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Abstract

Campomelic dysplasia (CD) is an autosomal, dominantly inherited, skeletal abnormality belonging to the subgroup of
bent bone dysplasias. In addition to bowed lower limbs, CD typically includes the following: disproportionate short
stature, flat face, micrognathia, cleft palate, bell-shaped thorax, and club feet. Up to three quarters of 46,XY individu-
als may be sex-reversed. Radiological signs include scapular and pubic hypoplasia, narrow iliac wings, spaced
ischia, and bowed femora and tibiae. Lethal CD is usually due to heterozygous mutations in SOX9, a major regulator
of chondrocytic development. We present a detailed clinical and molecular characterization of nine Brazilian CD pa-
tients. Infants were either stillborn (n = 2) or died shortly after birth and presented similar phenotypes. Sex-reversal
was observed in one of three chromosomally male patients. Sequencing of SOX9 revealed new heterozygous muta-
tions in seven individuals. Six patients had mutations that resulted in premature transcriptional termination, while one
infant had a single-nucleotide substitution at the conserved splice-site acceptor of intron 1. No clear geno-
type-phenotype correlations were observed. This study highlights the diversity of SOX9 mutations leading to lethal
CD, and expands the group of known genetic alterations associated with this skeletal dysplasia.
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Introduction

Campomelic dysplasia (CD) is an autosomal domi-

nant condition classified among the bent bone skeletal

dysplasias (Warman et al., 2011). Typical manifestations

of CD include shortening and bowing of the long bones,

hypoplasia of the scapula, absence of ossification of the

dorsal vertebral pedicles, and an abnormal pelvic bone pat-

tern, with narrow iliac wings, spaced ischia, and

hypoplastic/absent pubis bones. These findings warrant the

diagnosis of CD in both prenatal ultrasonographic evalua-

tion and postnatal radiological examination.

Clinically, CD is characterized by disproportionally

short stature, short and bowed limbs, pretibial skin dimples,

club feet, hip dislocation, thoracic constriction, cleft palate,

micro- and/or retrognathia, and midface hypoplasia

(Maroteaux et al., 1971; Spranger et al., 2002). Addi-

tionally, up to three quarters of karyotypically male

(46,XY) patients are sex-reversed, with phenotypically

normal external female genitalia (Massardier et al., 2008).

Most infants with typical CD die shortly after birth due to

pulmonary hypoplasia. However, patients diagnosed with a

CD variant known as acampomelic campomelic dysplasia

(ACD) usually survive the neonatal period and may reach

adult life without major disabilities, but give birth to af-

fected children (Gordon et al., 2009; Lecointre et al., 2009).

CD has been the subject of intense investigation for

over twenty years, since its original genetic linkage to hu-

man chromosome 17 (Tommerup et al., 1993) and the sub-

sequent characterization of SOX9 as the locus involved

(Foster et al., 1994; Wagner et al., 1994). The vast majority

of CD cases (as well as some ACD cases) are attributed to

haploinsufficiency, due to de novo mutations in the coding

region of SOX9, a master regulator of chondrogenesis and

SRY-mediated testicular development (Foster et al., 1994;

Wagner et al., 1994; Gordon et al., 2009). Conversely, a

greater proportion of ACD patients is characterized by

genomic imbalances in the vicinity of SOX9, a gene desert
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region that encompasses approximately 2 Mb in chromo-

some 19q24.3-25 (Gordon et al., 2009).

In this paper, we present nine Brazilian CD patients

who were diagnosed either prenatally or shortly after birth.

Major clinical and radiologic findings are detailed for all

cases. Sequencing of SOX9 revealed mutations in seven of

them, all of which had not been previously described. This

work is a report on one of the largest cohorts of CD patients,

and it highlights the mutational diversity of SOX9 muta-

tions.

Material, Subjects and Methods

From April 2012 to November 2013, clinical data

from patients suspected of having CD were either retro-

spectively (for patient 1 and patients 3 to 7) or prospec-

tively (patients 2, 8, and 9) referred to our Institution from

different Brazilian medical genetics services, and here they

were evaluated by two clinical geneticists (MTVS or DPC).

Photographs, radiographs, and medical records were used

to characterize the findings of each patient, both clinically

and radiologically. Standard growth curves were utilized to

determine percentiles for birth length (BL), birth weight

(BW), and occipitofrontal circumference (OFC).

DNA was extracted from peripheral blood and used to

amplify all exons and exon-intron boundaries of SOX9 by

polymerase chain reaction (PCR), in nine patients. For pa-

tient 9 only, DNA from both parents was also obtained.

Amplification products were purified by treatment with an

exonuclease I / shrimp alkaline phosphatase protocol and

subjected to conventional Sanger sequencing using an ABI

3130xl Genetic Analyzer (Applied Biosystems).

CodonCode Aligner software, version 4.2.1 demo

(CodonCode Corporation), was used to align sequences

and analyze electropherograms. SOX9 reference sequences

ENSG00000125398.5 (genomic) and

ENSP00000245479.2 (protein) from ENSEMBL were

used as wild type references. Nucleotide numbering of mu-

tations followed the base positions of SOX9 cDNA refer-

ence sequence CCDS_11689.1 from NCBI.

When the karyotype was not available, the genotypic

sex of patients was inferred from the amplification of X and

Y chromosome-specific sequences in zinc finger protein,

X-linked (ZFX), and sex determining region Y (SRY) genes,

respectively. Primer sequences and PCR conditions are

available upon request. The Spliceman web server (Lim

and Fairbrother, 2012) was used to estimate the pathogenic-

ity of the splice-site mutation identified in patient 3.

Ethical approval for this study was obtained from

both the Institutional Review Board of the Hospital de

Clínicas de Porto Alegre, and the Brazilian National Com-

mittee for Ethics in Research (project number

07044212.3.0000.5327).

Results

The main clinical data from the nine CD patients are

summarized in Table 1. Examples of typical clinical and ra-

diological findings are also illustrated in Figure 1. All in-

fants displayed the typical CD phenotype, and they were

either stillborn or died shortly after birth. Sex reversal was

found in one of the 46,XY patients (patient 7). The mean

gestational age (GA) at birth, considering live births only,

was 36.4 � 2.5 weeks. BW was within the normal range in

the majority of patients (mean = 2,672.8 � 699.0 g), while

BL was below the 10th percentile in all patients whose mea-

surement data were available (mean = 40.7 � 3.1 cm). Most

infants had macrocephaly, with OFCs above the 90th per-

centile for the GA (mean = 36.1 � 1.8 cm). No live born in-

fants survived the neonatal period. Shortened and bowed

limbs were found in all patients — additional dysmorphic

features are detailed in Table S1. Of note, craniofacial

anomalies (micro/retrognathia, flat face, flat nasal bridge)

were highly prevalent in this cohort. Post-natal radiogra-

phies were obtained for all patients — a detailed assess-

ment of skeletal abnormalities is presented in Table S2.

Bowing of the femora and tibia and malformation of the

pelvic bones were consistently found.

DNA was available for molecular analysis for all pa-

tients, and putative pathogenic heterozygous SOX9 muta-

tions were found in seven individuals, which equates to a

mutational detection rate of 78% (see Table 1). Mutations

shown in Figure 2 for patients 1, 2, 5, 6, 8, and 9 predicted

the insertion of a premature termination codon, either due

to a stop codon mutation (patients 2, 5, and 6), or a frame

shift mutation (patients 1, 8, and 9).

An A-to-G substitution was identified in the con-

served 3’ splice-site of intron 1 of patient 3. In silico analy-

sis using the Spliceman web server, which ranks putative

donor and acceptor splice-site mutations based on

exon/intron sequence conservation among different spe-

cies, predicted a pathogenic consequence for this mutation,

with a probability of 67%. Representative sequencing re-

sults are shown in ± for each patient with an identified mu-

tation. Because of the absence of DNA from parents in most

cases, molecular confirmation of a de novo mutation was

only possible for patient 9, although parents of all patients

were phenotypically normal.

Discussion

In this study, we sought to characterize a large cohort

of CD patients in Brazil at the clinical, radiological and mo-

lecular levels. Our study recapitulated several observations

previously reported, and this illustrated a striking degree of

homogeneity among CD patients, considering clinical and

radiological findings. We were able to identify different

heterozygous mutations in the coding region of SOX9, in

seven of the nine patients. However, not unlike others

(Wagner et al., 1994; Kwok et al., 1995; Meyer et al.,
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1997), a subset of the screened patients (2 out of 9) did not

have any nucleotide variation in the coding region of

SOX9. Of course, a heterozygous deletion within SOX9 or

imbalances of regulatory elements in its genomic vicinity

cannot be ruled out. These hypotheses shall be further in-

vestigated for patients 4 and 7.

Although SOX9 is a small gene, spanning little more

than 5 kb and three exons, a plethora of studies have charac-

terized regulatory DNA elements located both upstream

and downstream from the gene that regulates SOX9 expres-

sion, both temporally and tissue-specifically (Bagheri-Fam

et al., 2006). For instance, cumulative evidence has sug-

gested that a 78 kb genomic region upstream from SOX9

plays a role in testicular expression, given that deletion of

this putative regulatory element has been observed in some

46,XY sex-reversed individuals (Pop et al., 2004). Like-

wise, isolated Pierre-Robin (Fukami et al., 2012),

brachydactyly-anonychia (Kurth et al., 2009), and congeni-

tal heart defects (Sanchez-Castro et al., 2013) have already

been linked to pathological copy number variations of puta-

tive regulators of SOX9 expression in this chromosomal re-

gion.

Different studies have tried to establish genotype-

phenotype correlations in CD/ACD, but these have mostly

remained elusive (Wagner et al., 1994; Meyer et al., 1997;

Ninomiya et al., 2000; Pop et al., 2005). Mutations in

SOX9 also display a great degree of variable expressivity

(Cameron et al., 1996). Moreover, it has been demonstrated

that patients with the same SOX9 mutation may develop

CD or ACD, have different degrees of sexual development

disorders, and even stark differences in survival (Wagner et

al., 1994; Meyer et al., 1997; McDowall et al., 1999;

Friedrich et al., 2000; Moog et al., 2001; Wada et al.,

2009).

Since changes in SOX9 associated with CD are main-

ly private mutations, the alterations identified here expand

the spectrum of SOX9 pathogenic variations to about sev-

enty (Table S3) (Thong et al., 2000; Giordano et al., 2001;

Preiss et al., 2001; Sock et al., 2003; Michel-Calemard et

al., 2004; Hsiao et al., 2006; Shotelersuk et al., 2006;

Beaulieu et al., 2009; Gentilin et al., 2010; Okamoto et al.,

2010; Staffler et al., 2010; Kim et al., 2011; Stoeva et al.,

2011; Chen et al., 2012; Gopakumar et al., 2013;

Matsushita et al., 2013; Tonni et al., 2013). Premature ter-

mination codons (PTCs) are the most prevalent mutational

class in CD, accounting for approximately 45% of all the al-

terations identified. Consistently, six of the nine patients

(67%) in our series had a PTC mutation. In these cases,

non-sense mediated mRNA decay (NMD) could poten-

tially be employed to prevent translation of truncated pep-

tides (Chang et al., 2007). Even if expression from the

mutated alleles escaped NMD, these would generate SOX9

proteins lacking all, or at least some, of the essential do-

mains for proper protein activity (Figure S1).
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Figure 1 - Typical campomelic dysplasia findings observed in the patients included in this study. A: Antero-posterior (AP) radiography of patient 7,

showing short long bones with bowed femora and tibiae, a short thorax with eleven pairs of ribs, and hypoplastic pubic bones, although no SOX9 mutation

was identified. B: Lateral radiography of patient 2. Bowing of the femora and tibiae, as well as thoracic constriction, are identifiable. C: AP radiography of

patient 9. In addition to the skeletal abnormalities already described in patients 1 and 2, hypoplastic scapulae are present. D: Clinical picture of patient 2 at

necropsy. A small, flat face can be observed, as well as micro- and retrognathia, and cleft palate. E: Clinical picture of patient 1 at necropsy, illustrating the

club feet and the pre- and post-tibial skin dimples characteristic of CD.

Figure 2 - SOX9 mutations identified in six CD patients included in the study. For each image, a fragment of the wild type (wt) allele with the correspond-

ing codified amino acids is shown (except for C, where the junction between the first exon and intron is depicted). Altered nucleotides in the mutant (mt)

allele are depicted in red. A: frame shift mutation of patient 1 due to a 1-bp deletion. B-E: Single-nucleotide change observed in patients 2, 3, 5, and 6, re-

spectively. F: frame shift mutation in patient 8 due to a 1-bp deletion. G: frame shift mutation in patient 9 due to a 7-bp deletion.



Since truncated SOX9 polypeptides have been shown

to retain some residual activity (Cameron et al., 1996), dif-

ferent authors have associated larger protein truncations

with greater life expectancy of CD patients (Meyer et al.,

1997; Pop et al., 2005). In this cohort, patient 1 would, the-

oretically, retain the largest portion of SOX9, with approxi-

mately 54% of the wild-type peptide. However, this

observation did not translate into less severity, because we

did not identify any correlation between the identified mu-

tations and survival of patients.

Splice-site mutations in SOX9 account for approxi-

mately only 4% of CD mutations reported to date (see Ta-

ble S3). Only one patient in this series had a splice-site

mutation. This gives rise to an A-to-G transition at nucleo-

tide position -2 from the acceptor splice-site of intron 1

(IVS1-2A > G), which was predicted in silico to affect

splicing with a probability of 67%. Kwok et al. (1995) iden-

tified an A-to-C transition at the same nucleotide position

-2 in a female infant with typical CD findings and 46,XY

karyotype (Kwok et al., 1995). Our patient had a normal

46,XX karyotype.

Interestingly, while many studies report mutations in

the coding sequence of SOX9 in 46,XY sex-reversed CD

individuals, we did not identify any nucleotide alteration in

a patient with sex-reversal. CD patients were observed to

encode mutations of any of the mutational classes already

described (see Table S3). Some researchers argue that sex

reversal may be a phenotype with incomplete penetrance

(Meyer et al., 1997), but this proposition needs further sup-

port. Further investigations of the molecular basis of CD

and related disorders are likely to contribute to a better un-

derstanding of the physiological roles of SOX9, which is a

key transcription factor in the early embryonic develop-

ment of several tissues.
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