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Dynamical realization of magnetic states in a strongly interacting Bose mixture
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We describe the dynamical preparation of magnetic states in a strongly interacting two-component Bose gas in
a harmonic trap. By mapping this system to an effective spin-chain model, we obtain the dynamical spin densities
and the fidelities for a few-body system. We show that the spatial profiles transit between ferromagnetic and
antiferromagnetic states as the intraspecies interaction parameter is slowly increased.
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I. INTRODUCTION

The recent progress in magneto-optical trapping of ultra-
cold atoms [1] has opened up a new area of experimental
development in physics, allowing for the construction of
paradigmatic models of quantum mechanics. One of the most
important products of these advances is the realization of
effective one-dimensional (1D) atomic systems [2-5] where
interactions can be tuned via Feshbach [6] or confinement-
induced resonances [7,8]. Especially relevant among these
1D experiments is the strongly repulsive bosonic system
known as the Tonks-Girardeau gas [9,10]. The refinements
in manipulation and controlling of cold atoms also enabled
the probing of fundamental properties of quantum systems
through the construction of few-body ensembles [11-13].

From a theoretical standpoint, the problem of few particles
interacting in a harmonic trap has been addressed through
different approaches, both exact and approximative [14-20].
The case of strongly interacting atoms, in particular, has been
shown to be analogous to an effective 1D spin chain [21-24].
Moreover, strongly interacting few-body systems are suitable
for studying the origins of quantum magnetism [25-27] even
in models without underlying lattices. Recently, it has been
shown that different magnetic orderings can also be induced
by adding p-wave interactions to the system [28]. While
many of these works deal with static properties, the studies
involving dynamical features such as spin transport [29],
state transfer [30,31], and time evolution following a sudden
quench [32] are less numerous. Nonetheless, they are of great
experimental interest [29], especially due to their possible ap-
plications in spintronics, quantum information processing, and
communication [33]. Therefore, a more detailed investigation
of quantum dynamics and magnetism in this few-body strongly
interacting context is welcome and constitutes the main focus
of this work.

Given the motivations above and viewing the possibility
of experiments with ultracold few-body Bose mixtures, we
consider a model of strongly interacting two-component
bosonic atoms in a harmonic trap. It is known that different
magnetic states arise as the interactions between bosonic or
fermionic atoms are manipulated [27,34]. Here, we specifically
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show that the spin densities of the system transit between states
with clear ferromagnetic (FM) and antiferromagnetic (AFM)
profiles as the intraspecies interaction is increased in time. This
transition is visible not only in the squared fidelities, but also
in the spatial distributions of the spins in the trap.

The paper is organized as follows: In Sec. II we present
the Hamiltonian for the strongly interacting two-component
bosonic system and the mapping to an effective spin-chain
model. By considering the solution of the system in the infinite
repulsion limit, we calculate the ground-state spatial densities
and the trap-dependent geometric coefficients. The system
is then considered to be completely described only by the
solution of the spin-chain Hamiltonian. We choose to initialize
the system in an eigenstate where the intraspecies interaction
is smaller than the interspecies interaction. In Sec. III we
proceed to obtain the dynamics of the system: by changing
the intraspecies interaction in time and solving the eigenvalue
problem at each time step, we can obtain the time evolution
of the spin densities. We show that, for increasing intraspecies
repulsion, the system evolves from an initial FM state and
asymptotically reaches an AFM profile. We demonstrate this
by calculating the time evolution of spin densities for different
imbalanced systems. In the balanced case, although the spin
densities provide less information when compared to the
imbalanced situation, the squared fidelities still show the
transitions between FM and AFM states. In Sec. IV we present
the conclusions and future work perspectives.

II. HAMILTONIAN AND MAPPING TO AN EFFECTIVE
SPIN CHAIN

We consider a trapped 1D Bose gas with contact interactions
and two different bosonic species (1, |). The total number of
particles is N = N4 + N, where Ny and N are the numbers
of particles of species 1 and |, respectively. The N-body
Hamiltonian is given by

N
H= ZHO(xi) +825(xi —Xx;)
i 1

—i—KgZS(xi—xj)-i-KgZS(xi—xj)7 (1)
- w

where we assume /s = m = 1 and

1 2
Ho(x) = —

3922 + V(x) )
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FIG. 1. A system of strongly interacting atoms in a trapping
potential can be mapped to an effective spin-chain model where the
coefficients « are determined by the geometry of the trap.

is the single-particle Hamiltonian for a given potential V(x)
(for harmonic trapping, we have V (x) = x2/2). The remaining
terms of the Hamiltonian account for the contact interactions
between particles of different species (with strength parameter
g) and of the same species (with strength parameter xg).
We consider the length, time, and energy units to be [ =
Jh/mo, Tt = 1/ho, and E = Lo, respectively, where w is the
longitudinal harmonic confinement frequency [7].

In the limit of infinite repulsion (1/g = 0), the solution of
this system is given by the Bose-Fermi mapping [35]. The
resulting wave function of hard-core bosons is a symmetrized
Slater determinant constructed from the individual eigenstates
of the single-particle Hamiltonian (2). Its energy E| is simply
the sum of the energies of the lowest occupied energy levels
of the potential V (x).

In the limit of strong interactions (g >> 1), the Hamil-
tonian (1) can be mapped, up to linear order in 1/g, to a
spin-chain model given by

N
Hy=Eo— Y

-1
o | 1 i i+l 1 i i+l
e ey

3)

where ¢' = (0},0,0!) are the Pauli matrices acting on site
i and Ej is the energy of the hard-core boson (or spinless
fermion) system. In the limit of kx — oo and positive g, the
bosons that belong to the same species behave as hardcore
particle with respect to each other, while for x — 1, the
interaction strength between all bosons is the same. In the
particular case of k = 2 we have an effective X X model, as
summarized in Ref. [22]. The spin model for bosons described
in Ref. [24] can be obtained from Eq. (3) by performing a uni-
tary transformation (see Supplemental Material of Ref. [36]).

The coefficients o depend only on the geometry of the trap
and are obtained from [22]

8<I>% 2
fx1<x2<~~~<xN71 d)C] e de*l |m XN=X; (4)
o = 5 ,
fx1<x2<---<xN—l dxl e d‘xN|q>0|

where ®y(xy,...,xy) is the wave function for spinless
fermions. An efficient computational scheme for obtaining
the o’s as the number of atoms, N, is increased is presented in
Ref. [37].

In Fig. 1 we represent the mapping from a strongly
interacting 1D system in a harmonic trap to a spin chain
characterized by the geometric coefficients «. We mainly
focus on the N = 5 problem, for which we obtain o} = ¢y =
2.16612 and o, = a3 = 3.17738 (since the trap is symmetric,
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FIG. 2. One-body densities for N = 5, calculated for the sector
x; < -+ < x; < -+ - < xs. The total density (black dashed curve) is
normalized to N.

we have o; = ay_;). Due to a factor of 1/2 in the spin-chain
Hamiltonian, our geometric coefficients ¢; are twice as large
as the ones calculated in Ref. [27].

A. One-body correlations for the hard-core boson system

We focus initially on obtaining the one-body densities for
the hard-core boson system, since this accounts for the spatial
part of the wave functions. The spatially ordered one-body
correlations are given by

pir) = /dxl e dory 80t — )| DCEr e i i)

®)

where §(x) is the Dirac delta function, and the integration is
restricted to the sector x| < --- < x; < -+ < xy. InFig. 2 we
show the densities for the cases of N = 5. For larger N, these
integrals become harder to calculate; however, the densities at
x > 0 can be obtained by mirroring the results for x < 0 [38].

B. Spin densities and initial state for N =5

By taking Eq. (5) for the case of N =5, we can calculate
the spin densities for the imbalanced cases of three bosons
of species 1 and two bosons of species | (Ny =3,N|, =2)
and of four bosons of species 1 and one boson of species
! (Ny=4,N, =1). To write the separate densities for
components 1 and | we must combine the spatial and spinorial
contributions; the density for component %, for instance, is
given by [25]

N
pr(x) = phx), 6)
i=1

where p% = m’T o' (x) and m’T is the probability of finding a
boson of species 1 at site i and p’(x) is given by Eq. (5). The
value of m' for an eigenstate is found by exact diagonalization
of Hamiltonian (3), where we consider g = 100. Since the
total spin projection has to be conserved, we choose the
basis to be composed only by the desired states, such as
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FIG. 3. Spin densities for the initial states, with k = 0.1, for the
(a) Ny =3,N, =2 and (b) Ny =4,N, =1 cases. Solid (light red)
and dashed (dark blue) curves describe the spin densities for the 1 and
J components, respectively. The separation of different components
in the trap indicates a FM behavior.

[ ML), LIt for the Ny =3,N, =2 case and
[T ), o AT for the Ny = 4,N ) =1 case.

The complete ground-state wave function, including the
spatial and spin eigenfunctions, must take into account the
combined symmetry of these states. For instance, for a bosonic
system, the ground state of the spin Hamiltonian is symmetric,
which means that the spatial part of the wave function must
also be symmetric to account for a totally symmetric state [38].
In the following sections, however, we do not take the complete
wave function into account since we are dealing directly with
the spin densities given by Eq. (6).

‘We now construct the initial states of the system by choosing
the ground states in which the intraspecies interaction is
smaller than the interspecies interaction (x = 0.1). In Fig. 3
we show the spin densities for the imbalanced cases of
Ny =3,N, =2 and Ny =4,N, = 1. At this point, due to
the difference in the interaction strengths, the species tend to
separate in the trap. The densities profiles for ¥ < 1 show a
ferromagnetic order [19] of the Ising type, as opposed to the
case where ¥ = 1, which is addressed next. In Fig. 3(b), we
see a density that is similar to that of the Bose polaron [26],
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where a strongly interacting impurity is pushed to the edges of
the system.

III. DYNAMICAL PREPARATION OF MAGNETIC STATES
A. Imbalanced system

We now consider the time evolution of the system for a
slow increase in the intraspecies interaction parameter «. We
take « varying in the interval [0.1,10.1]. The eigenfunctions
of the spin-chain Hamiltonian thus evolve as

[x(@r)) = Ults,t0)xo0), (7

where U(ty,1) is the time-evolution operator and |xo) is the
initial state. Since the Hamiltonian is time dependent, we can
break the time evolution in several steps,

Ix@p)) =Uly,tn-1)--- U(t2,t)U(t1,10)] X0) 3

increasing Ak = 1 x 107> and taking the Hamiltonian to be
constant at each time step.

During the first steps of the time evolution (k ~ 0.1), the
change in energy at each step is larger than the spin gap
AE between the ground state and the first excited state of
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FIG. 4. Time evolution of the squared fidelities for (a) the
N; =3,N, =2 and (b) the Ny =4,N, = 1 cases. Identical results
for symmetric states (e.g., FfHM = FTzTNl) are omitted. At r =
0.45 x 10*[7], the system reaches the Heisenberg-type FM state
characterized by ¥ = 1, where the values for all the projections are
the same.
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FIG. 5. Initial part of the time evolution (r < 1.5 x 10* [t]) of the
spin densities for the cases of (a) Ny =3,N, =2 and (b) Ny =4,
N, = 1. Light (red) and dark (blue) curves indicate the 1 and |
components, respectively. Initial profiles (up to ¢ = 0.5 x 10*[1])
indicate FM states. At around t = 10* [z], AFM profiles start to arise.
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Hamiltonian (3). This means that, initially, the evolution of the
system is not adiabatic. Therefore, the whole set of eigenvalues
and eigenstates of the spin chain must be calculated for all
times. The energy gap between the ground state and the
first excited state of the spatial wave function, however, is
given by liw >> Akhw, so we can neglect the excited states of
D(x1,x2, ..., XN).

The recursion formula for the time evolution of the spin-
wave function is then given by

v
; _jEit] i
Xiv1) =) citle BT A gith), ©)

i=1

where i denotes the time step, E.*! and ¢! are the
eigenvalues and eigenvectors of the Hamiltonian (3) at step
i+ 1,c¢it! = (¢i*1];), and v is the number of eigenstates (the
total time evolution may be thought of as a succession of small
quenches, with fixed At = 0.05[r]). In Fig. 4 we show the
dynamical squared fidelities ng(t), with Fe(t) = [{§|x ()],
where |&) is some basis state (e.g., |§) = |11 ) for the
N; =3,N, = 2 case). Since the eigenstates are composed of
linear combinations of the symmetric basis states, in Fig. 4,
the results of the squared fidelities for states such as | 1111 )
and | | | t11) are identical. Therefore, we choose to omit the
results for the symmetric cases.

In Fig. 5 we present the time evolution (up to t = 1.5 x
10*[7]) of the spin densities for the two imbalanced cases
under consideration. We see that, for 0 < k < 1, the system
evolves through a FM phase. This phase is characterized first
by the separation of the two components in the trap and then
(around 7 = 0.45 x 10*[t]andk ~ 1) by the typical densities
of two-component bosonic systems with strong repulsive
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FIG. 6. Intermediate and final profiles for the time evolution of spin densities. Light (red) and dark (blue) curves indicate the 1 and |
components, respectively. Upper panels show the profiles at x = 1.1 (£ = 0.5 x 10*[t]) for the (a) Ny=3,N, =2and (b) Ny =4,N, =1
cases. The gray dots correspond to the results obtained with g = —100 and k — oo. The lower panels show the final profiles (t = 0.5 x 10 [1],
k ~ 10) for the (¢) Ny = 3,N, =2 and (d) Ny =4,N, = 1 cases, now compared to the limiting case of g = 100 and x — oo (gray dots).
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interactions [39]. For the particular case of « = 1, all the
interactions between bosons are identical. The magnetic order
is of the Heisenberg type with isotropic interactions, and the
squared fidelities assume the same values for all basis states,
as we can observe in Fig. 4. In this regime, the densities show
the profiles that characterize itinerant ferromagnetism (notice
the distinction between the profiles in this regime and in the
Ising-type FM regime of « < 1). In Figs. 6(a) and 6(b), we
show the comparison between the slice at = 0.5 x 10% [1]
(which corresponds to k = 1.1) and the results obtained by
exact diagonalization of Hamiltonian (3) with g = —100 and
k — oo. In this limit, the densities reproduce the results
expected for the strongly attractive two-component fermionic
gas [27].

As the intraspecies interaction becomes stronger (k > 1),
an AFM profile starts to arise. This is translated in Fig. 4
as the increase of the projections over the states |1} 1{1)
[green dash-dotted curve in Fig. 4(a)] and | 1] 11) [purple
dashed curve in Fig. 4(b)]. This effect can be seen already
during the first part of the time evolution (+ > 1.0 x 10*[z]),
as it is shown in Fig. 5. Finally, for « > 1, the AFM
profiles become more pronounced (rigorously, an AFM state
can only be reached for k — o0). In Figs. 6(c) and 6(d),
we compare the final densities at ¥ = 10.1 to the results
obtained for k¥ — oo. The results in this case match the
AFM states of strongly repulsive two-component fermions.
It is important to point out that while the spin densities may
reproduce results of fermionic systems in certain limits, this
may not be true for other correlations (e.g., the momentum
distribution).

The total time evolution is given by 7 = 0.5 x 10° [7].
In current experimental setups, the inverse frequency t is
of the order of 100 wus [13]. This results in a total time of
5 s for the process we are considering, which is a relatively
long time for experiments with ultracold atoms. We point out,
however, that the transition from FM to AFM-like profiles
is manifested early on in this time evolution. This means
that these effects could conceivably be observed in smaller
time intervals. Alternatively, increasing the trap frequency
could result in a smaller time scale for the process, where the
intraspecies interaction could be tuned from weak to strong in
a shorter time.

B. Balanced system

We consider now a balanced system composed of Ny = 2,
N, = 2. Once again we choose an initial state where the
intraspecies interaction is smaller than the interspecies inter-
action (k = 0.1).

In Fig. 7(a), although a FM profile is still observed, there
is no visible separation of components in the trap, due to the
fact that the system is now balanced. Since the probabilities
of finding spin-up and -down bosons at each site are always
the same, the spin densities do not change in time as k
increases. However, the squared fidelities display a behavior
analogous to that of the imbalanced cases, where the AFM
states become dominant as k — oo. Unlike the imbalanced
cases, the AFM state for Ny = 2,N| = 2 is composed by the
linear combination of |1} 1) and | | 1] 1).
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FIG. 7. (a) Spin densities for a balanced Ny, = 2, N, = 2 system.
Solid (light red) and dashed (dark blue) curves indicate the 1 and
J components, respectively. Due to the absence of imbalance, there
is no change in the spin densities as « is varied. (b) The squared
fidelities display a transition from FM to AFM states similar to those
observed in the imbalanced cases.

IV. CONCLUSIONS

We showed that different magnetic states can be achieved
by dynamically changing the intraspecies interactions of a
two-component strongly repulsive few-body bosonic gas. Due
to the strong interactions, this model can be mapped to an
effective spin chain with solutions that completely determine
the state of the system. By slowly increasing the interactions
between the identical bosons, we are able to keep the spatial
densities fixed in the ground state, while the spin eigenstates
evolve in time. The spin densities then display a clear transition
between FM and AFM profiles. In addition, during this
evolution the system exhibits results that match the limiting
cases of strong interspecies attraction or repulsion, depending
only on the tuning of the parameter «.

Future elaborations of the work presented here could be
based on the study of quench dynamics in strongly interacting
bosonic mixtures, now taking into account the excited states
of the spatial wave function. Other interesting extensions
would include the dynamics of larger ensembles of interacting
bosonic gases, which could help bridge the gap between the
few-body and many-body landscapes.
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