processo de redução dimensional deve ser aplicado (FODOR, 2002). Neste trabalho uma
simples redução dimensional foi utilizada, onde a cor e opacidade para uma dada região
da função de transferência é modulada de acordo com a quantidade de amostras que são
projetadas na mesma região da função final. A figura B.5 demostra esse conceito.

Figure B.5: Redução dimensional utilizada para converter uma função de dimensão mais
alta para uma mais baixa. O exemplo acima mostra a redução de um mapeamento 2D
para um mapeamento 1D.

Depois de levar as funções para um espaço em comum pode-se realizar a combinação
delas. Para isso, três diferentes estratégias de combinação foram desenvolvidas:

1. ADD: combina as características realçadas pelas duas funções, segundo a fórmula

Cr(i) = C1(i) + C2(i)

αr(i) = α1(i) + α2(i)

Este modo é útil para realçar características destacadas pelas duas funções.

2. AND: este modo destaca características que duas funções tem em comum:

Cr(i) = Max(C1(i), C2(i))

αr(i) = Min(α1(i), α2(i))

99

3. XOR: este modo é complementar ao anterior:

Cr(i) = (C1(i) ∧ C2(i)) ∨ (C1(i) ∧ C2(i))

αr(i) = (α1(i) ∧ α2(i)) ∨ (α1(i) ∧ α2(i))

Este modo remove as características que ambas as funções apresentam em comum.

Aplicações para os agrupamentos de funções permitem uma rápida manipulação de
dados através da combinação de funções específicas, como demonstra a figura B.6. No
caso de um conjunto de dados médicos, por exemplo, funções de realce para órgãos indi-
viduais podem ser combinadas para permitir a visualização de diversos órgãos simultane-
amente.

(a) TF1 (b) TF2 (c) TF1 add TF2

(d) TF1 and TF2 (e) TF1 xor TF2 (f) 0.5 X TF1 add 1.0 X TF2

Figure B.6: Agrupamentos das funções de transferência (a) e (b) utilizando diversas es-
tratégias de combinação: adição simples (ADD) em (c), operação AND em (d) e operação
XOR em (e). O efeito de utilizar pesos diferenciados para cada função é mostrado em (f).

Agrupamentos são bastante úteis para desenvolver funções complexas partindo de
funções mais simples. Eles também podem ser utilizados com dados temporais como
mostra a próxima seção.

B.2.3 Dados Dinâmicos

Os métodos anteriormente descritos para a criação de funções de transferência foram
desenvolvidos pensando primariamente em dados temporalmente estáticos. Dados com
variação temporal tem recebido uma menor atenção dos pesquisadores.

Dados dinâmicos podem ser classificados em dois diferentes grupos (AKIBA; FOUT;
MA, 2006):

100

• estatisticamente estáticos: possuem histogramas persistentes ao longo do tempo,
com pouca variação, e uma mesma função de transferência pode ser utilizada para
todas as instâncias de tempo.

• estatisticamente dinâmicos: este tipo de dado apresenta bastante variação tempo-
ral. Neste caso, mais de uma função de transferência é necessária para capturar as
características do volume.

Poucos trabalhos anteriores apresentam métodos para lidar com ambas as classes de
dados (SILVER; WANG, 1998; JANKUN-KELLY; MA, 2001). Em ambos os trabalhos,
porém, diferentes funções de transferência devem ser utilizadas para tratar dados estatis-
ticamente dinâmicos, mas utilizam uma simples troca dos mapeamentos utilizados. Esta
quebra de continuidade visual pode desorientar o usuário.

Este trabalho advoga o uso de um sistema de key-frames para possibilitar que o usuário
controle quantas funções de transferência serão utilizadas e como a troca entre elas será
realizada, através de uma curva de interpolação customizável. O programa desenvolvido
apresenta uma interface que possibilita ao usuário escolher quais funções correspondem
a quadros da animação temporal, e como a mudança entre esses quadros deve ser feita. A
figura B.7 mostra essa interface.

Figure B.7: Usuários podem customizar as funções de transferência que serão utilizadas
em em volume dinâmico através da interface acima. Usuários podem associar funções
com quadros-chave na animação - definidos pelo próprio usuário - e como fazer a inter-
polação entre esses quadros, usando a curva de transição (transition curve) apresentada
na figura.

As funções utilizadas nos quadros-chave podem ser agrupamentos ou funções simples,
desenvolvidas com qualquer método. Como explicado anteriormente, o sistema oferece
suporte a funções definidas sobre histogramas. Como alguns dos histogramas não apre-
sentaram as formas esperadas, um estudo sobre quais fatores influenciam a computação
desses histogramas foi realizado, como mostra a próxima seção.

B.3 Análise da Assinatura de Dados

Assinatura de dados no contexto deste trabalho é a informação que pode ser com-
putada a partir do conjunto de dados inicial. Um exemplo deste tipo de informação é o
gradiente da função.

O gradiente de um campo escalar é um vetor que indica a direção de maior variação
dentro do campo escalar. Para um campo escalar f(x, y, z) no espaço euclidiano se gra-
diente pode ser definido como

101

∇f(x, y, z) =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
(B.1)

Ao aplicar o gradiente em um ponto p do conjunto de dados, o resultado será a
derivada direcional do campo escalar em p. A magnitude do vetor gradiente representa a
velocidade de variação do campo naquela direção.

A segunda derivada do campo escalar é o Laplaciano

∇2f(x, y, z) =

(
∂2

∂x2
,
∂2

∂y2
,
∂2

∂z2

)
(B.2)

e também é bastante útil para a definição de borda utilizada neste trabalho.
Para avaliar corretamente as possíveis causas da baixa qualidade de alguns hitogramas

é preciso isolar as diversas fontes de erro, como a amostragem da função e a aproximação
dos resultados. Um conjunto de dados com soluções conhecidas foi desenvolvido para
permitir a exploração de diferentes fatores individualmente. A figura B.8 ilustra o volume
utilizado.

Figure B.8: Representação 2D do volume de dados utilizado como estudo de caso neste
trabalho.

Como funções de transferência são bastante utilizadas para realçar bordas entre regiões
relativamente homogêneas (KINDLMANN; DURKIN, 1998; PFISTER et al., 2001), é
importante definir o formato da borda. Seguindo a linha apresentada por Kindlmann (KINDL-
MANN; DURKIN, 1998), uma borda ideal seria uma step function, uma função com uma
transição praticamente instantânea de um valor relacionado a uma região homogênea para
outra. Em situações reais, todavia, isso é muito difícil de ocorrer, devido em grande parte
a imprecisões de equipamentos de medição. Essas imprecisões em geral acarretam em
uma suavização da borda da função. Essa suavização pode ser simulado pela aplicação
de um filtro gaussiano na borda, resultando na error function

erf(x) =
2√
π
×
∫ x

0

exp−t
2

dt (B.3)

utilizada como modelo de borda ideal. Essa função, bem como suas primeira (equação B.4)
e segunda (equação B.5) derivadas podem ser vistas na figura B.9.

102

erf ′(x) =
2√
π
× exp−x

2

(B.4)

erf ′′(x) =
4√
π
× (−x)× exp−x

2

(B.5)

(a) f(x) (b) f(x)× f ′(x) (c) f(x)× f ′′(x)

Figure B.9: A error function (f(x)) é utilizada como modelo ideal de borda, e mostrada
em (a). Seu relacionamento com a magnitude de sua primeira (f ′(x)) e segunda (f ′′(x))
derivadas direcionais é apresentado em (b) e (c), respectivamente (os gráficos em (b) e (c)
estão normalizados).

Como as soluções de sua primeira e segunda derivadas são conhecidas, pode-se iso-
lar problemas decorrentes de amostragens mal distribuídas de problemas relacionados a
aproximação da solução real, como explicado nas próximas seções.

B.3.1 Amostragem

Para verificar como a amostragem afeta a computação dos histogramas a solução
analítica de f ′(x) e f ′′(x) é utilizada sempre que esses valores devem ser consultados. A
qualidade dos histogramas é diretamente afetada pela quantidade de amostras utilizadas e
pela distribuição destas no domínio da função.

O método de Quasi-Monte Carlo (L’ECUYER, 2003) é bastante utilizado para acel-
erar a convergência em certos métodos computacionais. A distribuição regular de amostras
em volumes estruturados é uma forma de Quasi-Monte Carlo. Trabalhos anteriores se
beneficiaram deste fato para produzir histogramas. A figura B.10 mostra como diferentes
estratégias de amostragem afetam a qualidade dos histogramas.

Analisando os histogramas da figura B.10 percebe-se que um determinado passo de
amostragem afeta diretamente a qualidade do histograma. O conjunto de dados com 1283

amostras mostra resultados nitidamente inferiores em termos de distribuição que o volume
de 5123. Nota-se particularmente a presença de diversas descontinuidades largas quando
as amostras estão mais distribuídas.

Volumes não-estruturados, por outro lado, geralmente apresentam uma menor quanti-
dade de amostras. Para o estudo a seguir, malhas com aproximadamente 100.000 vértices
foram utilizadas (463 no caso da distribuição regular). A figura B.11 mostra o comporta-
mento de 3 diferentes estratégias de amostragem para volumes não-estruturados.

Amostras distribuídas em um padrão regular apresentam os mesmos artefatos que
volumes regulares. Uma concentração maior de amostras em regiões homogêneas resulta
em histogramas aparentemente mais povoados, porém ainda apresenta descontinuidades.

103

(a) (b) (c) (d)

Figure B.10: Gradient-magnitude of the blurred sphere dataset. Histograms were created
using approximately 105 samples inside regular grids with resolutions of 1283 (a, c) and
5123 (b, d).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure B.11: Diferentes estratégias empregadas para amostrar o volume da esfera uti-
lizando malhas não-estruturadas. Em (a), (b) e (c) é utilizado um padrão similar aos vol-
umes regulares, e nota-se a ocorrência dos mesmos problemas. Em (d), (e) e (f) a maioria
das amostras está distribuída em regiões homogêneas. Note como uma distribuição ir-
regular aparenta melhorar a qualidade dos histogramas, o que neste caso em particular
é verdade. Em outras situações esta distribuição pode resultar em histogramas piores, já
que o objetivo é identificar as bordas que receberam poucos pontos de amostragem. Já em
(g), (h) e (i) as amostras concentram-se em regiões de transição, produzindo histogramas
mais bem definidos que anteriormente.

104

Neste caso específico, o histograma fica mais definido. Porém, em outras situações, as
amostras tem grandes chances de ficar de fora da região de transição, diminuindo a qual-
idade dos histogramas. Uma distribuição em regiões de transição resulta em histogramas
bem mais definidos, com raras descontinuidades. Esse cenário é o ideal, e corresponde
ao que ocorre na realidade, pois malhas não-estruturadas procuram identificar regiões de
transição e características bem definidas.

Outro ponto relacionado com a amostragem de funções é a largura das bordas do
volume. A figura B.12 o que ocorre quando a largura da borda é modificada, sem alterar
a geometria da malha.

Figure B.12: Efeito de bordas com diferentes larguras para amostragens regulares (1a
linha), homogêneas (2a linha) e em áreas de transição (3a linha): larguras de borda de
0.05 (2a coluna), 0.09375 (3a coluna) e 0.2 (4a coluna)(valores normalizados com relação
a largura do volume). Bordas mais largas produzem histogramas mais definidos, já que
mais amostras estão localizadas na região de transição.

Bordas largas produzem histogramas mais claros, o que facilita sua identificação. Da-
dos reais podem possuir bordas finas, e um cientista pode fazer uso de técnicas de suaviza-
ção para melhorar a qualidade do resultado. Esta técnica é descrita na seção B.3.3. Mas
um fator determinante para a qualidade dos histogramas é o impacto da técnica de aprox-
imação utilizada, como mostrado a seguir.

B.3.2 Aproximação

Diferentes métodos de aproximação podem ser utilizados, de acordo com o tipo de
volume sendo utilizado. Dados estruturados possuem, em geral, métodos computacional-
mente mais rápidos que dados não-estruturados.

Devido a sua estrutura regular, volumes estruturados beneficiam-se diretamente da ex-
tensão para 3D de filtros classicamente utilizados em processamento de imagens. Dentre

105

esses filtros, destacam-se Prewitt e Laplace (GONZALEZ; WOODS, 2007), que podem
ser vistos na figura B.13.

-1 0 1

(a) 1D Prewitt

-1 0 1
-1 0 1
-1 0 1

(b) 2D h. Prewitt

1 1 1
0 0 0

-1 -1 -1
(c) 2D v. Prewitt

-1 -1 -1
-1 8 -1
-1 -1 -1
(d) Laplacian

Figure B.13: Representação 2D para o filtro horizontal (b) e vertical (c) de Prewitt para
computar f ′, estendido de uma representação 1D (a). O filtro Laplaciano (d) é usado para
computação direta de f ′′. Ambos filtros podem ser utilizados em dados estruturados.

O resultado da aplicação desses filtros no volume da esfera com 1283 amostras pode
ser visto na figura B.14.

(a) Prewitt f × f ′ (b) Prewitt f × f ′′ (c) Laplacian f × f ′′

Figure B.14: Histograma da magnitude do gradiente com aproximações de f ′ e f ′′ uti-
lizando Prewitt, Prewitt aplicado duas vezes, e o filtro Laplaciano, respectivamente. Vol-
ume da esfera com 1283 amostras.

Uma outra técnica que pode ser utilizada tanto em dados regulares quanto dados irreg-
ulares é Mínimos Quadrados. Este método é bastante utilizado para reconstruir o gradi-
ente e realizar filtragens (HASELBACHER, 2001). Este trabalho utiliza a versão matricial
do método, apresentada na equação B.6.

XTy =
(
XTX

)
β (B.6)

O método de mínimos quadrados pode utilizar pesos diferenciados para cada amostra,
para melhor refletir a importância de cada uma. A análise de ambas as versões da técnica
(com e sem pesos) será mostrada no final deste capítulo.

Em volumes regulares, seis voxels foram utilizados para computar o gradiente de cada
voxel central (um acima, um abaixo, um a esquerda, um a direita, um a frente e um atrás).
O resultado pode ser visto na figura B.15.

O cálculo do gradiente em volumes irregulares foi realizado através do uso dos 32
vizinhos mais próximos do ponto sendo analisado, a fim de manter o custo computacional
a um nível aceitável. Foi utilizado somente o volume cujas amostras concentram-se na
região de transição entre as áreas homogêneas. A figura B.16 mostra os histogramas
produzidos.

A análise da figura B.16 mostra que o resultado de mínimos quadrados utilizando
pesos possui uma forma de arco mais definida que mínimos quadrados tradicional. Os
histogramas para f ′′ são computados pela aplicação consecutiva de mínimos quadrados
(onde o resultado de uma primeira etapa é usado como entrada em uma segunda etapa).

106

(a) f × f ′ (b) f × f ′′

Figure B.15: Histogramas da magnitude do gradiente utilizando mínimos quadrados para
aproximar f ′ e f ′′. Volume regular da esfera com 1283 amostras.

(a) LS f × f ′ (b) LS f × f ′′ (c) WLS f × f ′ (d) WLS f × f ′′

Figure B.16: Histograma da magnitude do gradiente utilizando aproximações de f ′ e f ′′

com os métodos de mínimos quadrados puro (LS) e com pesos (WLS). Volume irregular
com bordas densas e 100.000 amostras.

Nota-se que os erros acumulados duas vezes praticamente removem a possibilidade de se
identificar a forma desejada.

Quatro métricas foram utilizadas para analizar as técnicas de aproximação:

• Diferença das magnitudes (DM): é o módulo da diferença entre as soluções recon-
struídas e analíticas.

• Razão entre as magnitudes (RM): calcula a solução analítica sobre reconstruída

• Comprimento da diferença do vetor gradiente (LDV): calcula o módulo do vetor
diferença entre os gradientes analítico e reconstruído.

• Produto escalar (DP): mede o cosseno do ângulo entre as soluções analítica e re-
construída.

A tabela B.1 mostra o resultado dessas métricas calculadas tanto para malhas estrutu-
radas como não-estruturadas.

Para entender corretamente o resultado, deve-se analisar o comportamento das amostras
mais profundamente. A figura B.17 apresenta o resultado da análise para volumes estrutu-
rados. Ela mostra como mínimos quadrados aproximam melhor a magnitude do gradiente,
enquanto Prewitt aproxima melhor a direção do mesmo. Isto leva a conclusão que uma
técnica pode ser escolhida baseada na aplicação, aproximando melhor a magnitude ou a
direção do gradiente.

O mesmo tipo de análise foi realizado com volumes não-estruturados, porém com-
parando mínimos quadrados tradicional com sua versão com pesos, utilizando a distância
entre as amostras como fator de ponderação. A figura B.18 mostra como o uso de pe-
sos para ponderar a técnica de mínimos quadrados melhora a aproximação da magnitude

107

Table B.1: Resultado das comparações entre os métodos de reconstrução e a solução
analítica utilizando diversas métricas. O volume regular utilizado possui 1283 amostras,
e o irregular 100.000 amostras.

Estruturados Não-estruturados
(W)LS Prewitt LS WLS

DMMin 0.000000 0.000000 0.000000 0.000000
DMMax 0.156699 0.252082 0.623909 0.549086
RMMin 0.000000 0.000000 0.000000 0.000000
RMMax 1.185967 1.101218 6.009077 3.970824
LDVMin 0.000000 0.000000 0.000000 0.000000
LDVMax 0.162731 0.252089 0.661233 0.572888
DPMin 0.636256 0.669197 -0.999983 -0.999462
DPMax 1.000000 1.000000 1.000000 1.000000

(a) DM: Mínimos quadrados - Prewitt (b) DP: Mínimos quadrados - Prewitt

Figure B.17: Resultado da reconstrução do gradiente de acordo com as métricas da difer-
ença entre as magnitudes do vetor gradiente (DM) em (a) e o cosseno do ângulo entre
os gradientes reconstruído e analítico (DP) em (b). Note como o primeiro histograma
demonstra uma melhor qualidade de mínimos quadrados sobre Prewitt para reconstruir a
magnitude, enquanto o segundo histograma mostra uma melhor aproximação da direção
do gradiente por Prewitt. Volume regular da esfera com 1283 amostras.

do gradiente. Quanto a direção, uma análise inicial aponta para uma melhor qualidade
quando pesos não são utilizados. Todavia, como diferentes parâmetros podem ser utiliza-
dos para modular o resultado de mínimos quadrados com pesos, essa técnica tende a ser
mais robusta (MAVRIPLIS, 2003, 2007).

Após verificar a qualidade das técnicas de reconstrução do gradiente, um outro fator
ainda é muito importante para determinar a qualidade dos histogramas da magnitude do
gradiente. A suavização do volume de dados é discutida a seguir.

B.3.3 Suavização

A suavização das bordas entre as regiões de um volume de dados afeta diretamente a
computação dos histogramas. Isto é devido a duas razões principais:

• bordas suaves em um domínio discreto serão mais largas que bordas abruptas, pos-
suindo assim mais amostras. Isso diminuirá os espaçamentos entre as amostras na
dimensão f(x) do histograma.

• transições suaves produzirão uma gama maior de magnitudes do gradiente (uti-
lizando o modelo de borda descrito na seção B.3). Isto reduz os espaçamentos entre
as amostras nas dimensões f ′(x) e f ′′(x) do histograma.

108

(a) DM: Least Squares - Weighted Least
Squares

(b) DP: Least Squares - Weighted Least
Squares

Figure B.18: Resultado da reconstrução do gradiente de acordo com as métricas da difer-
ença entre as magnitudes do vetor gradiente (DM) em (a) e o cosseno do ângulo entre
os gradientes reconstruído e analítico (DP) em (b). Note como o primeiro histograma
demonstra uma melhor qualidade quando pesos são utilizados com mínimos quadra-
dos para reconstruir a magnitude, enquanto o segundo histograma mostra que mínimos
quadrados sem pesos aproxima melhor a direção do gradiente. Volume irregular da esfera
com 100.000 amostras.

Trabalhos anteriores utilizam suavização para melhorar a qualidade dos histogramas
computados (KINDLMANN; DURKIN, 1998). Porém cuidados especiais devem ser
tomados para garantir uma correta interpretação dos resultados. A figura B.19 mostra
o que seriam diversas bordas. Isso é, porém, o efeito uma borda que possui poucas
amostras. A figura B.19(c) mostra o resultado da suavização do volume original antes
de computar o histograma. Um filtro gaussiano de dimensões 3x3x3 foi utilizado para
gerar essa figura, sendo aplicado 8 vezes em seqüência.

(a) (b) (c)

Figure B.19: Artefatos isolados não representam necessariamente diferentes bordas. No
caso acima, os diferentes acúmulos de pontos em (a) fazem parte da mesma borda, que
é estreita demais e não possui amostras suficientes para amostrá-la (b). A aplicação de
suavização no volume em (c) melhora a qualidade deste arco, porém acaba misturando os
demais arcos.

A aplicação de suavização para dados não-estruturados é mais complicada, pois sua
disposição irregular impede a aplicação de um filtro clássico de processamento de ima-
gens. Neste trabalho, 32 vizinhos foram utilizados para computar a suavização de cada
pixel utilizando a própria equação gaussiana. A equação utilizada é única para o volume,
e possui ponto de inflecção a 2× a distância da aresta média do volume e ponto de corte
a 3× essa distância. A figura B.20 mostra os histogramas do volume irregular F117 com
diferentes níveis de suavização. Versões do histograma com volume suavizado permitem
uma identificação visual mais fácil das estruturas em arco.

Alguns histogramas, todavia, continuam apresentando problemas. A técnica de suaviza-
ção não consegue corrigir o histograma do volume TJET, mostrado na figura B.21(a) e
apresentado na seção B.2.1. Essa distorção é causada por algumas amostras que são muito

109

(a) (b) (c)

Figure B.20: Exemplo de como suavização ajuda a melhorar a qualidade de histogramas
de volumes não-estruturados. O histograma original (a) apresenta diversas amostras con-
centradas no meio da imagem. A aplicação sucessiva de suavização diminui as distorções
e possibilita uma melhor identificação dos arcos (5 níveis em (b) e 9 níveis em (c)).

díspares com relação a maioria das amostras. Para corrigir o histograma nesse caso uma
medida estatística é utilizada: todas as amostras cuja variação da magnitude do gradi-
ente for maior que n vezes a variação média do volume são descartadas. A figura B.21
apresenta o resultado desse filtro no volume TJET, onde n é igual a 10.

(a) (b) (c)

Figure B.21: A suavização sozinha não corrige o volume TJET, cujas amostras
concentram-se na parte inferior do histograma em (a). O uso de técnica proposta em
(b) melhor a visualização da estrutura do histograma, que pode ser melhorada utilizando
a suavização (c).

De posse dessas ferramentas, algumas aplicações foram desenvolvidas, como mostra
a próxima seção.

B.4 Aplicações

Duas aplicações foram desenvolvidas utilizando os conceitos previamente descritos
neste trabalho. Primeiramente, uma ferramenta de análise para localização e realce de
características foi desenvolvida. A ferramenta mostra a correspondência das amostras dos
histogramas com o volume original no espaço 3D (figura B.22). A ferramenta permite a
manipulação de zoom, controle de opacidade para o histograma e realiza a correlação de
pontos do histograma no volume em 3D.

A outra aplicação é a própria ferramenta de criação funções de transferência apre-
sentada na seção B.2. As soluções aqui apresentadas para dados não-estruturados foram
incorporadas no sistema desenvolvido. A figura B.23 mostra diferentes volumes com suas
respectivas funções de transferência, que foram desenvolvida no sistema apresentado.

Fora essas aplicações desenvolvidas, outras aplicações podem beneficiar-se desta pesquisa,
como exemplificado a seguir.

110

(a) Zooming tool

(b) Histogram space (c) Main visualization

(d) Opacity control

Figure B.22: Visualizador que correlaciona dados do histograma para dados do espaço
3D do volume. Zoom é demonstrado em (a), pontos selecionados no histograma em (b)
são mapeados em (c), e diferentes opacidades são demonstradas em (d). Este volume é
uma versão reduzida do CT de um pé humano.

(a) TJet (b) SPX (c) Fighter

Figure B.23: Exemplo de visualização de volumes não-estruturados utilizando funções
de transferência criadas com o histograma da magnitude do gradiente no sistema apresen-
tado.

111

B.5 Trabalhos Futuros

Diversas aplicações podem beneficiar-se da análise desenvolvida anteriormente. A
seguir serão mencionadas duas possibilidades de trabalhos futuros envolvendo estatísticas
em funções discretas.

O modelo de borda assumido neste trabalho representa a transição ideal entre duas
regiões homogêneas. Este fato é bastante comum para volumes médicos (KINDLMANN;
DURKIN, 1998), porém em outras áreas modelos diferentes podem proporcionar melhor
resultados. Como exemplo, na figura B.24, pode-se distinguir uma borda cujo formato não
condiz com o modelo esperado de borda. É possível que modelos de borda adaptados para
as condições dos volumes (simulação, digitalização, etc.) produzam melhores resultados
que um modelo único.

(a) (b) (c) (d)

Figure B.24: Exemplo de um formato de borda diferente no volume Fighter (a). A corre-
spondência dos pontos selecionados no histograma em (b) são mostrados em (c) e (d).

Outra possibilidade de exploração futura é utilizar histogramas como métrica para
medir a qualidade de simplificações de volumes não-estruturados. A simplificação de
volumes irregulares é uma prática comumente utilizada para reduzir o tamanho destes
volumes, aumentando a velocidade de processamento dos dados e permitindo uma mel-
hor interação. Para realizar isso, no entanto, é necessário utilizar uma forma automática
de detectar a estrutura da borda no histograma. Testes iniciais foram realizados uti-
lizando a transformada de Hough (ILLINGWORTH; KITTLER, 1988; FERNANDES;
OLIVEIRA, 2008), porém mais análise é necessária antes de chegar a uma decisão defini-
tiva sobre a utilidade desta nova métrica.

B.6 Conclusão

A visualização volumétrica é uma importante ferramenta para a exploração do domínio
espacial 3D. Apesar de muitas pesquisas abordarem este tópico, muitos problemas ainda
encontram-se abertos.

As contribuições apresentadas neste trabalho dividem-se basicamente em dois con-
juntos. Primeiramente, novas propostas para a criação de funções de transferência foram
apresentadas, utilizando-se agrupamentos para produzir mapeamentos complexos a partir
de mapeamentos base mais simples, como explicado na seção B.2.2. Além disso, um
método para tratar a visualização de dados com variação temporal utilizando uma técnica
baseada em quadros-chave foi apresentada na seção B.2.3. Esta técnica possibilita a vi-
sualização de dados estatisticamente estáticos e dados estatisticamente dinâmicos. Uma
limitação desta técnica, todavia, é que ela não elimina descontinuidades visuais quando
funções de transferência diferentes são utilizadas. Ela apenas diminui sua percepção pela
interpolação entre dois quadros-chave.

112

O segundo grupo de contribuições apresenta um estudo sobre o comportamento da
borda em volumes de dados. Ao simplesmente aplicar o modelo de borda tradicional
de volumes regulares em volumes não-estruturados, histogramas degenerados foram pro-
duzidos. Para compreender o porquê disso, estratégias de amostragem e de aproximação
dos volumes foram estudadas. Artefatos gerados por má amostragem da função foram
identificados em dados regulares, porém podem ocorrer em qualquer uma das classes. A
suavização do volume antes de computar o histograma aumenta a qualidade dos arcos que
representam bordas, mas também podem causar a aparição de mais artefatos similares aos
que tenta evitar.

A precisão de técnicas de aproximação demonstrou que a utilização de mínimos
quadrados utilizando pesos produz um resultado mais preciso quando se trabalha com vol-
umes não-estruturados. No caso de volumes regulares, tanto mínimos quadrados quanto
o filtro de Prewitt apresentaram bons resultados.

Apesar da aplicação de suavização, alguns volumes de dados irregulares apresentaram
uma concentração anormal de amostras em determinadas regiões do histograma. Para
solucionar este problema, amostras muito distorcidas da média do volume são descartadas
quando o histograma é computado.

Duas aplicações foram desenvolvidas para auxiliar na visualização e na exploração de
volumes tanto regulares quanto não-estruturados. Além disso, dois exemplos de trabalhos
futuros que utilizam os conceitos desenvolvidos neste trabalho foram apresentados.

Sem correto entendimento de características apresentadas pelas diferentes classes de
volumes uma solução geral para ambos os tipos não será alcançada. Apenas após com-
preender corretamente os problemas envolvidos é que desenvolvedores poderão propor
soluções robustas o suficiente para lidarem com dados regulares e irregulares, reduzindo
custos de desenvolvimento de soluções específicas e de treinamento de usuários em fer-
ramentas também específicas.

