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Abstract

Sickle cell hemoglobin is the result of a mutation at the sixth amino acid position of the beta (�) globin chain. The
HBB*S gene is in linkage disequilibrium with five main haplotypes in the �-globin-like gene cluster named according
to their ethnic and geographic origins: Bantu (CAR), Benin (BEN), Senegal (SEN), Cameroon (CAM) and Ara-
bian-Indian (ARAB). These haplotypes demonstrated that the sickle cell mutation arose independently at least five
times in human history. The distribution of �

S haplotypes among Brazilian populations showed a predominance of the
CAR haplotype. American populations were clustered in two groups defined by CAR or BEN haplotype frequencies.
This scenario is compatible with historical records about the slave trade in the Americas. When all world populations
where the sickle cell gene occurs were analyzed, three clusters were disclosed based on CAR, BEN or ARAB
haplotype predominance. These patterns may change in the next decades due to recent migrations waves. Since
these haplotypes show different clinical characteristics, these recent migrations events raise the necessity to de-
velop optimized public health programs for sickle cell disease screening and management.
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Introduction

Sickle cell hemoglobin is the result of a single nucleo-
tide mutation (GAG�GTG) at the sixth amino acid posi-
tion of the beta (�) globin gene (HBB). Sickle cell anemia
(SCA) is caused by HBB*S homozygosity.This gene has a
worldwide distribution (Piel et al., 2010). The disease is a
severe chronic hemolytic anemia, but its clinical course is
highly variable. Although not completely understood,
many factors have been suggested to be modulators of this
variability, such as coinheritance with Hb C, � and �

thalassemias, as well as high fetal hemoglobin (HB F) lev-
els (Higgs et al., 1982; Frenette and Atweh, 2007).

The HBB*S gene is in linkage disequilibrium with
five main haplotypes defined by single nucleotide poly-
morphisms (SNPs) in the �-globin-like gene cluster. These
haplotypes are named according to their ethnic and geo-
graphic origins: Bantu (CAR, originated in South-Central
and East Africa), Benin (BEN, in Midwest Africa), Senegal
(SEN, in Atlantic West Africa),Cameroon (CAM, along the
west coast of Africa), and Arabian-Indian (ARAB, from the

Indian subcontinent and the eastern Arabian peninsula).
Based on this haplotype distribution it has been demon-
strated that the HBB*S mutation arose at least five times in
human history (Pagnier et al., 1984; Kulozik et al., 1986;
Lapouméroulie et al., 1992). Moreover these haplotypes
have also been investigated in association with clinical fea-
tures of the disease in order to disclose if some characteris-
tics associated with disease severity such as HB F levels
were also associated with a specific haplotype (Steinberg,
2009). It is essential to know about the old and recent dis-
persions of these haplotypes considering their clinical
heterogeneities and their implications to public health pro-
grams for sickle cell disease screening and management.

HBB*S haplotypes have been studied in different
Brazilian populations (Table 1), as tools to clarify popula-
tion origins, since the sickle cell mutation is absent among
Native Americans and it was introduced into the American
continent basically by gene flow from Africa during the
slave trade from the 16th to the 19th century (Zago et al.,
1995; Salzano and Bortolini, 2002).In this study, we com-
pared the HBB*S haplotypes frequencies in sickle cell dis-
ease patients from several world populations, in order to
disclose the effects of old and recent wave migrations in the
distribution of HBB*S haplotypes.
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Material and Methods

A systematic review was performed to find studies
that describe sickle cell haplotypes in different world popu-
lations. When more than one study from the same popula-
tion was available, mean haplotype frequencies were calcu-
lated. A Wright’s FST (Weir and Hill, 2002) analysis was
performed using ARLEQUIN 3.0 (Excoffier et al., 2005) to
determine the differentiation among populations based on
haplotype frequencies. Principal component analysis
(PCA) was performed to summarize the distribution of
populations based on the pairwise FST using SPSS v.18
software.

This study also included information about 110 non-
consanguineous SCD patients from Rio Grande do Sul,
southern region of Brazil, screened using isoeletric focus-
ing (IEF) and/or cation exchange high performance liquid
chromatography (HPLC) and confirmed by a PCR-RFLP
approach with DdeI enzyme (Wagner et al., 2010). All pa-
tients were ascertained by the Neonatal Screening Refer-
ence Service or health care centers. The Ethics Committee
of the Federal University of Rio Grande do Sul approved
the study protocol.

Genomic DNA was isolated from peripheral blood
samples using a salting out procedure (Lahiri and Nurnber-
ger Jr, 1991). Haplotype analysis was performed by PCR-
RFLP for the following polymorphic sites in the � globin
gene cluster: HindIII-G�,HindIII-A�, HincII-��, HincII,
3’��, HinfI- 5’� as previously described (Sutton et al.,
1989). Haplotypes were inferred using the Multiple Locus
Haplotype Analysis program (Long, 1999).

Results and Discussion

HBB*S haplotypes identified in several Brazilian
populations are shown in Table 1.The CAR haplotype was
the most frequent one, followed by the BEN haplotype.
These results are in accordance with historical reports on
slave traffic to Brazil. It is estimated that during the period
between 1701 and 1816, 68% of the imported slaves came
from Angola and the remainder from the Benin region.
From 1843 to 1871, 90% of slaves came from Congo, An-
gola and Mozambique (Curtain, 1969). The SEN haplotype
has its higher frequency in Brazil in Belem, in the northern
region (Cardoso and Guerreiro, 2006). This is in accor-
dance on what was expected based on the slave trade histor-
ical data of Atlantic West African populations to northern
Brazil (10%), considering the high frequency of this haplo-
type in Senegal (Currat et al., 2002). The CAM haplotype
was always in lower frequencies, with 0,9% in Rio Grande
do Sul and 0.9-1.3% in other Brazilian regions, probably
due to domestic slave trade and later internal migrations
from regions supplied with slaves from Central West Af-
rica, where this haplotype has been found (Oner et al.,
1992). These results confirmed the diversity of the African
influence in Brazilian regions.

PCA (Figure 1) demonstrated that two components
explained 98.9% of the variance observed among Brazil-
ians. The first component showed a group composed by Rio
Grande do Sul (RS), Pará (PA), Pernambuco (PE), São
Paulo (SP) and Rio Grande do Norte (RN) populations,
where the CAR haplotype has a high frequency (from 66 to
81%). The other group was composed by Rio de Janeiro

516 Lindenau et al.

Table 1 - Frequency (%) of HBB*S haplotypes in Brazilian populations.

Population Haplotypes Reference

N CAR BEN SEN CAM ARAB Atypical

Belém (PA) 60 66.7 30.0 3.3 - - - Pante-de-Sousa et al., 1998

Belém (PA) 260 66.0 21.8 10.9 1.3 - - Cardoso and Guerreiro, 2006

Ceará (CE) 44 31.8 43.2 2.3 - - 22.7 Galiza Neto et al., 2005

Ceará (CE) 68 66.2 22.1 - - - 11.8 Silva et al., 2009

Rio Grande do Norte (RN) 94 75.5 12.8 - 6.4 - 5.3 Cabral et al., 2011

Pernambuco (PE) 127 81.1 14.2 - 0.8 - 3.9 Bezerra et al., 2007

Salvador (BA) 72 48.6 51.4 - - - - Costa et al., 1984

Salvador (BA) 160 48.1 45.6 0.6 - - 5.6 Gonçalves et al., 2003

Salvador (BA) 250 41.6 55.2 0.4 1.2 0.4 1.2 Adorno et al., 2008

Rio de Janeiro (RJ) 148 54.1 44.6 1.4 - - - Fleury, 2007

São Paulo (SP) 74 64.9 14.9 1.4 - - 18.9 Zago et al., 1992

São Paulo (SP) 148 62.2 33.8 - - - 4.1 Gonçalves et al., 1994

São Paulo (SP) 74 60.8 36.5 - - - 2.7 Costa et al., 1984

Rio Grande do Sul (RS) 220 67.3 25.0 0.5 0.9 - 6.4 Present study

N: number of chromosomes;



(RJ), Bahia (BA) and Ceará (CE) populations, where the
CAR and BEN haplotypes have similar frequencies.

The Brazilian populations were then compared to
other American populations. The PCA (Figure 2) showed
the American populations distributed in different clusters.
In this analysis, three groups explained 98.9% of the vari-
ance observed. Populations with higher frequencies of
CAR are clustered together (Uruguay, Brazil, Panama and
Mexico), whereas populations with higher BEN frequen-
cies formed another cluster (USA, Canada, Trinidad, Gua-
deloupe and Jamaica). The other populations present
similar BEN and CAR haplotype frequencies and formed a
third cluster comprising Venezuela, Suriname, Colombia
and Cuba. This cluster pattern appears to reflect geograph-
ical data, since a North, Central and South America separa-
tion can be observed, except for Mexico. This distribution
could also be explained by historical reports of colonial
power in these countries: Spain, France and Great Britain
(Curtain, 1969). The British and French bought slaves from
Midwestern African regions, where the BEN haplotype
was prevalent, while slaves imported by the Spanish and
Portuguese colonizers were mainly from Atlantic Central
Africa, where CAR haplotype was the most prevalent.

Table 2 and the PCA of world populations (Figure 3)
showed the distribution expected according to the haplo-
types’ distribution and origin. Three different components

could be observed with ARAB, CAR or BEN haplotype
predominance. The first group was composed by Kuwait,
Bahrain, Iran, India, United Arab Emirates and Senegal.
All of them have a predominance of the Arabian-Indian
(ARAB) haplotype, except Senegal. The second group was
composed by Madagascar, Mexico, Angola, Tanzania,
Kenya, Congo, Uganda, Brazil, Uruguay and Panama. All
of them have a predominance of the Bantu (CAR) haplo-
type. The third group was composed by USA, Jordan, Tuni-
sia, Guadeloupe, Canada, Jamaica, Suriname, Greece,
Cameroon, Oman, Palestine, Algeria, Venezuela, Egypt,
Syria, Cuba, Saudi Arabia, Turkey, Nigeria, Colombia, Su-
dan, Portugal and Italy. These populations have a predomi-
nance of the Benin (BEN) haplotype. The trade slave to the
Americas and migration routes to the Mediterranean areas
and the Middle East from West Africa determines the BEN
haplotype predominance in these regions. Finally, the
ARAB haplotype predominated in areas where it was origi-
nally derived.

This clear pattern of origin and dispersal of HBB*S
haplotypes can suffer radical changes in the next decades
due to global migrations. At present, the mobility of hu-
mans has reached unimaginable levels. This mobility can
affect the epidemiology of several diseases, with an in-
crease in the risk of a local disease spreading globally and
the introduction of deleterious alleles into populations in
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Figure 1 - PCA based on FST distances calculated using haplotype frequencies showing clustering patterns for different Brazilian populations according
to HBB*S haplotypes.



which they were previously absent. Information about the
number of international migrants in the last decades
showed a noticeable difference between migrants with and
without HB S. Whereas the number of migrants without HB
S increased from 92.6 million in 1960 to 165.2 million in
2000, the number of migrants with this hemoglobin in-
creased faster (from 1.6 million in 1960 to 3.6 million in
2000) (Piel et al., 2014). The estimated number of migrants
from African countries, India and Middle East with HB S
moving to North America, Western Europe and Australia
increased (Piel et al., 2014). An increase in the Arab-Indian
haplotype frequency in several countries in the next de-
cades could potentially be expected due migration pro-
cesses that are occurring from the Middle East to Europe
(Figure 4).

A similar process can also be observed in Brazil,
where the number of migrants from Bolivia, Haiti and Sen-
egal increased in the last years. The dispersal of these mi-
grants is still uneven, but Bolivians tend to remain in São
Paulo state while Senegalese individuals tend to move to
Rio Grande do Sul (Figure 4). Therefore, an increase in the
contribution of the Senegal haplotype is expected in south-
ern Brazil, reflecting this new migration process. No stud-

ies about HBB*S haplotypes in Haiti population are avail-
able. This country does not have any national newborn
screening program to measure the prevalence of SCD. Nev-
ertheless, a study with infants born in Port-au-Prince
showed that the prevalence of SCD in Haitian newborns ap-
pears to be more than twice higher than that found among
African Americans in the United States (Rotz et al., 2013).
This study showed a prevalence of the SCD genotypes Hb
SS and HbSC of 1:173 newborns. The authors discuss the
importance to consider these results carefully, since many
children are born outside hospitals in Haiti, and therefore
this prevalence may probably be an underestimate (Rotz et

al., 2013). Since Haiti was colonized by French the most
probable frequent haplotype would be BEN, as observed in
Guadeloupe (Kéclard et al., 1997). Considering this infor-
mation, independent from the HBB*S haplotype that pre-
dominates in these migrants, an increase in HB S preva-
lence in Brazil is expected in the next years. It is important
to consider that the effect of migration cannot be assessed
only by the number of migrants, but also by their behavior
and habits. In this context, it is essential to consider thata
higher intermarriage rate is likely among migrants from the
same group, leading to an increase in sickle cell disease
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Figure 2 - PCA based on FST distances calculated using haplotype frequencies showing clustering patterns for different American populations according
to HBB*S haplotypes.
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Table 2 - Frequency (%) of HBB*S haplotypes in different world populations.

Continents Population N Haplotypes Reference

CAR BEN SEN CAM ARAB Atypical

Africa Algeria 20 - 100.0 - - - - Pagnier et al., 1984

Angola 44 95.5 4.5 - - - - Lavinha et al., 1992

Cameroon 1082 0.5 73.8 0.2 19.1 0.3 6.1 Bitoungui et al., 2015

Congo 232 90.9 9.1 - - - - Mouélé et al., 1999

Egypt 28 - 100.0 - - - - El-Hazmi et al., 1999

Guinea 40 22.5 - - 77.5 - - Sow et al., 1995

Kenya 111 98.2 1.8 - - - - Ojwang et al., 1987

Madagascar 35 91.4 - 2.9 - - 5.7 Hewitt et al., 1996

Mauritania 90 4.4 8.9 77.8 - 5.6 3.3 Veten et al., 2012

Nigeria 669 0.9 93.3 - 3.4 - 2.4 Adekile et al., 1992

Senegal 90 - - 100.0 - - - Currat et al., 2002

Sudan 143 2.8 29.4 18.2 35.0 - 14.7 Elderdery et al., 2012

Tanzania 41 100.0 - - - - - Oner et al., 1992

Tunisia 332 2.7 60.5 - - - 36.7 Moumni et al., 2011

Uganda 208 99.5 - 0.5 - - - Mpalampa et al., 2012

America Brazil 1176 65.0 31.5 3.0 0.5 - - *

Canada 61 11.5 49.2 13.1 13.1 - 13.1 Oner et al., 1992

Colombia 229 29.7 33.2 4.4 4.4 0.4 27.9 Fong et al., 2013

Cuba 198 40.9 51.0 8.1 - - - Muniz et al., 1995

Guadeloupe 830 11.1 74.9 6.1 2.3 0.7 5.1 Kéclard et al., 1997

Jamaica 446 8.3 76.0 5.2 - - 10.5 Mpalampa et al., 2012

Mexico 33 78.8 18.2 - - - 3.0 Magaña et al., 2002

Panama 200 51.0 30.0 8.5 4.0 1.0 5.5 Rusanova et al., 2011

Surinam 77 29.9 53.2 2.6 2.6 - 11.7 Oner et al., 1992

Trinidad 283 17.3 61.8 8.5 3.5 3.2 5.6 Jones-Lecointe et al., 2008

USA 806 16.0 62.4 9.4 4.7 1.5 6.0 Crawford et al., 2002

Uruguay 10 60.0 20.0 - - - 20.0 Luz et al., 2006

Venezuela 359 36.4 51.5 10.6 1.5 - - **

Asia Bahrain 37 5.4 2.7 - - 89.2 2.7 Al-Arrayed and Haltes, 1995

India 140 - - - - 91.4 8.6 Mukherjee et al., 2004

Iraq 128 7.8 69.5 - - 12.5 10.2 Al-Allawi et al., 2012

Iran 162 3.1 11.7 3.7 2.5 53.7 25.3 Rahimi et al., 2003

Jordan 20 - 80.0 - - 20.0 - El-Hazmi et al., 1999

Kuwait 125 5.6 11.2 - - 80.8 2.4 Adekile and Haider, 1996

Lebanon 100 15.0 73.0 - - 10.0 2.0 Inati et al., 2003

Oman 117 21.4 52.1 - - 26.5 - Daar et al., 2000

Palestine 118 5.1 88.1 - - - 6.8 Samarah et al., 2009

Saudi-Arabia 124 - 98.4 - - 1.6 - El-Hazmi et al., 1999

Syria 18 - 66.7 - - 33.3 - El-Hazmi et al., 1999

United Arab Emirates 94 25.5 22.3 - - 52.1 - El-Kalla and Baysal, 1998

Europe Greece 14 - 92.9 7.1 - - - Oner et al., 1992

Italy 64 - 100.0 - - - - Schilirò et al., 1992

Portugal 33 42.4 36.4 21.2 - - - Lavinha et al., 1992

Turkey 214 - 96.3 - - 0.5 3.3 Oner et al., 1992

N: number of chromosomes; *mean frequency for Brazilian populations showed in Table 1; **mean frequency for Arends et al., 2000; Moreno et al.,
2002.



prevalence. Some religious or cultural beliefs could be also
a factor complicating an effective genetic counseling. The
public health system agents should be prepared to address
these problems in the best way possible.

Several chromosomes were identified as atypical
(chromosomes with less common haplotypes) in all popu-
lations. Some of these atypical haplotypes were previously
studied and diverse genetic mechanisms were inferred as
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Figure 3 - PCA based on FST distances calculated using haplotype frequencies showing clustering patterns for different world populations according to
HBB*S haplotypes.

Figure 4 - World map showing the main migrations concerning HBB*S dispersion. The full lines represent the old migrations, while the dotted lines rep-
resent recent migrations.



involved in their origin, such as recombination, point sub-
stitutions, or nonreciprocal sequence transfer (conversion)
in the pre-existing common haplotypes instead of recurrent
de novo HBB*S mutations (Zago et al., 2000). Subse-
quently, it was demonstrated that these events can be ob-
served in typical HBB*S haplotypes in a way similar to
those that generate atypical haplotypes (Zago et al., 2001).
An extended haplotype within the HBB gene cluster is
composed by three elements: a four repeats sequences con-
figuration (AT)xN12(AT)y motif within the 5’ HS2 region
of �-LCR site, (TG)n (CG)n motif within IVSII region of
fetal globin gene (G� and A�), and (AT)xTy motif within 5’
region of �-globin gene region. Molecular investigations of
this extended haplotype confirmed that the atypical haplo-
types are obtained through recombination among the clas-
sical SNPs in the �-globin-like gene cluster and these sites
in the extended haplotype region (Moumni et al., 2014).

In addition to population origin effects, these waves
of migration can have important effects on public health. It
was well established that there is a substantial phenotypic
heterogeneity among patients with sickle cell anemia. In
general, carriers of the CAR haplotype have the most se-
vere clinical course, while carriers of the Senegal or Arab-
Indian haplotypes have the best clinical course. Carriers of
the BEN haplotype are intermediate in this respect. As
HBB*S presence alone cannot explain this heterogeneity
among patients, environmental influences and variations in
others genes are likely to modulate the sickle cell anemia
phenotype. The main pathophysiological factor determin-
ing disease severity is the Hb F concentration, leading to a
reduced severity in patients with higher concentrations of
this hemoglobin. In addition to Hb F concentration, �-
thalassemia can also affect the disease phenotype because
both decrease Hb S polymerization. Several genetic and
epigenetic factors modulate Hb F levels, such as the locus
control region (LCR), the Hb F-related quantitative trait lo-
cus (QTL) and secretion-associated and RAS-related gene
(SAR1A). In addition, several SNPs in candidate genes have
been associated with subphenotypes of sickle cell anemia.
For example, nonhemorrhagic stroke has been associated
with variation in VCAM1, TNFA, ADRB2, IL4R, LDLR,
HLA, ANXA2, SELP and TGF-�/BMP genes (a complete
review about this topic could be found in Steinberg, 2009).

Considering the possible increase in Hb S frequency
in Brazil due the recent wave migrations, it should be im-
portant to consider a more appropriate public health policy,
including screening, adequate care and counseling, not
only to Brazilians but also to migrants. Sometimes it could
be difficult for migrants to have full access to public health
services due to linguistic, cultural, religious, and social bar-
riers but the government’s role is to provide the best oppor-
tunities to everyone.
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