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Abstract. Nuclear science has developed many excellent theoretical models for many-body systems in the domain of the baryon-
meson strong interaction for the nucleus and nuclear matter at low, medium and high densities. However, a full microscopic
understanding of nuclear systems in the extreme density domain of compact stars is still lacking. The aim of this contribution is
to shed some light on open questions facing the nuclear many-body problem at the very high density domain. Here we focus our
attention on the conceptual issue of naturalness and its role in shaping the baryon-meson phase space dynamics in the description
of the equation of state (EoS) of nuclear matter and neutrons stars. In particular, in order to stimulate possible new directions
of research, we discuss relevant aspects of a recently developed relativistic effective theory for nuclear matter within Quantum
Hadrodynamics (QHD) with genuine many-body forces and derivative natural parametric couplings. Among other topics we
discuss in this work the connection of this theory with other known effective QHD models of the literature and its potentiality
in describing a new physics for dense matter. The model with parameterized couplings exhausts the whole fundamental baryon
octet (n, p, Σ−, Σ0, Σ+, Λ, Ξ−, Ξ0) and simulates n-order corrections to the minimal Yukawa baryon couplings by considering
nonlinear self-couplings of meson fields and meson-meson interaction terms coupled to the baryon fields involving scalar-isoscalar
(σ, σ∗), vector-isoscalar (ω, φ), vector-isovector (�) and scalar-isovector (δ) virtual sectors. Following recent experimental results,
we consider in our calculations the extreme case where the Σ− experiences such a strong repulsion that its influence in the nuclear
structure of a neutron star is excluded at all. A few examples of calculations of properties of neutron stars are shown and prospects
for the future are discussed.

INTRODUCTION

The nuclear matter equation of state (EoS) at the low, medium and high domains of densities, plays an important role in
both nuclear physics and astrophysics. However, the knowledge of the EoS at extremely high densities, such as those
found in neutron stars and pulsars, together with an adequate description of the properties of hadrons in dense matter,
is still an open problem in physics. Neutron stars represents in particular an unique laboratory for testing the EoS of
nuclear matter at high densities. Their properties such as masses, radii and moment of inertia, can be calculated by
solving the Tolman-Oppenheimer-Volkov equations[1] of general relativity combined with the EoS of nuclear matter.

The derivation of the EoS of nuclear systems is constrained by the dependence of the energy per particle on
the particle number density. The energy per particle (or Boltzman free energy for a system at finite temperature) is
described in field theory by an effective energy functional and equilibrium states of the system may be found at each
density level by minimizing ist expectation value. Additionally, the other related quantities, for instance the pres-
sure, the incompressibility or the entropy may be determined as derivatives of the energy per particle at equilibrium.
Subsequently, in order to build energy functionals one needs nuclear and particle physics model descriptions.

In the description of infinite nuclear matter, within the framework of effective meson and baryon degrees of
freedom, the formal complexity of Quantum Chromodynamics (QCD) has motivated the development of Quantum
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Hadrodynamics (QHD), a very efficient and economical parametrization: in the QHD-I Walecka model [2], keeping
only Hartree self-energy terms in the Lagrangian formulation, the classical attractive σ and repulsive ω meson fields
completely exhaust the overwhelming part of the effective NN interaction in the nuclear medium at ordinary nuclear
matter density (ρ0 ∼ 0.15 fm−3). However, at more high densities, still keeping the Hartree approximation, the theory
yields the same result as the mean-field theory if one takes into account additional vacuum fluctuation corrections.

When exploring hadron matter at the extremely high density regime of neutron stars and pulsars, the QHD-I
model has to be extended. Alternative formulations have been proposed, following however the same philosophy of the
original model. Among these we mention the nonlinear model of Boguta-Bodmer[3], the Zimanyi and Moszkowski[4]
model, the formulations of N. K. Glendenning[5], and the relativistic effective theory for nuclear matter with natural
parametric couplings and genuine many-body forces[6] -[11].

In the following we review the concept of naturalness and its role in shaping the baryon-meson phase space
dynamics in the description of the EoS of nuclear matter and neutrons stars. In particular, in order to stimulate possible
new directions of research, we review relevant aspects of the relativistic effective theory for nuclear matter with natural
parametric couplings and genuine many-body forces and we analyze the physical implications of recent results.

NATURALNESS

In the formulation of a relativistic effective quantum field theory of nuclear systems at high densities, two concep-
tual issues are predominant. The first one is the degree of formal consistency of the theory, since this formulation
should embody fundamental symmetries and conservation laws in the description of physical properties of many-
body nuclear systems, such as Lorentz covariance, microscopic causality, naturalness, analyticity, among others. The
second conceptual issue refers to a type of standard technical procedure, commonly adopted in formal treatments in
field theory, which are based on the classification of the dynamical terms of the effective action, taking into account
the fundamental scales of QCD, which enables a perturbation expansion in a controlled manner of the interaction
Lagrangian density.

In the description of global static properties of nuclear systems, the relevant physical phenomena described by
the theory are generally dominated by the presence of long-range components while the short range dynamics, which
in turn corresponds to the more massive degrees of freedom of meson fields, is explicitly ignored, and their effects
implicitly absorbed in the coupling parameters of the theory.

The assumption of naturalness in the strong interaction physics means that, unless a more detailed explanation
exists, all conceivable dynamical terms, that preserve the required fundamental symmetries and conservation laws,
should appear in the effective action of a theory with natural coupling coefficients[12, 13]. Thus the naturalness
condition, when applied to an effective field theory of the strong interaction, establishes that once the appropriate
dimensional scales have been extracted using the naive dimensional analysis proposed by Georgi and Manohar[13],
the remaining dimensionless coefficients appearing in the effective action should all remain of order unity. In other
words, naturalness is equivalent, at this level, to extract hidden physics from the coupling parameters of the theory. If
the naturalness assumption is valid, then the effective strong interaction Lagrangian density can be truncated, with an
acceptable confidence, within the phenomenological physical domain of the theory.

A natural way to classify strong interaction contributions is to expand the corresponding Lagrangian density in
terms of the characteristic scales of QCD, for which different expansion schemes are possible. The fundamental scales
are the renormalization invariant parameter ΛQCD ∼ 200MeV or the numbers of colors of quarks, Nc, reminiscent of
the SU(3) group structure of QCD. However, when we focus our attention on mesons and baryons as effective low-
energy degrees of freedom, — equivalently realized in the large-Nc limit as a result of chiral symmetry breaking —,
the appropriate scales are the low energy chiral parameters of QCD, i.e., the weak pion decay constant, fπ = 93MeV ,
and the chiral parameter, Λχ ∼ 1GeV .

To accomplish that goal, the lagrangian density in QHD-I is defined as

L=

⎛⎜⎜⎜⎜⎜⎝∂ or mπM

⎞⎟⎟⎟⎟⎟⎠
(
ψ̄Γψ

f 2πM

)

f 2πΛ

2
∑
i,k

c̃i,k
i!k!

(gσσ
M

)i(gωω
M

)k
; (1)

in this expression, ψ represents Dirac solutions for nucleon fields, M denotes the nucleon mass, mπ is the pion mass
and σ and ω represent respectively the fundamental scalar-isoscalar and vector-isoscalar meson fields.
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At least two schemes allow a compact summation of the Lagrangian density (1):

L =

(
∂ or mπ
M

) (
ψ̄Γψ

f 2πM

)

exp

(
σ

M
+
ω

M

)
f 2πΛ

2
χ (for ci,κ = 1) and (2)

L =

(
∂ or mπ
M

) (
ψ̄Γψ

f 2πM

)
 ( 1
1 + σM

) (
1

1 + ωM

)
f 2πΛ

2
χ (for ci,κ = i!κ!) . (3)

The first scheme, ci,κ = 1, corresponds to the natural limit. The second one, ci,κ = i!κ!), corresponds to a kind
of derivative coupling[4] scheme. The naive dimensional analysis when applied in the formulation of an effective
Lagrangian density involving nucleons and strongly interacting meson fields may be synthesized as follows: a) the
amplitude of each strongly interacting field in the lagrangian, i.e. the meson fields, becomes dimensionless when
divided by the pion decay weak constant; b) to obtain the correct dimension ((energy)4) for the Lagrangian density,
an overall normalization scale f 2πΛ2 � f 2πM2, with M denoting the nucleon mass, has to be included; c) for identical
meson fields self-interacting terms of power n, a symmetrization factor n!, for proper counting, should be included into
the formalism. The overall dimensionless coefficients, after the dimensional factors and appropriate counting factors
are extracted, are of order O(1) if naturalness holds. Of course, there is no general proof of the naturalness property,
since no one knows how to derive the effective strong interaction Lagrangian density from Quantum Chromodynamics
(QCD). Nevertheless, the validity of naturalness and naive power counting rules is supported by phenomenological
studies[12, 13, 14, 15].

LAGRANGIAN DENSITY WITH PARAMETERIZED COUPLINGS

The model discussed here has a philosophy quite similar to the original versions of the models with parameterized
couplings[4, 6]. However, while in the most general approach of ref.[6] parameterizations of the coupling constants are
introduced in had hoc way, we discuss here a method for the derivation of the parametric dependence on the coupling
constants following the original formulation of the ZM-model[4] that allows: a) a consistent formal justification for
its adoption; b) the extension of the range of possibilities of parameterizations in effective models with derivative
couplings in a coherent way. Additionally, this approach exhibits consistency with the concept of naturalness allowing
this way, with acceptable confidence, the utilization of perturbation expansions of the Lagrangian density which
describes the strong interaction contributions, within the phenomenological physical domain of the theory.

The strategy here is to consider a phenomenological and more flexible parametrization of the QHD Lagrangian
density which combines the two previous limits and an extension of the interaction phase space of baryon and meson
fields. Properties of the fields considered in our formulation are presented in table (1).

The interaction Lagrangian density of the model is defined as:

Lint =
∏
λ=ξ,κ,η

⎛⎜⎜⎜⎜⎝1 + gσBσ + gσ∗Bσ
∗ + 1

2gδBτ · δ
λMB

⎞⎟⎟⎟⎟⎠
λ

ψ̄B iγμ∂μ ψB − ψ̄B ΓκηξζB ψB , (4)

where the operators τ = (τ1, τ2, τ3) represent the Pauli isospin matrices. In this expression, the Lorentz scalar Γ is
defined as

ΓκηξζB = gωB
∏
λ=κ,η

⎛⎜⎜⎜⎜⎝1 + gσBσ + gσ∗Bσ
∗ + 1

2gδBτ · δ
λMB

⎞⎟⎟⎟⎟⎠
λ

γμω
μ +

1
2
g�B

∏
λ=ξ,η

⎛⎜⎜⎜⎜⎝1 + gσBσ + gσ∗Bσ
∗ + 1

2gδBτ · δ
λMB

⎞⎟⎟⎟⎟⎠
λ

γμτ · �
μ

+ gφB
∏
λ=κ,ξ

⎛⎜⎜⎜⎜⎝1 + gσBσ + gσ∗Bσ
∗ + 1

2gδBτ · δ
λMB

⎞⎟⎟⎟⎟⎠
λ

γμφ
μ + MBΠλ=κ,η,ξ,ζ

⎛⎜⎜⎜⎜⎝1 + gσBσ + gσ∗Bσ
∗ + 1

2gδBτ · δ
λMB

⎞⎟⎟⎟⎟⎠
λ

. (5)

The corresponding expression of the Lagrangian density of the model is

L =
∑
B
ψ̄B

⎡⎢⎢⎢⎢⎢⎢⎣
∏
λ=ξ,κ,η

⎛⎜⎜⎜⎜⎝1 + gσBσ + gσ∗Bσ
∗ + 1

2gδBτ · δ
λMB

⎞⎟⎟⎟⎟⎠
λ

iγμ∂μ − ΓκηξζB

⎤⎥⎥⎥⎥⎥⎥⎦ψB
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+
1
2
(∂μσ∂μσ − mσ2σ2) +

1
2
(∂μσ∗∂μσ∗ − mσ∗2σ∗2) −

1
4
ωμνω

μν +
1
2
mω2ωμωμ

−
1
4
φμνφ

μν +
1
2
mφ2φμφμ −

1
4
�μν · �

μν +
1
2
m2
��μ · �

μ +
1
2
(∂μδ · ∂μδ − mδ2δ2)

+
∑
l
ψ̄l (iγμ∂μ − ml)ψl , (6)

where the subscripts B and l label respectively the different baryon and lepton (electrons and free muons) species.
Its is important to remember that isoscalar meson fields are related to the algebra of the group theory U(1), while
isovector meson fields are related to the non-commutative algebra of the group theory SU(2), and that this aspect is
responsible for the presence of additional self-coupling terms involving the � meson fields in the above expression
of the Lagrangian density (6); those terms characterize many-body interaction contributions. We Introduce in the
following a change of scale of the baryon fields in the form

ψB →

⎛⎜⎜⎜⎜⎜⎜⎝
∏
λ=ξ,κ,η

⎛⎜⎜⎜⎜⎝1 + gσBσ + gσ∗Bσ
∗ + 1

2gδBτ · δ
λMB

⎞⎟⎟⎟⎟⎠
−λ⎞⎟⎟⎟⎟⎟⎟⎠

1/2

ψB . (7)

With this change of scale we obtain the following expression for the Lagrangian density:

L =
∑
B
ψ̄B

[
iγμ∂μ − g∗ωBξγμω

μ −
1
2
g∗�Bκγμτ · �

μ − g∗φBηγμφ
μ − M∗Bζ

]
ψB

+
1
2
(∂μσ∂μσ − mσ2σ2) +

1
2
(∂μσ∗∂μσ∗ − mσ∗2σ∗2) −

1
4
ωμνω

μν +
1
2
mω2ωμωμ

−
1
4
φμνφ

μν +
1
2
mφ2φμφμ −

1
4
�μν · �

μν +
1
2
m2
��μ · �

μ +
1
2
(∂μδ · ∂μδ − mδ2δ2)

+
∑
l
ψ̄l (iγμ∂μ − ml)ψl , (8)

where the parameterized coupling constants are:

g∗ωBξ ≡ m
∗
BξgωB ; g

∗
�Bκ ≡ m

∗
Bκg�B ; g

∗
φBη ≡ m

∗
BηgφB , (9)

with i = ξ, κ, η, and

m∗Bi ≡
⎛⎜⎜⎜⎜⎜⎝1 + gσBσ + gσ∗Bσ

∗ + 1
2 gδBτ · δ

iMB

⎞⎟⎟⎟⎟⎟⎠
−i

. (10)

TABLE 1. Properties of the fields considered in our formulation. In
what follows, we use the abbreviations: ISS: isoscalar-scalar; IVS:
isovector-scalar; ISV: isoscalar-vector; IVV: isovector-vector.
Fields Classification Particles Coupling Mass

Constants (MeV)
ψB Baryons N, Λ, N/A 939, 1116,

Σ, Ξ 1193, 1318
ψl Leptons e−, μ− N/A 0,5, 106
σ ISS-meson σ g∗σB 550
δ IVS-meson a0 g∗

δB
980

ωμ ISV-meson ω g∗ωB 782
�μ IVV-meson ρ g∗�B 770
σ∗ ISS-meson f0 g∗σ∗B 975
φμ ISV-meson φ g∗φB 1020
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The resulting expression for the Lagrangian density of the parameterized coupling model allows numerous pos-
sibilities of parameterizations. Here we focus our attention to a few examples of parameterizations and their formal
relation with known QHD models of the literature. For instance, we may consider variations of the ζ parameter keep-
ing ξ = κ = η = 0 (scalar or S-model). This parametrization reduces to the QHD-I model of Serot and Walecka[2] if
ζ = 0 and g�B = gφB = 0. In case g�B � 0, this parametrization reduces to the QHD-II model[2]. Assuming ζ = 1,
performing a binomial expansion of mBζ , truncating the perturbative series to cubic and quartic self-interactions terms
involving the scalar-isoscalar σ meson (making gσ∗B = gδB = 0), this parametrization reduces to the model of Boguta
and Bodmer[3]. The second choice contemplates variations of the parameters ζ and ξ while keeping κ = η = 0
(scalar-isoscalar-vector or SIV-model). In the third choice we may consider variations of ζ, ξ, and κ, and fixing η = 0
(scalar-isoscalar-vector-isovector-vector or SIIV-I-model), as already discussed in ref.[8]. Finally, in the fourth choice
we may consider variations of the four parameters of the theory, ζ, ξ, κ, and ζ (scalar-isoscalar-vector-isovector-vector
or SIIV-II-model). These examples of parameterizations of our approach are shown in Table (2).

TABLE 2. Examples of parameterizations of our model. S: scalar model; SIV: scalar-isoscalar-vector model; SIIV: scalar-isoscalar-
vector-isovector-vector model. Model II differs from I, due to the presence of the φ meson.

Model ζ ξ κ η

S � 0 0 0 0
SIV � 0 � 0 0 0
SIIV-I � 0 � 0 � 0 0
SIIV-II � 0 � 0 � 0 � 0

Of course, there are other possibilities for the parameterizations not included in these examples. The important point
to note is the physical interpretation of the parameterizations which represent analytic contributions of the different
orderings of many-body density correlations in perturbation theory and moreover, density corrections to the local
more conventional Yukawa-type couplings.

We consider, as an example of the effects of the presence of many-body interaction contributions in our formu-
lation, the expansion of the term gωBm∗Bξγ0ω0 in expression (8), in the particular case ξ = 1. In the framework of a
local mean field approximation, expectation values of meson fields correspond to classical numbers1. In this context,
taking into account that

gσBσ0 + gσ∗Bσ∗0 +
1
2gδBτ3δ30

MB
<< 1 ,

we may use the binomial theorem to expand the interaction term gωBm∗Bξγ0ω0 for the particular choice ξ = 1:

gωBm∗B1γ
0ω0 ∼ gωBγ0ω0 − gωB

⎛⎜⎜⎜⎜⎝gσBσ0 + gσ∗Bσ
∗
0 +

1
2gδBτ3δ30

MB

⎞⎟⎟⎟⎟⎠ γ0ω0

+ gωB
⎛⎜⎜⎜⎜⎝gσBσ0 + gσ∗Bσ

∗
0 +

1
2gδBτ3δ30

MB

⎞⎟⎟⎟⎟⎠
2

γ0ω0 − gωB
⎛⎜⎜⎜⎜⎝gσBσ0 + gσ∗Bσ

∗
0 +

1
2gδBτ3δ30

MB

⎞⎟⎟⎟⎟⎠
3

γ0ω0 ... (11)

The ω meson corresponds to the short range repulsive sector of the strong nuclear interaction. However, from this ex-
pression we can identify additional many-body attractive and/or repulsive coupling terms associated with the switching
of signals generated by the binomial expansion, like for instance σ0ω0, σ20ω0, σ

∗2
0 ω0, δ30ω0, δ

2
30ω0, σ0σ

∗δ30ω0 and
many others. Similarly, the remaining terms of the Lagrangian density also exhibit additional many-body coupling
terms. Again, the final selection of the contributions to be considered requires an analysis of the formal coherence of
the theory. In this sense, it is important to remember that the theory must embody fundamental symmetries and con-
servation laws, such as Lorentz covariance, microscopic causality, naturalness, analyticity, uniqueness, among others,
as well as physical properties which are relevant for strong interacting relativistic nuclear many-body systems.

1It is well known that in the realm of the mean field approximation, expectation values of meson fields may be treated as classical numbers in
space-time despite the density dependence of these fields in Fermi space.
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The presence of additional positive or negative interaction contributions to the Lagrangian density can be inter-
preted as density corrections to the local conventional Yukawa-type interaction terms. The parameters of the theory,
ξ, κ, η, ζ, control in turn the relevant intervals of values associated to the ordering of the contributions of many-body
forces to the dynamics of the system. As we have previously emphasized, these parameters thereby acquire a real
physical character, going beyond the usual conceptions of just fitting mathematical parameters.

Expression (8), in the natural limit (with ℘ = i, j, k,m, n, q and c(℘)→ 1) may be synthesized as

L =
∑
B

∑
℘

c℘
Π℘℘!

(
∂ or mπ
MB

) (
ψ̄BΓψB

f 2πMB

)

f 2πΛ

2
(
σ

fπ

)i(σ∗
fπ

) j(ω
fπ

)k( �
fπ

)m( δ
fπ

)n( φ
fπ

)q

→
∑
B

(
∂ or mπ
MB

) (
ψ̄BΓψB

f 2πMB

)

f 2πΛ

2 exp
∑
ι

gιΦι
MB
. (12)

EFFECTIVE BARYONMASS

The mass term of expression (8), M∗B = m
∗
BζMB, corresponds to

M∗B = m
∗
BζMB ≡

⎛⎜⎜⎜⎜⎝1 + gσBσ + gσ∗Bσ
∗ + 1

2gδBτ · δ
ζMB

⎞⎟⎟⎟⎟⎠
−ζ

MB . (13)

The resulting Lagrangian density obtained through the substitution of expression (7) in equation (6), is physically
equivalent to the original formulation. The introduction of the scaling (7) in equation (6) just results in a reorganization
of the original interaction Lagrangian density which allows at one hand, a more direct comparison with well known
QHD models and on the other, the use of conventional methods and techniques of field theory when seeking for
solutions of the many body nuclear problem.

The effective parameterized baryon mass M∗Bζ = MBΣ
s
Bζ = MBm

∗
Bζ , for

⎛⎜⎜⎜⎜⎜⎝gσBσ0ζMB
,
gσ∗Bσ∗0
ζMB

,
gδBδ03
ζMB

⎞⎟⎟⎟⎟⎟⎠ � 1 ,

in the mean field approximation, becomes

M∗Bζ =MB−MB

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎜⎜⎝gσBσ0 + gσ∗Bσ

∗
0 +

1
2gδB < τ3 > δ03

MB

⎞⎟⎟⎟⎟⎠+
(
ζ

2

) ⎛⎜⎜⎜⎜⎝gσBσ0 + gσ∗Bσ
∗
0+

1
2gδB < τ3 > δ03

ζMB

⎞⎟⎟⎟⎟⎠
2

+O(3)

⎫⎪⎪⎬⎪⎪⎭ , (14)

with ( ζ2 ) representing the generalized binomial coefficients of the expansion. It is important to emphasize the sys-

tematic alternating of positive and negative signs in this expression which imply the reduction of the degree of decrease
of the effective baryon mass as a function of density due to the presence of many body interaction terms.

PARTICLE POPULATIONS

According to experimental data (see for instance ref.[16]), realistic models for the strong interaction at high densities
shall consider the appearance of hyperons at densities (5 − 8) × 1014g/cm3. The so called hyperonization process
however softens the EoS of neutron stars, due to the fact that the Pauli exclusion principle does not manifest between
nucleons and hyperons thus causing a decrease in the internal quantum degeneracy pressure in neutron stars. And
thereby making it more difficult for nuclear models containing hyperons to describe stars with masses of the order of
2M� as recently observed[17, 18].

Thus, it is also important to analyze the role of many-body correlations in the threshold equation for a given
species[5]:

μn − qB μe ≥ gωB fσσ∗δξ ω0 + g�B fσσ∗δκ �03 I3B + gφB fσσ∗δη φ0 + fσσ∗δζ MB . (15)
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In this expression, μn and μe represent respectively the neutron and electron chemical potential, and qB is the baryon
charge. The sign of g�B �03 I3B is determined by the net isospin density of the star. This term determines whether
a given baryon configuration is isospin favored or unfavored. Similarly, the term qB μe determines whether a given
baryon state is charge favored or unfavored. Moreover, in this expression fσσ∗δα is defined as

fσσ∗δα=1−
⎛⎜⎜⎜⎜⎝gσBσ0 + gσ∗Bσ

∗
0 +

1
2gδB <τ3> δ03

MB

⎞⎟⎟⎟⎟⎠ +
(
α

2

) ⎛⎜⎜⎜⎜⎝gσBσ0 + gσ∗Bσ
∗
0 +

1
2gδB <τ3> δ03

αMB

⎞⎟⎟⎟⎟⎠
2

+ O(3), (16)

with α = ξ, κ, η, ζ. Theses equations show that the population of hyperons is affected by many-body correlations,
which shift the critical density for hyperon saturation to higher densities, contributing this way to the increase of
neutron star masses compared to the case where many-body forces are not present.
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kaon degrees of freedom. The remaining model parameters, not shown in the curves, are set equal to zero[11].

 0.001

 0.01

 0.1

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12  13

R
el

at
iv

e 
Po

pu
la

tio
n

R (km)

ζ = 0.044,  κ=0.040
n
p
e
μ
Λ

Ξ0

Ξ-

 0.001

 0.01

 0.1

 1

 0  1  2  3  4  5  6  7  8  9

R
el

at
iv

e 
Po

pu
la

tio
n

ρB/ρ0

ζ = 0.044

n
p
e
μ

Λ

Ξ0

Ξ-

Κ-

Κ0

FIGURE 2. (a) On the left, population profile as a function of the stellar radius for the particular set of parameters[10]. (b) On the
right, similar results taking into account the presence of kaons[11].
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COUPLING CONSTANTS
The values of the sets of parameters of the model are chosen to allow the model to reproduce nuclear properties
at saturation, like for example the compressibility modulus of nuclear matter smaller than 300 MeV. In general we
assume for the saturation density of nuclear matter ρ0 = 0.17 fm−3 and for the binding energy of nuclear matter
εB = −16.0MeV . The isovector coupling constant g� is constrained to the symmetry energy coefficient aasym =
32.5MeV[19]. In the study of the equation of state and composition of hypernuclear matter within density-dependent
couplings, the parameter space of hyperon-scalar-meson couplings may be explored by allowing for mixing and
breaking of SU(6) symmetry, while keeping the nucleon coupling constants fixed. The intensity of the couplings
of scalar mesons with hyperons can also be obtained by determining the depth of the hyperon-nucleon interaction
potential on saturated nuclear matter and quark counting rules.

RESULTS, DISCUSSION AND PERSPECTIVES
Using the QHD model with parameterized couplings, we may determine the EoS, population profiles and, by solving
the Tolman-Oppenheimer-Volkoff (TOV) equations[1], the mass-radius relation for families of neutron stars with
hyperon content. Some of our recent results for different values of the set of parameters are illustrated in the figures,
where each set generates a sequence of neutrons stars with different equations of state, particle populations, central
densities, and maximum masses for neutron stars.

The analysis of these results demands first to remember that a stiffer, or equivalently, more rigid equation of state
of nuclear matter is related to higher values of the internal pressure of the system and, accordingly, to higher values
of the compressibility modulus |Ksym| of nuclear matter. This in turn requires stronger contributions from repulsive
components of the nuclear force when compared to the attractive ones. In our general approach, however, many body
forces (density correlations) lower the intensities both of attractive and repulsive interaction terms due to shielding
effects, which result in higher (lower) values of the compressibility modulus |Ksym| of nuclear matter in the case of
higher (lower) relative reduction of the attractive (repulsive) contributions.

In this sense, when many-body correlations shield the attractive part of the strong interaction, they intensify the
corresponding repulsive part, favoring in this way the stiffening of the EoS. On the other hand, the effective masses
of baryons increase as the shielding of the attractive part of the strong interaction increases. This favors the growth of
the internal pressure of the system and the stiffening of the EoS.

Following recent experimental results[20, 21], we have considered in our calculations the extreme case where
the Σ− experiences such a strong repulsion that it does not appear at all in nuclear matter for densities exceeding those
found in neutron stars. The first hyperon species that appears is the Λ: free of isospin-dependent forces, as the density
increases, the Λ hyperon continues to accumulate until short-range repulsion forces cause them to saturate. Other
hyperon species follow at higher densities.

Our model originates moreover an anti-correlation between the amount of hyperons: for certain values of the
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parameters, according to equations (15) and (16) an anti-correlation associated with the predominance of the scalar
part occurs. This mean that hyperon degrees of freedom become more numerous to the extent that the attractive sector
is favored in comparison with the repulsive part, thus favoring smaller neutron star masses. However, the absence of
the Σ− hyperon reduces this effect. For other values of the parameters of the theory, the repulsive part of the strong
interaction is enhanced thereby contributing to the stiffening of the EoS and consequently to the increase of the mass
of the neutron star.

When considering simultaneously both shielding effects involving the attractive and repulsive contributions of
the strong interaction, one would expect that, — since the repulsive part of the strong interaction is more effective in
nuclear matter at high densities, on the average, than the attractive sector —, that the shielding of the strong interaction
would favor the attractive part, contributing this way to the reduction of the mass of the neutron star. However, our
results indicate that the combination of these effects with the others previously reported, favors the stiffening of the
EoS. In other words, the shielding of the attractive part of the strong interaction combined with the increase of the
effective mass of baryons and the absence of the Σ− hyperon, are dominant when compared with those effects favoring
the softening of the EoS, i.e., the shielding of the repulsive part of the strong interaction and the increase on the
population of the remaining hyperons beyond the Σ−.

Our results also indicate that, to compensate the absence of the Σ− to bring about charge neutrality and chemical
equilibrium, as well as the requirements of the Pauli principle and the rearrangement of Fermi populations to minimize
energy, the Λ and Ξ− thresholds have been reduced. This last reduction is charge favored, replacing a neutron and
electron at the top of their Fermi seas, although both Σ− and Ξ− are isospin unfavored.

It is our understanding that the naturalness condition is equivalent to exhaust the phase space of the fundamental
interactions. This depletion of the phase space can be accomplished by including in nuclear matter the largest possible
number of information, ie. baryon and meson degrees of freedom and additionally considering many body forces
between baryon and meson fields, as well as self-coupling terms involving meson fields. When the condition of natu-
ralness is achieved, it is unnecessary to get rid of heavier degrees of freedom by integrating then out. In this case, the
effects of heavier degrees of freedom are not anymore implicitly contained in coupling parameters of the effective field
theory. An interesting aspect of our study is that apparently, many body forces occupy a larger role than originally
thought in the description of properties of nuclear system at high density. Moreover, the condition of naturalness is
achieved with only a small part of the parameter set. This result was expected and can be explained by the saturation
property of nuclear matter: for parameter values less than 3, the model with parameterized couplings completely
exhausts the phase space of many-body interactions.

The model with parameterized couplings shows promising results. However, the model needs to broaden its scope
by the adoption of new parameterizations, expanding the set of parameters of the theory. Interesting issues for future
studies will also be the role of finite temperature, neutrino trapping and strong magnetic effects in neutron stars. Work
along these lines is in progress.
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