
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

HENRIQUE BECKER

The Unbounded Knapsack Problem:
a critical review

Thesis presented in partial fulfillment
of the requirements for the degree of
Master of Computer Science

Advisor: Prof. Dr. Luciana Buriol

Porto Alegre
March 2017

CIP — CATALOGING-IN-PUBLICATION

Becker, Henrique

The Unbounded Knapsack Problem: a critical review /
Henrique Becker. – Porto Alegre: PPGC da UFRGS, 2017.

108 f.: il.

Thesis (Master) – Universidade Federal do Rio Grande do
Sul. Programa de Pós-Graduação em Computação, Porto Ale-
gre, BR–RS, 2017. Advisor: Luciana Buriol.

1. Unbounded knapsack problem. 2. Dynamic program-
ming. 3. Optimization. 4. Cutting stock problem. I. Buriol,
Luciana. II. T́ıtulo.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Vice-Reitor: Prof. Rui Vicente Oppermann
Pró-Reitor de Pós-Graduação: Prof. Vladimir Pinheiro do Nascimento
Diretor do Instituto de Informática: Prof. Luis da Cunha Lamb
Coordenador do PPGC: Prof. Luigi Carro
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“It isn’t just you. It’s the whole Galaxy.

Pirenne heard Lord Dorwin’s idea of scientific research.

Lord Dorwin thought the way to be a good archaeologist was to read all the books on

the subject – written by men who were dead for centuries. He thought that the way to

solve archaeological puzzles was to weigh the opposing authorities.

And Pirenne listened and made no objections.

Don’t you see that there’s something wrong with that?”

— The Foundation, Isaac Asimov

DEDICATION AND ACKNOWLEDGMENTS

To my parents for their unending patience, and for completely supporting my choices,

while offering criticism.

To my advisor funnily for the exact same reasons, while in a little more specific

context.

To my hometown friends for helping me recover my energy (and sanity) in the

weekends, and understanding when that was not possible.

To my brother for the unfiltered discussions and exchange of ideas, and also for

making me laugh.

To my college teachers for always seeing in me a future colleague of the profes-

sion.

To my friend Didi for accepting, on short notice, the job of revising my terrible

English.

To everyone in the lab, for accepting me (and my stuffed ponies), and being nothing

less than welcoming and helpful.

To my friend Tadeu for giving me some perspective in unrelated matters and inviting

me to play tabletop games.

To Dennis (43) who would give me a ride back home everyday, while trying to

convince me to play DOTA2.

ABSTRACT

A review of the algorithms and datasets in the literature of the Unbounded Knapsack

Problem (UKP) is presented in this master’s thesis. The algorithms and datasets

used are briefly described in this work to provide the reader with basis for un-

derstanding the discussions. Some well-known UKP-specific properties, such as

dominance and periodicity, are described. The UKP is also superficially studied

in the context of pricing problems generated by the column generation approach

applied to the continuous relaxation of the Bin Packing Problem (BPP) and Cut-

ting Stock Problem (CSP). Multiple computational experiments and comparisons

are performed. For the most recent artificial datasets in the literature, a simple dy-

namic programming algorithm, and its variant, seems to outperform the remaining

algorithms, including the previous state-of-the-art algorithm. The way dominance

is applied by these dynamic programming algorithms has some implications for the

dominance relations previously studied in the literature. In this master’s thesis we

defend that choosing sets of artificial instances has defined what was considered the

best algorithm in previous works. We made available all codes and datasets refer-

enced in this master’s thesis.

Keywords: Unbounded knapsack problem. dynamic programming. optimization.

cutting stock problem.

O problema da mochila com repetições: uma revisão cŕıtica

RESUMO

Uma revisão dos algoritmos e conjuntos de instâncias presentes na literatura do

Problema da Mochila com Repetições (PMR) é apresentada nessa dissertação de

mestrado. Os algoritmos e conjuntos de instâncias usados são brevemente descritos

nesse trabalho, a fim de que o leitor tenha base para entender as discussões. Al-

gumas propriedades bem conhecidas e espećıficas do PMR, como a dominância e

a periodicidade, são explicadas com detalhes. O PMR é também superficialmente

estudado no contexto de problemas de avaliação gerados pela abordagem de geração

de colunas aplicada na relaxação cont́ınua do Bin Packing Problem (BPP) e o Cut-

ting Stock Problem (CSP). Múltiplos experimentos computacionais e comparações

são realizadas. Para os conjuntos de instâncias artificiais mais recentes da litera-

tura, um simples algoritmo de programação dinâmica, e uma variante do mesmo,

parecem superar o desempenho do resto dos algoritmos, incluindo aquele que era

estado-da-arte. O modo que relações de dominância é aplicado por esses algoritmos

de programação dinâmica têm algumas implicações para as relações de dominância

previamente estudadas na literatura. O autor dessa dissertação defende a tese de

que a escolha dos conjuntos de instâncias artificiais definiu o que foi considerado

o melhor algoritmo nos trabalhos anteriores. O autor dessa dissertação disponibi-

lizou publicamente todos os códigos e conjuntos de instâncias referenciados nesse

trabalho.

Palavras-chave: problema da mochila com repetições, programação dinâmica, oti-

mização, cutting stock problem.

LIST OF ABBREVIATIONS AND ACRONYMS

B&B Branch and Bound

BKP Bounded Knapsack Problem

BPP Bin Packing Problem

CA Consistency Approach

CPU Central Processing Unit

CSP Cutting Stock Problem

DP Dynamic Programming

FP Floating Point

KP Knapsack Problem

PRNG Pseudo-Random Number Generator

SCF Set Covering Formulation

SD Standard Deviation

UKP Unbounded Knapsack Problem

LIST OF FIGURES

Figure 1.1 Classical graphic representation of the simple, multiple and thresh-
old dominances. Source: (ANDONOV; POIRRIEZ; RAJOPADHYE,
2000). It is interesting to note that the triangle slope equals to the items
efficiency, and that all points in the shaded area created by an item or
solution triangle are dominated...15

Figure 1.2 Classical graphic representation of the threshold dominance. Source:
(ANDONOV; POIRRIEZ; RAJOPADHYE, 2000). The ti is the threshold
of item i, i.e. the weight of the smallest solution composed only of copies
of i that is dominated by another item/solution...15

Figure 3.1 An uncorrelated instance generated with n = 100, wmin = 1, wmin =
1000, pmin = 1, and pmax = 1000. ..25

Figure 3.2 A 128-16 BREQ Standard instance with n = 204837

Figure 4.1 The solutions {1, 2} and {2, 1} (with w1 = 3 and w2 = 4) are
equivalent. The solution {3, 2, 1} can be also constructed in many ways
(with w1 = 4, w2 = 5 and w3 = 6). The figure shows the solution
generation with and without symmetry pruning...47

Figure 5.1 Benchmark using PYAsUKP dataset; the UKP5, GREENDP and
EDUK2 algorithms; and no timeout. ..62

Figure 5.2 Comparison between MTU1 and MTU2, C++ and Fortran imple-
mentations...66

Figure 5.3 Benchmark with the 128-16 Standard BREQ instances.......................68
Figure 5.4 Total time used solving the continuous relaxation of the BPP/CSP. ..72
Figure 5.5 Total time used solving pricing subproblems (UKP) in the contin-

uous relaxation of the BPP/CSP. ...73
Figure 5.6 Percentage of time taken by solving pricing subproblems (UKP) in

the continuous relaxation of the BPP/CSP...74
Figure 5.7 Total time used solving the master problem in the continuous re-

laxation of the BPP/CSP..75
Figure 5.8 Quantity of pricing subproblems each method solved, relative to

the method that solved the greatest amount for the same instance (in %). .76
Figure 5.9 For the four UKP5 variants, the relative difference between the

number of pricing subproblems solved in the same instance.79
Figure 5.10 Comparison of the mean times of UKP5 and EDUK2 when exe-

cuted in two diferent computers, in parallel and in serial mode.83
Figure 5.11 Parallel and Serial Runs Standard Deviation85

CONTENTS

1 INTRODUCTION ...11
1.1 Motivation and scope ...11
1.2 Formulation and notation...12
1.3 Properties of the UKP ...13
1.3.1 Dominance relations ...13
1.3.2 Periodicity and periodicity bounds...17
2 PRIOR WORK..20
3 THE DATASETS...25
3.1 Uncorrelated items distribution datasets25
3.1.1 Babayev’s use of uncorrelated instances...26
3.1.2 Martello’s use of uncorrelated instances...27
3.2 PYAsUKP dataset ...28
3.2.1 Subset-sum instances..29
3.2.2 Instances with strong correlation between weight and profit29
3.2.3 Instances with postponed periodicity ...30
3.2.4 Instances without collective dominance..31
3.2.5 SAW instances..31
3.2.6 PYAsUKP dataset and reduced PYAsUKP dataset32
3.3 CSP pricing subproblem dataset..32
3.4 Bottom Right Ellipse Quadrant instances......................................36
3.5 Other distributions...40
4 APPROACHES AND ALGORITHMS ...41
4.1 Conversion to other KP variants..41
4.2 Dynamic Programming ..42
4.2.1 The näıve algorithm ...42
4.2.2 The algorithm of Garfinkel and Nemhauser ...43
4.2.3 The step-off algorithms of Gilmore and Gomory..44
4.2.4 UKP5..45
4.2.4.1 A note about UKP5 performance..48
4.2.4.2 Weak solution dominance ..48
4.2.4.3 Implementation details ..48
4.2.5 EDUK...49
4.3 Branch-and-Bound ...51
4.3.1 MTU1...53
4.3.2 MTU2...54
4.3.3 Other B&B algorithms ...55
4.4 Hybrid (DP and B&B)...56
4.4.1 GREENDP...56
4.4.2 EDUK2...57
4.5 Consistency Approach..58
4.5.1 GREENDP1 ...58
4.5.2 Babayev’s algorithm ...59
4.6 Other approaches ...60
5 EXPERIMENTS AND ANALYSES..61
5.1 Setup of the first four experiments ..61
5.2 Solving the PYAsUKP dataset ..62
5.2.1 MTU1 and MTU2 (C++ and Fortran)..65
5.2.2 Algorithms implemented but not used ...67

5.3 Solving the BREQ 128-16 Standard Benchmark............................67
5.4 Solving pricing subproblems from BPP/CSP70
5.4.1 The differences in the number of pricing subproblems solved76
5.4.2 The only outlier..77
5.4.3 Similar methods generate different amounts of pricing subproblems78
5.4.4 Algorithms not used in this experiment ...80
5.5 The effects of parallel execution...81
5.5.1 Setup ..81
5.5.2 Experiment...82
6 CONCLUSIONS AND FUTURE WORK...86
6.1 Conclusions ..86
6.1.1 A critical review ...86
6.2 UKP-specific knowledge contributions ...88
6.3 Technological UKP-specific contributions91
6.4 Future work..91
REFERENCES...93
APPENDIX A — TABLES..95
A.1 Data and code related to CSP pricing subproblem dataset 100
A.2 Caṕıtulo de resumo em português... 100
A.2.1 Introdução ...100
A.2.2 Trabalhos relacionados ..101
A.2.3 Classes de instâncias..102
A.2.3.1 Instâncias do PYAsUKP...102
A.2.3.2 Problemas de avaliação gerados a partir do BPP/CSP..........................103
A.2.3.3 Instâncias BREQ ..104
A.2.4 Abordagens e algoritmos ...105
A.2.5 Experimentos e análises...106
A.2.6 Conclusões ...107

11

1 INTRODUCTION

The Unbounded Knapsack Problem (UKP) is a simpler variant of the well-

known Bounded Knapsack Problem (BKP) and the 0-1 Knapsack Problem (0-1 KP).

The only difference between the UKP and these other KP variants is that the UKP

does not impose a bound on the available quantity of each item type. The UKP can

also be seen as a special case of the BKP in which, for each item type, there are

more copies available than is possible to fit in the knapsack capacity.

The UKP is NP-Hard and, thus, has no known polynomial-time algorithm

for solving it. Nevertheless, the UKP can be solved in pseudo-polynomial time by

dynamic programming algorithms.

1.1 Motivation and scope

The applied use of the UKP discussed in this thesis is: the UKP as the pric-

ing subproblem generated by solving the continuous relaxation of the set covering

formulation for the unidimensional Bin Packing Problem (BPP) and Cutting Stock

Problem (CSP) using the column generation approach. The BPP and the CSP are

classical problems in the area of operations research and of great importance for

the industry, see (DELORME; IORI; MARTELLO, 2014) and (GILMORE; GO-

MORY, 1961; GILMORE; GOMORY, 1963). The best lower bounds known for the

optimal solution value of the BPP and the CSP are the optimal solution value for

their continuous relaxation. The tightest formulation for the BPP and the CSP has

an exponential number of columns and, because of this, is solved by using the col-

umn generation approach (GILMORE; GOMORY, 1961). The UKP is the pricing

subproblem of this column generation approach.

The author of this thesis is aware of the existence of many very good heuristics

and approximations for solving the UKP, including the existence of fully polynomial

time approximation schemes (FPTAS) for the UKP. This thesis, however, will only

discuss exact methods. This was done in order to limit scope of this thesis and also

because the pricing subproblem instances have to be solved exactly to guarantee that

the relaxation is being solved exactly (which in turn guarantee that a branch-and-

bound algorithm using the relaxation as a lower bound solves the original BPP/CSP

instance exactly).

12

1.2 Formulation and notation

The notation presented in this section will be used in the rest of this work.

An instance of the UKP is a pair of a capacity c and a list of n items. Each item

can be referenced by its index in the item list i ∈ {1 . . . n}. Each item i has a weight

value wi, and a profit value pi. A solution is an item multiset (i.e, a set that allows

multiple copies of the same element). The sum of the items weight, or profit value,

of a solution s is denoted by ws, or ps; and will be referred to as the weight, or profit,

of the solution. A solution s is a valid solution iff ws ≤ c. An optimal solution s∗ is

a valid solution with the greatest profit among all valid solutions.

To solve an instance of the UKP is to find an optimal solution for that

instance. Finding all optimal solutions for an instance of the UKP is not the focus

of this work.

The mathematical formulation of UKP is:

maximize
n∑

i=1

pixi (1.1)

subject to
n∑

i=1

wixi ≤ c, (1.2)

xi ∈ N0. (1.3)

The quantities of each item i in an optimal solution are denoted by xi, and

are restricted to the non-negative integers, as (1.3) indicates. We assume that the

capacity c, the quantity of items n and the weights of the items wi are positive

integers. The profit values of the items pi are positive real numbers.

The terms item and item type mean two different things in this work. The

term item will be used to refer to an specific item that has a position in the items

list of an instance, and that can have duplicates in the same instance. The term

item type will be used to refer to a pair of weight and profit value that can be shared

by many items.

The efficiency of an item i is its profit-to-weight ratio (pi
wi

), and is denoted

by ei. We use wmin, or wmax, to denote the smallest items weight, or the largest

items weight, within an instance of the UKP. We refer to the item with greatest

efficiency among all items of an specific instance as the best item (or simply b); if

13

more than one item shares the greatest efficiency, then the item with the lowest

weight among them will be considered the best item type; if more than an item has

both previously stated characteristics, then the first item with both characteristics

in the items list is the best item.

The attentive reader will note that an UKP instance is defined by a list of

items, instead of a set of items, as usual. Some algorithms sort the items and ma-

nipulate their indices. So having notation to refer to the items indices is convenient.

Also, a set would not allow for identical items (i.e. that share the same item type).

Such duplicated items exist in some instance datasets of the literature, and can affect

the solving time of the algorithms.

1.3 Properties of the UKP

This section presents properties of the UKP that can be exploited to speed-up

its solving. The main point of these properties is that they are only valid if we have

available as many copies of each item type as we could need. Consequently, those

properties are always valid for the UKP and generally not valid for other knapsack

variants. Nevertheless, if every item type i of an instance of the BKP (or 0-1 KP)

has at least b c
wi
c copies available, then the instance can be solved as if it were an

instance of the UKP.

1.3.1 Dominance relations

If one item i has the same or less weight than another item j (wi ≤ wj), and i

also has the same or more profit value than item j (pi ≥ pj), then it is clear that

if we replace j by i in any valid solution, the solution will remain valid (the weight

of the solution can only remain the same or decrease), as for the profit value of the

solution, it can only remain the same or increase. This relationship between i and j

is called a dominance relation; more specifically, it is a case of simple dominance, in

which i simple dominates j.

We will assume that i dominates j. There are only two possibilities: the

profit value of i is greater than the profit value of j; or they are the same. If it is

the former, then j cannot be part of an optimal solution. By definition, an optimal

14

solution is a valid solution with the greatest profit value; if j was part of an optimal

solution, replacing j by i would give a valid solution with an even greater profit

value (reductio ad absurdum). If it is the latter (i.e. i and j have the same profit

value), j can be part of an optimal solution. However, we would get an optimal

solution with the same or less weight, by replacing j by i in the optimal solution.

If we are interested in obtaining one optimal solution, but not all optimal

solutions, we can use dominance relations to reduce the computational effort needed

to find a solution. This is done by detecting dominance relations, and removing the

dominated items, thus reducing the size of the problem. The detection can be done

in a preprocessing phase or within the solving algorithm (reusing computation that

would be needed anyway).

Dominance relations are not restricted to one single item simple dominating

another single item. An item multiset (or solution1) can dominate a single item too.

Given a solution s containing only two or more copies of an item i, and an item j,

if ws ≤ wj and ps ≥ pj, then it is said that item i multiple dominates item j. This

dominance relation is called multiple dominance. Given a solution s composed of

any items, and an item j, if ws ≤ wj and ps ≥ pj, then it is said that solution s

collective dominates item j. This dominance relation is called collective dominance.

In multiple and collective dominance, whenever we would use item j in a solution,

we can use the items that constitute s in place of j. Simple and multiple dominance

are special cases of the collective dominance. Simple dominance can also be seen as

a special case of multiple dominance, and some authors use ‘multiple dominance’ to

refer to both simple and multiple dominances (POIRRIEZ; YANEV; ANDONOV,

2009).

Given a solution s composed of any items, and a solution t containing only

two or more copies of an item j, if ws ≤ wt and ps ≥ pt, then it is said that solution s

threshold dominates item j. This dominance relation is called threshold dominance.

If t is composed of n copies of item j, then we know that we can disregard solutions

with n or more copies of item j (as each group of n copies of j can be replaced by s

without loss to the value of the optimal solution). Collective dominance can be seen

as a special case of threshold dominance, where n = 1 (i.e. the dominated solution t

1 In this thesis, the term solution is used as an synonym for ‘item multiset’. A solution does
not need to be valid, or optimal (these qualifiers would be meaningless otherwise), and surely does
not need to fill the knapsack capacity in a way that no more items can be added to it. As the
UKP does not limit the quantity of each item type in a solution, we can treat any solution as a
new item type, with weight and profit value equal to the weight and profit value of the solution.

15

Figure 1.1: Classical graphic representation of the simple, multiple and threshold
dominances. Source: (ANDONOV; POIRRIEZ; RAJOPADHYE, 2000). It is in-
teresting to note that the triangle slope equals to the items efficiency, and that all
points in the shaded area created by an item or solution triangle are dominated.

is a single item solution).

The simple and multiple dominances were deeply studied in the previous lit-

erature. Algorithms that remove all simple and multiple dominated items in O(n2),

and heuristics with less complexity that do not guarantee removing all simple or

multiple dominated items, were proposed, see (PISINGER, 1995) for a good re-

view on this subject. On the other hand, the collective and threshold dominances

seem too computationally expensive to be done in a preprocessing phase. However,

in the context of a Dynamic Programming (DP) algorithm, in which the optimal

solutions of lower capacities can be reused to detect both collective and threshold

dominances (POIRRIEZ; YANEV; ANDONOV, 2009), these dominances are cheap

to detect.

The Efficient Dynamic programming for the Unbounded Knapsack problem

(EDUK) and the EDUK2 algorithms detect those four types of dominance rela-

tions (POIRRIEZ; YANEV; ANDONOV, 2009). In fact, threshold dominance was

first proposed by the EDUK authors in (POIRRIEZ; ANDONOV, 1998), and was a

primary feature of the EDUK algorithm. However, we will see that both algorithms

seem to be dominated by algorithms that predate them by about forty years, as the

ordered step-off algorithm from (GILMORE; GOMORY, 1966), and its ‘improved

version’ from (GREENBERG; FELDMAN, 1980). These two old algorithms did not

directly apply any of the four types of dominance.

After examination, it becomes clear that these two old algorithms indirectly

apply all four dominances. By indirectly, we means that, in the course of these

16

Figure 1.2: Classical graphic representation of the threshold dominance. Source:
(ANDONOV; POIRRIEZ; RAJOPADHYE, 2000). The ti is the threshold of item i,
i.e. the weight of the smallest solution composed only of copies of i that is dominated
by another item/solution.

algorithms execution, they eventually stop using dominated items to create new

solutions, and that happens without testing items for each one of the four dominance

relations previously explained.The approach used by these old algorithms is focused

on solutions, not individual items. Consequently, it would be more adequate to say

that they make use of some sort of solution dominance. Ideally, given a solution s

and a solution t (both s and t can be composed of any items), if ws ≤ wt and ps ≥ pt,

then an optimized algorithm could not generate any solutions that are a superset

of t (as the respective supersets of s would dominate them anyway) without loss

to the value of the optimal solution.. Such dominance relation would generalize all

previous dominances, as the dominated items can be seen as single item solutions

(or multiple item solutions, in the case of threshold dominance).

Those old algorithms do not apply this ideal solution dominance, but a weaker

version of it. This weaker version of solution dominance does not avoid generating

every solution that is a superset from a dominated solution, but it can be imple-

mented with almost no overhead. As this is algorithm-specific, it will be further

discussed in Section 4.2.4.2.

In this section, the concept of dominance was introduced by explaining four

dominance relations found in the literature and proposing the concept of strong

solution dominance. In the literature, one of the definitions used for dominance

is: “Given an instance of UKP, relative to item types set N , item type k ∈ N

is dominated if the optimal solution value does not change when k is removed

17

from N .” (MARTELLO; TOTH, 1990b, p. 100). This definition is consistent with

simple, multiple, and collective dominance, but not with threshold dominance. If

an item is threshold dominated, it can still be present in all optimal solutions, it

only cannot appear n or more times in all optimal solutions. Solution dominance

is not covered by this definition, as it is item-centric. Finally, such broad defini-

tion of dominance does not give hints on how to design a procedure for removing

the dominated items (without solving the instance), differently from the dominance

relations.

1.3.2 Periodicity and periodicity bounds

The UKP has an interesting periodic property that can be stated the follow-

ing way: for every set of item types, there exists a capacity y+, for which every

capacity y′ (y′ > y+) will have an optimal solution that is an optimal solution for

capacity y′ − wb with one more copy of the best item added. In other words, after

some capacity y+, we can find optimal solutions simply by adding copies of the best

item to optimal solutions of capacities y+ and lower (all other items are not relevant

anymore). In the literature, this periodic property is called periodicity. It should be

clear that if we knew y+ beforehand, and y+ < c, then we can solve the UKP for

the capacity y∗ = c− d c−y+
wb
ewb and fill the gap between y∗ and c with exactly c−y∗

wb

copies of the best item (instead of solving the UKP for capacity c).

The periodicity is a direct consequence of the threshold dominance. However,

the periodicity was discovered much before the concept of threshold dominance. For

instance, periodicity was already described in (GILMORE; GOMORY, 1966). As

the concept of threshold dominance was already explained in this thesis, the author

will use it to explain periodicity.

The threshold dominance property states that, if a solution s dominates so-

lution t, and t contains only n copies of the same item type j, then solutions with n

or more copies of j can be be replaced by solutions using s instead (without loss

to the value of the optimal solution). The periodicity property states that after

some capacity y+ we can obtain optimal solutions only by adding copies of the best

item to the optimal solutions from capacities y+ or below (all other items are not

relevant anymore). The link between these two properties is that for a sufficiently

large capacity, solutions composed of copies of the best item will threshold dominate

18

solutions composed of copies of any other item.

First, we will verify the truth of the statement above. For any two positive

integers a and b there will always exist at least one integer number that is divisible

by both a and b (e.g. a× b, or their least common multiple, LCM(a, b)). Therefore,

for each non-best item j, there will exist a capacity value y that it is divisible by

both wb and wj. Given mj = y
wb

and nj = y
wj

, and by the definition of best item, we

have that mj × pb ≥ nj × pj. In other words, a solution composed only of mj copies

of the best item will threshold dominate a solution composed only of nj copies of

item j.

It is important to notice that, in the case of an instance in which all items

have the same efficiency, the best item (that will have weight wmin by definition)

will threshold dominate each other item at the capacity that is the lowest common

multiple between their weights (as shown in the last paragraph). However, if the

best item b is more efficient than the non-best item j (which is more common), then

a smaller solution s composed only of copies of b can be more profitable than a

bigger solution t composed only of copies of j. The weights of the two solutions do

not have to be the same.

Now, we explain how periodicity is a direct consequence of threshold domi-

nance. As we have seen, for each non-best item j, there will exist a positive inte-

ger nj, in a way that solutions with nj copies of j are dominated by solutions that

use mj copies of b instead. We will assume that there exists a solution u composed

of nj − 1 copies of each item j. If another copy of any item j is added to u, the

resulting solution u′ = u ∪ {j} could be replaced by another solution v that con-

tains no copies of j, and mj additional copies of b. Any solution that weight more

than solution u has only two possibilities: it uses more copies of the best item; or

it uses more than nj copies of some non-best item j. In the last case, copies of j

can be replaced by copies of b until the quantity of copies of j is smaller than nj.

Consequently, after the knapsack capacity y′′ = wu, adding copies of other items

to a solution would be equal to adding copies of the best item (making any other

item type except b irrelevant). Note that y′′ is only an upper bound on y+, the value

of y+ can be smaller than y′′, as the items that the best item threshold dominate,

can themselves threshold dominates other items.

It’s worth mentioning that computing the exact value of y+ is a very expensive

process that equals to solving the UKP for all capacities y+ and lower while checking

19

for threshold dominance. The author do not know any algorithm for solving the UKP

that computes the exact value of y+ before starting to solve the UKP. The algorithms

compute an upper bound on the y+ capacity value, as the one presented in the

previous paragraph, that was presented in (KELLERER; PFERSCHY; PISINGER,

2004, p. 215).

An upper bound on y+ is less valuable than y+ itself, but it can be computed

in a reasonable polynomial time, before starting the solving process. If one algorithm

checks for threshold dominance periodically, it can stop when all non-best items have

been threshold dominated by the best item. Such algorithm would not benefit much

from computing an upper bound on the y capacity value. If this algorithm setup

phase (e.g. allocating and initializing memory) is linear in the knapsack capacity c

and the upper bound on the y capacity value is considerably smaller than c, then

the algorithm could benefit from the upper bound.

There exist many proposed periodicity bounds, but some are time-consuming,

as the O(n2) periodicity bound presented in (HUANG; TANG, 2012). Others de-

pend on specific instance characteristics to be tight, as the ones presented in (IIDA,

2008) and (POIRRIEZ; YANEV; ANDONOV, 2009). For reasons that will be made

clear in the conclusions, the author did not found relevant to present a review on

periodicity bounds in this work. The UKP5 algorithm makes use of one simple

periodicity bound, and it will be explained together with UKP5 in Section 4.2.4.3.

20

2 PRIOR WORK

It is important to note that the name “Unbounded Knapsack Problem” is

more recent than the problem itself. To the best of our knowledge, this name

was used for the first time in (MARTELLO; TOTH, 1990a). Earlier papers simply

referred to ‘a’ or ‘the’ knapsack problem(s) the variant discussed was specified by the

model presented in the paper. An earlier paper from the same author tackled both

the UKP and the BKP (MARTELLO; TOTH, 1977) and called them, respectively,

the General Unconstrained Knapsack Problem (GUKP) and General Constrained

Knapsack Problem (GCKP). In the paper, the adjective unidimensional was also

used to characterize both variants. More recently, the term ‘UKP’ seems to be

well accepted. Also, unidimensional is considered the default, and the term multi-

dimensional is used to differ from it. A researcher making a literature review about

a specific variant of the knapsack problem should be aware of such caveat.

This literature review starts with (GILMORE; GOMORY, 1961), when the

column generation approach was proposed. The main utility of the column genera-

tion approach was to avoid the existence of an exponential number of variables when

solving the tightest linear programming model of BPP and CSP. The relationship

between the UKP and the BPP/CSP was already briefly described at Section 1.1,

and its technical details will be described at Section 3.3. The UKP is not solved,

it is only said that “the auxiliary problem will be of the integer programming va-

riety, but of such a special type (the ‘knapsack’ type) that it is solvable by several

methods” (GILMORE; GOMORY, 1961, p. 2). Two years later, in (GILMORE;

GOMORY, 1963), the authors proposed a specific algorithm for the UKP, and ex-

periments solving BPP and CSP instances were executed. Some findings of this

experiments will be discussed in Sections 3.3 and 5.4.

In (GILMORE; GOMORY, 1966), the one-dimensional and two-dimensional

knapsack problems related to BPP and CSP were discussed. The author of this thesis

reinvented one algorithm from (GILMORE; GOMORY, 1966) and published a paper

about it, believing it was novel (BECKER; BURIOL, 2016), thus, he apologizes to

the academic and scientific community for such disregard. Further information about

the algorithms of (GILMORE; GOMORY, 1966) and (BECKER; BURIOL, 2016)

can be found in Section 4.2. A small improvement over the algorithm of (GILMORE;

GOMORY, 1966) was proposed in (GREENBERG; FELDMAN, 1980). The author

21

implemented the improved algorithm and its results can be seen in Section 5.2.

The papers (CABOT, 1970) and (SHAPIRO; WAGNER, 1967) were pub-

lished shortly after. Both papers are behind a paywall and we did not have access

to them. However, the algorithm from (CABOT, 1970) was compared indirectly

by (MARTELLO; TOTH, 1977) (that will be discussed in the followig pages). The

comparison showed that the algorithm from (CABOT, 1970) was dominated by the

algorithm proposed in (MARTELLO; TOTH, 1977). In (GREENBERG; FELD-

MAN, 1980), it is implied that the proposed algorithm is an improvement over the

algorithm from (SHAPIRO; WAGNER, 1967). However, the author of this thesis

believes that it would be interesting to implement and execute these algorithms on

recent datasets. In (MARTELLO; TOTH, 1977), empirical evidence was presented,

but they used datasets considered to be small according to current standards. They

also used an items distribution that we have some reservations about (see Sec-

tion 3.1.2). In (GREENBERG; FELDMAN, 1980), the claims are backed up by

theoretical reasoning, nevertheless empirical evidence shown in Section 5.2 revealed

that the improvement had some unpredicted behavior over some instance datasets.

In the 1970’s, there was a shift of attention from the DP approach to the B&B

approach. The first algorithms using this approach seem to be the Cabot’s enumer-

ation method (CABOT, 1970) and the MTU1 algorithm (MARTELLO; TOTH,

1977).

MTU1 was proposed in (MARTELLO; TOTH, 1977), with the name of KP1

at the time (we will refer to this paper as the ‘MTU1 paper’). Unfortunately, by

current standards, the instances used in the comparison were very small (which is

understandable considering the paper publishing date). The numbers of items used

were 25, 50 and 100, for instance; the weights (and profits) had values between

11 and 110 (in the case of the profits, 120); the knapsack capacity was chosen be-

tween 0.2
∑

i∈nwi and
∑

i∈nwi; the distributions used were uncorrelated and weakly

correlated (pi = wi +α, where α was randomly chosen from -10 and 10 following an

uniform distribution).

The comparison presented in (MARTELLO; TOTH, 1977) was between KP1

(MTU1), the dynamic programming algorithm called ‘periodic step-off’ from (GILMORE;

GOMORY, 1966), that we will call G.G. for short, and two B&B algorithms for the

0-1 KP (for which the UKP instances were transformed in 0-1 KP instances). The

best results were from MTU1, and the second best from the G.G. algorithm. How-

22

ever, the instances were too small to draw strong conclusions, and the relative differ-

ence between G.G. and MTU1 average times was not even one order of magnitude

apart. The G.G. algorithm was about four times slower than MTU1 in the instances

with n = 25; about two or three times slower in the instances with n = 50; and less

than two times slower in instances with n = 100. This trend could indicate that

for big instances, the G.G. algorithm would have better times than MTU1 (e.g. the

G.G. algorithm could have a costly initialization process but a better average-case

asymptotic complexity).

The experiments described above were used by the authors on another paper

to state that “The most efficient algorithms for the exact solution of the UKP [...]

consist of two main steps: Step 1. Sort the item types according to (5). Step

2. Find the optimal solution through branch-and-bound.” (MARTELLO; TOTH,

1990a). This comment established B&B as most efficient approach for the UKP.

The paper introduced the MTU2 algorithm (and the author will refer to it as the

‘MTU2 paper’).

The MTU2 algorithm was designed for large instances (up to 250,000 items).

Only sorting the items list was already computationally expensive for the period,

and the solutions often involved only the most efficient items. The MTU2 main

feature was grouping and sorting only the k = max(100, n
100

) most efficient items,

and calling MTU1 over them. The UKP instance consisting of this reduced items

list and the original knapsack capacity was called ‘tentative core problem’. If the

optimal solution of the tentative core problem was proven to be optimal for the

original problem, the algorithm stopped. Otherwise, the optimal solution of the

tentative core problem was used as a lower bound to remove dominated items. After

this, the k most efficient items outside the tentative core problem were added to it,

restarting the process.

The algorithms comparison included only MTU1 and MTU2. The datasets

used in the paper were large, but artificial and abundant in dominated items. A

more detailed analysis of one of the datasets and the experiment setting is available

in Section 3.1.2. The MTU2 was clearly the best algorithm for the chosen datasets.

MTU2 was adopted by the subsequent works as the baseline for testing new

algorithms for the UKP. We believe this happened due to many factors, such as: the

code of MTU2 was freely available; the algorithm was well and thoroughly explained

in Martello and Toth’s publications; it presented empirical evidence of dominating

23

other methods and, consequently, comparing with it would remove the necessity of

comparing to many other algorithms; the description of MTU2 stated that it was

designed for large instances. However, MTU2 does not completely dominate MTU1,

it simply was better for the chosen instances (that were chosen with the purpose

of evidencing this). Instances in which the MTU2 needs to repeat the process of

adding items to the tentative core problem many times can be more easily solved

by MTU1 than by MTU2. Unfortunately, the works that followed chose to compare

their algorithms only against MTU2.

EDUK (Efficient Dynamic programming for the Unbounded Knapsack prob-

lem), a novel DP algorithm for the UKP, was proposed in a conference paper (POIR-

RIEZ; ANDONOV, 1998) and then presented in a journal paper (ANDONOV;

POIRRIEZ; RAJOPADHYE, 2000). EDUK is very different from the previous

DP algorithms, and its main features are the application of threshold dominance

(proposed in the same paper), and the use of a sparse representation of the itera-

tion domain. This last feature was implemented by using lazy lists, mainly because

EDUK was implemented in the functional language OCaml. EDUK is strongly based

on the ideas first discussed in (ANDONOV; RAJOPADHYE, 1994).

In (ANDONOV; POIRRIEZ; RAJOPADHYE, 2000), the authors criticize

the item distributions used in previous papers, especially the uncorrelated distri-

bution. The author of this thesis agrees with this criticism, further discussion can

be found in Section 3.1. However, the solution given for this problem were new

datasets of artificial instances. The new datasets do not have simple dominated

items, or small efficient items, as the previous datasets, and one of them does not

even have any collective dominated items. The change in the choice of items distri-

butions benefits DP methods (and consequently EDUK), which are better suited for

such kind of instances. When the new datasets are used, the comparison between

MTU2 and EDUK shows that the average times of MTU2 are strongly dominated

by the ones of EDUK.

The weakly and strongly correlated distributions are also used in (ANDONOV;

POIRRIEZ; RAJOPADHYE, 2000), but varying the value of wmin. For those in-

stances, MTU2 dominates EDUK when the weight of the smallest item is close to

one, but MTU2 times grow much faster than EDUK times when wmin is increased.

Only one comparison is made against another DP algorithm. The DP algorithm used

seems to be a näıve DP algorithm with a preprocessing phase that removes simple

24

dominance. The comparison uses a completely different dataset of small instances,

in an effort to take into account real-world applications of the UKP, as the ones

provenient from solving BPP and CSP with column generation. The average run

times in this comparison are smaller than 0.1 seconds, and the difference between

the average times of EDUK and the naive DP are about 20% (with EDUK being

faster).

EDUK2 is an improvement of EDUK proposed in (POIRRIEZ; YANEV; AN-

DONOV, 2009). The main improvement brought up by EDUK2 is the hybridization

of EDUK with the B&B approach. A B&B preprocessing phase was added to EDUK.

If it solves the instance using less than a parametrized number of nodes, then EDUK

is never executed; otherwise, the bounds computed in the B&B phase are used to

reduce the number of items before EDUK execution and in intervals during its exe-

cution. The paper also proposes a new bound for a subset of the strongly correlated

instances (the SAW instances), which that is the tightest bound known for such in-

stances. Comparisons are performed with EDUK and MTU2. EDUK2 is clearly the

winner, but the average solution times of the methods are few seconds, or less than

a second. The experiments are then remade using the same distributions with larger

coefficients. MTU2 has integer overflow problems and is left out of the comparison.

Between EDUK and EDUK2, EDUK2 has the best results, as expected.

Both (ANDONOV; POIRRIEZ; RAJOPADHYE, 2000) and (POIRRIEZ;

YANEV; ANDONOV, 2009) cite (BABAYEV; GLOVER; RYAN, 1997), which

presents an algorithm for solving the UKP using the Consistency Approach (CA).

The algorithm described in (BABAYEV; GLOVER; RYAN, 1997) was tested against

MTU2 and had better times, but the instances used in the experiment make it diffi-

cult to have an idea of what would be its performance using more recent datasets (see

Section 3.1.1 for further discussion). The CA was already discussed in (GREEN-

BERG, 1986). However, the algorithm proposed in (BABAYEV; GLOVER; RYAN,

1997) considered performance as a priority, different from previous works that treated

applying CA to the UKP as an interesting theoretical problem. As the authors

of (ANDONOV; POIRRIEZ; RAJOPADHYE, 2000) and (POIRRIEZ; YANEV;

ANDONOV, 2009), we tried to obtain a copy of the code from the authors of (BABAYEV;

GLOVER; RYAN, 1997), but did not obtain success. The author of this thesis sug-

gests the implementation and comparison of this algorithm as a future work.

Before ending this literature review, we would like to discuss the chapters

25

about the UKP in the following textbooks: (HU, 1969) and (GARFINKEL; NEMHAUSER,

1972). Those textbooks are especially relevant because they are cited by many of

the papers presented at this section. The chapter about the UKP in (HU, 1969,

p. 311) has a good introduction about the problem, the simplest DP method for

solving it, and the basics of the periodicity.

The chapter about the UKP in (GARFINKEL; NEMHAUSER, 1972, p. 214)

has an extensive bibliographical review of the works about the UKP that predates

it (1972), which is very relevant as the name ‘UKP’ was only established some years

later. In Section 4.2.3, we discuss a limitation of the review proposed in that chapter.

26

3 THE DATASETS

In this section, we describe some datasets from the literature and propose

new datasets. The majority of the datasets described in this section is used in the

experiments described in Section 5.

3.1 Uncorrelated items distribution datasets

A instance with an uncorrelated items distribution is an UKP instance in

which the weight and the profit of its items are not correlated. The most com-

mon way of generating uncorrelated instances is to generate a value between wmin

and wmax for the weight, and a value between pmin and pmax for the profit, for each

of the n items of the instance, using a Pseudo-Random Number Generator (PRNG)

with a uniform distribution.

Figure 3.1: An uncorrelated instance generated with n = 100, wmin = 1, wmin =
1000, pmin = 1, and pmax = 1000.

●

●●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

0

250

500

750

1000

0 250 500 750 1000
weight

pr
of

it

Source: the author.

27

We have chosen to not use uncorrelated instances in our experiments. The

main reason behind this choice is that: the times used by an algorithm to solve

uncorrelated instances have little to do with the algorithm capability of solving a NP-

hard problem, and much to do with the polynomial algorithms or heuristics it uses

to remove simple and multiple dominated items. Two uncorrelated instance datasets

from the literature are analyzed in the rest of this section. Such analyses should be

sufficient to illustrate the reasoning behind our choice.

3.1.1 Babayev’s use of uncorrelated instances

A dataset of uncorrelated instances was used in experiments by (BABAYEV;

GLOVER; RYAN, 1997)1. The set of parameters used to generate this dataset

caused almost all instances to be trivial: almost all uncorrelated instances are solved

exactly by a greedy procedure that uses only the two most efficient items to fill the

knapsack2.

The reason for this is that the items weight interval is between [1, 1000], and

not between [10, 1000] (wmin is even smaller). An item with weight one has 1
1000

odds of being generated; and has 500
1000

= 1
2

odds of having p > 500; so for each item

generated there is 1
2000

(0.05%) odds of generating an item that multiple-dominates

all other items.

While the maximum efficiency of an item with weight one is one thousand,

the max efficiency of an item with weight two is five hundred ; three is 333 and so on.

An item i with wi = 1 and pi = 501 will multiple dominate an item j with wi = 2

and pi = 1000; and j is the most efficient item type with weight two that can exist.

Consequently, the item i will dominate any other item with weight greater than one.

With n = 5000, the odds of an instance having item i are already of 91.79%;

with n = 10000 they are of 99.32%. The dataset was composed of 108 instances; 18

instances for each n value of 5,000; 10,000; 50,000; 100,000; 150,000, and 9 instances

for the n values of 200,000 and 250,000. Therefore, for the vast majority of the

instances, the solution was probably composed of c copies of the same item i with

weight one, and p > 500.

1Section “Second group of experiments - Problems with Uncorrelated Random Coefficients” of
the original paper.

2This information is pointed out in the original paper.

28

The author of this thesis did not find the knapsack capacity c used in the

instances.

3.1.2 Martello’s use of uncorrelated instances

Datasets using an uncorrelated distribution were used in experiments in (MARTELLO;

TOTH, 1990a). The uncorrelated distribution and the set of parameters used to gen-

erate the datasets created large instances with only a small number of undominated

items.

One dataset had instances with twenty different values of n, from 50 to

250,000. The items weights were integer values randomly generated between 10

and 1000. This parameter choice alone already reduces the number of undominated

item types to 991. The authors acknowledge the existence of only 991 undominated

items in the paper first dataset and propose an additional dataset to show that

“the algorithm is not affected by the number of possible undominated item types.”.

The additional dataset have instances with all combinations of parameters between

quantity of items (103, 104 and 105); weight range ([10, 103], [10, 104], [10, 105]);

and profit value range ([1, 103], [1, 104], [1, 105]).

In the additional dataset, five out of nine instances also have only 991 un-

dominated items, they are all the instances with weight (or profit) range equal to

[10, 103] (or [1, 103]).

Also in the additional dataset, instances with ranges [10, n] have more than

99.5% probability3 of having at least one item i with wi ≤ 20 and pi >
pmax

2
. A solu-

tion s composed of two copies of i will have ps > pmax and ws ≤ 40. Consequently,

all items j with pj ≤ pmax and wj ≥ 40 will be multiple dominated by item i. Such

instances have only thirty undominated items (possibly less).

All instances of the additional dataset have more than 99.5% probability4 of

3Calculated the following way: 11
991 are the odds of generating an instance with weight smaller

than or equal to twenty (i.e. [10, 20]); 1
2 are the odds of one item having profit greater than half

of the maximum profit value (e.g. [501, 1000]); 11
991 ×

1
2 are the odds of generating an item with

both previous characteristics (small weight and above average profit), and 1 − (11
991 ×

1
2) are the

odds of generating an item that do not have both characteristics; (1 − (11
991 ×

1
2))1000 ≡ 0.00382

are the odds of generating 1000 items, and none of them having both characteristics. These odds
are about 0.38%, and therefore the odds of generating at least one item with both characteristics
among 1000 items is about 99.61%.

4Calculated the same way, but using 9
100 ×

1
2 as the chance of generating and item i with wi ≤

wmax

10 and pi >
pmax

2 .

29

having an item i with wi ≤ wmax

10
and pi >

pmax

2
, that would multiple dominate all

items j with wj > 2 × wmax

10
(i.e. at least 80% of the items are multiple dominated

by a single item in all instances).

3.2 PYAsUKP dataset

This section describes the instance datasets proposed in (POIRRIEZ; YANEV;

ANDONOV, 2009), and reused in the comparison presented in (BECKER; BURIOL,

2016). All those datasets were artificially generated with the purpose of being “hard

to solve”. The adjective ‘hard’ can mean a different thing for each one of the datasets.

Some item distributions used in these datasets were first proposed in (POIRRIEZ;

YANEV; ANDONOV, 2009), others were taken from the literature.

These datasets are similar to the ones used in (POIRRIEZ; YANEV; AN-

DONOV, 2009). The same tool was used to generate the datasets (PYAsUKP) and

the same parameters were used, unless otherwise stated. However, some instances

make use of random seed values that were not provided, so the exact instances used

in (POIRRIEZ; YANEV; ANDONOV, 2009) can be different. The instances are

exactly the same presented in (BECKER; BURIOL, 2016).

The same code that implements EDUK and EDUK2 also implements the

instance generator that generated the instances used in the experiments described

in this thesis. Some datasets generated by this tool have the item list ordered by

increasing weight, what gives a small advantage to EDUK that uses this ordering.

In the subsection 5.1.1 Known “hard” instances of (POIRRIEZ; YANEV;

ANDONOV, 2009) some sets of easy instances are used to allow comparison with

MTU2. However, MTU2 had integer overflow problems on harder instances. With

exception of the subset-sum dataset, all datasets have a similar harder set (Sub-

section 5.2.1 New hard UKP instances (POIRRIEZ; YANEV; ANDONOV, 2009)).

Thus, we considered in the runs only the harder ones.

The notation rand(x, y) means an integer between x and y (including both x

and y), generated by a PRNG with an uniform distribution. Also, when referring

to the parameters for the generation of an instance, wmin will be used to denote the

smallest weight that can appear in an instance, but without guarantee that an item

with this exact weight will exist in the generated instance. The meaning of wmax is

analogue. The syntax xn means x as a string concatenated with the value of n as a

30

string (e.g. for n = 5000 then 10n = 105000).

The dataset presented in this section comprises five smaller datasets. Each

of these datasets is characterized by a formula used to generate the items, and use

different combinations of parameters to generate the instances. Three parameters

are present in all instance generation procedures, they are: n (number of items), c

(knapsack capacity) and wmin (explained last paragraph). The arguments for such

parameters were given to the PYAsUKP binary by means of the following flags:

-wmin wmin -cap c -n n . In the description of each one of the five smaller datasets,

we will present any other PYAsUKP flags that were also needed to generate that

dataset.

We found some small discrepancies between the formulas presented in (POIR-

RIEZ; YANEV; ANDONOV, 2009) and the ones used in PYAsUKP code. We opted

for using the ones from PYAsUKP code, and they are presented below.

3.2.1 Subset-sum instances

Subset-sum instances are instances where pi = wi = rand(wmin, wmax). Subset-

sum instances generated with the same parameters presented in (POIRRIEZ; YANEV;

ANDONOV, 2009) can be solved in less than a centisecond by many of the algorithms

presented at this work. The implementation of the EDUK and EDUK2 algorithm

have imprecise time measuring, i.e. if the algorithm takes less than a second to solve

an instance, the run time returned by the program is sometimes zeroed. Because of

this, in this paper, we use a similar dataset, but with each parameter multiplied by

ten. This way, the instances will take more time to solve, and the effects of the im-

precise time measuring will be minimized. Therefore, 10 instances were generated

for each possible combination of: wmin ∈ {103, 5 × 103, 104, 5 × 104, 105}; wmax ∈

{5 × 105, 106} and n ∈ {103, 2 × 103, 5 × 103, 104}, totaling 400 instances. Each

instance had a random capacity in the range [5× 106; 107]. The PYAsUKP -form ss

-wmax wmax flags were used.

The rationale for the study of such instance distribution is not well understood

by the author of this thesis. If purely subset-sum knapsacks existed in practice, then

discarding all profit values and applying a subset-sum algorithm would be the best

way to solve them. Also, collective dominance is very common if wmin is small.

31

3.2.2 Instances with strong correlation between weight and profit

There are many formulae for generating items distribution that could be

considered strongly correlated item distributions. In (MARTELLO; TOTH, 1990a)

and (ANDONOV; POIRRIEZ; RAJOPADHYE, 2000), the formula used was wi =

rand(wmin, wmax) and pi = wi + α, for a given wmin and wmax and a constant α =

100. The already described Subset-Sum instances can also be considered strongly

correlated. However, in (POIRRIEZ; YANEV; ANDONOV, 2009), the formula

presented below was used, because “(CHUNG; HUNG; ROM, 1988) have shown

that solving this problem is difficult for B&B.”. In all strongly correlated instances

with α > 0, the smallest item is also the best item, a trait that often makes an

instance easier (the best item ends up multiple dominating many items).

Instances were generated using the following formula: wi = wmin + i − 1

and pi = wi +α, for a given wmin and α. Note that, except by the random capacity,

all instances with the same α, n, and wmin combination are equal. The formula does

not rely on random numbers. The PYAsUKP -form chung -step α flags were used.

Twenty instances were generated with each combination of n = 5× 103, α ∈

{5,−5} and wmin ∈ {104, 1.5×104, 5×104}. Twenty more instances were generated

with each combination of n = 104, α ∈ {5,−5} and wmin ∈ {104, 5×104, 11×104}, to-

talling 240 instances. Each instance had a random capacity in the range [20n; 100n].

3.2.3 Instances with postponed periodicity

Many algorithms benefit from the periodicity property, explained in Sec-

tion 1.3.2, by computing an upper bound on capacity y. For the instances created

using the formula below and “where c < 2 × wmax and n is large enough, the pe-

riodicity property does not help”(POIRRIEZ; YANEV; ANDONOV, 2009, p. 13).

The idea of such instances seems to be putting all algorithms on an equal footing

regarding which capacity they are solving an instance.

This family of instances is generated by the following method: n distinct

weights are generated with rand(wmin, wmax) and then sorted by increasing or-

der; p1 = w1 + rand(1, 500); and ∀i ∈ [2, n]. pi = pi−1 + rand(1, 125). The wmax

is computed as 10n. The PYAsUKP -form nsds2 -step 500 -wmax wmax flags were

used.

32

Two hundred instances were generated for each combination of n = {2 ×

104, 5× 104} and wmin = {2× 104, 5× 104}. Totalling 800 instances. Each instance

had a random capacity in the range [wmax; 2× 106].

3.2.4 Instances without collective dominance

Any items distribution in which the efficiency of the items increases with their

weight has no collective, multiple, or simple dominated instances. There is thresh-

old dominance in such instances, as bigger items will probably dominate solutions

composed of many copies of a smaller item. A distribution with this characteristics

was proposed “to prevent a DP based solver to benefit from the variable reduction

due to the collective dominance” (POIRRIEZ; YANEV; ANDONOV, 2009, p. 13),

with the intent of making comparison fairer.

This family of instances is generated in the following method: n distinct

weights are generated with rand(wmin, wmax) and then sorted by increasing or-

der; p1 = pmin + rand(0, 49); and ∀i ∈ [2, n]. pi = bwi × ((pi−1/wi−1) + 0.01)c +

rand(1, 10). The given values are: wmin = pmin = n and wmax = 10n. The PYA-

sUKP -form hi -pmin pmin -wmax wmax flags were used.

Five hundred instances were generated for each combination of n = wmin ∈

{5×103, 104, 2×104, 5×104}, totalling 2000 instances. Each instance had a random

capacity in the range [wmax; 1000n].

3.2.5 SAW instances

The SAW instances were proposed in (POIRRIEZ; YANEV; ANDONOV,

2009). They include the strongly correlated instances with α > 0, and as such

share the same trait pointed out in Section 3.2.2. The main point of the authors

of (POIRRIEZ; YANEV; ANDONOV, 2009) for including such instances in the

benchmark seems to be testing a new general upper bound proposed in the same

work. The new bound is the tightest known for the SAW instances, and is included

in EDUK2.

This family of instances is generated by the following method: generate n

random weights between wmin and wmax = 1n with the following property: ∀i ∈

33

[2, n]. wi mod w1 > 0 (w1 is the smallest weight); sort the weights by increasing

order; then p1 = w1 + α where α = rand(1, 5), and ∀i ∈ [2, n]. pi = rand(li, ui)

where li = max(pi−1, qi), ui = qi +mi, qi = p1×bwi/w1c, and mi = wi mod w1. The

PYAsUKP -form saw -step α -wmax wmax flags were used.

Two hundred instances were generated for each combination of wmin = 104, n ∈

{104, 5 × 104, 105}. Additional 500 instances were generated with wmin = 5 × 103

and n = 5× 104, totalling 1100 instances. Each instance had a random capacity in

the range [wmax; 10n].

3.2.6 PYAsUKP dataset and reduced PYAsUKP dataset

The dataset described in the last five subsections, totalling 4540 instances,

will be referred to in the rest of this work as the PYAsUKP dataset. In each of

these five smaller datasets, for the same combination of parameters, the number of

instances generated was always perfectly divisible by ten. The dataset composed of

one tenth of the PYAsUKP dataset, following the same distribution, and totalling

454 instances, will be referred to in the rest of this work as the reduced PYAsUKP

dataset.

3.3 CSP pricing subproblem dataset

The applied use of the UKP chosen by the author to be developed in this

work was the pricing subproblem generated by solving the continuous relaxation of

the set covering formulation for the classic Bin Packing Problem (BPP) and Cutting

Stock Problem (CSP) using the column generation approach. A summary about this

use was already given in Section 1.1, together with the explanation of its relevance.

In this section, sufficient technical detail will be given, allowing the reader to under-

stand how such instances of the UKP are generated and why it is necessary to solve

them. Our explanation will allude to the simplex method, but it is not necessary

to understand it to follow the explanation. For readers interested in mathematical

proofs, and in longer explanations of why the method works, in contrast to how

it works, we recommend reading Section 15.2 (pages 455 to 459) of (KELLERER;

PFERSCHY; PISINGER, 2004) and/or the seminal paper by (GILMORE; GO-

34

MORY, 1961).

As the BPP and the CSP are very similar, and instances of one problem

can be converted to instances of the other (similarly to 0-1 KP and BKP), we will

explain the relationship only in terms of the CSP.

An instance of the CSP problem consists of n distinct sheet sizes; each sheet

size i = {1, . . . , n} has an unidimensional size wi and a demand di > 0, that needs

to be satisfied; to satisfy the demand it is necessary to cut sheets of the desired size

from master rolls of size c, where c is bigger than any sheet size. It is assumed that

there is a sufficient amount of master rolls to satisfy all demands and, as such, the

instance does not define a number of master rolls available. The objective of the

problem is to find a way to fill all demands while using the smallest possible number

of master rolls. If one or more sheets are cut from a master roll, that master roll is

considered used, and remaining space is considered waste.

The previously mentioned Set Covering Formulation (SCF) for BPP and CSP

is a tight formulation proposed in (GILMORE; GOMORY, 1961). The SCF elim-

inated the problems of the classic formulation that was loose and had too many

symmetric solutions. However, as a consequence, the SCF needs to compute all cut-

ting patterns, i.e. all combinations of sheet sizes that can be cut from a single master

roll. As the cutting patterns are combinations, the amount of cutting patterns can

be superexponential in the number of sheet sizes. The exact number of cutting pat-

terns is affected by the sheet sizes. The best case happens when ∀i. wi >
c
2
, in this

case the number of cutting patterns is n. The worst case happens when all n sheet

sizes have almost the same size (let us call this size w∗), and n > k = c
w∗ , in this

case the number of cutting patterns is given by the binomial coefficient
(
n
k

)
(that

computes n!, which is superexponential).

The SCF follows:

minimize
m∑
j=1

xj (3.1)

subject to
m∑
j=1

aijxj ≥ di, ∀i ∈ {1, ..., n}, (3.2)

xj ∈ N0, ∀j ∈ {1, ...,m}. (3.3)

All cutting patterns j = {1, . . . ,m} can be represented by a matrix aij that

35

stores the amount of sheets of size i obtained when the cutting pattern j is used.

If we know all cutting patterns, a solution for the CSP can be represented by a

variable xj that stores the amount of master rolls which were cut using a specific

cutting pattern j.

It is important to remember that, in this work, our objective is not to solve

CSP but its continuous relaxation.

The column generation approach consists in avoiding the enumeration of all m

cutting patterns. The SCF relaxation is initialized with a small set of cutting pat-

terns that can be computed in polynomial time and in which each sheet size appears

at least in one of the patterns. This reduced problem is called the master problem.

It is solved by using the simplex method, as it is a linear programming problem.

A by-product of this solving process are the dual variables of the master problem

model. Those variables are used as input for a pricing subproblem. The solution of

this pricing subproblem is the cutting pattern that, if added to the master problem,

will give the greatest improvement to master problem optimal solution.

The pricing subproblem for the column generation of the BPP/CSP is the

UKP. An instance of the UKP created by the procedure described above will have

the following structure:

maximize
n∑

i=1

yixi (3.4)

subject to
n∑

i=1

wixi ≤ c, (3.5)

xi ∈ N0, ∀i ∈ {1, ..., n}. (3.6)

The formulation above is clearly equivalent to the formulation presented in

Section 1.2. The sheet sizes i = {1, . . . , n} are the items i = {1, . . . , n}. The size of

the sheets wi is the weight of the items wi. The value of the dual variable associated

to a specific sheet size yi is the profit value pi. The size of the master roll c is the

knapsack capacity c. The new cutting pattern described by xi is an optimal solution

for UKP xi (items inside the knapsack are equivalent to sheets cut from the master

roll).

The solving process alternates between solving the master problem and the

pricing subproblem, until all cutting patterns that could improve the solution of the

36

master problem are generated and added to the master problem. The profit values

of the pricing subproblem (dual variables) are real numbers close to one. If the

value of the optimal solution for the pricing subproblem is one or less, we have a

guarantee that the master problem cannot be improved by adding any new cutting

patterns to it. The computation could be stopped and the optimal solution for the

master problem is the exact optimal solution for the continuous relaxation of the

CSP instance. However, floating point arithmetic is imprecise. In the real-world,

an implementation of the pricing subproblem can return a value slight above one,

when it should have returned one or slight less than one. In this case, adding the

newly generated cutting pattern will not improve the master problem solution, and

will re-generate the same pricing subproblem with the same optimal solution value

incorrectly above one (infinite loop). Taking this into account, a better method for

stopping the computation is verifying if the current pricing subproblem is equal to

the one from last iteration, or if the solution of the pricing subproblem is equal to

the one from the last iteration.

The method described above can generate thousands of UKP instances for

one single instance of the CSP. For the same instance of the CSP, the number of

UKP instances generated, and their exact profit values, can vary based on the choice

of optimal solution made by the UKP solver (for the same pricing subproblem many

cutting patterns can be optimal, but only one among them is added to the master

problem). Consequently, such dataset is hard to describe (has a large and variable

number of instances with variable profit values). The best way found by the author

to ensure that the results are reproducible is making available the exact codes used

in the experiment, together with the list of CSP instances from the literature used

in the experiment. The codes are deterministic, and consequently will produce the

same results if executed many times over the same CSP instance.

A recent survey on BPP and CSP gathered the instances from the literature,

and also proposed new ones (DELORME; IORI; MARTELLO, 2014). The total

number of instances in all datasets presented in the survey is 5692. The author of this

thesis chose ten percent of those instances for the experiments presented at Section

5.4. This fraction of the instances was randomly selected among instances within

the same dataset or, in the larger datasets, the same generation parameters. The

address of a repository containing the data and code used in the above mentioned

experiments, and the instructions to compile the code, can be found in A.1.

37

(GILMORE; GOMORY, 1961; GILMORE; GOMORY, 1963; GILMORE;

GOMORY, 1966) present some optimizations to the master problem solver that we

have not implemented. The author of this thesis believes that these optimizations do

not considerably affect the structure of the pricing subproblem. Also, this work has

no intention of providing a state-of-the-art algorithm for solving the CSP continuous

relaxation, but only to study algorithms for the UKP in the context of a pricing

subproblem and independently.

A list of implementation details follows: cutting patterns that are not used

by the last solution for the master problem could be removed, however they can end

up being valuable again in the future and re-generated by the pricing subproblem, so

the author chose not to remove them; the classic polynomial method for creating the

initial set of cutting patterns was used: it consists in creating n patterns, each one

with only one sheet size that is cut as many times as possible, state-of-the-art solvers

often begin using cutting patterns generated by a more sophisticated heuristic; the

sheet sizes can be divided in two groups, half with higher demand, and half with

lower demand; and the pricing subproblem can be restricted to the high demand

group in some conditions – this also has not been done in our experiments.

Before ending this section, it is important to correct a false claim published

in (BECKER; BURIOL, 2016). The article stated that“The currently fastest known

solver for BPP/CSP[2, 3] uses a column generation technique (introduced in [5]) that

needs to solve an UKP instance as the pricing subproblem at each iteration of a col-

umn generation approach.”. The mentioned solver is the one proposed in (BELOV;

SCHEITHAUER, 2006), and it was found to be the fastest by the experiments con-

ducted in (DELORME; IORI; MARTELLO, 2014). It makes use of the column

generation approach, however the pricing subproblem is not exactly the UKP, as

consequence of the way the algorithm adds cuts to the continuous relaxation.

3.4 Bottom Right Ellipse Quadrant instances

The Bottom Right Ellipse Quadrant Instances (‘BREQ instances’, for short)

is a new UKP instance item distribution proposed by the author of this thesis5.

5The author is aware of the existence of the circle instances, which are described in
(KELLERER; PFERSCHY; PISINGER, 2004, p. 158). In this book, the formula presented for
the circle instances is pi = d

√
4R2 − (wi − 2R)2 – in which d is an arbitrary positive constant (2

3)
and R is wmax. This formula describes the upper left quadrant of an ellipse, which is different from

38

This instance distribution was created to illustrate that different item distributions

favors different solution approaches and, therefore, the choice of instances (or specif-

ically, their item distribution) defines what is considered the best algorithm. These

instances will be used in the experiments presented in Section 5.3.

Distributions that are easy to solve by the DP approach and hard to solve

by the B&B approach are common in the recent literature. This distribution has

the opposite characteristic, it is hard to solve by DP and easy to solve by B&B.

The BREQ distribution does not model any real-world instances that the author is

aware of.

The name given to this distribution is derived from the fact that, when plotted

on a graph, the items show the form of a quarter of ellipse (specifically, the bottom

right quadrant). All items with such distribution respect the following equation: pi =

pmax−
⌊√

p2max − (w2
i ×

pmax

wmax

2)
⌋
. In this context, wmax and pmax define the quadrant

top right corner, i.e. the possible maximum value for an item weight and profit, an

item with those exact values does not need to exist in a BREQ instance. The

rounding down in the formula can be dropped if the profit is a real number and not

an integer.

A natural consequence of this distribution shape is that the item efficiency

grows with the item weight. This leads to the inexistence of simple, multiple and

collective dominance6. In other words, for any solution s composed of two or more

items, and for any single item i, if ws ≤ wi then ps < pi.

On the other hand, threshold dominance is very common in this instance

type. Except for the best item, any item of any instance (of any distribution,

not only BREQ instances) will always be threshold dominated at some capacity. In

many UKP instances, however, the knapsack capacity is smaller than those threshold

values and therefore the threshold dominance is not applied or relevant. In BREQ

instances, also as a consequence of the efficiency growth, an optimal solution will

never include the item i two or more times if there is an item j such as that
√

2×wi ≤

wj ≤ 2× wi.

The solutions of BREQ instances will often contain the maximum number of

the BREQ formula that describes the bottom right quadrant of an ellipse. Consequently, circle
instances and BREQ instances have completely different properties. Also, in the referred book,
circle instances are solved as they were instances of the 0-1 KP (not of the UKP).

6If the profit is integer, some small items can display those three dominance relations because
of the profit precision loss caused by the rounding. The author of this thesis believe that this
exception is of little relevance and can be safely ignored for most purposes. If profit is an infinite
precision real, the statement has no exceptions.

39

Figure 3.2: A 128-16 BREQ Standard instance with n = 2048

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●
●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

● ●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●●●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●●

●

●

●

●

●● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●● ●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

0e+00

1e+06

2e+06

3e+06

4e+06

0e+00 1e+05 2e+05
weight

pr
of

it

Source: the author.

copies of the largest item (that is also the most profitable, and the most efficient)

allowed by the instance capacity. Any gap left will probably be filled with the

heaviest item that fits the gap. The process should be repeated until no item fits

the gap left (or there is no gap). The classical greedy heuristic procedure that follows

those steps would probably yield an optimal solution. However, this is not always

the case7.

The reasons that make BREQ instances favor B&B over DP can be under-

stood by examining the two approaches behaviour. The B&B approach begins by

creating a solution using some sort of greedy heuristic similar to the one described

in the last paragraph. This solution will be close to optimal, if not optimal, and pro-

7A counter-example follows: consider an instance with n = 4, c = 512, w1 = 384, p1 =
2774, w2 = 383, p2 = 2756, w3 = 129, p3 = 265, w4 = 32 and p4 = 17; the optimal solution
does not use the best item (w1, p1); the best solution when using the best item has a profit value
of 2842 = 2774 + 4× 17 (weight 512 = 384 + 4× 32) while the best solution when using the second
most efficient item has the optimal profit value of 3021 = 2756 + 265 (weight 512 = 383 + 129). In
this case, between two solutions with the same weight, the one with the best item is not the best
one. The weight and profit values of this example follow a BREQ distribution with wmax = 512
and pmax = 8192.

40

vides a good lower bound. With this lower bound, the search space will be greatly

reduced, making the algorithm end almost instantly. On the other side, the DP

approach is based on solving subproblems. Subproblems which will be solved for

increasing capacity values yielding optimal solutions to be reused (combined with

other items). However, solutions with small weight and/or solutions composed of

items with small weights are often less efficient than solutions composed of items

with a greater weight and, consequently, solutions for lesser capacities are unlikely

to be reused.

The objective is not to explore this distribution and its behaviour with

different parameters, we only intend to show that it favors the B&B approach

over the DP. The author of this thesis proposes a subset of the BREQ instances

which the only parameters are n and the seed for the PRNG, with the other in-

stance parameters being computed over the value of n. This instance distribu-

tion will be referred to as the BREQ 128-16 Standard: a BREQ distribution in

which c = 128× n, pmin = wmin = 1, wmax = c and pmax = 16× wmax. The PRNG

seed is used to create n unique random weight values between wmin and wmax (the

random number distribution is uniform); the profit values for each weight are com-

puted using the first formula presented at this section (and the wmax and pmax values

for that n).

The reasoning for the choices made when defining the BREQ 128-16 Standard

follows. There was no reason to restrict the wmin to wmax interval to be smaller than c

(there are c distinct valid weight values). The constant 128 used to compute the

capacity c for a n value was chosen as the first power of two higher than a hundred.

Consequently, less than 1% of all possible items will appear in an instance, making

instances generated with different seeds significantly different. The pmin to pmax

value interval was chosen to be sixteen times bigger than the wmin to wmax interval

to alleviate the effects of rounding the profit value to an integer value (it would not

need to be done if the profit was a floating point number with reasonable precision).

The efficiency of the items in a BREQ distribution will vary between zero and pmax

wmax
,

so if pmax = wmin the efficiency would vary between zero and one, giving more

relevance to the rounding. Finally, for the biggest n value that we were interested

in testing (220), the highest possible value of an item profit is 231 = 220 × 128× 16,

what keeps the values smaller than 32 bits.

The BREQ 128-16 Standard allows us to create a simple benchmark dataset,

41

in which we only need to worry about varying n and the seed. We propose a bench-

mark with a hundred instances, with all combinations of n = 211 = 2048, 212, ..., 220 ≈

106 (ten n values), and ten different seed values. We will refer to it as the BREQ

128-16 Standard Benchmark (or BREQ 128-16 SB).

3.5 Other distributions

While the artificial item distributions presented in (POIRRIEZ; YANEV;

ANDONOV, 2009) are used in the experiments of this work, some other artifi-

cial distributions are ignored. The reasons for not using the uncorrelated distri-

bution were extensively discussed in this chapter. However, no reason was pre-

sented for not using the weakly correlated distribution, presented in (MARTELLO;

TOTH, 1977), (MARTELLO; TOTH, 1990a), (BABAYEV; GLOVER; RYAN, 1997)

and (ANDONOV; POIRRIEZ; RAJOPADHYE, 2000), or the realistic random dis-

tribution, presented in (ANDONOV; POIRRIEZ; RAJOPADHYE, 2000).

The main reason for using the artificial distributions described in (POIR-

RIEZ; YANEV; ANDONOV, 2009) was that questions about the performance of

the algorithms in the most recent benchmark dataset for the UKP would most cer-

tainly arise. Moreover, these experiments answer these questions preemptively. Not

using the dataset would raise unfounded suspicion about this choice. The BREQ

instances are a special case, as their purpose is exactly showing that it is easy to

design a items distribution that favors one approach over another.

42

4 APPROACHES AND ALGORITHMS

In this chapter, some approaches and algorithms for solving the UKP will be

discussed. The objectives of this chapter are: to present relevant details that did

not fit in the literature review; to further develop what was said in the last section,

about some approaches favoring some item distributions; to give readers some base

to understand the results of the experiments (Section 5); and to explain the concept

of solution dominance, mentioned in Section 1.3.1. The objective is not to present

an exhaustive list of approaches and algorithms.

4.1 Conversion to other KP variants

In Section 1, it was pointed out that the UKP can be seen as a special case

of BKP where, for each item type i, there are at least b c
wi
c copies of that item type

available in an instance. Consequently, it is possible to convert any instance of the

UKP in an instance of the BKP, and to solve it with an algorithm designed to solve

the BKP. In this work, this approach will not be used or thoroughly studied. The

rationale for this choice is that such approach cannot yield competitive performance

results, for reasons that are explained next paragraph.

An algorithm designed to solve the BKP needs a mechanism to prevent solu-

tions from exceeding the available amount of each item. An algorithm designed for

the UKP does not have this overhead. An algorithm designed for the UKP needs

to keep track of the items used in the solutions, but does not need to frequently

access this information (as to check if it can add an additional copy of one item to a

solution). Also, an algorithm designed for the UKP can fully exploit the properties

described in Section 1.3.

In (MARTELLO; TOTH, 1977), experiments converting instances of the

UKP into instances of the BKP were realized. The experiments yielded the expected

result (i.e. the BKP algorithms performed poorly in comparison to UKP-specific al-

gorithms). The conclusions derived from the experiment are fragile, because only

small instances were used. However, based on the rationale exposed in the last

paragraph, the author of this thesis believes it is safe to assume that, for the same

instance of the UKP, and the same solving approach (DP, B&B, . . .), a state-of-

the-art algorithm for the UKP will outperform a state-of-the-art algorithm for the

43

BKP.

4.2 Dynamic Programming

The Dynamic Programming (DP) approach is the oldest one found in the

literature review (Section 2). Its worst-case time complexity is O(nc) (pseudo-

polynomial). The DP approach can be considered stable, or predictable, compared

to other approaches. Stable in the sense that its run time variation when solving

many instances with the same characteristics (i.e. n, c and items distribution) can

be lower than other approaches. Predictable in the sense that it is easier to predict

a reasonable time interval for solving an instance based in the characteristics just

mentioned, than it is with other approaches.

The DP worst-case space complexity is O(n+ c), which can be considerably

greater than other approaches that do not allocate memory linear to c. However,

the space needed can be reduced by many optimizations. Some of these optimiza-

tions are: using a periodicity bound as explained in Section 1.3.2; using modular

arithmetic to reduce c to wmax in at least one array, see (GILMORE; GOMORY,

1966, p. 17); using binary heaps instead of arrays, as the heap can use less memory

than an array of c positions if wmin is sufficiently big.

The DP approach often gives an optimal solution for each capacity smaller

than c. However, some space optimizations can remove such feature.

4.2.1 The näıve algorithm

In this thesis, the author sometimes mentions to the näıve (or basic) DP

algorithm for the UKP. The naive algorithm is an algorithm specifically designed

for the UKP, but that applies no optimizations. It is the most straightforward

implementation of the recursion that describes the problem. This algorithm will

always execute about n × c operations (which is the worst case performance for

other DP algorithms). It does not implement any dominance relation1, does not use

periodicity or prunes symmetric solutions.

The pseudo-code of the naive DP algorithm can be seen in Algorithm 1. The

1The only exception is that when two or more distinct solutions have the same weight only one
of them is kept.

44

Algorithm 1 Naive DP algorithm

1: procedure NaiveDP(n, c, w, p, wmin)
2: g ← array of c+ 1 positions, range [0, wmin) initialized to 0
3: d← array of c+ 1 positions, range [0, wmin) initialized to 0
4: for y ← wmin, c do
5: g[y]← 0
6: for i← 1, n do
7: if wi > y then
8: end inner loop
9: end if

10: if g[y − wi] + pi > g[y] then
11: g[y]← g[y − wi] + pi
12: d[y]← i
13: end if
14: end for
15: end for
16: return g[c]
17: end procedure

notation is the one introduced in Section 1.2. The letter y will be used in this and

other algorithms to denote an arbitrary capacity value. This implementation of the

algorithm considers that the items i ∈ {1, ..., n} are ordered by non-decreasing

weight (i.e. w1 ≤ w2 ≤ ... ≤ wn). The arrays indices will always be base zero, and

the items list indices base one. The procedure to recover the items that constitute

the optimal solution will not be given for this and the remaining DP algorithms

because, in general, it is the same procedure explained in UKP5 (see Section 4.2.4).

4.2.2 The algorithm of Garfinkel and Nemhauser

The algorithm given in (GARFINKEL; NEMHAUSER, 1972, p. 221) can be

seen as variation of the naive DP algorithm (see Algorithm 2). While it does not

seem to be much of an improvement, the use of the i ≤ d[y−wi] test eliminates so-

lution symmetry. This test, together with the items being ordered by non-increasing

efficiency (p1
w1
≥ p2

w2
≥ ... ≥ pn

wn
), can considerably improve the running times. The

condition can also be seen as: add a new item to a pre-existing solution if, and only

if, the new item is the most efficient item already in the solution, or an item even

more efficient.

45

Algorithm 2 Garfinkel’s DP algorithm

1: procedure GarDP(n, c, w, p, wmin)
2: g ← array of c+ 1 positions, range [0, wmin) initialized to 0
3: d← array of c+ 1 positions, range [0, wmin) initialized to n
4: for y ← wmin, c do
5: g[y]← 0
6: for i← 1, n do
7: if wi ≤ y and i ≤ d[y − wi] and g[y − wi] + pi > g[y] then
8: g[y]← g[y − wi] + pi
9: d[y]← i

10: end if
11: end for
12: end for
13: return g[c]
14: end procedure

4.2.3 The step-off algorithms of Gilmore and Gomory

Four DP algorithms for the UKP are described in (GILMORE; GOMORY,

1966, p. 14 to 17). With the exception of the first algorithm, each one of the

three remaining algorithms is an improvement of the previous one. The second and

third algorithms (respectively, the ‘ordered step-off’ and the ‘terminating step-off’)

are very similar to the UKP5. The second algorithm is basically UKP5 without a

periodicity check, and the third algorithm is an UKP5 with a different periodicity

check. To avoid repetition, we will ignore small implementation differences, and

present only UKP5, in the next section. The first and the fourth DP algorithms

can be ignored because the first is dominated by the second/third versions; and the

fourth algorithm reduce memory usage at cost of a little extra processing (not an

interesting trade-off in the context of this work).

As already mentioned, the author of this thesis proposed UKP5 in (BECKER;

BURIOL, 2016), believing it was novel. The UKP5 algorithm was thought as an im-

provement of the Garfinkel’s DP Algorithm presented in last section. The (GILMORE;

GOMORY, 1966) paper was not checked at time because it was cited in (GARFINKEL;

NEMHAUSER, 1972), and we did not expect the book to provide a worsened ver-

sion of the algorithm on purpose. In Section 6.4 of that book, a DP algorithm was

presented as the last of a series of improvements over the naive DP algorithm. How-

ever, if we check the chapter notes, there is the comment: “6.4: The recursion of

this section is based on Gilmore and Gomory (1966). See Exercise 21 for a variation

46

that will be more efficient for some data sets.”. The algorithm presented in Section

6.4 was a version of the algorithm in (GILMORE; GOMORY, 1966) with many of

its relevant optimizations removed, and in exercise 21 it is expected of the reader to

recreate one of these optimizations based on hints given at the exercise. The author

of this thesis believes that this fact went unnoticed by previous authors that cited

the book. The book did not provide the answers for the exercises.

4.2.4 UKP5

UKP5 was inspired by the DP algorithm described by Garfinkel (GARFINKEL;

NEMHAUSER, 1972, p. 221). The name “UKP5” is due to five improvements ap-

plied over that algorithm:

1. Symmetry pruning: symmetric solutions are pruned in a more efficient

fashion than in (GARFINKEL; NEMHAUSER, 1972);

2. Sparsity: not every position of the optimal solutions value array has to be

computed;

3. Dominated solutions pruning: dominated solutions are pruned;

4. Time/memory trade-off : the test wi ≤ y from the algorithm in (GARFINKEL;

NEMHAUSER, 1972) was removed, the trade-off was using O(wmax) memory;

5. Periodicity: the periodicity check suggested in (GARFINKEL; NEMHAUSER,

1972), but not implemented there, was adapted and implemented.

As already pointed out, UKP5 is very similar to the ordered step-off algorithm

from (GILMORE; GOMORY, 1966). Aside for minor adaptations, this section is

the same as the one presented in (BECKER; BURIOL, 2016), written when the

author was not yet aware of those similarities. The discussion about the similarities

between UKP5 and the DP algorithms from Gilmore and Gomory is restricted to

Section 4.2.3.

A pseudocode of UKP5 is presented in Algorithm 3. We have two main data

structures, the arrays g and d, both with dimension c+ wmax − wmin. g is a sparse

array where we store solutions profit. If g[y] > 0 then there exists a non-empty

solution s with ws = y and ps = g[y]. The d array stores the index of the last

item used on a solution. If g[y] > 0 ∧ d[y] = i then the solution s with ws = y

and ps = g[y] has at least one copy of item i. This array makes it trivial to recover

47

Algorithm 3 UKP5 – Computation of opt

1: procedure UKP5(n, c, w, p, wmin, wmax)
2: g ← array of c+ wmax − wmin positions each one initialized with 0
3: d← array of c+ wmax − wmin positions, not initialized
4: for i← 1, n do . Stores one-item solutions
5: if g[wi] < pi then
6: g[wi]← pi
7: d[wi]← i
8: end if
9: end for

10: opt← 0
11: for y ← wmin, c− wmin do . Can end earlier because of periodicity check
12: if g[y] ≤ opt then . Handles sparsity and prunes dominated solutions
13: continue . Ends current iteration and begins the next
14: end if
15: opt← g[y]
16: for i = 1, d[y] do . Creates new solutions (never symmetric)
17: if g[y + wi] < g[y] + pi then
18: g[y + wi]← g[y] + pi
19: d[y + wi]← i
20: end if
21: end for
22: end for
23: for y ← c− wmin + 1, c do
24: if g[y] > opt then
25: opt← g[y]
26: end if
27: end for
28: return opt
29: end procedure

the optimal solution, but its main use is to prune solution symmetry.

Our first loop (lines 4 to 9) simply stores all single item solutions in the

arrays g and d. For a moment, let us ignore lines 12 to 14, and replace d[y] (at

line 16) by n. With these changes, the second loop (between lines 11 and 22)

iterates g and when it finds a stored solution (g[y] > 0) it tests n new solutions

(the combinations of the current solution with every item). The new solutions are

stored at g and d, replacing solutions already stored if the new solution has the same

weight but a greater profit value.

When we add the lines 12 to 14 to the algorithm, it stops creating new

solutions from dominated solutions. If a solution s with a smaller weight (ws < y)

has a bigger profit (ps = opt > pt, where wt = y ∧ pt = g[y]), then s dominates t.

If a solution s dominates t then, for any item i, the s ∩ {i} solution will dominate

48

the t ∩ {i} solution. This way, new solutions created from t are guaranteed to be

dominated by the solutions created from s. A whole superset of t can be discarded

without loss to solution optimality.

The change from n to d[y] is based on the algorithm from (GARFINKEL;

NEMHAUSER, 1972) and it prunes symmetric solutions. In the naive DP algorithm,

if the item multiset {1, 2, 3} is a valid solution, then every permutation of it is reached

in different ways, wasting processing time. To avoid computing symmetric solutions,

we enforce non-increasing order of the items index. Any item inserted in a solution s

has an index that is equal to or lower than the index of the last item inserted on s.

This way, solutions like {1, 2, 3} or {2, 1, 3} cannot be reached. However, this is not

a problem because these solutions are equivalent to {3, 2, 1}, and this solution can

be reached.

Figure 4.1: The solutions {1, 2} and {2, 1} (with w1 = 3 and w2 = 4) are equivalent.
The solution {3, 2, 1} can be also constructed in many ways (with w1 = 4, w2 = 5
and w3 = 6). The figure shows the solution generation with and without symmetry
pruning.

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

When the two changes are combined and the items are sorted by non-increasing

efficiency, UKP5 gains in performance. The UKP5 iterates the item list only when

it finds a non-dominated solution, i.e, g[y] > opt (line 12). Undominated solutions

are more efficient (larger ratio of profit by weight) than the skipped dominated solu-

tions. Therefore, the UKP5 inner loop (lines 16 to 21) often iterates up to a low d[y]

value. Experimental results show that, after some threshold capacity, the UKP5

inner loop consistently iterates over only for a small fraction of the item list.

The algorithm ends with the optimal solution stored in opt. The solution

assembly phase is not described in Algorithm 3, but it is similar to the one described

in (GARFINKEL; NEMHAUSER, 1972, p. 221, Steps 6-8), and can be used for the

already described Algorithms 1 and 2. Let yopt be a capacity where g[yopt] = opt.

We add a copy of item i = d[yopt] to the solution, then we add a copy of item j =

d[yopt−wi], and so on, until d[0] is reached. This phase has a O(c) time complexity,

49

as a solution can be composed of c copies of an item i with wi = 1.

4.2.4.1 A note about UKP5 performance

In the computational results section we will show that UKP5 outperforms

PYAsUKP (EDUK2 original implementation) by a considerable amount of time.

We grant the majority of the algorithm performance to the ability of applying spar-

sity, solution dominance and symmetry pruning with almost no overhead. At each

iteration of capacity y, sparsity and solution dominance are integrated in a single

constant time test (line 12). This test, when combined with an item list sorted

by non-increasing efficiency, also helps to avoid propagating big index values for

the next positions of d, benefiting the performance of the solution generation with

symmetry pruning (the use of d[y] on line 16).

4.2.4.2 Weak solution dominance

In this section we will give a more detailed explanation of the workings of

the previously cited weak solution dominance. We use the notation minix(s) to

refer to the lowest index among the items that compose the solution s. The nota-

tion maxix(s) has analogue meaning.

When a solution t is pruned because s dominates t (lines 12 to 14), some solu-

tions u, where t ⊂ u, are not generated. If s dominates t, and t ⊂ u, and maxix(u−

t) ≤ minix(t), then u is not generated by UKP5. For example, if {3, 2} is dominated,

then {3, 2, 2} and {3, 2, 1} will never be generated by UKP5, but {3, 2, 3} or {3, 2, 5}

could yet be generated (note that, in reality, it is the equivalent [3, 3, 2] and [5, 3, 2]

that could yet be generated). Ideally, any u where t ⊂ u should not be generated as

it will be dominated by a solution u′ where s ⊂ u′ anyway. It is interesting to note

that this happens eventually, as any t ∩ {i} where i > minix(t) will be dominated

by s ∩ {i} (or by a solution that dominates s ∩ {i}), and at some point no solution

that is a superset of t will be generated anymore.

4.2.4.3 Implementation details

With the purpose of making the initial explanation simpler, we have omitted

some steps that are relevant to the algorithm performance, but not essential for

assessing its correctness. A complete overview of the omitted steps is presented in

50

this section.

All the items are sorted by non-increasing efficiency and, among items with

the same efficiency, by increasing weight. This speeds up the algorithm but does

not affect its correctness.

A periodicity bound is computed as in (GARFINKEL; NEMHAUSER, 1972,

p. 223) and used to reduce the c value. We further proposed an UKP5-specific

periodicity check that was successfully applied. This periodicity check is not used

to reduce the c capacity before starting UKP5, as y∗. The periodicity check is a

stopping condition inside UKP5 main loop (lines 11 to 22). Let y be the value of the

variable y in line 11, and let y′ be the biggest capacity where g[y′] 6= 0 ∧ d[y′] > 1.

If at some moment y > y′ then we can stop the computation and fill the remaining

capacity with copies of the first item (that has index 1). This periodicity check works

only if the first item is the best item. If this assumption is false, then the described

condition will never happen, and the algorithm will iterate until y = c − wmin as

usual. The algorithm correctness is not affected.

There is an else if test at line 20. If g[y + wi] = g[y] + pi and i < d[y + wi]

then d[y]← i. This may seem unnecessary, as appears to be an optimization of a rare

case, where two distinct item multisets have the same weight and profit. Nonetheless,

without this test, UKP5 was about 1800 (one thousand and eight hundreds) times

slower on some subset-sum instance datasets.

4.2.5 EDUK

The EDUK (Efficient Dynamic programming for the Unbounded Knapsack

problem) is a complex DP algorithm for the UKP, first mentioned in (POIRRIEZ;

ANDONOV, 1998). However, only in (ANDONOV; POIRRIEZ; RAJOPADHYE,

2000) the algorithm essentials were described for the first time. The author of this

thesis, however, is partial to the algorithm description to be found in (KELLERER;

PFERSCHY; PISINGER, 2004, p. 223). Some basic ideas used by EDUK were

already exposed by a simple and functional-oriented algorithm proposed in (AN-

DONOV; RAJOPADHYE, 1994)2. Before EDUK2 was proposed, EDUK was con-

2The author of this thesis tried to implement this simple and functional-oriented algorithm
in Haskell and in C++. Both codes had a very poor performance and were not even consid-
ered for the experiments. The author of this thesis admits that the reason of the poor per-
formance could be the poor quality of his implementations. The C++ code can be accessed

51

sidered by some the state-of-the-art DP algorithm for the UKP. An example is the

comment in (KELLERER; PFERSCHY; PISINGER, 2004, p.): “[...] EDUK [...]

seems to be the most efficient dynamic programming based method available at the

moment.”.

A version of the original code of the EDUK and EDUK2 algorithms is avail-

able here3. Unfortunately, this version is not stable and has some bugs. Conse-

quently, the author of this thesis recommends the use of the version available here4.

We were given access to the latter version by Vincent Poirriez in January 11th, 2016.

It is important to admit that we do not have full understanding of the EDUK

algorithm inner workings. The original code is written in OCaml (a functional

language), and we had difficulties in our attempts to analyze it. Furthermore, EDUK

is a more complex algorithm than any other algorithm described in this chapter

(with the obvious exception of EDUK2). A basic overview of the EDUK algorithm

essentials is given here, in which we recommend the sources mentioned in the first

paragraph of this section for the reader who is interested in a deeper analysis.

The authors of EDUK cite threshold dominance (that generalizes collective,

multiple and simple dominances), a sparse representation of the iteration domain and

the periodicity property to explain the efficiency of the algorithm. In (KELLERER;

PFERSCHY; PISINGER, 2004, p. 223 to 227), the reasons given are “the detection

of various notions of dominance not only as a preprocessing step but also during

the dynamic programming computation” and “the test for collective dominance of

an item type by a previously computed entry of the dynamic programming array”.

The EDUK algorithm sorts the item list in increasing weight order, differently from

the majority of the algorithms for the UKP that use the non-increasing efficiency

order.

The sparse representation of the iteration domain is achieved by using lazy

lists (a functional programming concept) instead of an array of size c (or more) to

store the solutions. Consequently, the memory use is less dependent of c and wmax

than other DP algorithms. In (ANDONOV; RAJOPADHYE, 1994), where the

sparse representation idea was first presented, the solutions are represented as pairs

in <https://github.com/henriquebecker91/masters/blob/663324e4f071b5bca22ab5301e29273b9db
88a41/codes/cpp/lib/eduk.hpp>, and the Haskell code can be accessed in <https://github.com/h
enriquebecker91/masters/blob/f5bbabf47d6852816615315c8839d3f74013af5f/codes/hs/ukp.hs>.

3PYAsUKP official site: <http://download.gna.org/pyasukp/pyasukpsrc.html>
4The repository of this master’s thesis: <https://github.com/henriquebecker91/masters/blob

/f5bbabf47d6852816615315c8839d3f74013af5f/codes/ocaml/pyasukp mail.tgz>.

https://github.com/henriquebecker91/masters/blob/663324e4f071b5bca22ab5301e29273b9db88a41/codes/cpp/lib/eduk.hpp
https://github.com/henriquebecker91/masters/blob/663324e4f071b5bca22ab5301e29273b9db88a41/codes/cpp/lib/eduk.hpp
https://github.com/henriquebecker91/masters/blob/f5bbabf47d6852816615315c8839d3f74013af5f/codes/hs/ukp.hs
https://github.com/henriquebecker91/masters/blob/f5bbabf47d6852816615315c8839d3f74013af5f/codes/hs/ukp.hs
http://download.gna.org/pyasukp/pyasukpsrc.html
https://github.com/henriquebecker91/masters/blob/f5bbabf47d6852816615315c8839d3f74013af5f/codes/ocaml/pyasukp_mail.tgz
https://github.com/henriquebecker91/masters/blob/f5bbabf47d6852816615315c8839d3f74013af5f/codes/ocaml/pyasukp_mail.tgz

52

of weight and profit value, as the solution was a pseudo-item (i.e. a set of items

that can be treated as it was a single item). For example, a solution s consisting

of the items i and j is represented by the following pair: (wi + wj, pi + pj). Adding

an item to a solution is equivalent to adding the weight and profit values of a pair

to another. For some instances, especially the ones with big wmin and c values, this

sparse representation allows for saving time and memory. In UKP5, for example,

the algorithm allocates memory, initializes, and iterates over many capacities y that

are accessed and then skipped immediately because a solution s with ws = y does

not exist. In EDUK, such skipped capacities are never explicitly enumerated to

begin with, and no memory is allocated for them, or time used iterating over them.

A similar effect could be obtained in UKP5 by using a std::map instead of an

std::vector for the data structures g and d .

Both the item list and the knapsack capacities are broken down and evaluated

in slices. Each slice of the item list, beginning with the ones with smallest items,

is then processed. The items inside the current slice are combined with each other

to generate solutions with weight up to the slice wmax. The solutions are used to

test collective dominance between the items inside the slice and in the next slices. A

global list of the undominated items is kept, and after an item is dominated, it is not

used again. After evaluating all slices of the item list, and if c > wmax, EDUK begins

to evaluate slices of the capacity values, using the items that were not eliminated by

the collective dominance tests. After each one of those capacity slices, the EDUK

algorithm tests the items for threshold dominance, potentially removing some of

them from the global list of undominated items. If this list ends up consisting only

of the best item (that can never be threshold dominated), then the EDUK stops and

fills the remaining capacity with copies of the best item. Otherwise, EDUK solves

the UKP up until capacity c.

4.3 Branch-and-Bound

The B&B approach was established in the seventies as the most efficient

approach for solving the UKP, what is greatly a consequence of the datasets, items

distributions, and generation parameters used at the time. The author of this thesis

believes that this claim was first made in (MARTELLO; TOTH, 1990a), and then

other papers as (BABAYEV; GLOVER; RYAN, 1997) began repeating it. The fact

53

that only the code for MTU1 and MTU2 was readily available also did not help the

situation, as some began to claim that MTU2 was the de facto standard algorithm

for the UKP, see (POIRRIEZ; ANDONOV, 1998).

The author does not intend to give a complete introduction to the B&B

approach, but he believes a quick overview is in order. The B&B approach can

be seen as an improvement of the brute-force approach. The brute-force approach

consists in exhaustively checking all solutions in the search space. A B&B algorithm

will keep track of the best solution found so far. In the case of a maximization

problem like the UKP, this solution is called a lower bound on the optimal solution

(in the sense that ‘the optimal solution is at least this good’). A B&B algorithm will

divide the search space in two or more (often exclusive) subdivisions. In the case of

the UKP, an example would be ‘all solutions with 4 or less copies of item i’ and ‘all

solutions with 5 or more copies of item i’. An optimistic guess for the best value to

be found in each subdivision of the search space is computed: these are called upper

bounds. An upper bound is a value that is guaranteed to be equal to or greater than

the value of the best solution to be found in the correspondent subdivision of the

search space. The subdivisions are recursively and systematically divided in smaller

subdivisions. If the upper bound of any subdivision is smaller than or equal to the

global lower bound, then the solutions of that subdivision of the search space do not

need to be examined (i.e. the best solution known at the moment is already equal

to or better than any solution that can be found in that subdivision of the search

space). If, by the use of the lower and upper bounds, the B&B algorithm obtains

proof that no solution in all the search space can be better than the best solution

found so far, the B&B algorithm stops.

Regarding the explanation above, one thing should be clear: the quality of a

B&B algorithm is directly correlated with the quality of its bounds. Also, the time

taken to solve an instance will vary based on how much of the search space can be

safely skipped/ignored by the use of the bounds. The time taken by a B&B algorithm

over an instance of the UKP can be hard to predict, and is not very dependent on

the magnitude of n and c, but more dependent on the item distribution. In the

worst case, a B&B algorithm cannot eliminate a significant portion of the search

space by the use of bounds and then, consequently, it needs to examine all search

space. In the case of the UKP, the search space is clearly combinatorial (all possible

items combinations that fit the knapsack), so the worst-case of an B&B approach

54

for the UKP can be exponential.

The memory use of a B&B algorithm can follow its worst case and be ex-

ponential too, as for many times a tree is used to keep the enumeration of the

subdivisions. However, some optimized algorithms can avoid enumerating the tree

explicitly, and keep a constant memory use linear in n (even in the worst case).

The B&B algorithms for the UKP often are not affected by the magnitude of c,

however they can be affect by how close c is from a capacity that can be entirely

filled by copies of the best item. The B&B algorithms for the UKP will often solve

the problem instantly if c mod wb is small, because the greedy heuristic lower bound

will probably be optimal, and will exclude the remaining search space easily.

The fact that this approach is not significantly affected by huge values of n

and c, and more by the distribution used, makes it clear why it was considered the

best approach in the seventies. The datasets used back then had large n and c values,

and items distributions that made easy to exclude large portions of the search space

with the greedy lower bound solution (the uncorrelated distribution is the perfect

example).

4.3.1 MTU1

The MTU1 algorithm is a B&B algorithm for the UKP that avoids the explicit

unfolding of the typical B&B tree (MARTELLO; TOTH, 1977). The implicit tree

used by MTU1 is described in what follows, as this makes the algorithm easier to

visualize and understand. The MTU1 sorts the items in non-increasing efficiency

order before beginning. Such ordering is needed to assure the correctness of the

bounds and, consequently, of the algorithm itself. In the algorithms description, it

is to be assumed that the items are ordered in the mentioned order

The implicit enumeration tree of MTU1 has n + 1 levels. The root node

represents all the search space, for convenience the author will consider it level zero.

The first level of the tree contains b c
w1
c + 1 nodes. Each of those nodes represents

a subdivision of the search space where the solution has a specific number of copies

of the first item (from zero to b c
w1
c copies). The nodes of the second level subdivide

the search space by the amount of copies of the second item in a solution, and so on

(until the last item, in level n). From the second level on, the levels have a variable

number of nodes. There are b c
w2
c+ 1 nodes in the second level that are children of

55

the first level node that represents the solutions with zero copies of the first item,

this because as all of the knapsack capacity c is empty. Consequently, there are

only b c mod w1

w2
c+ 1 nodes in the second level that are children of the first level node

that represents the solutions with b c
w1
c copies of the first item.

The MTU1 algorithm can be seen as the application of a modified depth-

first search over the implicit tree described above. In each level, the first node to

be visited will always be the one representing the use of the greatest amount of

copies of the current level item type, and the last node to be visited will be the one

representing zero copies. This visiting order, together with the items non-increasing

efficiency order, result in an intuitive behaviour: the first solutions tried will be the

ones with the greatest amount of copies of the most efficient items.

As it is common in B&B algorithms, at each visited node MTU1 computes

an upper bound for the tree below the current node and, if this upper bound is equal

to or lower than the global lower bound, MTU1 will skip the subtree and backtrack

to the parent node. These upper bounds consist of a solution with the amount of

items already described by the path between the root node and the current node,

and a pseudo-item with weight equal to the capacity gap and efficiency equal to the

efficiency of the next level item type.

When visiting a leaf node, MTU1 will check if the solution described by the

path from root to the leaf node is better than the lower bound, and update the lower

bound if this is the case.

For convenience and to reduce the size of the tree, if the capacity gap left

by a node is smaller than wmin, then that node is a leaf node (no need for a list

of nodes indicating zero copies of the remaining item types). Consequently, every

node (leaf or not) represents a unique solution (denoted by the path from the root

node to it). As the nodes/solutions are visited in a systematic order, for any given

node/solution, it is possible to know what part of the ‘search space’/tree was already

visited or skipped, and what part has not yet been explored. Consequently, the tree

does not need to be enumerated explicitly, the current node/solution is sufficient to

know which solutions should be tried next.

56

4.3.2 MTU2

The MTU2 algorithm was first proposed in (MARTELLO; TOTH, 1990a).

The objective of MTU2 is to improve MTU1 run time when it is used in very large

instances (e.g. up to 250,000 items). MTU2 calls MTU1 internally to solve the UKP:

it can be seen as a wrapper around MTU1 that avoids unnecessary computational

effort. The two main factors that motivated the creation of MTU2 were: 1) for the

majority of the instances used in the period5, an optimal solution is composed of

the most efficient items; 2) for some of those instances, sorting the entire items list

was more expensive than solving the instance with MTU1.

The explanation of the inner workings of the MTU1 (Section 4.3.1) should

make it easier to understand how solving the UKP with MTU1 can require less

time than the sorting phase, for instances with the characteristic above mentioned

(i.e. only the most efficient items are present in an optimal solution). MTU1 first

investigates the regions of the search space with the biggest amount of the most

efficient items. If instances with a large amount of items have optimal solutions

among the first ones tested by MTU1, then the implicit enumeration tree will never

be explored in depth, and the vast majority of the items will be ignored. The time

spent sorting any items other than the most efficient ones was unnecessary.

To address this waste of computational effort, and to solve even larger in-

stances, MTU2 was proposed. MTU2 is based on the concept of ‘core problem’ that

was already introduced in other works of the period, such as (BALAS; ZEMEL,

1980). Informally, the core problem would be a knapsack instance sharing an opti-

mal solution, the knapsack capacity, and a small fraction of the items list with the

original instance.

The size of the core problem cannot be defined a priori. Consequently, the

idea is to guess a value k, where k ≤ n, find and sort only the k most efficient items,

and then solve this tentative core problem (in the specific case of MTU2, the solver

used is MTU1). If the optimal solution value of the tentative core problem is equal

to an upper bound for the full instance, then the algorithm has found an optimal

solution of the full instance and can stop. Otherwise, the algorithm uses the solution

found as a lower bound to remove items outside of the tentative core problem. For

5For an example, one of the datasets of the paper that introduced MTU2 was analyzed in
Section 3.1.2.

57

each item j that is not in the core problem, an upper bound is computed over the

solutions with one single copy of item j. If this upper bound is equal to or smaller

than the value of the lower bound, then the item can be discarded without loss to the

optimal solution value. If all items not in the tentative core problem are discarded

by this procedure, the algorithm also stops. Otherwise, more items from outside the

core problem are added to it, and the process restart with a larger core problem,

and the reduced item list outside of it.

4.3.3 Other B&B algorithms

Some B&B algorithms were not implemented or deeply studied by the author

of this thesis, but are cited here for completeness. In (CABOT, 1970), a B&B

algorithm for the UKP is presented. In that period, the B&B algorithms were

often referred to as ‘enumeration algorithms’. As already said in Section 2, Cabot’s

algorithm was indirectly compared with MTU1 in (MARTELLO; TOTH, 1977), and

MTU1 has shown better times. However, it would be interesting to see a comparison

with more extensive and recent datasets.

Another B&B algorithm is proposed in (GILMORE; GOMORY, 1963). The

author is not aware of any work where the proposed algorithm was compared to

any other algorithms. Three years after proposing this algorithm, the same authors

wrote (GILMORE; GOMORY, 1966), which focused on the one-dimensional and

two-dimensional knapsack problems. This last paper presented four variations of a

DP algorithm for the UKP, but does not appear to have mentioned the old B&B

algorithm.

4.4 Hybrid (DP and B&B)

As expected, some algorithms try to combine the best of two most popular

approaches (DP and B&B) for better results.

58

4.4.1 GREENDP

The algorithm presented in (GREENBERG; FELDMAN, 1980) is an im-

provement on the ordered step-off from (GILMORE; GOMORY, 1966). It is very

similar to UKP5. The author does not know if it could be defined as a hybrid, but

a good definition for it would be a ‘DP algorithm with bounds’. The algorithm was

not named in the paper and will be called GREENDP for the rest of the thesis. The

implementation of the GREENDP made by the author of this thesis, and used in

the experiments (Section 5), will be called MGREENDP (Modernized GREENDP,

in the sense that the algorithm now uses loops instead of the goto directive).

The GREENDP algorithm consists in solving the UKP by using the ordered

step-off algorithm, but without using the best item in the DP, and with interrup-

tions at each wb capacity positions, for checking if the DP can be stopped and the

remaining capacity filled with copies of the best item. In those interruptions, two

bounds are computed. A lower bound for solutions using the best item is computed

by combining the current best solution of the DP with as many copies of the best

item as possible. An upper bound for solutions not using the best item is computed

by combining the current best solution of the DP with a pseudo-item that would

fill the entire capacity gap and has the same efficiency as the second best item (it

could also be seen as solving a continuous relaxation of the UKP without the best

item, and only for the remaining capacity). If the algorithm discovers that the lower

bound with the best item is better than the upper bound without the best item,

then the lower bound solution is optimal and the DP can be stopped.

This approach using bounds is fundamentally different from the periodicity

check used by UKP5 (or the periodicity check used by the ‘terminating step-off’).

For example, the use of bounds save computational time of GREENDP when it

is used to solve BREQ instances, the periodicity check do not save computational

time of UKP5 when it is used to solve the same instances (see experiments of the

Section 5.3). However this seems to have an impact on other families of instances

(see experiments of the Section 5.2).

A weakness of this bounds calculation is that it fails if the two most efficient

items have the same efficiency. In this case, the algorithm would be the same as

running UKP5 with a little overhead.

59

4.4.2 EDUK2

The EDUK2 algorithm was proposed in (POIRRIEZ; YANEV; ANDONOV,

2009), and it is an hybridization of EDUK (a DP algorithm) and MTU2 (a B&B

algorithm). The author of this thesis gives here a quick overview of the hybridization,

but more details can be found in the paper above mentioned. Just as with EDUK,

the author does not claim to fully comprehend the EDUK2 internals, and only

summarizes what is said in the original paper. The author recommends reading

Sections 4.2.5 (EDUK) and 4.3.2 (MTU2) before the explanation below, as it is

strongly based in both algorithms. The comments made about EDUK code in its

own section also apply to EDUK2.

The description of the changes in EDUK caused by the hybridization follows.

The k = min(n,max(100, n
100

)) most efficient items are gathered in a tentative

core problem. A B&B algorithm “similar to the one in MTU1”6 tries to solve the

tentative core problem. This B&B algorithm has the possibility of choosing among

three bound formulas, and stops after exploring B = 10, 000 nodes (of the implicit

enumeration tree). If the B&B algorithm returns a solution with value equal to

an upper bound for the whole instance, then the DP algorithm never executes.

Otherwise, the solution given by the B&B algorithm is used as a global lower bound

in the hybridized EDUK algorithm. The hybridized EDUK algorithm works like

EDUK would do, with the addition of an extra phase between the slices. The extra

phase uses the lower bound to eliminate items and solutions for lesser capacities from

the algorithm. This phase is very similar to a phase of MTU2: an upper bound is

computed for solutions using one copy of the respective item (a solution s can be

treated as a pseudo-item (ws, ps)). If this upper bound is equal to or smaller than

the global lower bound, then the item (or solution) is abandoned by the algorithm.

A new lower bound is computed for each solution that was not removed by the

process described above. The lower bound consists in filling the remaining capacity

with a greedy algorithm. If this new lower bound is better than the global lower

bound, it replaces it.

6Quoted from (POIRRIEZ; YANEV; ANDONOV, 2009).

60

4.5 Consistency Approach

The Consistency Approach (CA) consists in combining both the objective

function (i.e. maximize pixi) and the UKP only constraint (i.e. wixi ≤ c) in a

single Diophantine equation7 (αixi = β, where αi are coefficients computed for each

item, and β is the analogue of an optimal solution upper bound). The combination

procedure preserves the set of valid solutions, consequently, an optimal solution for

the UKP can be sought by testing values for the equation variables/unknowns until

the equation holds true. Such variables are often the quantity of each item in a

solution (xi) (on one side of the equation) and a tentative value derived from the

optimal solution upper bound (β) (on the other side of the equation).

4.5.1 GREENDP1

The only algorithm implemented by the author of this thesis that uses the

consistency approach is the first algorithm described in (GREENBERG, 1986). The

algorithm, that was not named in the original paper, will be called GREENDP1

for the rest of the thesis (because it is the first of the two algorithms from the

same paper, and because GREENDP is an older algorithm by the same author).

The implementation of GREENDP1 made by the author of this thesis, and used

in the experiments section, will be called MGREENDP1 (Modernized GREENDP1,

in the sense that the algorithm now use loops instead of the goto directive). The

algorithm was meant to be a theoretical experiment, and did not have performance

as a priority.

The basic idea of the GREENDP1 algorithm consists in encoding both profit

and weight in a single integer value. Let us call the value given by this encoding

for a weight and profit pair, the coefficient of such pair. If the coefficient of two

items is summed, the result is a coefficient that encodes the weight and profit value

of the solution composed of the two items. The algorithm then enumerates all valid

solutions by adding the items coefficients to each other, and to the coefficients of the

solutions it creates8. The enumeration process is very similar to a basic DP algorithm

7“A Diophantine equation is an equation in which only integer solutions are allowed.” (WEIS-
STEIN, 2016). In other words, an equation where the values of the variables/unknowns are re-
stricted to the integer numbers.

8It is important to note here, for future research in the subject, that in (GREENBERG, 1986),

61

with solution symmetry pruning, and dispensable extra arrays. After the process

of enumerating all valid solutions, the algorithm has to find the optimal solution.

The algorithm will start with an upper bound on the optimal solution value, and

will check if some solution has this profit value (in O(1)), if not, it will decrease the

bound in one unity, and repeat the process. A DP algorithm with solution symmetry

pruning would probably outperform MGREENDP1 in most instances.

4.5.2 Babayev’s algorithm

In (BABAYEV; GLOVER; RYAN, 1997), a CA algorithm for the UKP de-

signed with performance on mind was proposed. Unfortunately, the author did not

obtain access to the code, and the algorithm demanded considerable time and ef-

fort to implement9. The algorithm is similar to GREENDP1, but presents some

improvements: the encoding tries to create the smallest coefficients as possible; the

enumeration of the solutions (or ‘consistency check’) can be done using the Dijk-

stra’s algorithm (shortest path, O(n+α2)), or a method for solving group problems

developed in (GLOVER, 1969) (O(n × α)). As the algorithm can choose between

the method with the best complexity for a given instance, its overall complexity

is O(min(n+α2, n×α)), where α is the value of the smallest coefficient for an item

of the instance.

4.6 Other approaches

The UKP is an optimization problem that have one single constraint and,

consequently, is simple to model. Probably, many approaches could be applied to

it, and many will, even if with only theoretical interest. The list presented in this

chapter has no intent of being exhaustive, but only to give the readers a base to

the algorithms description is incomplete. The author believes that on step 2d of the first algorithm,
the assignment ‘D(z) = k’ should be executed together with the other assignments; and on step
2d of the second algorithm, the assignment ‘D(x) = k’ should also be executed together with the
other assignments. If these statements are not included, then the algorithm cannot backtrack the
items that form an optimal solution.

9The author started to implement the algorithm, but because of time restraints had
to abandon the implementation. The current state of the implementation can be found
at <https://github.com/henriquebecker91/masters/blob/2623472fad711bac10bf4d34c437b24b3fd
7f30f/codes/cpp/lib/babayev.hpp>.

https://github.com/henriquebecker91/masters/blob/2623472fad711bac10bf4d34c437b24b3fd7f30f/codes/cpp/lib/babayev.hpp
https://github.com/henriquebecker91/masters/blob/2623472fad711bac10bf4d34c437b24b3fd7f30f/codes/cpp/lib/babayev.hpp

62

understand most of the discussion carried here.

Examples of approaches that were not covered in this chapter are the shortest

path formulations and group knapsack formulations. Such approaches are discussed

in (GARFINKEL; NEMHAUSER, 1972, p. 239), and (KELLERER; PFERSCHY;

PISINGER, 2004), and internally used by the algorithm described in (BABAYEV;

GLOVER; RYAN, 1997), mentioned last section. The author finds both approaches

to be similar to DP, in the sense that they are more like ways to interpret the problem

and then solve it by a correspondent DP algorithm, and less like B&B, which is a

completely different approach when compared to DP.

63

5 EXPERIMENTS AND ANALYSES

In this chapter, five experiments are presented and their results analyzed. The

first experiment is an updated version of the experiment first presented in (BECKER;

BURIOL, 2016), which consisted in the execution of UKP5 and EDUK2 over the

PYAsUKP dataset (see Section 3.2). The experiment presented in this thesis in-

cludes one extra algorithm (GREENDP), and does not use parallel execution. The

dataset used is exactly the same.

The second experiment consists in the execution of MTU1 (Fortran), MTU1

(C++), MTU2 (Fortran), and MTU2 (C++) over the reduced PYAsUKP dataset

(see Section 3.2.6).

The third experiment consists in the execution of all algorithms presented in

Section 4 (except by the näıve DP and the Garfinkel’s algorithm) over the instances

of the BREQ 128-16 Standard Benchmark (see Section 3.4).

The fourth experiment execute MTU1 (C++), CPLEX, and four variants of

the UKP5 to solve the pricing subproblem described in Section 3.3. The fifth and

last experiment addresses some concerns raised by the comments of an anonymous

referee in the peer review of (BECKER; BURIOL, 2016). The concerns are related

to the effects of the shared memory cache in the comparison of the algorithms run

times, when more than one run is executed at the same time. The results of this

experiment justify the setup used in the four previous experiments (i.e. serial runs).

5.1 Setup of the first four experiments

The experiments were run using a computer with the following characteristics:

the CPU was an Intel® CoreTM i5-4690 CPU @ 3.50GHz; there were 8GiB RAM

available (DIMM DDR3 Synchronous 1600 MHz) and three levels of cache (256KiB,

1MiB and 6MiB, where only L3 is shared between cores). The operating system

used was GNU/Linux 4.7.0-1-ARCH x86 64 (i.e. Arch linux). Three of the four

cores were isolated using the isolcpus kernel flag (the non-isolated core was left to

run the operating system). The taskset utility was used to execute runs in one of the

isolated cores. All runs were executed in serial order (i.e. two algorithm executions

did not coexisted), this choice was made for reasons explained in Section 5.5. C++

code was compiled with GCC and the -O3 -std=c++11 flags enabled. The OCaml

64

code (PYAsUKP/EDUK/EDUK2) was compiled with the flags suggested by the

authors of the code for maximum performance.

5.2 Solving the PYAsUKP dataset

The first experiment is an updated version of the experiment first presented

in (BECKER; BURIOL, 2016), which consisted in the execution of UKP5 and

EDUK2 over the PYAsUKP dataset. The experiment presented in this thesis in-

cludes one extra algorithm (GREENDP), and does not execute any runs in parallel.

The dataset used in this experiment is the same used in (BECKER; BURIOL, 2016),

which is presented in Section 3.2).

Figure 5.1: Benchmark using PYAsUKP dataset; the UKP5, GREENDP and
EDUK2 algorithms; and no timeout.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●
●
●
●
●

●

●

●
●
●
●
●
●
●
●●
●●●●●●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●●

●

●

●
●
●
●
●●

●
●
●●

●
●
●●

●
●●●
●●

●

●

●
●●
●

●

●

●

●

●●

●

●

●

●
●
●
●
●
●●
●
●●●●●
●●
●
●
●●
●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●
●●

●

●

●
●
●
●
●●●
●
●
●
●●

●
●
●
●
●●●
●

●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●

●●●●●
●

●
●
●
●

●

●●●●
●●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●●●●●●●●●●●●

●●
●
●●
●

●
●●●●●●●●
●

●
●●
●●

●

●
●
●
●
●●●
●

●

●

●

●●●

●
●

●●
●
●

●●

●
●●●●
●

●
●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●
●
●

●

●

●
●
●

●

●
●
●●
●
●
●●
●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●
●

●

●

●
●
●
●
●
●●
●●
●

●

●●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●
●
●
●
●
●●●

●

●●

●

●
●
●
●

●

●●●

●

●

●
●
●

●

●●

●

●

●●●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●
●
●●
●
●●●

●
●
●●
●

●

●

●
●
●●●●●

●

●

●●●
●

●

●

●

●
●
●
●

●

●

●
●

●

●

●
●
●
●
●
●●

●

●

●
●●

●

●

●
●
●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●●

●
●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●●
●●●

●

●●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●
●

●

●

●

●

●●

●

●

●
●

●
●

●●
●

●●●

●
●●

●

●

●

●●
●

●

●●

●●
●

●

●●

●

●

●
●

●

●

●

●●

●

●●

●

●
●

●●●

●

●●

●

●

●
●
●
●●

●

●

●

●

●
●

●●

●

●

●
●

●
●

●

●

●
●

●●

●

●
●

●
●
●
●●●

●●

●

●

●
●●

●
●

●

●●

●●
●
●●
●

●

●
●

●

●●

●●

●

●

●●

●

●
●

●

●
●

●

●

●

●
●

●

●
●●

●

●

●

●
●
●

●
●

●

●●

●

●
●●
●

●

●
●
●

●
●

●

●
●

●

●

●●
●

●

●
●

●

●
●

●

●●

●

●●

●

●

●
●
●

●●

●●

●
●

●●
●

●●

●

●
●●

●
●

●

●●

●

●●

●
●

●
●●

●
●

●

●

●

●●
●

●
●

●

●

●●

●

●
●

●

●
●

●
●

●●
●

●
●

●

●

●●
●

●●

●

●
●

●●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●●

●●

●
●
●
●●
●

●

●

●

●

●
●

●

●
●

●

●
●

●
●
●●

●
●

●●
●●
●
●
●

●
●

●
●

●

●

●
●

●
●
●
●

●
●

●

●
●

●●

●

●

●

●
●●
●
●

●
●

●

●
●

●

●

●

●

●
●

●

●●

●

●●

●

●
●

●

●
●

●
●

●●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●
●●

●
●

●

●

●

●●

●●

●●
●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●●

●
●
●

●

●

●

●
●

●
●

●

●
●

●

●●

●
●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●
●●

●
●
●

●●

●

●

●

●

●
●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●●

●

●●

●

●
●

●

●
●

●

●
●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●
●

●●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●
●

●

●●

●

●

●
●

●

●

●
●

●

●
●

●

●●●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●●
●

●●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●●

●

●

●
●

●●
●

●
●●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●●

●

●●

●●

●

●

●●

●

●
●

●●

●

●

●

●

●

●
●
●

●
●

●●

●

●

●

●

●

●

●

●●
●

●
●●

●

●●●
●●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●
●

●

●
●

●

●
●

●●

●

●
●
●

●

●
●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●
●

●

●●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●●
●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●
●

●

●
●

●
●

●

●

●
●

●

●
●

●

●
●

●

●●

●

●

●

●
●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●●
●

●
●

●

●
●

●

●●

●
●
●●

●

●

●

●
●

●

●
●

●

●

●

●

●
●●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●
●●
●
●

●

●
●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●●●
●

●

●

●

●

●

●

●
●●
●
●●●
●●

●
●

●
●
●
●

●●

●

●
●●●
●

●●
●

●

●
●

●

●●

●
●
●

●

●
●●●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●●
●

●

●

●
●●

●●

●

●

●

●

●

●

●

●
●

●

●●

●●●

●

●
●●
●
●
●●●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●●

●●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●●

●●
●

●

●
●

●

●
●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●●

●●
●

●

●●

●

●
●

●

●
●
●

●
●

●

●
●

●

●
●

●

●
●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●●●

●

●●

●
●●

●

●
●

●

●

●●
●●

●

●

●

●

●●

●

●

●●

●
●

●
●●

●

●
●

●

●●

●

●●

●

●
●

●

●
●

●

●
●

●
●●

●

●

●●

●

●●

●

●

●

●

●●

●●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●
●

●

●
●

●

●
●

●

●
●

●●

●
●

●

●

●

●

●
●
●

●
●

●

●
●

●●

●
●

●

●

●
●

●

●

●

●
●●

●

●
●

●

●
●

●
●

●●
●

●

●
●
●
●●
●

●

●

●

●

●

●

●●

●

●
●
●
●●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●
●

●
●●

●●

●

●

●●

●
●●

●

●
●

●●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●
●

●
●

●

●
●

●

●

●

●
●●

●

●
●

●

●

●
●●
●

●

●

●

●
●
●

●

●

●

●
●

●

●●●

●●

●

●

●

●

●●
●

●●

●

●
●

●

●

●
●
●●

●

●●

●

●
●●●●

●
●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●●●●

●
●
●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●●

●
●

●●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●

●●

●

●

●●

●
●●

●

●

●

●

●
●

●

●●

●●

●

●

●
●

●

●
●

●

●
●

●

●●
●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●●●

●
●

●

●●

●

●

●

●
●

●

●
●
●
●●
●

●

●●

●
●

●
●●

●

●

●

●

●
●

●

●
●

●

●
●

●
●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●
●

●
●●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●●

●●
●

●

●

●
●

●
●
●●●

●

●
●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●
●

●

●●

●

●●
●●

●

●
●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●●

●●
●

●

●●
●

●
●

●

●●
●
●●

●

●●

●

●●

●

●●
●
●●
●●

●●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●●
●

●
●

●

●
●

●

●
●
●
●●
●
●
●

●
●
●
●

●
●

●

●

●
●●
●

●

●

●●

●
●
●
●●

●

●

●

●

●●

●

●
●
●

●●

●

●
●
●

●●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●●
●

●
●

●

●

●

●

●

●●●
●

●

●
●

●

●

●

●
●

●●

●
●

●

●●

●
●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●
●●

●

●●

●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●
●●

●

●

●
●

●●

●

●●
●

●

●●
●
●

●●
●

●

●

●●

●

●●

●

●
●

●

●

●
●

●

●

●

●
●

●

●●

●

●●

●

●
●

●

●
●

●
●●

●

●

●

●

●●

●
●
●

●

●
●

●

●●

●

●●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●●●
●

●

●

●

●

●
●

●

●
●

●

●

●

●
●
●●
●●

●
●
●

●

●

●
●●●

●

●●

●
●

●●●●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●●

●

●

●

●

●
●

●

●
●

●

●●

●

●●●●●
●
●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●●●●

●
●

●

●
●

●
●

●
●

●
●●

●

●●●
●●

●●

●
●

●
●

●

●
●

●

●

●
●●

●
●

●
●

●

●

●
●●
●
●

●

●●
●

●
●
●●

●

●
●

●

●
●

●

●
●

●

●●

●

●
●
●
●
●
●
●

●

●
●
●

●
●
●

●

●
●

●●

●●●
●●
●●

●

●
●

●

●
●

●

●

●

●

●
●

●

●●

●●

●
●

●
●

●

●●

●

●●

●
●●
●●
●

●●

●

●

●

●
●●
●

●
●

●
●

●
●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●●
●

●
●

●

●

●
●

●
●

●●

●●

●
●

●

●
●

●

●

●

●

●
●

●
●
●

●

●

●●
●
●

●
●

●

●

●

●

●

●

●●

●

●
●●●
●

●

●●

●
●

●

●
●
●

●
●

●

●
●

●
●
●

●
●●

●

●
●

●

●
●

●

●●

●

●●

●

●

●

●
●

●●●

●

●

●
●

●

●
●
●

●
●

●

●●

●

●

●

●

●●

●

●●

●

●●

●

●

●
●
●●

●

●
●

●
●
●

●

●
●

●

●●

●

●
●

●

●
●

●

●●
●●●
●

●

●

●
●●

●

●
●

●

●

●
●
●●

●

●

●
●
●

●●●
●
●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●●

●
●

●

●
●●●
●

●

●

●

●
●●

●
●●●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●●

●
●

●

●
●

●

●●●

●

●

●

●●●

●
●

●

●●
●

●●

●

●
●

●
●

●
●
●
●

●

●
●

●

●

●
●
●●●
●

●
●

●

●●

●●

●

●●

●

●

●

●

●●

●
●●●●
●
●●●

●

●●

●
●

●

●

●

●

●

●●

●

●
●
●
●
●

●

●
●

●

●
●

●

●
●

●

●
●

●●

●

●

●
●

●

●
●

●●

●

●

●●

●

●

●

●
●

●

●●●
●

●
●●
●
●●
●●

●
●

●

●
●

●

●

●
●●
●
●
●●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●●●

●

●●

●

●
●

●

●
●

●
●
●

●

●
●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●●
●

●●
●
●

●

●
●

●

●

●●
●

●

●

●

●●

●
●

●

●●●

●

●

●

●
●
●

●

●

●
●

●
●
●

●

●

●
●
●

●

●

●

●
●

●

●

●●●●●

●●

●

●
●

●

●
●

●

●

●●
●
●

●
●
●

●●

●
●

●
●

●

●
●

●

●

●

●

●●
●
●
●●

●
●

●

●
●

●

●
●

●

●
●
●

●
●

●
●

●
●

●●

●

●

●
●

●

●

●

●●
●●
●

●

●
●

●

●

●

●

●
●
●

●
●
●
●●
●

●
●
●
●

●

●

●
●
●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●●●
●

●

●

●

●
●

●

●●

●
●

●

●
●

●●

●
●

●

●●●

●●

●
●

●
●

●●

●●

●

●
●
●

●●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●●

●

●

●

●

●
●

●
●●
●

●●

●

●

●

●●

●

●●
●

●

●
●

●

●
●

●

●●

●

●
●

●

●●

●

●
●

●●

●

●

●
●

●
●●
●

●
●

●

●

●
●

●●

●

●●

●

●
●

●

●

●

●

●●

●
●
●

●

●
●

●

●

●

●
●

●
●

●

●

●●●●
●●
●
●

●

●
●

●

●●

●
●
●●

●
●

●

●
●

●

●

●
●
●●●

●

●

●

●

●

●

●

●●
●

●
●

●
●

●

●
●

●

●
●

●●

●

●

●

●
●●

●
●
●

●●●●
●

●
●

●

●
●

●
●

●●●

●●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●
●
●

●

●

●

●

●
●

●

●

●

●
●
●●

●

●

●
●

●
●

●
●

●●

●
●
●

●●

●
●

●

●
●

●

●●
●
●●●●●●

●

●●●●

●

●●

●

●

●

●●

●●●
●

●●

●●

●
●

●

●

●
●

●

●
●

●
●

●

●●

●

●
●

●

●●

●

●
●
●
●●
●
●
●●
●

●

●

●
●
●
●

●

●

●
●

●

●
●

●●●

●

●●
●●

●
●
●●
●
●
●●
●
●●

●

●

●

●

●●

●
●

●

●
●
●

●

●
●

●●

●

●

●●

●
●

●
●

●●

●●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●
●
●

●

●

●

●
●

●
●

●

●

●
●

●
●

●
●

●●

●

●●
●
●

●
●

●

●

●

●
●

●

●●
●
●

●
●

●

●

●

●
●●
●

●

●
●
●

●

●
●
●
●●
●

●

●

●
●

●●

●●
●●

●●

●

●

●
●

●

●

●

●

●
●
●

●

●
●

●●
●
●

●●

●●

●

●●

●

●
●

●●

●

●

●
●●

●
●

●●

●

●

●

●

●●

●

●

●
●●
●
●●

●
●

●

●
●

●

●●

●
●

●

●

●

●
●●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●
●
●

●●●●

●●

●

●

●
●

●

●
●●

●
●

●

●●

●

●

●

●

●●

●

●
●

●

●●
●
●

●
●
●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●●
●
●●

●

●

●

●
●●

●

●●●

●
●

●
●
●●

●

●
●

●●
●
●●
●●

●

●
●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●
●

●

●

●
●

●●
●●

●

●
●
●
●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●●

●

●
●

●
●

●●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●

●●

●

●●

●●

●

●
●●

●●

●●●
●

●●

●

●

●●

●

●●

●

●
●●

●
●

●

●

●

●

●
●
●

●

●

●
●

●
●

●
●●

●

●

●

●

●
●
●

●

●

●

●
●
●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●
●
●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●●

●

●

●

●
●●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●●

●
●

●

●

●

●

●●●

●

●

●
●

●●

●
●
●

●

●
●●
●
●

●
●●
●●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●
●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●●

●
●

●
●

●●

●●●
●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●
●●
●●

●

●

●

●

●●

●

●●

●

●●

●●

●
●

●

●●

●

●●●

●

●

●

●

●

●
●

●●

●
●

●

●

●
●

●

●

●
●●

●

●

●
●

●

●

●
●

●

●

●

●●

●●

●

●
●●
●

●

●

●

●

●

●

●●

●
●
●●

●●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●
●

●

●
●
●

●●

●

●●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●●

●

●
●

●

●●
●

●●

●

●
●

●

●

●

●
●

●

●
●

●

●

●●

●●

●
●

●

●

●

●
●

●

●●

●

●
●

●
●

●

●

●●

●

●

●

●

●●

●

●●

●
●

●
●●●

●●

●
●

●

●
●

●●

●

●
●

●

●
●

●

●●

●

●

●

●●

●
●
●●

●

●
●

●
●

●

●
●

●

●

●

●

●●

●
●

●
●

●

●

●

●
●

●

●

●●

●

●●

●
●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●●

●

●●

●

●

●●

●●

●

●

●

●

●
●

●

●

●●

●

●●

●

●
●

●

●●

●

●

●

●
●

●●

●

●

●
●

●

●●

●●

●

●
●
●

●

●

●

●●

●

●
●
●

●

●●

●

●

●

●

●
●

●●

●

●●●

●

●

●

●

●

●

●
●

●

●●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●●

●

●
●
●

●

●

●

●

●●

●

●
●

●

●
●

●●

●

●
●
●
●
●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●●
●
●

●●

●

●●

●

●
●

●

●

●

●

●
●

●

●●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●●

●

●
●

●

●●

●
●

●

●

●●

●

●●

●

●

●

●

●
●

●

●
●

●

●●

●

●
●

●

●●

●
●

●

●

●
●
●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●●

●

●●
●

●

●

●

●

●●

●

●●

●

●
●
●

●
●

●

●

●

●
●

●

●

●
●
●

●

●

●
●

●

●
●

●

●
●

●

●

●
●
●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●
●

●

●●

●

●●

●

●

●

●

●●

●

●
●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●●

●
●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●●

●

●

●●

●
●

●

●

●●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●
●

●
●●

●

●
●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●●

●

●
●

●

●●

●

●
●

●

●

●

●

●
●

●●

●

●

●
●

●
●●

●

●●

●

●
●

●
●●

●

●

●

●●●

●
●

●

●

●●

●
●

●

●

●●

●
●

●

●

●●

●

●
●

●●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●●

●

●●

●●
●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●
●●

●
●

●

●

●
●

●

●●

●

●
●

●

●●

●

●●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●
●●

●

●●

●

●●

●

●●

●

●

●

●

●●

●

●●

●
●

●

●
●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●
●

●

●●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●
●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●●●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●
●

●

●●●

●

●●

●

●

●

●●●

●

●●

●
●●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●
●

●

●
●●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●
●●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●
●●

●
●●

●

●

●

●

●
●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●●
●
●

●

●

●
●

●

●●

●
●
●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●●

●

●●

●
●●

●
●●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●●
●
●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●
●

●

●

●●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●
●●

●

●●

●

●●

●

●●

●

●●

●

●

●

●
●

●

●
●●

●
●●

●

●●

●

●●

●

●

●

●

●
●

●
●●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●
●

●

●●
●●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●●

●
●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●
●

●

●●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●●
●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●
●

●

●●

●

●
●

●

●

●

●

●
●●●●●

●●

●

●
●

●

●●

●

●
●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●●●●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●●

●
●

●

●
●

●

●
●

●
●●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●●●●

●

●

●
●

●

●●

●

●
●

●

●
●

●

●●●●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●●●

●
●

●

●
●

●

●
●

●

●●●●

●

●

●
●

●

●●

●

●●●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●
●
●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●
●●

●

●●●

●
●

●

●

●

●
●●

●

●●

●

●●

●

●

●

●

●
●

●

●●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●
●●●●●●

●●

●

●
●

●

●●

●

●
●

●
●●

●

●●

●

●

●

●

●●
●

●●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●●

●

●●

●

●

●

●
●●

●

●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●●

●●●

●

●●
●

●
●

●

●●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●●
●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●●●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●●
●
●

●

●
●●

●

●●

●

●
●

●

●●

●
●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
●●

●
●
●

●

●
●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●●
●

●
●

●

●

●
●●
●●●
●

●

●

●

●●

●

●●●

●●

●

●●

●

●●

●

●●
●

●

●

●

●
●

●

●

●

●

●●
●

●●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●
●

●

●

●

●

●●

●
●●
●
●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●●

●

●

●

●

●●
●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●
●

●
●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●●

●

●●●

●●

●

●
●

●

●●

●

●●
●

●
●

●

●●

●

●
●

●

●●
●

●
●

●

●●

●

●
●

●

●
●

●

●●
●

●
●

●

●●

●

●
●

●

●●

●

●●
●●

●

●

●●

●

●●
●

●●

●

●●

●

●
●

●

●●
●●●

●
●●
●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●
●

●
●

●

●●
●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●●

●
●●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●●

●

●●

●

●●

●

●

●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●

●

●

●●
●

●●

●

●●

●

●
●

●

●●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●●
●

●
●

●

●

●

●

●●●
●●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●
●

●

●●
●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●●
●
●●●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●●

●

●●

●
●●●

●●

●

●
●

●

●
●

●

●●

●

●●

●

●●

●

●
●

●

●
●

●

●●

●

●●

●

●●

●

●●●

●
●

●

●●●
●●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●
●

●

●
●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●
●

●

●

●

●

●●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●●
●

●
●

●

●●

●

●●

●

●
●

●

●

●

●

●
●

●

●●

●

●
●

●

●●●

●●

●

●●●

●
●

●

●●●

●
●

●

●●
●

●
●

●

●
●

●

●●

●

●
●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●●

●

●
●

●

●
●

●

●●

●

●
●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●●●
●●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●●
●

●●

●

●

●

●

●
●

●

●●

●

●●

●

●
●

●

●
●

●●

●

●

●●

●

●
●

●

●
●

●

●●
●

●●

●

●●●

●
●

●

●●

●

●●

●

●
●

●

●
●

●

●●
●

●
●

●

●
●

●

●

●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●●
●

●
●

●

●
●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●●

●

●●

●

●
●

●

●●
●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●●
●

●
●

●

●
●

●

●
●

●

●

●

●

●●
●
●●
●

●●

●

●
●

●

●●

●

●●

●

●
●

●

●●
●

●
●

●

●●

●
●

●

●

●
●

●

●●
●

●●
●

●
●

●

●
●

●

●●

●

●●
●

●●

●

●

●

●

●●

●

●●

●

●●
●

●●

●

●●
●

●●

●

●
●

●

●●

●

●
●

●

●
●

●

●●

●

●
●

●

●●

●

●
●

●

●
●

●

●●

●

●
●

●

●
●

●

●●

●

●

●

●

●
●

●

●●

●

●●

●

●●

●

●●
●

●●

●

●
●

●

●
●

●

●●

●

●●

●

●●

●

●●
●

●●

●

●●

●

●●

●

●
●

●

●●
●

●

●

●

●●

●

●●

●

●●

●

●●

●

●●
●

●●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●
●

●

●●

●

●
●

●

●●

●

●
●

●

●

●

●

●●

●

●
●

●

●●

●

●●

●

●●
●

●●

●

●●

●

●●

●

●
●

●

●●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●
●

●

●
●

●

●●

●

●●

●

●●
●

●●

●

●
●

●

●●
●

●●

●

●●

●

●
●

●

●●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●●

●

●
●

●

●●

●

●●

●

●
●

●

●

●

●

●●
●

●●

●

●●

●

●●

●

●●

●

●●

●

●●
●

●●

●

●
●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●
●
●
●●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●
●

●

●●

●

●●
●

●
●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●

●

●

●
●

●

●●

●

●
●

●

●●

●

●
●

●

●

●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●●

●

●●

●

●
●

●

●
●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●
●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●
●

●

●
●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●
●

●

●●

●

●
●

●

●
●

●

●
●

●

●

●

●●

●

●●

●

●●

●

●●

●

●

●

●●

●●

●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●
●

●

●●

●

●
●

●

●●

●

●●

●

●●

●●

●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●●

●
●

●●

●

●

●●

●

●
●

●

●●

●

●●

●

●
●

●

●●

●

●

●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●
●

●●

●

●

●●

●

●●

●

●●

●

●●

●●

●

●
●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●●

●

●

●

●●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●

●

●●

●

●
●

●

●
●●

●

●●

●

●●

●●

●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●●

●●

●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●●

●

●

●●

●

●●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●●

●●

●

●●●

●

●

●

●

●●

●●

●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●●

●

●●

●●

●

●

●●

●

●●

●

●●

●
●

●

●
●

●
●●●

●

●●

●

●●

●

●●

●

●

●●

●
●

●●

●

●●

●●

●

●

●●

●●

●

●

●

●

●

●●

●

●●

●

●
●

●

●
●

●
●

●
●

●●

●●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●
●●●

●

●●

●

●●

●

●●

●

●●

●●

●●

●

●

●

●●

●

●●

●
●

●

●

●●

●

●●

●

●●

●

●●

●●

●

●
●●

●

●●

●

●●

●●

●

●

●●

●

●●

●●

●

●●
●

●●

●

●

●

●

●

●●

●

●●

●●

●●

●

●●

●●

●

●●

●●

●

●

●

●●

●

●

●
●●

●●

●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●●

●●

●●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●●

●●

●

●

●

●●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●●

●

●●

●●

●
●●

●

●

●●

●●

●
●
●

●

●

●●

●●

●
●

●

●●
●●

●

●●

●

●●

●

●●

●

●●

●●

●
●

●

●
●

●

●
●

●●

●

●●

●

●●

●●

●●

●

●●

●●

●

●●

●

●●

●
●

●
●

●●

●●

●●

●●

●

●●

●

●●

●

●●

●

●●

●

●

●●

●●

●●

●

●●

●

●●

●

●●

●

●●

●
●

●

●

●●

●

●●

●
●

●

●

●●

●●

●
●

●●

●

●●

●
●

●

●
●

●

●

●
●

●●

●
●

●●

●

●●

●

●●

●
●

●
●

●●

●

●
●

●

●

●●

●
●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●
●

●

●

●

●

●

●●

●

●●

●

●●

●
●

●
●

●●

●
●

●

●

●●

●

●●

●
●

●
●

●●

●

●●

●

●●

●

●●

●
●

●

●

●●

●

●●

●
●

●

●

●●

●

●

●

●

●●

●

●●

●
●

●

●

●●

●

●●

●
●

●

●
●

●

●●

●

●

●●

●

●●

●

●●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●●

●
●

●

●

●●

●

●●

●

●●

●

●

●

●

●●

●

●
●

●

●●

●
●

●

●
●

●

●

●●

●

●
●

●
●

●

●

●●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●
●

●

●●

●

●

●●

●
●

●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●
●

●

●●

●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●
●

●

●

●●

●
●

●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●●

●
●

●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●●

●
●

●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●

●

●●

●

●

●●

●

●●

●
●

●

●●

●

●●

●

●

●●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●

●

●

●
●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●
●

●

●
●

●

●
●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●
●

●

●
●

●

●●

●

●●

●

●
●

●

●
●

●

●●

●

●●

●

●
●

●

●●

●

●
●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●
●

●

●
●

●

●●

●

●
●

●

●
●

●

●●

●

●
●

●

●●

●

●
●

●

●
●

●

●
●

●

●●

●

●
●

●

●
●

●

●●

●

●
●

●

●
●

●

●

●

●●

●

●
●

●

●
●

●

●●

●

●
●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●

●

●●

●

●

●

●●
●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●
●
●●
●
●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●
●
●
●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●●●

●

●●

●

●●●
●●

●

●●

●

●●

●

●●

●
●●
●●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●
●

●●

●

●●

●

●●

●

●●●●●●●●●●
●
●
●●●●●

●
●●●●
●
●
●●

●

●●

●

●●

●

●●●●●●
●
●
●
●●
●●●
●
●●●●●
●●●
●
●●●●●●●●
●
●●
●
●●●●●●

●●

●

●●

●

●●
●
●●
●
●●
●

●●

●
●●
●
●●
●
●●
●
●●
●
●●

●

●●

●

●●

●

●●
●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●
●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●
●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●
●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●
●●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●
●

●
●●

●

●●

●

●●

●

●●

●
●●

●

●●

●

●●

●

●●

●
●●

●

●●

●
●●

●

●●

●
●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●
●●

●

●●

●

●●

●

●●

●
●●

●

●●

●
●●

●
●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●
●

●
●●

●

●●

●

●●
●

●●

●
●●

●

●●●

●●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●
●

●

●●
●●●
●

●●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●●
●

●
●

●

●●●

●●

●

●●

●

●
●

●

●●

●

●●
●

●
●

●

●●

●

●●

●

●●
●

●●

●

●●
●

●●

●

●●
●
●●
●
●●
●

●
●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●
●

●●

●

●●

●

●●

●

●●
●
●●●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●
●

●
●

●

●
●

●

●●
●

●
●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●●
●
●●●

●●

●

●●

●

●●

●

●●●

●●

●

●●

●

●
●

●

●●

●

●●

●
●●●

●
●

●

●●●

●●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●
●

●

●
●

●

●●
●

●●

●

●●

●

●●●●●●●●●●●
●

●
●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●
●

●

●
●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●●●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●
●

●
●

●

●●

●

●
●

●

●
●

●

●●

●

●
●

●

●
●

●

●●
●
●●●

●●

●

●●

●

●●
●

●
●

●

●●

●

●
●

●

●
●

●

●●
●

●
●

●

●●

●

●●

●

●●

●

●●

●

●●
●

●●

●

●●

●

●●
●

●
●

●

●
●

●

●●
●
●●
●

●●

●

●
●

●

●●
●
●●
●

●●
●

●
●

●

●
●

●

●●
●

●●

●

●●
●

●●

●

●●
●

●●

●

●
●

●

●●

●

●
●

●

●
●

●

●●

●

●●
●

●●

●

●●

●

●●

●

●●
●

●●

●

●●

●

●
●

●

●●
●

●●

●

●●

●

●●

●

●●
●

●●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●
●

●

●●

●

●●
●

●●

●

●●

●

●●

●

●
●

●

●●

●

●●
●

●
●

●

●●
●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●
●

●●

●

●●

●

●●

●

●●
●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●
●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●
●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●
●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●
●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●
●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●
●

●

●
●

●

●
●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●
●

●

●
●

●

●●

●

●●

●

●
●

●

●
●

●

●●

●

●●

●

●
●

●

●
●

●

●●

●

●
●

●

●●

●

●●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●●

●

●
●

●

●
●

●

●
●
●

●
●●
●
●
●

●
●
●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●
●
●●●●
●
●●
●
●
●●
●
●
●
●
●
●

●●
●

●
●●●

●
●
●

●
●
●

●●

●●
●
●

●●

●
●●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●
●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●
●
●

●

●
●

●

●●

●

●
●

●

●●

●

●●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●
●●

●●
●

●

●
●

●●
●

●

●
●

●

●

●●●●

●●
●

●

●
●

●

●
●

●

●

●●
●●

●●

●●

●

●●

●

●●

●

●●
●

●

●
●
●

●

●

●●

●
●

●

●
●

●

●
●

●

●
●

●

●●
●

●
●

●

●
●

●

●
●

●

●

●

●
●●

●

●●

●

●
●

●●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●●●

●
●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●●●●

●
●
●

●

●

●
●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●●

●
●

●
●●

●

●
●

●
●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●
●●●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●
●

●

●

●
●
●

●
●

●

●

●●

●
●

●

●

●●

●
●

●

●●

●
●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●
●

●

●●

●
●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●
●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●
●

●
●

●

●
●

●

●
●

●

●
●

●
●

●
●

●

●
●

●
●

●

●
●

●

●
●
●
●

●

●

●
●●

●
●

●

●
●

●

●●

●

●●

●

●

●

●

●
●

●
●

●●

●
●

●

●

●●

●

●

●

●
●

●

●
●
●

●
●

●

●
●

●

●
●

●

●
●

●

●●

●
●

●●
●
●
●

●●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●●

●

●
●
●

●

●●

●

●
●

●
●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●
●

●●

●

●●
●

●●

●

●

●
●

●

●
●

●
●

●
●
●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●●

●●

●
●

●
●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●●
●

●●

●
●

●

●
●

●
●

●●

●

●

●

●

●

●
●

●●

●

●
●
●

●

●

●
●

●

●

●
●
●

●●

●

●
●
●

●

●

●

●●

●

●●
●

●

●
●

●●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●●

●
●
●●

●
●

●

●

●

●●

●
●

●
●

●

●
●

●
●

●
●
●

●●

●
●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●●

●
●

●
●

●
●

●●

●

●●

●

●●

●
●

●

●
●

●●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●
●
●
●

●
●

●

●●

●

●

●
●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●
●
●

●●

●

●
●

●

●●

●
●

●

●

●

●

●●

●

●
●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●
●●

●

●●

●
●●
●

●●

●
●

●

●●

●

●●

●

●
●
●

●

●●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●
●

●
●

●●

●
●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●●

●

●
●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●
●

●

●
●
●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●
●●●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●●

●

●●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●●

●
●

●

●
●

●

●●
●

●

●
●

●

●

●

●●

●

●
●

●

●
●

●

●●

●

●

●
●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●●

●

●●

●

●

●
●

●●

●
●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●
●

●

●
●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●●

●

●●

●

●

●●

●

●

●

●
●

●

●●

●

●●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●
●

●

●
●

●

●●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●●

●

●

●

●

●
●

●

●
●

●

●
●

●

●●

●

●
●

●

●
●

●

●
●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●●

●

●●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●
●

●

●●

●

●●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●

●
●

●
●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●
●●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●
●

●●

●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●
●

●

●●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●
●
●
●
●

●

●

●
●
●
●
●
●
●
●●
●●●●●●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●●

●

●

●
●
●
●
●●

●
●
●●

●
●
●●

●
●●●
●●

●

●

●
●●
●

●

●

●

●

●●

●

●

●

●
●
●
●
●
●●
●
●●●●●
●●
●
●
●●
●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●
●●

●

●

●
●
●
●
●●●
●
●
●
●●

●
●
●
●
●●●
●

●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●

●●●●●
●

●
●
●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●●●●●●●●●●●●

●●
●
●●
●

●
●●●●●●●●
●

●
●●
●
●
●
●
●●●
●

●

●

●

●

●

●●
●
●

●●

●
●●●●
●

●
●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●
●
●

●

●

●
●
●

●

●
●
●●
●
●
●●
●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●
●

●

●

●
●
●
●
●
●●
●●
●

●

●●
●
●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●
●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●●
●

●
●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●●
●
●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●
●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●
●
●●
●
●●●

●
●
●●
●

●

●

●
●
●●●●●

●

●

●●●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●
●

●

●

●

●
●

●
●

●
●

●

●●

●

●

●

●●
●

●

●●

●

●

●
●

●●

●

●●

●

●
●

●

●

●
●
●
●●
●

●
●

●●

●

●

●
●

●
●

●

●

●
●

●●

●

●
●

●

●●

●

●
●

●

●●

●

●
●

●

●
●

●

●●

●

●●

●

●
●

●

●
●

●

●
●

●

●
●●

●●

●

●
●●

●
●

●

●
●

●

●
●

●

●
●

●

●●

●

●●

●

●

●
●
●

●●

●●

●

●
●

●

●
●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●●

●
●

●

●

●●

●
●

●

●

●●

●●

●

●
●

●
●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●●

●

●●

●

●
●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●●

●

●
●

●

●
●

●

●
●

●

●●

●

●●

●

●
●

●

●
●

●

●
●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●●

●

●

●

●

●●

●

●
●

●

●●

●

●
●

●

●
●

●

●●●

●
●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●●

●

●
●

●●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●●●

●●

●

●
●

●

●
●

●

●
●

●

●●

●

●●

●

●
●

●

●
●
●

●
●

●

●

●

●
●●

●

●●●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●
●
●

●
●●

●

●
●

●

●●

●

●

●

●

●
●

●

●
●

●

●
●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●●

●
●

●

●
●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●●

●

●
●

●

●●

●

●

●

●

●●

●

●
●

●

●●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●●
●

●
●

●

●
●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●
●

●

●
●

●

●●

●

●
●

●

●●
●

●
●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●●
●

●
●

●

●
●

●

●●

●
●
●●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●
●
●●●
●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●●

●

●

●

●
●●
●
●●●
●●

●
●

●
●
●
●
●
●●

●
●

●

●
●

●

●
●

●

●
●●●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●●
●

●

●

●
●●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●●
●
●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●●

●

●
●●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●
●

●
●

●

●
●

●

●
●

●
●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●
●●

●
●●

●

●
●

●

●

●

●

●●

●

●
●

●
●●

●

●
●

●

●●

●

●●

●

●
●

●

●
●

●

●
●

●
●●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●
●

●

●

●

●

●

●

●●

●

●
●
●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●
●

●

●
●
●

●
●

●

●

●

●
●●

●

●
●

●

●

●
●●
●

●

●

●

●●

●

●

●●

●

●

●

●

●●
●

●●

●

●
●

●

●

●
●
●●

●

●●

●

●
●●●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●
●●

●

●

●

●

●
●

●

●●

●●

●

●

●
●

●

●
●

●

●
●

●

●●
●

●
●

●

●
●

●

●

●

●

●●●

●●

●

●
●

●

●
●
●
●●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●
●

●

●
●

●

●
●

●

●
●

●

●●

●

●

●

●
●●

●

●

●

●

●
●

●

●
●
●●●

●

●
●

●

●
●

●

●

●

●

●

●

●
●
●

●

●●

●

●
●

●

●●
●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●
●

●
●

●
●●

●

●●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●●
●

●
●

●

●
●
●●●

●
●
●
●

●
●

●

●

●
●●
●

●

●
●
●
●●

●
●
●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●
●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●
●●

●

●

●
●

●

●●
●
●

●●
●

●

●

●
●

●

●

●
●

●
●

●

●●

●

●●

●

●●

●
●
●

●

●

●
●

●●

●

●

●

●
●
●

●

●

●

●●

●

●
●

●
●

●

●●

●
●

●

●

●

●
●

●
●

●
●

●

●●

●

●●●

●
●

●

●
●

●

●

●●

●

●

●
●

●
●

●

●
●

●
●

●

●

●
●●
●

●

●
●
●

●

●●
●

●
●

●
●

●

●●

●

●
●
●

●
●

●
●
●

●

●
●

●●

●●
●

●

●

●
●

●

●

●
●

●
●

●
●
●

●

●

●
●

●

●
●●
●

●

●●

●

●●
●

●
●

●

●

●
●

●
●

●
●
●

●

●

●

●

●
●

●
●
●

●

●
●

●
●

●

●●

●●

●

●
●●●
●

●

●●●
●

●●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●●
●

●
●
●

●
●
●

●

●●
●

●

●

●
●
●

●

●

●
●
●

●
●
●

●●●
●
●●
●

●●●

●

●
●

●

●

●●●
●●●
●

●

●

●

●
●●

●

●
●

●

●

●●

●
●

●

●
●

●

●

●
●

●

●
●

●

●●

●●

●

●●

●

●●

●

●●

●
●
●
●
●
●

●

●
●

●

●
●

●

●●●
●

●
●●
●
●●
●●

●
●

●

●

●
●●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●
●

●
●
●

●

●

●
●

●

●●●
●

●●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●
●
●

●
●

●

●

●●

●●

●

●
●

●

●

●●●
●

●●

●
●

●
●

●

●●
●
●
●●

●
●

●

●
●

●

●●

●

●

●
●

●

●

●
●
●

●

●

●
●
●
●●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●●

●
●
●

●

●
●

●

●
●

●

●●

●

●
●

●

●●

●

●

●

●
●
●

●

●●

●

●
●

●

●●

●

●
●

●

●
●

●

●

●
●

●●

●

●●

●
●
●

●

●
●

●

●
●●

●
●

●

●
●

●

●

●
●

●

●

●

●

●●●
●

●●

●

●

●

●
●

●

●●

●
●

●

●

●
●
●
●

●●
●●

●

●●

●
●

●

●

●

●

●●

●

●

●
●

●

●
●

●●

●

●
●

●

●●

●

●
●
●

●
●●

●
●
●
●
●

●●●

●

●
●●
●
●●

●

●●

●

●
●

●
●

●

●

●

●

●●

●

●
●

●

●
●
●

●

●

●

●
●

●

●
●

●

●●

●

●
●

●

●
●●
●
●
●

●
●

●

●●

●

●
●

●

●

●

●

●
●
●

●

●
●

●
●

●

●
●●

●
●

●

●

●

●

●
●●
●
●●

●
●

●

●
●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●
●

●●

●

●
●●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●●
●
●●

●

●
●

●
●
●

●
●●

●
●

●

●

●

●

●

●

●

●
●

●●
●●

●
●

●

●
●

●

●
●

●

●●

●

●

●
●

●●

●

●
●

●

●

●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●
●●

●
●

●

●

●

●

●
●
●

●

●

●

●
●●

●

●

●

●

●
●

●
●

●

●
●●

●●

●

●
●
●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●
●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●●

●

●
●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●●

●

●
●

●

●
●

●

●
●
●

●
●

●

●

●

●

●
●
●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●
●

●

●
●
●

●

●

●

●
●

●

●●

●

●

●

●

●
●
●

●

●

●

●
●
●

●
●
●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●

●

●
●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●●

●

●

●

●

●
●

●

●●

●

●
●

●

●
●

●

●
●

●

●
●

●
●●

●

●●

●

●
●

●
●●

●

●●

●
●

●

●

●
●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●●

●

●●

●●

●

●

●●

●

●
●

●

●

●

●
●●

●
●

●

●

●
●

●

●●

●

●
●

●

●
●

●

●

●

●
●●

●

●●

●

●●

●
●

●

●

●
●

●

●
●

●

●
●

●

●
●

●
●●

●
●
●

●
●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●●

●
●

●

●
●●

●

●●

●

●●

●

●●

●
●
●

●

●●

●
●●

●
●

●

●
●●

●

●●

●
●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●●

●

●

●

●

●
●

●

●
●

●

●●

●

●
●

●

●
●

●
●●

●
●
●

●

●
●

●

●●

●
●●
●

●●

●
●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●
●

●
●●

●
●
●

●
●●

●

●
●

●
●●

●●
●

●

●

●

●

●●
●
●●
●

●●

●

●●

●

●

●

●

●●

●

●●

●

●
●

●
●●

●

●●

●

●●

●

●●

●

●●

●

●●

●
●●

●

●●

●

●
●

●
●●

●
●●

●

●
●

●

●
●

●

●●

●

●●

●

●
●

●

●●
●
●●

●●
●

●

●●

●

●
●

●

●●

●

●●
●

●
●

●

●●
●

●
●

●

●●

●

●●

●

●●

●

●●
●

●
●

●

●●●

●
●

●

●●●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●●●

●
●

●

●
●

●

●●●

●●

●

●
●

●

●
●

●

●●

●

●
●

●

●
●

●

●●

●

●
●

●

●●

●

●●●

●
●

●

●●●

●●

●

●●●

●
●

●

●
●

●

●●●

●
●

●

●●

●

●
●

●

●
●

●

●●●

●
●

●

●
●

●

●●

●

●●●

●
●

●

●●

●

●●●

●●

●

●●●

●
●

●

●
●

●

●
●

●

●●●

●
●

●

●●●

●●

●

●
●

●

●
●

●

●●●

●
●

●

●
●

●

●●●

●●

●

●●
●
●●●●●●

●
●

●

●
●

●

●●
●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●●

●

●●
●

●
●

●

●●

●

●
●

●

●
●

●

●●

●

●●
●
●●

●

●
●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●●
●
●●
●

●●

●

●●

●

●●
●
●●
●

●●

●

●●

●

●
●

●

●●
●

●●

●

●●

●

●
●

●

●●

●
●●
●

●
●

●

●●

●

●
●

●

●
●

●

●
●

●

●●
●

●●

●

●●
●

●
●

●

●
●

●

●●

●

●
●

●

●●

●

●
●

●

●●
●

●
●

●

●●
●

●
●

●

●●

●

●
●

●

●
●

●

●
●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●●
●
●●
●

●
●

●

●
●

●

●
●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●●

●

●●

●

●
●

●

●●

●

●
●

●

●●

●

●
●

●

●
●

●

●●

●

●
●

●

●
●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●
●

●

●●

●

●
●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●
●

●

●●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●●

●

●
●

●

●●

●

●
●

●

●
●

●

●
●

●

●●

●

●
●

●

●
●

●

●●

●

●
●

●

●●

●

●
●

●

●●

●

●
●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●
●

●

●
●

●

●
●

●

●
●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●
●

●

●●

●

●
●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●
●

●

●
●

●

●●

●

●
●

●

●●

●

●
●

●

●
●

●

●●

●

●
●

●

●
●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●
●

●

●●

●

●
●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●
●

●

●
●

●

●●

●

●●

●

●
●

●

●●

●

●
●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●
●

●

●
●

●

●
●

●

●
●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●
●

●

●
●

●

●
●

●

●
●

●

●●

●

●●

●

●●

●

●
●

●

●
●

●

●●

●

●●

●

●●

●

●
●

●

●
●

●

●
●

●

●●

●

●
●

●

●
●

●

●
●

●

●
●

●

●●

●

●
●

●

●●

●

●●

●

●
●

●

●
●

●

●●

●

●●

●

●●

●

●
●

●

●
●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●
●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

ALL P.P. SAW

S.C. S.S. W.C.D.

0.001

0.01

0.1

1

10

100

1000

0.001

0.01

0.1

1

10

100

1000

0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000
Instance index when sorted by average time to solve

(average between the methods)

T
im

e
to

 s
ol

ve
 (

se
co

nd
s,

 lo
g1

0
sc

al
e)

algorithm ● ● ●EDUK2 MGREENDP UKP5

Source: the author.

In Figure 5.1), the subset-sum (S.S.) plot does not show the run times of

the MGREENDP algorithm. This happens because it fails automatically over in-

stances where the two most efficient items have the same efficiency (what always

65

happens at subset-sum instances). We could fix this problem, but this would disable

MGREENDP bounds check (which it is its main feature) and make the algorithm

even more similar to UKP5. So we opted for not running MGREENDP over those

instances.

Figure 5.1 shows that, except for Strong Correlated (S.C.) and S.S., the run

times of the EDKU2 runs often show two main trends. The first trend starts at

the left of the x axis and covers UKP5 and MGREENDP (i.e. no run of UKP5

or MGREENDP has a run time above this trend). The second trend begins at

middle/right of the x axis and is composed of run times significantly smaller than

UKP5 and MGREENDP. Both trends merge in a single trend that points to the top

right corner of the chart. UKP5 and MGREENDP present similar run times that

form plateaus. Those plateaus aggregate instances that take about the same time

to solve by UKP5/MGREENDP.

The author believes that the second EDUK2 trend is formed by instances

where the B&B preprocessing phase had considerable success (stopped the compu-

tation or used bounds to remove items before executing the DP). This would also

explain the lack of this trend at the S.C. and S.S. instance classes, where such bounds

and tests have less effect (the S.S. instances do not have different efficiency between

items and, consequently, are little affected by bounds). When EDUK2 B&B phase

do not solve the instance or help to greatly reduce the amount of states, the run

times of the EDUK2 DP phase are greater than the UKP5 and MGREENDP times.

The plateaus formed by the UKP5 and MGREENDP runs show very little

variation of the run times among some groups of instances. A closer examination

of the data reveals that the instance groups (plateaus) aggregate instances with the

same number of items (for the same distribution), or instances with different number

of items that are a magnitude smaller (or greater) than the numbers of items of the

plateau(s) above (or below). This behaviour shows that UKP5 and MGREENDP1

are little affected by the specific items that constitute an instance, and that the

instance size and distribution are good predictors of the UKP5/MGREENDP run

time.

EDUK2 seems to have a much greater variation between the run times for

instances with similar number of items of the same distribution. We can see a line

with a slope of about 45 degrees close to the top right corner of the charts. This

line is over a logarithmic y axis, so it is a huge variation compared to the UKP5

66

plateau below it, which is solving the same instances (these instances, as we have

seen above, have similar number of items).

The run times of UKP5 and MGREENDP are very similar, especially in the

datasets Without Collective Dominance (W.C.D) and Postponed Periodicity (P.P.),

in which MGREENDP has a small advantage. This should come at no surprise

as they are similar algorithms. What is surprising is its behaviour at SAW and

S.C. instance classes, in which the situation is reversed, and MGREENDP takes

considerably more time than UKP5 in many cases. The behaviour at those two

classes can be explained by three main factors.

The first factor is a characteristic of the optimal solutions from the SAW and

S.C. instances. The optimal solutions of these distributions are composed of about

c
wb

copies of the best item and a single copy of another item. This happens because,

in such distributions, the smallest item is the best item (as already pointed out in

Sections 3.2.2 and 3.2.5). This characteristic gives a big importance to the best item

in those instances, and together with the next two factors, it explains the algorithms

behavior.

The second factor is that MGREENDP solves the pricing subproblems with-

out the best item. The algorithm does that to allow for a mechanism that periodi-

cally checks if it can stop the computation and fill the remaining knapsack capacity

with copies of the best item. Solving the DP subproblems without the best item

weakens the effect of the solution dominance applied by MGREENDP (also used by

UKP5). Some solutions that would be never be generated in UKP5 will be gener-

ated in MGREENDP, since better solutions (using the best item) do not exist to

dominate those inferior solutions.

The third and last factor is the periodicity check applied by UKP5. As with

the MGREENDP mechanism discussed above, if it finds that the remaining capacity

can be filled with copies of the best item, then UKP5 is stopped. As this check does

not remove the best item from the item list, it results in less overhead than the

MGREENDP test for those instances. The UKP5 periodicity check benefited 222

of the 240 S.C. instances and 972 of the 1100 SAW instances.

In summary, for the instances of the PYAsUKP dataset, UKP5 and MGREENDP

often need less time than EDUK2 to solve an instance. PYAsUKP solves some in-

stances in less time than UKP5 and MGREENDP, but it takes much more time than

UKP5/MGREENDP to solve the greatest instances. For some distributions, UKP5

67

takes slight more time than MGREENDP; for other distributions, MGREENDP

takes considerably more time than UKP5. It should also be noted that MGREENDP

needs a workaround to work with distributions that allow the highest efficiency to

be shared by many items.

5.2.1 MTU1 and MTU2 (C++ and Fortran)

This subsection serves two purposes. The first purpose is to show that the

implementations of MTU1 and MTU2 written by the author of this thesis, in C++,

are on par with the original ones, written in Fortran77, and therefore the C++

implementations can be used in the remaining experiments. The second purpose

is to complement the comparison presented in last section by showing that both

algorithms (independent of the implementation) are not competitive with UKP5,

MGREENDP, and EDUK2 when executed over the PYAsUKP dataset.

The Fortran codes used were not exactly the original MTU codes. The

only difference to the original code was that any 32 bits integers or float vari-

ables/parameters were replaced by their 64 bits counterparts.

The two implementations of the MTU1 algorithm have no significant differ-

ences (besides the programming language). The only significant difference between

the MTU2 implementations was the algorithm used to partially sort the items array.

The original algorithm described in (MARTELLO; TOTH, 1990a) did not specify

the exact method for performing this partial sorting. The original implementation

used a complex algorithm developed by one of the authors of MTU2 in (FISCHETTI;

MARTELLO, 1988) to find the kth most efficient item in an unsorted array (and

then sort). Our implementation uses the std::partial_sort procedure of the stan-

dard C++ library algorithm. Our implementation also checks if the entire vector

is sorted before starting to execute the partial sorts, and it sorts by non-increasing

efficiency and if tied by non-decreasing weight. The author of this thesis has made

available the exact codes used in the experiment and the version of the compiler

used1.

1The exact version of the code used for compilation is available in <https://github.com/henriqu
ebecker91/masters/tree/42ecda29905c0ab56c03b7254b52bb06e67ab8d7>. The code was compiled
using the available Makefiles, and both the gcc and gcc-fortran versions were the 6.1.1 (2016-06-02).
The Makefile pass the -O3 flag for both gcc and gcc-fortran. The Fortran implementation reads
the same instances from a simplified format, which preserves the order of the instance item list.
The binary ukp2sukp.out (codes/cpp) was used to convert from one format to the other.

https://github.com/henriquebecker91/masters/tree/42ecda29905c0ab56c03b7254b52bb06e67ab8d7
https://github.com/henriquebecker91/masters/tree/42ecda29905c0ab56c03b7254b52bb06e67ab8d7

68

The test was performed with the reduced PYAsUKP benchmark (see Sec-

tion 3.2.6). The author tried to execute the four B&B algorithms over the entire

PYAsUKP dataset, but many runs were ended by timeout (run time greater than

1000 seconds), and executing the four B&B codes over the 4540 instances would

take time from more relevant experiments. Executing the four B&B codes over the

reduced PYAsUKP dataset suffices to show that they cannot compete with UKP5,

MGREENDP, and EDUK2 (compared in Section 5.2) if they were executed over the

entire PYAsUKP dataset.

Figure 5.2: Comparison between MTU1 and MTU2, C++ and Fortran implemen-
tations.

●●
●●●●●●
●●
●
●
●●
●●
●
●●●●●
●●
●●
●
●
●
●
●

●

●●
●
●
●
●
●
●
●
●
●
●

●

●●
●
●
●
●●
●●

●
●
●●●●●
●
●
●

●
●
●●●●●●●●●●●●●●●

●
●

●

●

●

●●●●●
●●●●●●
●
●●
●●●●
●●
●●
●●

●

●●●●

●

●●
●●●●
●●●●●

●

●●

●
●●●●
●
●

●

●●
●
●●●●●
●

●

●

●

●

●

●
●
●
●

●
●
●
●
●
●
●
●
●●
●
●

●
●
●
●

●

●

●

●●
●

●

●
●●
●●
●
●
●

●

●●
●
●
●●
●

●

●
●
●
●
●
●
●
●
●●
●
●

●

●
●●
●●
●
●
●
●
●●
●
●
●
●
●●
●
●
●●
●●
●
●
●
●
●●
●
●
●
●
●
●
●
●
●●
●●
●

●

●

●
●●
●
●
●
●
●●
●●
●
●
●●
●●
●●
●
●
●●
●●
●
●
●
●
●●
●
●
●●
●
●
●
●
●
●
●●
●
●
●●
●
●
●●
●
●
●●
●
●
●●
●
●
●
●
●
●
●
●
●●
●●
●●
●
●
●
●
●
●
●●
●
●
●
●
●
●
●
●
●●
●●
●
●
●●
●
●
●●
●
●
●
●
●
●
●
●
●
●
●●
●●
●●
●●
●
●
●
●
●
●
●
●
●●
●●
●●
●●
●●
●●
●●
●
●
●
●
●
●
●●
●
●
●●
●●
●
●
●●
●●
●
●
●
●
●
●
●●
●●
●
●
●
●
●●
●
●
●
●
●●
●●
●●
●
●
●
●
●●
●
●
●●
●●●
●
●
●
●●
●●
●●
●
●
●●
●●
●●
●●
●
●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●● ●●●●●●●●●●●● ●●● ●●●●●●●● ●●● ●● ●● ●●●●●● ●● ● ●● ● ● ●●●●●●●● ●●●●● ●●● ●● ●●● ●●●●● ●● ●●●● ●● ●●●● ●● ●●● ●● ●●● ●●●●● ●●●●●●● ●●●●●● ● ●● ●●●●●●●●● ●●● ●● ● ● ●●● ●● ●● ●● ●●●●● ●●●● ●●●● ●●●● ●●● ●●●● ●●● ●●●● ●● ●●● ● ●●● ●● ●● ●● ● ●● ●●● ●● ●●● ●●● ●● ● ●●● ●● ●● ●● ●●●●● ●●●●● ●●● ●●●● ●●● ●● ●● ●●●● ●● ● ●● ●● ● ●●● ●●●● ●● ● ●● ●● ● ●● ●●● ●●●● ● ●● ●● ● ●●●● ● ●●● ●● ● ●●●●● ● ●● ● ●●● ●● ●● ● ●● ●● ●● ●●●●● ●● ● ●● ●● ●●● ● ●●● ●●● ● ●●● ●● ●● ●● ●● ● ● ●● ●●● ● ●

0.001

0.01

0.1

1

10

100

1000

0 100 200 300 400
Instances sorted by mean time to solve

(mean between algorithms)

T
im

e
to

 s
ol

ve
(s

ec
on

ds
, l

og
10

 s
ca

le
)

language ● ●C++ Fortran

MTU1 (Fortran vs C++)

●●●●
●●●●
●●●●●●●
●●●●●●
●

●

●
●
●
●
●●●

●●●
●●●
●
●●

●●

●●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●
●
●
●
●●●
●

●

●

●●●

●

●

●
●

●●

●

●

●

●
●●
●

●
●

●

●

●●
●

●

●●

●●
●
●
●●●●
●●●●●●●
●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●
●

●

●

●

●

●●

●

●

●●

●
●

●●
●

●

●
●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●
●●

●

●
●
●

●

●●

●

●

●
●●
●
●●

●

●

●●
●
●●
●

●
●●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●
●●●●
●

●

●

●

●

●

●

●●

●

●
●●
●
●
●
●
●●

●

●
●

●

●
●●
●
●●
●
●

●

●
●
●

●
●●

●

●
●
●●

●
●
●●

●

●●
●

●
●

●●

●

●

●
●●●●
●

●●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●
●●

●

●

●
●
●

●

●

●
●●
●

●

●

●

●

●●●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●
●

●●

●
●

●●

●
●

●

●

●

●

●●

●

●
●●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●● ●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●● ●●●●●● ●●●●●●●● ●●●● ●●●●● ●● ●●●●● ●●●● ●●●●● ●●●● ●●● ●●●●●● ●●●● ●● ● ●●● ●● ● ●●●●●● ●●● ●●● ●● ●● ●● ● ●● ● ●● ●●●●●●● ● ●●●● ●● ●●●●● ● ●●●●●●● ● ●● ● ● ●●● ● ●● ● ●● ●●● ●●● ● ●●●● ●●● ●● ●●●● ●●●● ● ●● ●●● ● ●●● ●●● ●● ●● ●●●● ●● ●● ● ●● ●●● ● ●●●● ●●●● ●● ●●● ●●● ●● ●●●● ●● ●●● ●● ●● ● ●●●● ● ●● ●●● ● ●●● ●● ●● ●● ● ●● ●● ●● ●● ● ●●● ●●●● ● ●● ●● ●● ● ●●● ● ●● ●●●● ●● ●● ●●●●● ● ●● ● ●●●● ●● ● ●● ●●●●● ●●● ● ●●● ● ● ●●● ●● ● ●●●● ●● ●●

0.001

0.01

0.1

1

10

100

1000

0 100 200 300 400
Instances sorted by mean time to solve

(mean between algorithms)

T
im

e
to

 s
ol

ve
(s

ec
on

ds
, l

og
10

 s
ca

le
)

language ● ●C++ Fortran

MTU2 (Fortran vs C++)

Source: the author.

We can see that the MTU1 implementations had a very small variation, with

the C++ version being slightly faster. The MTU2 implementation had a bigger

variation. We do believe that this variation is caused by the small difference in

ordering and the difference of sorting algorithms.

There is a trend between the values 180 and 230 of the x axis (CPP-MTU2).

This trend is composed by the subset-sum instances. The subset-sum instances are

69

always naturally sorted by efficiency as their efficiency is the same for all items (the

weight and profit are equal). The instance when generated by PYAsUKP is also

sorted by non-decreasing item weight, what makes it perfectly sorted for our C++

implementation. The Fortran implementation does not seem to work well with

this characteristic of the subset-sum instances. We have chosen to use the C++

implementation in our experiments. The reasons are: the C++ implementation

can read the same format used by PYAsUKP (and the other algorithms); with

the exception of PYAsUKP (which uses OCaml) all other methods use C++ and

the same structures; choosing the Fortran implementation would considerably harm

MTU2 run times for something that seems to be a minor implementation detail.

5.2.2 Algorithms implemented but not used

Harold Greenberg wrote a paper with two other methods for solving the

UKP, (GREENBERG, 1986), and it was published after (GREENBERG; FELD-

MAN, 1980) (who proposed the algorithm GREENDP). The author of this thesis

found interesting to implement those algorithms too, as they used different ap-

proaches2, and also because they were from the same author that already designed

an efficient algorithm. However, the first algorithm proved itself very time- and

memory-consuming, and the second algorithm did not work for all cases (could not be

considered an exact method without using a backup solver to solve instances where

the method failed). After some tests it became clear that the intent of the paper was

a theoretical exploration of new approaches, not proposing efficient algorithms, and

the algorithms were discarded from experimentation over this benchmark instances.

Readers who are interested in those methods can check implementations of them,

made available at Github3.

2Those approaches are described as “following the corner polyhedron approach of integer pro-
gramming” and “the approach of solving (K) as a group knapsack problem.”.

3The C++ code implementing both methods can be found at <https://github.com/henriquebec
ker91/masters/blob/e2ff269998576cb69b8d6fb1de59fa5d3ce02852/codes/cpp/lib/greendp.hpp>.

https://github.com/henriquebecker91/masters/blob/e2ff269998576cb69b8d6fb1de59fa5d3ce02852/codes/cpp/lib/greendp.hpp
https://github.com/henriquebecker91/masters/blob/e2ff269998576cb69b8d6fb1de59fa5d3ce02852/codes/cpp/lib/greendp.hpp

70

5.3 Solving the BREQ 128-16 Standard Benchmark

We have run eight algorithms over the BREQ 128-16 Standard Benchmark

(proposed in Section 3.4). The results confirm our hypothesis that this distribution

would be hard to solve by DP algorithms and easy to solve by B&B algorithms.

Figure 5.3: Benchmark with the 128-16 Standard BREQ instances.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1e−03

1e−01

1e+01

1e+03

2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576
Instance size (n value, log2 scale)

T
im

e
to

 s
ol

ve
 (

se
co

nd
s,

 lo
g1

0
sc

al
e)

algorithm
●

●

●

●

●

●

●

●

cpp−mtu1

cpp−mtu2

eduk

eduk2

mgreendp

mgreendp1

ukp5

ukp5_sbw

Source: the author.

Let us examine Figure 5.3. The MGREENDP1 algorithm (a CA algorithm)

is clearly dominated, and after the first two instance sizes, all of its runs end in

timeout. So we will exclude it from the rest of the analysis.

The rest of the methods form two lines with different slopes, one line with

a steep slope and a line with a more gradual slope. The steep slope line shows

algorithms whose time grows very fast relative to the instance size growth. This

group is mainly composed by the DP methods: UKP5, UKP5 SBW (i.e. UKP5

Sorted By Weight), and the EDUK algorithm. The second group, which forms a

more gradual slope, has algorithms whose time grows much slower with the instance

growth. This group is mainly composed by B&B and hybrid methods, as: MTU1,

71

MTU2, EDUK2 and MGREENDP.

Examining only MTU1 and MTU2, we can clearly see that for small instances

their times overlap, but with the instance size growth the core problem strategy of

MTU2 (that tries to avoid sorting and examining all the items) begins to pay off,

making it the best algorithm to solve BREQ instances.

The behavior of EDUK2 shows that the default B&B phase (executed before

defaulting to EDUK) solves the BREQ instances in all cases. If it did not, some

EDUK2 points would be together with the EDUK points for the same instance size.

Among the pure DP algorithms, EDUK was the one with the worst run times, being

clearly dominated by our two UKP5 versions.

The UKP5 algorithm sorted the items by non-increasing efficiency, and had

the y∗ bound and periodicity checking enabled. These last two optimizations ben-

efited none of the one hundred runs. No knapsack capacity from an instance was

reduced by the use of the y∗ bound; all instances had only overhead from the use

of the periodicity checking. The UKP5 SBW sorted the items by increasing weight

and had these two optimizations disabled. The benchmark instance files had the

items in random order, so both algorithms used a small and similar time ordering

the items4.

The UKP5 SBW times had a much smaller variation than the UKP5 for the

same instance size, which can be attributed to the change in ordering (as the two

previously cited optimizations had only wasted time with overhead). The decreasing

efficiency ordering helped UKP5 to be faster than UKP5 SBW in some cases, and

turned it slower in others, what does not give us a clear winner.

The MGREENDP is a modern implementation in C++, made by the author,

of an algorithm made by Harold Greenberg. The algorithm of Harold Greenberg

(that was not named in the original paper) was an adaptation of the ordered step-off

algorithm from Gilmore and Gomory. This algorithm periodically computes bounds

(similar to the ones used by the B&B approach) to check if it can stop the DP com-

putation and fill any remaining capacity with copies of the best item. In the majority

of the runs, the bound computation allowed the algorithm to stop the computation

at the beginning, having results very similar to EDUK2 (the hybrid B&B-DP algo-

rithm). However, six of the MGREENDP executions had times in the steep slope

line (the bound failed to stop the computation). Without the bound computation,

4It is interesting to note that, except for the small items that have profit rounding problems, in
BREQ instances, the increasing efficiency order is the increasing weight order.

72

MGREENDP is basically the ordered step-off from Gilmore and Gomory (which is

very similar to UKP5, as already pointed out); consequently, those six outlier runs

have times that would be expected from UKP5 for the respective instance size.

A run from the greatest instance size and one from the second greatest in-

stance size were both ended by timeout. The bound failed to stop the computation

and the DP algorithm was terminated by timeout.

While the simple, multiple and collective dominances are rare in a BREQ

distribution with integer profits, the solution dominance used by UKP5 works to

some extent. The UKP5 combines optimal solutions for small capacities with single

items and generate solutions that, if optimal for some capacity, will be used to

generate more solutions after (recursively). In a BREQ instance, solutions composed

of many small items rarely are optimal and, consequently, often discarded, wasting

the time used to generate them. The weak solution dominance used by UKP5

does not completely avoid this problem, but helps to generate less of the useless

subproblem solutions.

5.4 Solving pricing subproblems from BPP/CSP

The experiment described in this section is different from the previous exper-

iments. All the other experiments consisted of instances of the UKP with specific

distributions saved in files, and executables that read those instances, solved them

and returned the solving time. In this experiment, the instances are not UKP in-

stances but Bin Packing Problem (BPP) instances and Cutting Stock Problem (CSP)

instances. The times presented are the sum of the times used to solve all the pric-

ing subproblems (and/or master problems) generated while solving the continuous

relaxation of those BPP/CSP instances.

In a pricing subproblem, the profit of the items is a real number. Adapting

MTU1 for using floating point profit values proved to be difficult, as the bound

computation procedure is based on the assumption that both weight and profit

values were integer. The solution found was to multiply the items profit values by a

multiplicative factor, round them down and treat them as integer profit values. The

multiplicative factor chosen was 240. The inner working of floating point numbers

favored the choice of a potency of two. This way, an integer profit value is exactly

the first 40 bits of the mantissa from the respective floating point profit value.

73

Also, 240 ≈ 1012, so any value discarded by the rounding down is smaller than one

part in one trillion. The code using MTU1 as solver for the pricing subproblem will

be referred to as MTU1 CUTSTOCK.

To measure the impact of the conversion described above, the author used

two versions of the UKP5, one using floating point profit values, and the other us-

ing integer profit values and the same conversion described above. The UKP5 by

default sorts the items by non-increasing efficiency, but it works with any order-

ing. The items from a pricing subproblem are always naturally sorted by increasing

weight5. The author executed the two UKP5 variants with sorting enabled and

disabled, to verify if the sorting cost would pay off. Consequently, four versions

of UKP5 were used in the tests, for all combinations of profit type (the original

floating point, or the converted integer), and sorting (sorting by non-increasing effi-

ciency, or not sorting, which is the same that having the items sorted by increasing

weight). The codes using each one of the four versions of the UKP5 described above

to solve pricing subproblems will be referred to as: UKP5 FP CUTSTOCK (float-

ing point, sort by efficiency), UKP5 INT CUTSTOCK (integers, sort by efficiency),

UKP5 FP NS CUTSTOCK (floating point, no sort) and UKP5 INT NS CUTSTOCK

(integers, no sort).

The CPLEX was already being used for solving the master problem, and was

used to solve the pricing subproblem too. The code using MTU1 as solver for the

pricing subproblem will be referred to as MTU1 CUTSTOCK. For reasons explained

in Section 5.4.4, only UKP5, CPLEX and MTU1 were used in this experiment.

In (GILMORE; GOMORY, 1961), it is suggested that instead of solving the

pricing subproblem exactly, an heuristic for the UKP could be used, and only if

the cutting pattern found by the heuristic did not improve the solution, the exact

method would be used. In (GILMORE; GOMORY, 1963, p. 17), the experiments

show that there is gain in always solving the pricing subproblems exactly. In the

experiment described in this section, the pricing subproblem is always solved exactly.

The timeout used in those experiments was of 600 seconds. This choice was

based in the number of CSP instances, and that each one of them had the potential

for generating thousands of pricing subproblems.

The dual values of the CSP master model can be negative or zero (non-

positive). Such non-positive values can break codes optimized with the assumption

5The term ‘increasing’ is used because two items never share the same weight in a pricing
subproblem.

74

that all items have a positive profit. Consequently, in the implementations of this

experiment, those items are removed before solving the pricing subproblem with a

non-CPLEX solver (CPLEX has no problem with such non-positive profits). The

indices of the items in the solutions of the pricing subproblems are remapped to

their original values before returning the solution to the master problem. The same

process of remapping is already done for algorithm that change the items order.

The time taken by sorting, conversion and remapping procedures is accounted in

the times taken by the UKP algorithms to solve the pricing subproblems.

Figure 5.4: Total time used solving the continuous relaxation of the BPP/CSP.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●
●

●

●
●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●●●

●

●

●

●●
●
●

●

●

●
●

●
●
●

●

●
●
●
●
●

●

●
●

●

●
●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●
●
●

●

●
●
●
●
●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●
●●

●

●

●

●

●●

●

●●●
●
●

●

●●

●

●
●

●

●

●

●

●●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●
●
●
●

●

●

●

●

●●

●

●
●
●
●
●

●

●
●

●

●●

●

●
●
●
●
●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●
●
●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●●●●●

●

●
●
●
●
●

●

●
●
●
●
●

●

●
●
●
●
●

●

●●
●●●

●

●●
●
●
●

●

●●
●
●
●

●

●
●
●●●

●

●●●
●
●

●

●

●
●
●●

●

●
●
●
●

●

●

●

●
●
●
●

●

●

●

●
●●

●

●
●
●
●
●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●●
●
●

●

●●
●●
●

●

●
●
●
●
●

●

●
●●
●●

●

●●
●
●●

●

●
●
●

●

●

●

●●

●

●

●

●

●●●
●
●

●

●
●
●
●
●

●

●●●
●●

●

●
●
●

●

●

●

●
●

●
●●

●

●
●
●
●
●

●

●●
●
●●

●

●
●
●
●●

●

●

●

●●

●

●

●

●

●
●●

●

●
●●●●

●

●
●
●
●
●

●

●●●
●●

●

●●●●●

●

●
●
●
●

●

●

●●●●●

●

●●●●●

●

●●●●●

●

●
●
●
●●

●

●●
●
●
●

●

●●●●●

●

●●●●●

●

●●●●●

●

●●

●

●

●

●

●●●
●●

●

●●
●
●
●

●

●●●
●●

●

●●●●●

●

●

●

●

●

●

●

●
●
●●●

●

●
●●●●

●

●
●●●●

●

●●
●●
●

●

●●
●
●

●

●

●●

●
●

●

●

●●●●
●

●

●●●●●

●

●

●
●
●

●

●

●●●
●
●

●

●●
●●●

●

●
●
●●●

●

●●
●●●

●

●
●●●●

●

●
●
●●●

●

●
●
●●
●

●

●
●●●●

●

●●●●
●

●

●●
●●●

●

●●●●●

●

●

●

●

●

●

●

●●●●
●

●

●●●●●

●

●
●●●●

●

●●●
●●

●

●●●●
●

●

●●●●●

●

●●●●●

●

●
●
●
●
●

●

●●●●●

●

●●●●
●

●

●●●●●

●

●●
●●
●

●

●●●●
●

●

●●●
●
●

●

●●●●●

●

●●●●●

●

●
●

●

●●

●

●
●●●●

●

●●●
●●

●

●●●●
●

●

●●●●●

●

●
●●●
●

●

●●
●●
●

●

●
●
●●●

●

●●●●●

●

●
●
●●●

●

●
●●●
●

●

●
●●●●

●

●●●●●

●

●●●●●

●

●
●●●●

●

●●●●●

●

●
●●●
●

●

●
●●
●
●

●

●●●●●

●

●●●●●

●

●●●●●

●

●●●●●

●

●●●●
●

●

●●●●
●

●

●
●●
●
●

●

●●●●●

●

●●●●●

●

●●●●●

●

●●
●●●

●

●
●●●
●

●

●●●●●

●

●
●●
●●

●

●●●
●
●

●

●●●●●

●

●●●●●

●

●●●●●

●

●●●●●

●

●
●●
●
●

●

●●●●
●

●

●
●
●●●

●

●●●●●

●

●●●●●

●

●●●●
●

●

●●●●●

●

●●●
●●

●

●
●●●
●

●

●
●
●●●

●

●●●●
●

●

●●●●●

●

●●●●●

●

●●●●●

●

●●●●●

●

●●●●●

●

●●●●●

●

●
●
●●●

●

●
●●●●

●

●●●●●

●

●●●●●

●

●●●●●

●

●●
●●
●

●

●

●●
●●

●

●●●●●

●

●
●

●●
●

●

●●●●
●

●

●●●
●
●

●

●●●●●

●

●●●●●

●

●●●●●

●

●●●●
●

●

●
●
●
●
●

●

●
●●●●

●

●
●●●●

●

●●●
●●

●

●●●●●

●

●●●●●

●

●●●●●

●

●●●●●

●

●
●●●
●

●

●
●●●●

●

●●●●●

●

●●●●●

●

●
●●●●

●

●●●●
●

●

●●

●●●

●

●●●●●

●

●●●●●

●

●●
●●●

●

●●●●●

●

●●
●●●

●

●
●●●
●

●

●●●●●

●

●●
●
●
●

●

●
●
●
●
●

●

●●●●●

●

●●●●
●

●

●●●●
●

●

●●●●●

●

●
●●
●●

●

●●●●●

●

●●●●
●

●

●●●●
●

●

●●●●●

●

●●
●●●

●

●●●●●

●

●●●●●

●

●
●
●●
●

●

●
●●●●

●

●●●●●

●

●●●●●

●

●
●
●●
●

●

●

●
●●●

●

●●
●●●

●

●●●●
●

●

●
●
●
●●

●

●
●
●●●

●

●●●●
●

●

●●
●●●

●

●●●●●

●

●●
●●●

●

●
●●
●●

●

●●●●●

●

●●●●●

●

●●●●
●

●

●
●
●●●

●

●
●
●●●

●

●●●●●

●

●●●●
●

●

●●●

●

●

●

●●●●●

●

●●●●
●

●

●●●●●

●

●●●
●●

●

●●
●
●
●

●

●●
●●●

●

●●●●●

●

●●●●●

●

●●●●●

●

●●
●
●●

●

●●●●
●

●

●
●●●
●

●

●●●●
●

●

●●
●●
●

●

●●●●
●

●

●
●●●●

●

●●●●
●

●

●●●●●

●

●●●●●

●

●●●●●

●

●
●
●●●

●

●●●●●

●

●●
●
●
●

●

●●●●●

●

●
●
●●●

●

●●●●
●

●

●
●
●
●
●

●

●●●●●

●

●●●●●

●

●●●●●

●

●●●●
●

●

●●
●●

●

●

●●●●●

●

●●●●●

●

●
●
●●●

●

●
●●●

●

●

●●●●●

●

●
●●●●

●

●
●●●●

●

●
●
●●
●

●

●●●●
●

●

●●
●●●

●

●
●●●
●

●

●●●●●

●

●●●●

●

●

●●●●●

●

●
●
●●●

●

●
●
●●●

●

●●●●●

●

●●●●●

●

●●●●●

●

●
●
●●
●

●

●●●●●

●

●
●
●●●

●

●●●●
●

●

●●
●
●
●

●

●●●●●

●

●
●●●
●

●

●●●●

●

●

●●●●●

●

●●●●●

●

●●●●●

●

●●●●●

●

●
●●●●

●

●●●●●

●

●●
●●
●

●

●●●●
●

●

●●●●
●

●

●
●●●
●

●

●●●●
●

●

●
●●●

●

●

●●
●●●

●

●●●●
●

●

●●●●
●

●

●●

●●
●

●

●●●●
●

●

●●●●
●

●

●●●●
●

●

●●●●●

●

●●●●
●

●

●●●●●

●

●●●●
●

●

●●●●●

●

●
●●●●

●

●●●●●

●

●●●●
●

●

●●●●
●

●

●●●●●

●

●
●
●●●

●

●●●●●

●

●●●●
●

●

●●●●
●

●

●●●●
●

●

●
●
●●●

●

●●
●●
●

●

●
●●●●

●

●●●●
●

●

●●
●●
●

●

●●●●●

●

●
●●●
●

●

●●●●
●

●

●●●●●

●

●●●●
●

●

●●●●●

●

●●●●●

●

●●●●
●

●

●●●●●

●

●●●●●

●

●●●●●

●

●●●●
●

●

●●●●●

●

●
●
●
●

●

●

●●●●●

●

●
●●●●

●

●●●●
●

●

●●●●
●

●

●●
●●●

●

●●●●

●

●

●●●●
●

●

●●●●
●

●

●●
●●
●

●

●●●●
●

●

●●●●
●

●

●●●●

●

●

●●●●
●

●

●●●●●

●

●●
●●
●

●

●●●●
●

●

●
●
●●●

●

●●●●

●

●

●●●●●

●

●●●●●

●

●●●●●

●

●●●●●

●

●●●●
●

●

●●●●●

●

●●●●●

●

●●●●●

●

●
●
●●
●

●

●●●●●

●

●
●●●

●

●

●●●●
●

●

●●●●●

●

●●●●

●

●

●●●●
●

●

●●●●●

●

●●

●●
●

●

●●●●
●

●

●●

●●

●

●

●
●
●●●

●

●●●●●

●

●
●●●
●

●

●●●●
●

●

●●●●
●

●

●●●●
●

●

●●●●●

●

●●●●●

●

●●●●●

●

●●●●
●

●

●●●●●

●

●●
●●●

●

●●●●

●

●

●●●●
●

●

●●
●●●

●

●
●●
●

●

●

●
●

●

●

●

●

●●●●●

●

●
●●●

●

●

●●
●●
●

●

●
●
●●

●

●

●●●●
●

●

●●●●●

●

●●●●
●

●

●●●●
●

●

●●●●

●

●

●●●●●

●

●
●●●●

●

●●●●●

●

●●●●
●

●

●●●●
●

●

●●●●
●

●

●●●●●

●

●●
●●
●

●

●●●●
●

●

●●●●
●

●

●●●●●

●

●●●●●

●

●●●●●

●

●●
●●
●

●

●●●●

●

●

●
●●●●

●

●●●●●

●

●●●●

●

●

●●●●
●

●

●●●●
●

●

●●●●
●

●

●

●
●
●

●

●

●●●●●

●

●
●
●

●

●

●

●●●
●

●

●

●
●●●
●

●

●●●●

●

●

●●●●●

●

●
●●●

●

●

●
●

●●

●

●

●●

●●
●

●

●
●●●
●

●

●●●●

●

●

●●●●
●

●

●●●●●

●

●
●
●
●

●

●

●
●●●
●

●

●
●
●●●

●

●

●

●
●

●

●

●●●●
●

●

●●●●

●

●

●●●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●●
●

●

●
●
●●

●

●

●●●●
●

●

●●●●
●

●

●
●

●

●

●

●

●●●●
●

●

●●●●

●

●

●
●
●

●

●

●

●●●●
●

●

●

●

●

●

●

●

●●●●
●

●

●
●
●●

●

●

●
●
●●

●

●

●●
●●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●●
●●

●

●

●
●●●

●

●

●
●●●
●

●

●
●
●●

●

●

●
●●●

●

●

●●●●

●

●

●●●●

●●

●●●●

●●

●●●●

●●

●●●●

●●

●●●●

●●

●●●●

●●

●●●●

●●

●●●●

●●

●
●
●●

●●

●
●●●

●●

●●
●●

●●

●●●●

●●

●
●●●

●●

●
●
●
●

●●

●
●●●

●●

●
●●●

●●

●
●
●●

●●

●
●●●

●●

●
●
●
●

●●

●●●●

●●

●
●●●

●●

●
●
●●

●●

●
●●●

●●

●●●●

●●

●
●●●

●●

●

●
●
●

●●

●●●●

●●

●●●●

●●

●
●●●

●●

●●●●

●●

●
●●●

●●

●●
●●

●●

●●●●

●●

●
●
●●

●●

●
●●●

●●

●
●
●●

●●

●
●●●

●●

●●●●

●●

●
●
●
●

●●

●
●
●●

●●

●●
●
●

●●

●
●●●

●●

●
●
●
●

●●

●
●●●

●●

●
●●●

●●

●
●
●
●

●●

●●●●

●●

0.001

0.01

0.1

1

10

100

1000

0 200 400 600
Instance index when sorted by the

mean time methods spent solving the CSP's relaxation

C
S

P
's

 r
el

ax
at

io
n

to
ta

l t
im

e
(s

ec
on

ds
, l

og
10

 s
ca

le
)

algorithm
●

●

●

●

●

●

cplex_cutstock

mtu1_cutstock

ukp5_fp_cutstock

ukp5_fp_ns_cutstock

ukp5_int_cutstock

ukp5_int_ns_cutstock

Source: the author.

Let us examine Figure 5.4. To simplify visualization, in the instances that

CPLEX and MTU1 ended in timeout, these two methods are plotted as having used

exactly 600 seconds. Two facts should be immediately obvious: 1st) using CPLEX

to solve the pricing subproblems is not really competitive; 2nd) for the majority

of the CSP instances in the benchmark, solving their continuous relaxation with a

non-CPLEX method is very fast (takes less than one second).

The second fact is not so surprising considering that the original dataset

75

from (DELORME; IORI; MARTELLO, 2014)6 included many old datasets, as it

tried to be extensive; also, solving the continuous relaxation of a CSP instance takes

considerably less effort than solving the problem itself. To solve a CSP instance, a

B&B algorithm needs to solve the instance continuous relaxation multiple times. If

each relaxation takes more than couple of seconds to solve, then solving the original

CSP instance can become impracticable.

Figure 5.5: Total time used solving pricing subproblems (UKP) in the continuous
relaxation of the BPP/CSP.

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●●
●
●

●

●
●

●
●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●
●

●

●●●

●
●

●

●
●
●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●●●
●

●

●

●

●

●

●

●

●●●●
●

●

●●●●●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●
●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●
●●

●

●
●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●●

●

●

●

●

●

●●

●

●●●●●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●
●
●
●

●

●
●
●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●
●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●
●●

●

●●

●
●

●

●

●
●
●

●

●

●

●
●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●
●
●

●

●

●

●

●

●
●

●

●
●

●●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●
●
●
●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●
●
●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●
●
●

●

●

●

●
●●●

●

●
●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●
●●
●

●

●
●
●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●●

●

●

●

●
●
●●

●

●

●

●
●

●

●

●

●
●

●
●
●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●
●
●
●

●

●
●●●
●

●

●

●

●

●

●

●

●
●●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●
●
●

●

●

●

●
●

●

●
●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●
●
●
●●

●

●
●
●
●

●

●

●

●
●
●●

●

●

●
●
●
●

●

●

●

●

●

●

●

●
●
●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●
●

●

●

●
●
●●

●

●

●
●

●

●

●

●

●
●

●●

●

●●
●
●●

●

●

●

●
●●

●

●
●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●●●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●
●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●●●

●

●

●
●
●
●
●

●

●●
●

●
●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●
●●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●
●
●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●
●

●

●

●

●

●
●

●

●

●
●
●
●

●

●

●

●

●

●

●

●
●●

●
●

●

●
●
●
●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●●

●

●
●
●●

●

●

●

●

●
●

●

●

●
●
●
●●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●
●

●
●

●

●

●

●

●

●

●

●
●
●
●
●

●

●

●
●

●

●

●

●
●
●
●●

●

●

●
●

●

●

●

●

●
●
●
●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●
●
●

●

●

●

●
●
●

●

●
●
●
●
●

●

●

●
●
●
●

●

●
●

●

●
●

●

●
●
●
●
●

●

●●
●
●

●

●

●
●
●
●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●
●
●

●

●

●
●

●
●

●

●
●●
●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●
●
●
●

●

●

●

●
●
●

●

●

●
●
●
●

●

●

●

●

●

●

●

●●
●
●

●

●

●●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●
●
●
●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●
●
●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●●●●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●●●
●

●

●

●
●
●
●
●

●

●
●
●
●

●

●

●
●
●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●
●
●

●

●
●
●
●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●●

●

●
●●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●●●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●
●●

●

●

●

●
●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●
●
●
●

●●

●

●
●

●

●●

●

●

●

●

●●

●
●

●

●

●●

●

●
●
●

●●

●

●
●
●

●●

●
●
●
●

●●

●
●
●
●

●●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●●

●
●
●

●

●●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●●

●

●
●

●

●●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●●

●

●
●

●

●●

●

●
●

●

●●

●

●
●

●

●●

●

●
●

●

●●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

0.001

0.01

0.1

1

10

100

1000

0 200 400 600
Instance index when sorted by the

mean time methods spent solving pricing subproblems

To
ta

l t
im

e
(s

ec
on

ds
, l

og
10

 s
ca

le
)

algorithm
●

●

●

●

●

●

cplex_cutstock

mtu1_cutstock

ukp5_fp_cutstock

ukp5_fp_ns_cutstock

ukp5_int_cutstock

ukp5_int_ns_cutstock

Source: the author.

There is a small cluster of points where 450 < x < 550 and y < 0.1. This

cluster highlights the instances whose pricing subproblems were quickly solved by

the UKP5 variants but slowly solved by the CPLEX or MTU1. The same cluster

can be seen in Figure 5.5 (for y < 0.001), which only shows the time taken by solving

the pricing subproblems.

The author will focus on the runs that spent more than a second solving

6The dataset used in this section was described in Section 3.3. It is composed of 10% of the
instances used in (DELORME; IORI; MARTELLO, 2014), some gathered from datasets of the
literature and some proposed in the just cited work.

76

pricing subproblems.First, it becomes clear that the B&B approach is not viable

for larger/harder instances, as its exponential worst-case times make the problem

untractable. Second, there seems to be an advantage in not sorting the items, and

this difference is not caused by the time taken by the sorting procedure. In the runs

that lasted more than a second, the time used to sort the items was between 3%

and 0.5% of the time used to solve the pricing subproblems. Such small difference

does not explain the gap displayed in the graph. When the items were kept sorted

by increasing weight, UKP5 was up to two times faster than when the items were

sorted by non-increasing efficiency. Keeping the items sorted by increasing weight

seems to be the best choice for such instances. Third, it seems that executing all

computation using integers is slight faster than using floating point profit values,

but the difference is barely noticeable.

Figure 5.6: Percentage of time taken by solving pricing subproblems (UKP) in the
continuous relaxation of the BPP/CSP.

●

●

●

●
●

●

●
●
●

●
●

●

●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●
●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●
●●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●
●
●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●
●
●

●

●

●
●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●25

50

75

100

0 200 400 600
Instance index when sorted by the mean time taken to solve it

H
ow

 m
uc

h
of

 th
e

to
ta

l t
im

e
w

as
sp

en
t s

ol
vi

ng
 p

ric
in

g
su

bp
ro

bl
em

s
(in

 %
)

algorithm
●

●

●

●

●

●

cplex_cutstock

mtu1_cutstock

ukp5_fp_cutstock

ukp5_fp_ns_cutstock

ukp5_int_cutstock

ukp5_int_ns_cutstock

Source: the author.

Figures 5.4 and 5.5 can give the erroneous impression that solving the pricing

subproblems was where the majority of the solving time was spent. This is true in the

77

case of CPLEX, partially true for MTU1, and not true at all for UKP5. Figure 5.6

allows a better visualization of what was just said. When CPLEX is used to solve the

pricing subproblems, almost all total time is spent solving the pricing subproblems.

However, the time taken by non-CPLEX methods to solve the pricing subproblem

remained mostly below 25% of the total time (or even less). Also, it is clear that

when MTU1 CUTSTOCK used large amounts of time, it was consequence of the

MTU1 method taking too much time to solve the pricing subproblems.

In the case of CUTSTOCK UKP5 *, the most time-consuming instances

spent no more than 40% of the time solving the pricing subproblems (often consid-

erably less). This is not to say that, in such time-consuming instances, the pricing

subproblems were not harder. In Figure 5.6, where x > 550, we can see that there

is a rise of the relative time taken to solve the pricing subproblem instances with

UKP5. However, the reason for the growth in the total time spent to solve the

most time-consuming instances was that many cutting patterns had to be added to

the master problem before it could not be improved anymore; what results in more

iterations and, consequently, more instances of the pricing subproblem and master

problem solved.

Finally, Figure 5.7 shows that the time taken by solving the master model is

dependent on the instance itself, and not so much on the method used to solve the

pricing subproblems. Yet, we can see that using CPLEX to solve the pricing sub-

problems seems to make solving the master problem slightly easier. Such behaviour

seems to be related to the differences in the number of iterations (or master/pricing

subproblems) solved. This is a topic that will be explored in the following sections.

5.4.1 The differences in the number of pricing subproblems solved

In Figure 5.8, it is possible to see that the methods solved different numbers

of pricing subproblems for the same instance. The author used a constant for the

CPLEX seeds of the master problem solver and the method that used CPLEX as the

knapsack solver (cplex cutstock). All methods are deterministic, they will give the

same pricing subproblems if executed many times over the same instance. However,

for the same instance, the amount of pricing subproblems (and their profit values)

is affected by the algorithm chosen to solve them. This happens because the pricing

subproblems can have many optimal solutions, and different methods break this tie

78

Figure 5.7: Total time used solving the master problem in the continuous relaxation
of the BPP/CSP.

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●
●●
●

●

●●●

●

●
●●●

●

●

●

●

●

●

●●
●●
●
●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●
●

●

●●

●

●●
●●

●

●
●●
●●
●●

●
●

●

●

●

●●

●

●

●●

●

●●
●

●

●

●
●●●

●

●

●
●

●
●

●

●

●●

●●●

●

●●
●●

●

●

●

●

●

●

●

●

●●
●●●●

●

●
●●
●

●

●●

●
●

●

●

●
●

●

●

●

●

●●
●
●

●

●
●

●
●
●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●
●●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●●
●●

●

●

●●

●

●

●

●

●●
●

●

●

●

●
●
●

●

●

●

●

●

●
●●

●

●●
●

●

●

●
●

●
●
●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●
●

●
●
●
●●
●
●
●

●

●●
●
●
●

●

●●

●

●

●●

●

●●●
●
●
●
●

●

●

●●●
●●

●

●

●

●●

●
●

●

●
●●●

●

●
●

●

●
●

●

●

●
●●

●

●

●

●

●
●
●
●
●
●
●●
●

●

●
●●●
●
●
●
●
●
●

●

●

●
●
●
●
●

●

●

●●
●

●

●

●●●
●●●

●

●
●●

●

●

●
●●●●

●

●
●

●

●
●
●●
●●●

●

●

●
●●●

●

●

●
●
●

●●
●●
●
●

●

●

●

●

●

●
●●●●

●●

●
●

●

●

●

●
●
●●
●

●

●
●●●

●

●
●
●●

●

●●
●

●
●
●

●

●

●

●
●●●
●●●
●
●
●
●
●

●
●●●
●●●
●
●

●

●●●●

●

●
●●●

●
●
●
●●
●
●

●

●

●●
●
●
●
●
●●
●●
●
●
●
●●
●
●
●
●●
●●●●●●
●
●
●
●
●
●●
●
●
●
●
●
●
●
●

●

●●
●
●
●
●
●●
●
●
●

●

●

●
●●
●
●
●

●●

●
●
●
●

●
●
●●●
●●●

●

●

●

●

●

●
●
●
●
●
●●●
●
●
●
●
●
●
●
●

●

●●●
●

●

●

●

●
●●●●
●
●

●

●

●●

●

●
●
●
●
●●
●
●
●
●
●●●

●

●

●

●●
●
●

●

●

●●
●
●
●
●

●

●●

●

●

●

●●●
●

●

●
●
●●
●
●

●

●

●
●

●

●

●
●
●
●
●

●

●

●

●

●
●
●

●

●●●●

●

●●
●

●
●
●
●●●●

●

●

●●

●

●●
●
●
●●●
●
●
●
●●
●

●●●●●●●●

●

●

●

●
●
●
●●●
●
●
●
●
●●
●●
●
●●●
●

●

●

●
●●
●
●
●
●
●●
●
●

●
●●●●●●
●
●
●
●
●

●

●
●

●

●
●

●

●
●●

●

●
●
●

●●
●●
●

●

●●
●

●

●
●

●

●

●
●
●
●●
●●●●
●●
●

●●

●
●

●

●
●●
●
●
●

●●

●

●

●

●

●

●
●●
●
●
●
●
●
●
●

●

●
●
●
●
●

●●●

●

●

●
●
●●●
●
●
●
●
●●●
●
●
●
●
●

●

●
●●

●●●
●
●●
●
●
●
●
●
●●
●
●
●

●

●

●●
●
●
●●
●
●
●
●
●
●
●●●●
●●

●

●

●
●●
●
●●●
●●
●●

●

●
●
●
●●
●

●

●
●
●●●●
●
●●
●●
●●●
●
●
●
●
●
●●
●
●
●

●

●

●

●
●
●
●
●

●

●●●●
●
●●●●●●
●●●●
●●
●
●
●●
●
●
●●●●●●●
●
●●●
●
●●●
●●●●●●●
●
●●●
●
●
●
●●●●●
●●
●●

●

●
●●
●●
●●●
●
●●●●
●●●
●●●●●●
●●●●●●
●●●●●
●●●●●
●●
●
●
●●●
●●
●●●●●
●
●●●●●●●●●●
●

●●●●●●●
●
●
●●●●●
●
●●●
●●●●●
●
●
●
●

●

●
●

●●●●●●●
●●●●
●
●●●●●
●
●
●
●●●●●●●●●
●
●●●●●●
●
●●●●
●
●●●●●●
●●●

●

●●●
●●●●

●

●●
●●●●
●●●●●●●●
●●
●●
●●
●●●
●●●
●●●

●

●●●●●●●
●●●●
●●
●●●●

●

●●●●●
●
●
●●●●
●
●
●●●●
●●
●●
●●●●●●●●
●●●●●●●●
●●●●
●
●●●●●
●
●●
●●●

●●
●●●●

●
●
●●●●●
●●●●●●●●●●●●
●
●●●●

●

●●●●●●●●●●
●
●●
●●●
●

●

●●●●●

●

●●●●●●●
●●●●

●
●●
●●●●
●●●●●
●●●●●●●●

●
●●●

●
●●●●●
●
●●
●●●

●

●●●●
●
●●
●●●●
●
●●●●●
●●●●●●●
●●●
●
●
●
●●●●●●●
●●●●●●●●
●
●●
●●●●
●

●

●●●●●●●●●●●●
●●
●●●●
●●●●●●●●●
●●●
●●●
●
●●●●●●●●●●●●●
●●●●●●●●
●
●●●●
●●●●●
●●
●●●●●●
●●●●●
●●●●
●

●
●●●●●
●●
●
●●●●
●●●●●
●
●●●●●
●
●●●●
●

●

●●●●●
●

●●●●●
●●●●
●●●
●●●●●●
●●●●●●●●●●
●●
●●●●●

●
●●●●●
●●●●●●●●
●●●
●●
●
●●●●
●●●●●●
●●●●●●

●●
●●●●
●
●●●●●
●●●●●●
●
●
●●
●
●●●●
●●●
●
●●●●●

●
●●●●●●●●●●●●●●
●●●●
●●●●●●●●
●●●
●
●●●●●
●●●●●●
●
●●●●●

●

●●●●●●
●●●●●●
●
●●●●●●●

●●
●
●●
●●●●
●
●●●●●
●●●●●●●●●
●●
●●
●●●●●●●●
●●
●●
●●
●●●●
●●●●●●
●●●●●●●
●
●
●●
●

●
●●●●
●
●●●●●
●●
●
●●●
●
●●●●●
●●

●●●●●●
●●●●
●

●●●●●●●
●●●
●●
●●●●●
●
●●●●●

●

●●●●●●
●
●●●●●
●●●●●

●

●●●●●●●●●●●●
●●
●●●
●●●●●●●
●●●●●●●
●●●●
●

●
●●●
●●●●●●●●
●●●●●●●●●●●●●
●●●●●●
●●●●●
●
●●●
●●●●●●●●
●●●●●
●●
●
●●●
●●
●
●●●●
●
●●●
●●●●●●
●
●
●●●●●●●
●●●●
●
●●●●●●
●●●●
●●●●●●●
●●●
●●●●●
●
●●
●●●●●●●●
●
●
●●●●
●●
●●
●
●●●●●●●●●●
●●●●●●●●●●
●●●
●
●
●●●●●●
●
●●●

●

●
●●●●●●
●●●●●●●●●●●●●
●
●●●
●●●●●●
●●●●●●●●
●●●●

●
●●

●●●

●

●●●●●
●
●●
●●●●●●●●
●●●●
●●●

●
●●●●●●●
●●●●●
●●
●●●●
●●●●●●●●●●
●●●●
●●●
●
●●●●●●
●
●●●●●●
●
●●●●●●●●
●
●
●●●●●
●●●
●●
●
●●●
●●●

●

●●●●
●●●●●●●
●●●●●●●
●●●●●●●●●●●
●●●●●●●●
●●●●●
●●●●●
●
●●●●●
●
●●●●●●●●●●●●●●
●●●●●●●●●

●

●●●●●

●

●●●●●●●●
●
●●●●
●●●●●
●●●●●●●●●●●●
●●●●●●●
●●●●
●
●●●●
●
●
●●●●●●●
●●●
●
●
●●●●●

●
●●●●●●●●●●●●●
●●●●
●
●●●
●●
●
●●●●●

●

●●
●●●

●

●●●●●●
●●●●●●●●
●●●●●●●●
●●●●
●●●
●
●●●●●●
●●●●●
●●
●●●●●●
●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●
●●●●●●●
●●●●●

●

●●●
●●
●●
●●●●●
●●●●●●
●●●●●

●

●●
●●
●
●
●●●●●●●
●●●●●●●●●●
●●●●●●●
●●●●●

●

●●●●
●●●●
●●●
●●●

●●●

●
●
●
●●●●
●●●●●

●

●●
●●●

●

●●

●●●

●

●●●●●

●

●●●●●
●
●●●●●

●

●●●●●●●●●●
●●●●●●●●●●
●●●

●

●
●●●●

●

●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●

●

●●●●●

●

●●●●●

●

●●●●●
●
●●●●●●●●
●●●●
●●●●●

●

●●●●●

●

●●●●●

●

●●●●●●
●●●●●

●

●●●●●●
●●●●●●●
●●●●●●
●●●●●
●●●●●●●
●●●●
●
●●●●●

●

●●●●●●
●●●●●●
●●●●●●
●●●●●

●

●●●●●
●
●●●●
●
●●●●●●●●●●●●●●●●●●
●
●●●●●●
●●●●●

●
●
●●●●

●
●●●●●●
●●●●●●●●
●●●

●

●●●●●●●●
●●●●●
●●●
●

●

●●●●●●●
●●●●●
●●

●●●

●

●
●●●●●
●●●●●

●

●●●●●

●

●●●●●●
●●●●●●●
●●●●

●

●●●●●

●

●●●●●●●●●●●●
●●●●●●
●●●●●●
●●●●●●●
●●●
●●
●●●●●

●

●●●●●
●
●●●●●

●

●●●●●

●

●●
●●●●
●●●●●●

●
●●●●

●

●●●●●●

●●
●●●

●

●●●●●●
●●●●●●
●●●●●

●

●●●●●●
●●●●●●●●●●●●
●●●●●
●
●●●●●●
●●●●●●
●●●●●●
●●●●●

●

●●
●●●

●

●●●●
●●●●
●●●
●
●●●●●

●

●●●●●

●

●●●●
●●
●●●●●●
●●●●●
●
●●●●●●
●●●●●

●

●●
●●●

●

●●
●●●

●

●●●●●●
●●
●●●

●

●
●
●●●
●

●●●●
●

●

●●●●●
●
●●●●●●
●●●●●

●

●
●

●●
●
●
●●●●●●●
●●●●
●

●●●●●

●

●
●
●●●

●

●
●
●●●

●

●●

●●●

●

●●●●
●

●

●●●●●

●

●●●●●

●

●●●●●

●

●●●●●

●

●
●
●●●

●

●
●●●
●

●

●●●●

●●

●●●●

●●

●●●●

●●

●●●●

●●

●●
●●

●●

●
●
●●

●●

●●●●

●●

●●●●

●●

●●●●

●●

●●●●

●●

●●●●

●●

●●●●

●●

●●●●

●●

●●●●

●●

●●●●

●●

●●●●

●●

●
●●●

●●

●●●●

●●

●●●●

●●

●●●●

●●

●●●●

●●

●●●●

●●

●●●●

●●

●●●●

●●

●●●●

●●

●●●●

●●

●●●●

●●

●●●●

●●

●●●●

●●

●●●●

●●

●●●●

●●

●●●●

●●

●●●●

●●

●●●●

●●

●●●●

●●

●●●●

●●

●●●●

●●

●●●●

●●

●●●●

●●

●●●●

●●

●●●●

●●

●●●●

●●

●●●●

●●

●●●●

●●

●●●●

●●

●●●●

●●

●●●●

●●

0.001

0.01

0.1

1

10

100

1000

0 200 400 600
Instance index when sorted by the

mean time methods spent solving the master model

M
as

te
r

m
od

el
 s

ol
ve

r
to

ta
l t

im
e

(s
ec

on
ds

, l
og

10
 s

ca
le

)

algorithm
●

●

●

●

●

●

cplex_cutstock

mtu1_cutstock

ukp5_fp_cutstock

ukp5_fp_ns_cutstock

ukp5_int_cutstock

ukp5_int_ns_cutstock

Source: the author.

in different ways. The choice of optimal solution will affect the master problem,

which will generate a slightly different pricing subproblem. This effect cascades and

can change the profit values of all next pricing subproblems, and the number of

pricing subproblems that are needed to solve (which is the same as the number of

iterations, and the number of master problems solved).

CPLEX CUTSTOCK stands out by requiring many of the smallest number

of iterations. The author cannot explain what property the pricing subproblem

solutions returned by CPLEX have that creates such a difference. MTU1 does

not exhibit the same effect, therefore this property does not seem to be associated

with the B&B approach. We can only explain the differences in iteration count

between the UKP5 variants (further discussed in Section 5.4.3). The UKP5 variants

always return an optimal solution with the smallest weight possible. This translates

to generating patterns with the greatest possible waste (the gap between optimal

solution weight and the knapsack capacity equals to the waste in a cutting pattern).

79

Figure 5.8: Quantity of pricing subproblems each method solved, relative to the
method that solved the greatest amount for the same instance (in %).

●●●●●

●

●

●

●●●

●

●●●●●

●

●

●

●●●●

●●●●●

●

●●

●●●

●

●●●●●

●●

●

●

●

●

●

●●

●●

●●●●

●●●

●

●

●

●●

●●

●●●●●

●

●

●

●●●

●

●

●

●●

●●

●●●●

●

●

●

●

●

●

●

●

●●●●●

●

●●

●●●

●

●

●

●

●

●

●

●●

●●●

●●●●●●

●

●

●

●●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●

●

●

●

●●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●●

●●

●●

●●●

●

●●●●

●

●

●

●

●●●

●

●

●

●●●

●●

●

●

●

●

●

●●●●●

●

●●

●
●
●
●

●●

●●

●

●

●
●

●●●●

●

●

●●●

●

●●

●●

●

●

●

●●●●

●

●
●

●●●

●
●

●

●

●

●

●

●
●

●
●●

●

●

●

●●
●

●

●
●

●
●
●

●

●

●

●

●

●
●●

●
●

●

●

●

●
●

●●●

●
●
●●●●

●

●●●●●

●

●

●
●

●
●

●

●

●

●●●
●

●●

●●●

●

●

●

●●

●

●

●●●●●

●

●

●

●●●

●

●
●

●●●

●

●●
●●●

●

●

●
●●●
●

●

●

●●●

●

●

●

●●●
●

●

●

●●●
●

●

●

●
●
●

●

●●●●●

●

●●

●●●
●

●
●●●●

●

●
●

●●●

●

●

●

●●●

●●

●

●

●

●●

●

●

●●●

●

●

●

●●●

●●
●
●
●
●
●
●

●

●●●

●

●
●
●●

●

●

●

●
●●●

●●
●

●●●

●●●

●●●

●

●

●

●●●

●

●
●●●●

●●

●

●●●

●

●

●●●●

●

●
●

●●

●

●

●
●
●

●

●

●●

●

●●●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●

●

●

●

●●

●

●

●●
●
●
●
●
●
●

●●●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●●
●●●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●●

●

●

●
●

●●

●

●

●

●
●●●

●

●

●

●●●

●

●

●
●●

●●
●●●●●

●
●

●

●●●

●

●●●●●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●●●

●

●

●
●

●●●

●
●

●

●●●

●

●●
●●●

●

●
●
●●●

●

●●●●●

●

●●●●●

●

●

●
●
●

●

●
●●

●

●

●

●

●

●
●●

●

●

●●

●●

●

●

●

●●●●
●

●

●

●

●

●

●

●●
●●●

●

●●

●

●

●

●

●●●●●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●●
●
●

●

●●●

●●

●

●●●

●

●
●●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●●

●

●

●

●●●

●

●

●
●●●

●●

●

●●●

●

●

●●●●
●●●●●●

●

●

●

●●●

●

●

●
●

●●

●●●

●●

●

●●
●●●●

●

●
●●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●●
●

●

●

●

●
●

●

●

●●
●●●

●

●
●
●●●

●

●●●●●

●

●

●

●●

●

●

●
●●●
●

●

●

●

●
●
●

●

●●

●

●●

●

●

●

●●●

●

●●

●●

●

●

●
●

●

●
●

●

●●●●●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●
●
●
●

●

●
●●●
●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●●●

●

●●
●
●
●

●

●

●
●

●

●●

●

●●●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●●●●●

●

●●
●●
●

●

●
●
●

●

●

●

●●●●●

●

●

●

●●
●

●

●●●●●

●

●

●

●

●

●●

●●

●●●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●●●

●●●●●●

●

●●
●●●

●

●●●●●

●

●●

●●●

●

●
●

●●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●

●

●●

●

●
●

●

●

●

●●

●

●

●
●

●●

●

●

●●

●●●
●

●
●

●●●

●

●

●

●●
●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●●●

●

●

●●●●

●

●●

●●●

●

●●

●

●

●●

●

●●●

●

●

●

●

●●●

●

●●

●
●

●

●●

●

●●

●

●

●●

●●●

●

●

●

●●

●

●

●●

●●

●

●●

●

●

●
●

●

●
●●●●

●

●

●●

●

●●

●

●

●
●
●

●
●
●

●●

●

●

●

●●

●

●

●

●
●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●●
●●●

●

●

●

●●

●

●

●●

●
●
●

●

●

●●

●

●

●

●
●●●

●

●
●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●
●

●●●●

●

●

●

●●
●

●

●

●

●

●●●

●

●

●●●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●●●

●

●

●
●●

●

●

●
●

●●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●●

●●●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●
●

●

●●

●●

●

●

●

●
●●

●

●

●

●

●●●

●

●

●
●●●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●
●●●

●

●

●

●●●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●●●

●

●
●

●

●

●

●

●●●●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●●●●

●

●

●
●

●●

●

●

●●

●●
●

●

●

●

●●

●

●

●
●

●●

●

●

●●●●●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●●●

●

●
●

●●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●●●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●
●
●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●●
●

●

●

●

●●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●●

●
●

●
●

●

●

●

●

●
●
●●

●

●

●

●

●
●

●

●

●

●

●●
●
●

●

●
●
●

●

●

●

●

●●
●

●

●

●

●
●●

●

●
●

●

●

●

●

●●

●●

●

●

●●●●●

●

●
●
●
●

●

●

●
●
●●

●

●

●

●

●
●
●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●●
●
●

●

●●

●●●

●

●
●

●
●

●

●

●

●●
●

●

●

●●●●●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●●
●

●

●●
●●
●

●

●●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●●●●●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●
●

●

●

●
●●
●●●

●

●

●

●●

●

●

●

●
●●
●

●

●
●
●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●●

●

●
●
●
●

●

●

●

●

●
●
●
●

●

●

●●

●

●

●

●

●●●

●

●

●●
●
●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●●

●●

●
●
●

●

●

●●

●

●●
●

●

●

●
●
●

●

●

●
●
●●●

●

●
●

●●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●●●

●

●

●

●●●
●

●
●●●
●

●

●

●

●●
●

●

●
●
●●

●

●

●

●

●●●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●●

●

●

●●

●●
●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●●
●

●

●

●

●●

●

●

●
●

●●

●
●

●

●

●●

●

●

●
●●●
●

●

●●

●

●●

●

●●

●

●

●

●

●
●

●●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●
●

●
●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●●

●

●
●

●●
●

●

●
●

●
●

●

●

●●●●
●

●

●

●

●●●

●

●

●

●●

●

●

●●

●●

●

●

●

●
●●●

●●

●

●
●

●

●

●

●
●●●

●

●

●

●●●

●

●
●●●●●

●

●●●
●

●

●

●
●●

●

●

●

●
●
●
●

●

●

●

●●●

●

●

●

●●●

●

●
●●
●

●

●

●●

●●

●

●

●

●

●●
●

●

●

●

●●
●

●

●

●

●
●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●
●

●●

●

●

●
●

●
●

●
●

●

●
●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●
●●

●

●

●●
●

●●

●

●●●

●

●

●

●●

●

●
●

●
●

●

●

●●

●
●

●

●
●

●●

●

●●

●

●

●
●

●●●

●●

●

●
●

●

●

●

●

●●

●

●

●●

●●
●

●

●

●

●●

●

●

●●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●●●

●

●

●●●●

●

●

●

●

●

●

●
●●●

●

●

●

●
●●

●

●●
●●
●

●

●
●

●●
●

●
●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●●

●

●

●

●

●●
●

●

●
●

●●

●

●

●●

●●●

●

●
●

●●

●●

●

●
●●

●

●

●●

●●●

●

●●

●●

●

●

●●

●●●

●

●
●

●
●

●

●

●
●

●●
●

●

●

●

●●
●

●
●

●

●
●
●

●

●

●

●●●

●

●

●

●●
●

●

●

●●●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●●●●●

●

●
●
●●●

●

●
●

●●●

●

●

●
●

●
●

●

●

●

●●

●

●

●●

●●●

●

●

●

●●●

●

●

●
●●

●

●

●

●

●●●

●

●

●

●●
●

●

●

●

●●
●

●

●●
●●●

●

●●

●●
●

●

●

●

●●●

●

●

●●●

●

●

●

●●●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●●

●
●

●●
●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●
●●
●
●●●

●●●
●

●
●●
●●●●●

●

●

●

●●●

●

●●

●●

●

●

●

●

●●●

●

●
●

●●
●

●

●

●
●●
●

●

●●●●

●
●

●

●

●

●
●
●

●●

●

●

●

●
●

●

●
●

●
●
●

●

●●
●●●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●
●●●

●

●

●

●●●

●

●●

●●

●

●

●

●●●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●●

●●
●

●

●●
●●●

●

●

●●●●

●
●

●

●
●●●

●●

●●

●

●

●

●

●●

●
●●●

●

●

●

●

●

●

●
●
●●

●
●●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●
●
●●

●

●

●
●

●●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●●
●
●

●

●●
●

●

●
●
●●

●
●
●

●

●

●●●
●
●
●●●●

●●

●

●

●●

●

●●●●●
●●
●
●
●●●
●

●●

●

●

●●

●

●

●

●

●●

●●●

●

●●●●

●●

●●●
●
●●

●

●

●●

●

●

●

●
●●
●●

●
●

●

●●●●
●
●

●

●

●

●●

●

●

●●

●

●●●

●

●

●●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●●

●

20

40

60

80

100

0 200 400 600
Instance index when sorted by the amount of pricing subproblems solved

by the method that solved the greatest amount

P
er

ce
nt

ag
e

of
 p

ric
in

g
su

bp
ro

bl
em

s
so

lv
ed

 r
el

at
iv

e
to

 th
e

m
et

ho
d

th
at

 s
ol

ve
d

th
e

gr
ea

te
st

 a
m

ou
nt

 o
f t

he
m

, f
or

 th
e

sa
m

e
in

st
an

ce

algorithm
●

●

●

●

●

●

cplex_cutstock

mtu1_cutstock

ukp5_fp_cutstock

ukp5_fp_ns_cutstock

ukp5_int_cutstock

ukp5_int_ns_cutstock

Source: the author.

The author’s hypothesis is that this idiosyncrasy of the UKP5 can affect negatively

the number of iterations needed to find a set of cutting patterns that cannot be

improved (loop end condition).

5.4.2 The only outlier

In every experiment presented in this thesis, the author verified if the optimal

solution value (the value of the objective function) was the same for all methods.

Given the innacurate nature of floating point arithmetic, in this experiment, the

optimal solution values differed from method to method. However, except for one

outlier, no method had an absolute difference from the mean optimal value greater

than 2−20. In other words, for each instance of the CSP/BPP, the optimal value

in rolls of any method, subtracted by the mean of the optimal value in rolls for all

80

methods, was smaller than 2−20 and greater than −(2−20).

The outlier was the run of UKP5 INT CUTSTOCK over N4C1W1 O.csp,

which resulted in 257.7500 rolls, while the other methods resulted in 257.5833 rolls

for the same instance (a 0.1667 roll difference). Hoping to find the origin of the

outlier, the author tracked what differed between UKP5 INT CUTSTOCK and

UKP5 FP CUTSTOCK, that are the same algorithm with the same item order-

ing, but one uses integer profits and the other floating point profits.

The solutions given by the two methods at the third iteration differed. The

solution given by the floating point variant is not the same optimal solution given by

the integer method (and vice-versa). This happens because, when the items profit

were made integer (by multiplying them by 240 and rounding them down), a small

value was lost with the rounding. For the floating point method, one solution was

the optimal one. For the integer method, many solutions were optimal, including

the one that was optimal for the floating point variant. The tie breaker of the integer

method choose a different optimal solution, and started a cascade effect.

The author found that differences among knapsack solutions because of pre-

cision loss, followed by the cascade effect, are common. However, there was only

one outlier, so the precision loss alone does not explain the outlier. The preci-

sion loss only explains the difference in the number of pricing subproblems solved

by UKP5 INT CUTSTOCK and UKP5 FP CUTSTOCK. Section 5.4.3 has further

discussion on how small changes to the algorithm changes the iteration count, and

except by this outlier, this does not seem to affect the final result. Section 5.4.3 was

written based on the analysis made while trying to (unsuccessfuly) find the origin

of the outlier.

5.4.3 Similar methods generate different amounts of pricing subproblems

In Figure 5.9, we can see the relative difference in the number of pricing

subproblems solved between any two versions of UKP5 that share one trait and

differ in the other. The two traits are: the type used for the profit values (floating

point or integer); and if the items were sorted by efficiency or not. It is interesting

that such small variations of the same algorithm can yield significant differences to

the numbers of pricing subproblems generated.

All four charts show that some instances were solved in the same number of

81

Figure 5.9: For the four UKP5 variants, the relative difference between the number
of pricing subproblems solved in the same instance.

●

●●
●
●●●
●●●●●
●●●●●●
●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●

●●
●●

●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●
●●●●●●
●●●
●●●●●
●●●●●●●●
●
●

●

●●
●●
●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●
●●●●
●
●●

●

●
●

●

●
●●●●
●●●●●●
●●●●●
●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●

●●
●●

●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●
●●●●●●●●
●●
●●●
●●
●●
●
●
●
●●●

●

●
●

●

●

●●
●
●●●
●●●●●
●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●
●●●

●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●
●●●●
●
●●
●
●

●●
●

●

Floating Point (sort by efficiency vs no sort) Integer (sort by efficiency vs no sort)

No Sort (FP vs Integer) Sort by efficiency (FP vs Integer)

−50

−25

0

25

50

−50

−25

0

25

50

0 200 400 600 0 200 400 600
Instance index when sorted by the value at axis y

D
ev

ia
tio

n
of

 th
e

nu
m

be
r

of
 it

er
at

io
ns

 o
f

on
e

m
et

ho
d

re
la

tiv
e

to
 o

th
er

 (
in

 %
)

Source: the author.

iterations between the two variants compared; those instances form a horizontal line

at y = 0. The two variants with less difference in the number of iterations are the two

integer variants with different sort methods (top right chart). This was expected. If

the profits are integer, the change in the items order only makes difference when a

knapsack has two optimal solutions tied for the smallest weight, and the difference

of order changes the optimal solution chosen (the items order acts as a tiebreaker in

this case).

When the items profit is a floating point, the order the items are added influ-

ences the result (floating point addition is not associative). The difference is usually

very small (least significant hex digit of a double mantissa), but the magnitude of

the difference is irrelevant for the algorithm, that will choose the solution with the

greatest profit. As the item order changes the order of the additions inside UKP5,

which solution will be considered optimal (between solutions with very similar profit

values) will change.

82

When we compare variants of the same sorting method, but with different

profit types (two charts at bottom of the figure), the differences are not caused by

optimal solutions tied for with the smallest weight, or by the lack of the associative

property in the floating point addition, but by the loss of precision caused by the use

of integer values. Solutions will be different because for the integer version, some

items will have the same profit value, while for the floating profit version, one of

those items will have a greater profit than the others (by less than 2−40).

We can conclude that choosing one optimal solution over another (or choosing

between two solutions with values very close to the optimal) can considerably change

the number of iterations, without affecting the master problem optimal solution

value (in a significant manner). A researcher studying UKP algorithms for this

application has to consider the implications of this fact in his or her work.

In Section 6.4 (Future Works), we will see some questions raised by this

experiment. Although there was one outlier, converting profit values to integer

seems to be a valid method to test classic UKP algorithms (that work only with

integer profits) for solving pricing subproblems (where the profit values are floating

point values).

5.4.4 Algorithms not used in this experiment

Some algorithms were available, but were not used in this experiment Those

are: GREENDP, GREENDP1, MTU2 and EDUK/EDUK2 (PYAsUKP).

GREENDP fails if the two most efficient items share the same efficiency, what

often happens for at least one pricing subproblem of a CSP instance. GREENDP1

is very inefficient, as already shown by the experiment of Section 5.3. MTU2 was

not used because it was designed for large UKP instances, which are the majority of

the instances of this dataset. Moreover, in instances with a small number of items,

MTU2 behaves almost the same way that MTU1.

The code of this experiment needs to call the UKP solving methods from

inside the C++ code that also solves the CPLEX master model. The author tried

to integrate EDUK and EDUK2 (which are written in OCaml) to the experiment,

using the interface between C/C++ and OCaml, but the examples provided together

with the PYAsUKP sources for this kind of integration were not working. The author

could have saved the knapsack instances generated when solving the CSP problem

83

with other algorithm, and solved them using the PYAsUKP executable. This was

not done because many knapsacks are small and solved very fast, and in these cases

the PYAsUKP timing reports zero or inaccurate values. Also, the solutions returned

by PYAsUKP should affect the next knapsacks generated (what cannot happen in

such setting), so the comparison would be unfair.

5.5 The effects of parallel execution

After the publication of (BECKER; BURIOL, 2016), the author realized that

run times were affected by the execution of multiple runs in parallel, even if each run

was being executed in an exclusive/isolated core. The author credits this effect to

the fact that the L3 memory cache is often shared between cores. Some experiments

were performed to discern the magnitude of this effect.

For the rest of this section, the author will differ between runs that executed

in parallel and runs that executed one-at-time (serially). It is important to note that

the times compared are the wall-clock time of the algorithm execution (without the

instance reading, or output printing) in: 1) a run that executes in an isolated core

(with no other process in the same core), with one of the other cores running the

operating system, and two of the remaining cores isolated and executing one run too

(i.e. parallel runs); 2) a run that executes in an isolated core (with no other process

in the same core), with one of the other cores running the operating system, and

the remaining cores isolated and free (i.e. serial runs).

5.5.1 Setup

The setup of this experiment is different than the previous experiments. The

experiment is repeated in two distinct computers; this was necessary to observe the

impact of different CPUs (what include different amounts of shared cache). Only

the UKP5 and the EDUK2 were used; both algorithms were present in the original

comparison (BECKER; BURIOL, 2016), and both algorithms are relatively fast (a

practical concern).

The two computer settings will be referred to as notebook and desktop. The

notebook setting is the same used in (BECKER; BURIOL, 2016). The notebook

84

configurations included: Intel® CoreTM i7-4700HQ CPU @ 2.40GHz; there were

8GiB RAM available (2× DIMM DDR3 Synchronous 1600 MHz) and three levels

of cache (L1d: 32K and L1i: 32K, L2: 256K, L3: 6144K, only the L3 is shared

between cores). The CPU had Intel® HyperThreading, where 4 physical cores

simulate 8 virtual cores. This technology was disabled for the tests. The desktop

configurations included: Intel® CoreTM i7 5820k @ 3.3GHZ; there were 16GiB RAM

available (2× Crucial Ballistix Sport DDR4 SDRAM 2400 MHz) and three levels of

cache (L1i: 32K and L1d: 32K, L2: 256K, L3: 15MiB, only the L3 is shared between

cores). This CPU also had Intel® HyperThreading, where 6 physical cores simulate

12 virtual cores. This technology was also disabled for the tests in this CPU.

The computers settings have different amounts of cores (four for notebook

and six for desktop). During the experiments, in both computers, one core was left

to run the operating system and three cores were isolated. In the parallel runs, the

three isolated cores were used and, in the serial runs, only one isolated core was

used. The author believes this choice made the comparison fairer.

To allow the computation of the standard deviation, the experiments consist

in ten runs for each combination of solver (UKP5 and EDUK2), computer (notebook

and desktop), instance (the 454 of the reduced PYAsUKP benchmark, see Sec-

tion 3.2.6), and mode (parallel or serial). For the same computer, all runs of one

algorithm were finished before starting the first run of the other algorithm. This is

especially important for the parallel runs, as this means that each algorithm only

competed for cache with other runs of the same algorithm. For the same computer,

algorithm, and mode, the order of the instances was randomly chosen.

5.5.2 Experiment

The experiment has shown that the mean time of multiple runs of the same

algorithm in the same computer vary considerably if they are executed in parallel

or serially; how much they vary depends on the specific algorithm and computer.

The author does not intend to do an in-depth analysis, but only to show

that the difference exists and can be significant. The experiments described in all

the other sections of this chapter were executed serially to avoid this noise. The

already mentioned referee of (BECKER; BURIOL, 2016), questioned if the faster

memory access could have benefited UKP5 over EDUK2. This experiment is also

85

an answer to that question. The experiment setting in (BECKER; BURIOL, 2016)

corresponds to parallel runs over the notebook computer. The author believes that

the point made in (BECKER; BURIOL, 2016) still stands, as the effect found over

the algorithms run times would not render a different analysis.

Figure 5.10: Comparison of the mean times of UKP5 and EDUK2 when executed
in two diferent computers, in parallel and in serial mode.

●

●

●●
●

●

●●● ●● ●

●
●● ●●●● ●●●

●
● ●●● ●●

●

●● ●●● ●● ● ●
● ●

●

● ● ●●● ●●●

●

●●● ●●
●

● ●

●

●

●

●●● ●● ● ●● ●●● ●●●
● ●● ●● ● ●● ●●●●● ●

● ●●●
●●

● ● ●
●●

●●
●●

●

●

●●
●●●

●

●
●

●

● ●
●

●●

●●●●

●

●

●

●

●
●

●

●● ●

●●

●●● ●●

●

●

●

●●●
●

●
●● ●●● ●●

●

●
●●

●

●●●●
●●

●● ●●●
●

●

●
●

●● ●

●
●●

●

●●●
●●

●

●
●●

●
● ●

● ● ●●
●● ●●●

●
● ●●

●●●

●

●●

●

●●●
●●●

●
●●● ●

●
●●●●

● ●●
●●

● ●● ●●●● ●●

●

●

●
●●

●
●
●

● ●●
●

● ●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●●●

●

●●
●

●●
●

●●● ● ●
●● ●●●

●

●●
● ● ●● ●● ●

●

● ●

●
●

●

●

●

●
●● ●

● ●● ●● ●● ●●●
●

●●

●

●
● ● ●● ●●● ● ●●●

●

●●
●

●

●●● ●●●● ●●●●●●●

●

●●

●

● ●

●
●

● ●
●

●●

●

●
● ●

●

●

●
●

●

●
●

●

●
● ●●

●

●

●●

●

●

●
●

●● ●●●● ●● ●●
●

●
●

● ●●
●

●
●

●

●
●

● ●
●

●

●

●

●

●
● ●

●

● ●

●● ●●
●

● ●

●
●

● ●● ●
●

●● ●
●

●

●

●●
●

●●●

●

●● ●●●● ●●●
●

● ●●
● ●●

●

●● ●●● ●● ● ●
● ●

● ● ● ●●● ●●●
●

●

●● ●●

●

●

●

●

●
●

●
●●

●
● ●

●

●
●●

●
●

●
●

●

●

●
●

● ●

●

●

●●

●●
●

●
●

●
●●

●
●

●
●

●

●
●

●
●

●
●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●
●●

●

●

●
● ●●● ●●

●

●
●●

●

●●●● ●● ●● ●
●●● ●

●

●
●● ●

●

●●

●

●●● ●●

●

●●● ●●
●● ● ●●

●
● ●

●
●

●

● ●
●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●●

●

●

●
●

●●

●

●
●

●

●

●

●

● ●
●

●

● ●

●

●●●
● ●●

●

●
●

●
●●

●
●●●

●
●●

●

●●
●

●
●●

●
●

●● ●●●

●

●●
● ● ●● ●● ●

● ●
●

●
● ●

●

●

●

●

● ●

●
●●

●
●

●● ●●
●

●

●
●

●

●

● ● ●● ●●●
●

●
●

●
●

●

●
●

●

●●
●

●●●●
●

●●●●●●
●

●
●

●

●
●

●
●

● ●
●

●●

●
● ● ●

●

●
●

●

●

●
●

●

●

●
●●

●
●

●●

●

●

●●

●● ●●● ● ●● ●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

● ● ● ●

●●
●

●●

●

●●

●

● ●

●

●

●

● ●●●●●●

●

●●●●
●●●

●
●

●

●

●●●●●●

●●

●●●●●●●●●●● ●
●●

●

●
●●

●●
●●

● ●
●● ●

●●

●●●●

●

●
●
●
●●●

●
●●●●

●

●●●

●
●●●
●●

●●

●

●●
●
●

●

●
●

●
●●●

●

●

●

● ●
●●

●

●●
●
●●●●●●●●●●●●

●
●
●
●●●●
●●●

●●
●●●●●

●●
●●
●

●●
●

●●●●●
●

●●●
●●●●

●
●●

● ●
●
●

●●●●
●●●●

●
●

●
●●●

●
●● ●●

●●●
●
●●●

●
● ●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●
●

●
●

●

●
●

●
●●

●●

●●
●
●

●

●

●
●

●

●●

●●● ●●●●
●
●
●
●●

●
●●
●
●●
●●
●
●
●

●

●

●●
●

●

● ●
●

●
●
●●●●●

●●
●

●

●
●●
●●
●

●

●
●
●
●

●●
●

●
●●
●
●

●

●●●●
●●●●
●
●●
●
●●●●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●

●
●●●

●●●●●●●●

●●●
●●

●
●

● ● ●
●

● ●

●
●

● ●

● ●
●●

●
●●

●
●
●

● ●

●
●

●
●

●●

●
●●

●

● ●
●

●

●
●

●
●●

●

●
●

●

● ●●●

●
●●

●

●●●
●

●
●●

●

●

●

●

●●
●

●
●

●

●

●

●
●

●

●●●
●

●●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●
●
●●

●

●

●
●●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●●●●●

●

●
●

●●

●●

●
●

●
●●

●

●●
●
●
●

●

●
●●

●
●●●
●
●●●
●●
●
●

●
●●

●

●
●
●

●●●

●
●
●

●
●
●
●

●●●● ●
●●

●
●●●

●
●

●
●

●● ●●●
●

●●●
●
●●●●

●●
●
● ●● ●●

●● ● ●
● ●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●●●

●

●

●

●

●
●

●

●

●

●
●
●

●

●●
●
●

●
●

●

●
●

●●●
●

●
●●●

●●●
●

●

●

●
●●

●
●●●●

●

●●
●

●

●●●
●
●●

●

●
●●●
●●
●●●
●●
●●

●
●

●●
●
●●
●

●●
●

●

●

●
●
●
●●●●

●

●

●●

●

●●
●
●

●
●●●●
●
●
●
●
●●●

●

●

●

●

●

●

●
●
●

●
●●●
●
●

●●

●

●

●●
●

●

●

●●●

●
●

●

●●
●

●
●●

●

●●

●●
●●
●

●

●
●●●

● ●●● ●●●●●●●●
●

●●●●●
●

● ● ●● ●●●
● ● ●● ● ●

●
●
●●●

●
●
●

●

●●
●●●

●

●

●
●
● ●

●
● ● ●

●

●●
●

●●●
●

eduk2_desktop eduk2_notebook

ukp5_desktop ukp5_notebook

0

1

2

0

1

2

0.1 10.0 100.0 0.1 10.0 100.0
Mean time of the serial runs (seconds, log10 scale)

m
ea

n
pa

ra
lle

l t
im

e
/ m

ea
n

se
ria

l t
im

e
(s

am
e

al
go

rit
hm

, c
om

pu
te

r,
an

d
in

st
an

ce
)

● ● ● ● ●P.P. SAW S.C. S.S. W.C.D.

Source: the author.

Let us examine Figure 5.10. The execution of runs in parallel seems to affect

UKP5 far more than EDUK2, as it has much more points distant from y ≈ 1 (where

serial and parallel runs have similar mean times) than EDUK2, and only UKP5

has a significative share of points over y = 2 (where the mean times of the parallel

runs are more than two times the serial mean time). The author believes that the

reasons for UKP5 being more affected by cache sharing are the greater use of memory

(about 2× (c−wmin +wmax)); the initialization of such arrays; and accessing many

diferent memory regions in sequence (at each iteration of the outer loop, up to n

array positions in a range of size up to wmax are accessed in an arbitrary order).

While UKP5 seems to be more affected by running in parallel, one could

86

point out that all UKP5 runs use little time (less than 10 seconds when serially and,

consequently, no more than thirty when in parallel), where many of the EDUK2

runs have times between 10 and 100 seconds (serially), with some up to 300 seconds.

Besides that, the EDUK2 runs that take more time are also the more affected by

the parallel execution. The author hypothesizes that these runs take more time

because the instance is harder, and use more memory for the same reason. This

way, these runs end up using more than the L1/L2 cache and being more strongly

affected by this effect (the instance ‘hardness’ acts as a confounding variable, the

same effect happens to UKP5). The result would be that more time is added to the

EDUK2 total time because of this effect than time is added to the UKP5 total time

(in absolute numbers), making the comparison unfair to EDUK2.

Let us closely examine the values for the notebook setting, as this was the

one used at the (BECKER; BURIOL, 2016). We will refer to UKP5 (or EDUK2)

Parallel (or Serial) Total time (or TT, for short) as the sum of the run times of

all the runs of that algorithm in that mode and, for now, only in the notebook

setting. The UKP5 Parallel TT is 2.03 times greater than UKP5 Serial TT, while

EDUK2 Parallel TT is only 1.60 times greater than the EDUK2 Serial TT. However,

this means about 8252 extra seconds for UKP5 Parallel TT (compared to the serial

time) and about 74180 extra seconds for EDUK2 Parallel TT (compared to the

serial time). We will see that this considerable absolute difference does not end

up benefiting UKP5 in the analysis, as the EDUK2 Serial TT is about 15.33 times

greater than the UKP5 Serial TT, but the EDUK2 Parallel TT is about 12.10 times

bigger than UKP5 Parallel TT. In fact, the parallel execution seems to benefit the

EDUK2 numbers against UKP5 while not by much. If we focused in the desktop

setting, we would see that EDUK2 was benefited too, while to a lesser degree. In

the desktop setting, the EDUK2 Parallel TT is 15.62 times greater than the UKP5

Parallel TT; and the EDUK2 Serial TT is 16.50 times greater than the UKP5 Serial

TT.

Figure 5.11 presents the Standard Deviation (SD) values computed over each

ten runs for the same algorithm, computer, mode and instance. The author will

not draw many conclusions from this data, as SD values with different means are

not directly comparable. However, it is interesting to point out that, in general,

the runs in the serial mode, and/or the desktop setting, have a much smaller SD

than the ones in parallel mode, and/or the notebook setting (either because of the

87

Figure 5.11: Parallel and Serial Runs Standard Deviation

●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●
●

●
● ●●●●●●●●●●●●● ●●●

●
●

●●●

●

●
●

●
●●

●

●

●

●

●

●

●

●●

●
●●●

●

●

●

●

●

●

●
●

●
●

●

●

●
●● ●

●

●

●

●

●
●●

●
●

●● ●●●●●●●●● ●●●●
●●● ●●●

●●●● ●●●
●

●
●●●●●
●

●●● ●●●
●●●● ●●

●

●

●

●●

●

●
●

●
●

●

●

● ●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●
●●●●●

●●●
●

●●
●

●

●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●● ●●●●●● ●●●●●●●●●●●●● ●●●
●

●

●●
●●

●●●●●● ●●●●
●● ●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●
●
●
●

●

●
●●
●
●●

●

●
●●
●

●

●●
●

●

●
●
●
●

●

●

●
●

●
●●
●
●
●
●●
●●●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●●
●
●

●●

●●

●

●
●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●●●●

●●

●

●

●●

●

●

●●
●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●●●
●

●●●
●●●●

●●
●

●

●●●●●●●●
●●●●●●●●●
●●●
●●●●●●●●●●●
●
●
●●●●●●
●
●
●●
●●●●
●

●●●●●●

●

●
●

●

●

●●

●

●

●●●●●●
●●●●

●

●

●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●

●● ● ●
● ●● ●●●●●●●● ●● ●● ●●

●
● ●

●●●●
●

●
● ●● ● ●●

●
● ●●

● ●●●
●●

●
●●●

●●
●

●

● ●
●●

●
●

●
●●

●
●

●
●●●

●

●

●
●

● ●

●●
●

● ● ●

●
●

●●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●●● ●●● ●● ●● ●● ●● ●●● ●● ●● ●●● ●● ●● ●● ●● ●●●●●●● ● ● ●● ●● ● ●● ●

●

●
●

●

●

●
●

●
● ●

●●

●

●
●

●
●

●

●

●●●
●

●

●
●

●

●

●
●
●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●
●

●
●

●

●●

●

●●●● ●●●●● ●●●●● ●● ●● ● ●●● ● ●● ●● ●●●●●●●●● ●● ●●● ●● ● ●●● ●●● ● ●● ●● ●●● ●●
●● ●●●

●● ●●●●●●●● ● ●
●
● ●● ●● ●●●

●
● ●● ● ●●●● ●● ●●● ●●●●●● ● ●●● ● ●●●● ●●●● ● ●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●

●●●
●●●●●●●●●●●●●●
●

●
●●●●●
●
●●
●●

●●●●●●
●●●●
●
●●●●
●
●●●●●
●
●●●●●●
●
●
●●

●

●
●
●

●
●●
●●
●●●
●●●
●

●
●

●
●●
●●
●●

●

●●●●
●
●●

●

●

●●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●

●●

●

●

●

●●
●

●
●
●●
●●
●●●
●

●

●
●
●

●

●
●

●

●
●●●
●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●
●
●●

●

●●
●
●

●
●●●●●●
●
●
●●
●

●

●

●

●

●
●
●
●●
●
●

●●
●●

●●

●

●
●●
●
●
●

●
●
●
●●●●
●

●

●●

●●
●●
●
●
●●
●

●

●
●●●

●●●●●●●●●●●●●●●●●●●●● ●●●

eduk2_desktop eduk2_notebook

ukp5_desktop ukp5_notebook

0

10

20

0

10

20

0.0

0.4

0.8

1.2

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0 0 2 4 6

0.00 0.01 0.02 0.03 0.0 0.1 0.2 0.3 0.4
serial_sd

pa
ra

lle
l_

sd

inst_class
●

●

●

●

●

P.P.

SAW

S.C.

S.S.

W.C.D.

Source: the author.

serial/desktop run times are smaller, or because the algorithms do not compete for

cache).

The author belives this superficial analysis is sufficient to convince the reader

that there is a significant difference in running such experiments serially or in par-

allel. If some real-world application of the UKP needs to solve multiple knapsacks

in parallel, algorithms that use less memory (or with better locality of reference)

can be prefered not only to avoid swapping, but because they will affect each others

times less. As this is not the case here, and as the CSP (the real-world application

of the UKP covered in this chapter) specifically solves multiple knapsacks serially,

all experiments of this chapter consisted of serially executed runs, with only one run

over each combination of algorithm and instance.

88

6 CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

The author believes that the major contribution of this thesis is the critical

review of the UKP literature, which is summarized in the following subsection.

The review expresses and discusses statements that can be generalized to all the

experimental research in computer science. Besides the review, the more objective

and UKP-specific knowledge contributions and technical contributions are listed in

the subsequent subsections.

6.1.1 A critical review

An algorithm is dominated by other in the context of a dataset. An exam-

ple presented in this thesis is MTU2. MTU2 is the best algorithm between eight

algorithms for one dataset (see Section 5.3), and is not competitive for other five

datasets (see Section 5.2). The literature review, and the further discussion of

instance datasets and solving approaches, have shown how the choice of datasets

defined the best algorithm through the last fifty years. The unfolding of the events

can be summarized as:

(GILMORE; GOMORY, 1961) A real-world application of the UKP (pricing

problem for BPP and CSP) is proposed.

(GILMORE; GOMORY, 1966) Some dynamic programming algorithms for such

application are proposed.

(MARTELLO; TOTH, 1977) A B&B method is proposed, and then compared

with the DP algorithms over small artificial instances, obtaining marginally

better results

(MARTELLO; TOTH, 1990a) The goal changes to solving larger instances faster.

Artificial datasets are used for this. For such datasets, DP methods are clearly

dominated by B&B methods.

(ZHU; BROUGHAN, 1997) The large artificial instances are shown to have

only a little amount of relevant/undominated items and are discredited.

(POIRRIEZ; ANDONOV, 1998) A new DP method is proposed, together with

89

new artificial datasets (without the same flaws of the previous datasets).

(ANDONOV; POIRRIEZ; RAJOPADHYE, 2000) The new DP method only

compares to B&B and naive DP, the old non-naive DP algorithms were for-

gotten or excluded because of previous experiments.

(KELLERER; PFERSCHY; PISINGER, 2004) The new DP method is con-

sidered the state-of-the-art.

(POIRRIEZ; YANEV; ANDONOV, 2009) The new DP method is hybridized

with B&B, and the datasets are updated to be ‘harder’. Such datasets are hard

for B&B, and the hybrid method is only compared to B&B. The hybrid method

is the new state-of-the-art.

(BECKER; BURIOL, 2016) An old DP method is reinvented and outperforms

the hybrid method in the updated datasets.

(this thesis) Old algorithms are revised, reimplemented and tested. The influence

of the datasets and the historical context becomes apparent.

It is worth mentioning that, taking into account the historical context, the choices

made by previous researchers were sound and reasonable. Despite this, an efficient

DP algorithm was ignored for decades when it was relevant for the comparisons and

experiments realized.

This leads to another conclusion: the bibliographical research is important,

and should be followed by a reevaluation of the evidence chain. The author first

reinvented an old DP algorithm, published a paper about how it surpassed the state-

of-the-art, and then discovered that his bibliographical research was faulty. While

the author does not intend to justify this overlook, it is important to note that, in

the context, reading papers about algorithms from fifty years ago, and implementing

them to compare with a recent state-of-the-art algorithm did not seem to be as a

good use of time, as they were already compared and discarded by works of the

same period. If the author did not end up accidentally reinventing the algorithm,

and then recognizing it in an old paper, it is possible that the terminating/ordered

step-off would remain ignored. A possibility that can only be considered more

worrying by the fact that the algorithm pseudocode is available in (GILMORE;

GOMORY, 1966), a paper that is cited by many of the works mentioned above.

Implementing (or obtaining) all algorithms already proposed for a problem clearly

is not a viable strategy. However, this work shows that the context of one experiment

90

that concludes that an algorithm is dominated by other has to be critically evaluated.

Also, papers and experiments do not always provide all relevant context. One

example of context that is not always provided, or given much attention, is if the

runs were executed in parallel, or not. The experiments from Section 5.5 show a

significant difference between performing an experiment with runs in parallel, or

serially. The magnitude of the difference vary with the specific algorithm, computer

and dataset. In one of the computer settings, the average run times of UKP5 when

executed in parallel were about the double of the average serial run times. In an

indirect comparison between results presented by different papers, this detail could

lead to a method being considered significantly faster than other only because one

author executed serial runs and the other parallel runs.

6.2 UKP-specific knowledge contributions

An outline of the UKP-specific knowledge contributions follows. It is ordered

by the level of importance the author gives to them.

1. The knowledge that an old DP algorithm outperforms a state-of-the-art hybrid

algorithm, in the most recent benchmark dataset.

2. The concept of solution dominance, and its implications for periodicity bounds

and the four previously established dominance relations.

3. Evidence that the B&B approach worst-case can arise when solving pricing

subproblems of BPP/CSP.

4. Evidence that variations in the optimal solution returned by the pricing prob-

lem solver can have a strong effect in the number of pricing problems generated.

5. Evidence that UKP algorithms that are memory intensive should be executed

serially for comparison.

6. Evidence that converting the pricing problem profit values to large integers do

not cause significant loss.

The author believes that the first contribution is already well exposed, either

in Section 5.2, or in (BECKER; BURIOL, 2016).The technical details of the second

contribution (i.e. the concept of solution dominance) were already discussed (see

Section 4.2.4.2), but not how it impacts the previous techniques described in the

literature. The weak solution dominance reduces the further improvement that can

91

be found by applying the four dominance relations and/or periodicity bounds in the

same algorithm. The weak solution dominance and the four dominance relations

are two different ways of dealing with the same task. The first involves keeping an

index in each solution to mark which items can still be added to the solution. The

second involves keeping a global list of undominated items,

The approach used by EDUK gives a strong guarantee that any dominated

item will be discarded and never used again. However, the weak solution dominance

described in Section 4.2.4 is implemented with almost no overhead, and seems to have

a very similar impact in the removal of dominated items/solutions. One could argue

that EDUK can be at disadvantage for being implemented in a functional language,

or that better implementations of the algorithm could be written, the author can not

refute such claims. Maybe new implementations of the EDUK approach can show

the superiority of applying the four dominances in the EDUK fashion. However, for

the tested datasets, the weak solution dominance approach seems to be the most

efficient one.

The periodicity check exists both in algorithms like EDUK/EDUK2 and the

old terminating step-off. In EDUK/EDUK2 it is a consequence of applying all

four dominances repeatedly, and in the terminating step-off it is a consequence of

applying weak solution dominance. A periodicity check can save effort by stopping

the computation at a capacity y < c. However, in all algorithms that implement the

periodicity check, when this early termination happens, it is because the only item

that could possibly be used is the best item. Consequently, in each one of these last

positions (between y and c), the algorithm would not execute O(n) steps anymore,

but only O(1) steps. The periodicity check only saves the effort of iterating these

last c− y positions. It is a minor improvement over the application of weak solution

dominance, or the application of the four item dominances.

The periodicity check (and, by consequence, the dominances) also reduces

the utility of periodicity bounds. If an upper bound on y+ could be used to stop the

computation before it reaches capacity c, then the periodicity check would stop the

computation even before the capacity predicted by the upper bound (with slightly

more overhead). In an algorithm with periodicity checking, the utility of upper

bounds on the periodicity capacity y+ is restricted to saving memory and saving the

time spent initializing such saved memory. Note that some algorithms would not

even have such benefits, as they do not allocate or initialize the memory in advance.

92

The evidence that constitutes the third knowledge contribution can be found

in Section 5.4. In the majority of the instances, the time spent by both the B&B

and DP approaches when solving pricing problems was significantly smaller than

the times solving the master problems of the same instance. Nevertheless, for some

instances, the B&B approach has presented its worst-case behavior and, in these

instances, more time was spent solving pricing subproblems then solving the master

problem.

For a single example, we will focus on instance 201 2500 DI 11.txt, for which

MTU1 CUTSTOCK ended in timeout. The pricing problems generated when solv-

ing such instance have n < 200 and c = 2472. Before timeout, MTU1 solved about

700 of those pricing problems in much less than a millisecond each. However, there

was also a few pricing problems that took ten seconds or more to solve; run times

like: 10, 12, 13, 13, 26, 32, 49, 54, and 351 seconds. All instances shared the same

n, c and the same items weights, the only difference between them is the profit val-

ues. Such behaviour corroborates with what was said about B&B algorithms being

strongly affected by the items distribution, and less by n and c.

It is worth mentioning that almost all instances that ended in timeout are

artificial instances created to be hard to solve. Such instances were proposed in

(DELORME; IORI; MARTELLO, 2014). Unfortunately, the author of this thesis

did not have the time to gather CSP problems from industrial sources, and the

experimentation had to stop at the literature instances. Consequently, we cannot

state that B&B algorithms are not viable for solving pricing problems, only that

there is evidence that the B&B worst-case can arise in such circumstances.

While the following quote was written in the context of the 0-1 KP, the

author found it relevant to complement what was just said: “Dynamic programming

is one of our best approaches for solving difficult (KP), since this is the only solution

method which gives us a worst-case guarantee on the running time, independently

on whether the upper bounding tests will work well.” (PISINGER, 2005, p. 13).

The last three contributions are thoroughly discussed in the context of the

experiments that originated them (for the fourth and sixth contributions see Section

5.4, and for the fifth, Section 5.5). The fourth contribution is specially important to

a researcher testing an algorithm that needs to solve unbounded knapsack pricing

problems. Minor changes in the operation of the UKP solver, as the order it receives

the items, can change the exact optimal solution returned, and consequently the

93

number of pricing problems generated and the whole algorithm run time. Such

chaotic behaviour can lull an experimenter into believing that irrelevant changes have

some deeper meaning, or add noise to relevant changes. The same can be said about

executing memory intensive algorithms in serial, or parallel (fifth contribution). The

sixth and last contribution, while corroborated by the vast majority of the runs,

maybe has contributed to our only outlier, and needs further validation.

6.3 Technological UKP-specific contributions

An outline of the UKP-specific technological contributions follows.

• The only known implementations of the GREENDP and GREENDP1 algo-

rithms, modernized to use loops.

• The UKP5 implementation, that can be seen as a variant of the terminating

step-off.

• New implementations for MTU1 and MTU2. Such implementations are coded

in C++11 (instead of Fortran77) and use generic templates. Both implementa-

tions are slight faster than the respective Fortran77 implementations, and the

MTU2 C++ implementation does not have the problem with the subset-sum

instances presented by the Fortran77 implementation.

• A copy1 of the exact PYAsUKP benchmark used, and scripts2 to generate it

(based on PYAsUKP).

• The BREQ 128-16 Standard Benchmark, which is a new dataset.

The author will not discuss such technical contributions as they are only a

byproduct of the research. The author does not suggests that the BREQ 128-16

Standard Benchmark should be used for new experiments comparing algorithms

for the UKP. The dataset can yet be used to study the behaviour of new solving

approaches, maybe giving some insight about the approach inner workings.

1Available at: <https://drive.google.com/open?id=0B30vAxj 5eaFSUNHQk53NmFXbkE>
2Available at: <https://github.com/henriquebecker91/masters/tree/f5bbabf47d68528166153

15c8839d3f74013af5f/codes/sh/pyasukp paper bench>. Note that a PYAsUKP binary compiled
from the version in <https://github.com/henriquebecker91/masters/blob/f5bbabf47d685281661
5315c8839d3f74013af5f/codes/ocaml/pyasukp mail.tgz> has to be in the executable path to the
scripts work.

https://drive.google.com/open?id=0B30vAxj_5eaFSUNHQk53NmFXbkE
https://github.com/henriquebecker91/masters/tree/f5bbabf47d6852816615315c8839d3f74013af5f/codes/sh/pyasukp_paper_bench
https://github.com/henriquebecker91/masters/tree/f5bbabf47d6852816615315c8839d3f74013af5f/codes/sh/pyasukp_paper_bench
https://github.com/henriquebecker91/masters/blob/f5bbabf47d6852816615315c8839d3f74013af5f/codes/ocaml/pyasukp_mail.tgz
https://github.com/henriquebecker91/masters/blob/f5bbabf47d6852816615315c8839d3f74013af5f/codes/ocaml/pyasukp_mail.tgz

94

6.4 Future work

Unfortunately, many questions could not be answered in the scope of this

thesis. The author selected and listed some of such questions in this section.

• Which other real-world problems have the UKP as a pricing subproblem? Are

there real-world problems that can be modelled as the UKP? Would instances

of those problems be easy for the current state-of-the-art algorithm?

• How similar are the datasets of the UKP and the BPP/CSP presented in the

literature to the ones existent in the real-world?

• Do the instances found in the real-world benefit some approaches over others?

• Would a hybrid algorithm based on the UKP5/‘terminating step-off’ and

MTU2 would present the same level of improvement that EDUK2 has over

EDUK?

• Regarding the many times mentioned but never reimplemented CA algorithm

from (BABAYEV; GLOVER; RYAN, 1997): what would be its performance

in real-world instances? Or, at least, in the most recent benchmark datasets?

• How do the traits of the optimal solution for the pricing subproblem affect

the master problem? Does always returning an optimal solution with minimal

weight has a negative effect? What about adding all patterns that improve the

master problem solution, and not only the best pattern (i.e. optimal solution)?

• How often do pricing subproblems have multiple optimal solutions? How many

of these optimal solutions are cut down because of dominance?

• How would an optimized C++ implementation of EDUK(2) perform? How

would EDUK(2) perform over real-world instances?

• Are the profit values (and, consequently, the items distributions) of the pricing

subproblems uniform between similar BPP/CSP instances, and/or the same

BPP/CSP instance? Is it possible that they converge to a specific distribution

at each iteration of the column generation?

95

REFERENCES

ANDONOV, R.; POIRRIEZ, V.; RAJOPADHYE, S. Unbounded knapsack
problem: Dynamic programming revisited. European Journal of Operational
Research, Elsevier, v. 123, n. 2, p. 394–407, 2000.

ANDONOV, R.; RAJOPADHYE, S. A sparse knapsack algo-tech-cuit and
its synthesis. In: IEEE. Application Specific Array Processors, 1994.
Proceedings. International Conference on. [S.l.], 1994. p. 302–313.

BABAYEV, D. A.; GLOVER, F.; RYAN, J. A new knapsack solution approach
by integer equivalent aggregation and consistency determination. INFORMS
Journal on Computing, INFORMS, v. 9, n. 1, p. 43–50, 1997.

BALAS, E.; ZEMEL, E. An algorithm for large zero-one knapsack problems.
operations Research, INFORMS, v. 28, n. 5, p. 1130–1154, 1980.

BECKER, H.; BURIOL, L. S. UKP5: A new algorithm for the unbounded knapsack
problem. In: SPRINGER. International Symposium on Experimental
Algorithms. [S.l.], 2016. p. 50–62.

BELOV, G.; SCHEITHAUER, G. A branch-and-cut-and-price algorithm for
one-dimensional stock cutting and two-dimensional two-stage cutting. European
journal of operational research, Elsevier, v. 171, n. 1, p. 85–106, 2006.

CABOT, A. V. An enumeration algorithm for knapsack problems. Operations
Research, INFORMS, v. 18, n. 2, p. 306–311, 1970.

CHUNG, C.-S.; HUNG, M. S.; ROM, W. O. A hard knapsack problem. Naval
Research Logistics (NRL), Wiley Online Library, v. 35, n. 1, p. 85–98, 1988.

DELORME, M.; IORI, M.; MARTELLO, S. Bin packing and cutting stock
problems: Mathematical models and exact algorithms. In: DECISION
MODELS for SMARTER CITIES. [S.l.: s.n.], 2014.

FISCHETTI, M.; MARTELLO, S. A hybrid algorithm for finding the kth smallest
of n elements in o(n) time. Annals of Operations Research, Springer, v. 13,
n. 1, p. 399–419, 1988.

GARFINKEL, R. S.; NEMHAUSER, G. L. Integer programming. [S.l.]: Wiley
New York, 1972. v. 4.

GILMORE, P. C.; GOMORY, R. E. A linear programming approach to the
cutting-stock problem. Operations research, INFORMS, v. 9, n. 6, p. 849–859,
1961.

GILMORE, P. C.; GOMORY, R. E. A linear programming approach to the cutting
stock problem-part ii. Operations research, INFORMS, v. 11, n. 6, p. 863–888,
1963.

GILMORE, P. C.; GOMORY, R. E. The theory and computation of knapsack
functions. Operations Research, INFORMS, v. 14, n. 6, p. 1045–1074, 1966.

96

GLOVER, F. Integer programming over a finite additive group. SIAM Journal
on control, SIAM, v. 7, n. 2, p. 213–231, 1969.

GREENBERG, H. On equivalent knapsack problems. Discrete applied
mathematics, Elsevier, v. 14, n. 3, p. 263–268, 1986.

GREENBERG, H.; FELDMAN, I. A better step-off algorithm for the knapsack
problem. Discrete Applied Mathematics, Elsevier, v. 2, n. 1, p. 21–25, 1980.

HU, T. C. Integer programming and network flows. [S.l.], 1969.

HUANG, P. H.; TANG, K. A constructive periodicity bound for the unbounded
knapsack problem. Operations Research Letters, Elsevier, v. 40, n. 5, p.
329–331, 2012.

IIDA, H. Two topics in dominance relations for the unbounded knapsack problem.
The Open Applied Mathematics Journal, v. 2, n. 1, p. 16–19, 2008.

KELLERER, H.; PFERSCHY, U.; PISINGER, D. Knapsack problems. [S.l.]:
Spinger-Verlag, Berlin, 2004.

MARTELLO, S.; TOTH, P. Branch-and-bound algorithms for the solution of the
general unidimensional knapsack problem. Advances in Operations Research,
North-Holland, Amsterdam, p. 295–301, 1977.

MARTELLO, S.; TOTH, P. An exact algorithm for large unbounded knapsack
problems. Operations research letters, Elsevier, v. 9, n. 1, p. 15–20, 1990.

MARTELLO, S.; TOTH, P. Knapsack problems: algorithms and computer
implementations. [S.l.]: John Wiley & Sons, Inc., 1990.

PISINGER, D. Algorithms for knapsack problems. Citeseer, 1995.

PISINGER, D. Where are the hard knapsack problems? Computers &
Operations Research, Elsevier, v. 32, n. 9, p. 2271–2284, 2005.

POIRRIEZ, V.; ANDONOV, R. Unbounded knapsack problem: new results. In:
Workshop. [S.l.: s.n.], 1998. p. 103–111.

POIRRIEZ, V.; YANEV, N.; ANDONOV, R. A hybrid algorithm for the
unbounded knapsack problem. Discrete Optimization, Elsevier, v. 6, n. 1, p.
110–124, 2009.

SHAPIRO, J. F.; WAGNER, H. M. A finite renewal algorithm for the knapsack
and turnpike models. Operations Research, INFORMS, v. 15, n. 2, p. 319–341,
1967.

WEISSTEIN, E. W. Diophantine Equation: From mathworld–a wolfram web
resource. 2016. Visited on 15/11/2016. Dispońıvel em: <http://mathworld.wolfra
m.com/DiophantineEquation.html>.

ZHU, N.; BROUGHAN, K. On dominated terms in the general knapsack problem.
Operations Research Letters, Elsevier, v. 21, n. 1, p. 31–37, 1997.

http://mathworld.wolfram.com/DiophantineEquation.html
http://mathworld.wolfram.com/DiophantineEquation.html

97

APPENDIX A — TABLES

algorithm n avg sd min max ter

1 cpp-mtu1 2048 0 0 0 0 10

2 cpp-mtu1 4096 0 0 0 0 10

3 cpp-mtu1 8192 0 0 0 0 10

4 cpp-mtu1 16384 0 0 0 0 10

5 cpp-mtu1 32768 0 0 0 0 10

6 cpp-mtu1 65536 0 0 0 0.01 10

7 cpp-mtu1 131072 0.01 0 0.01 0.01 10

8 cpp-mtu1 262144 0.02 0 0.02 0.02 10

9 cpp-mtu1 524288 0.05 0 0.04 0.05 10

10 cpp-mtu1 1048576 0.09 0 0.09 0.1 10

11 cpp-mtu2 2048 0 0 0 0 10

12 cpp-mtu2 4096 0 0 0 0 10

13 cpp-mtu2 8192 0 0 0 0 10

14 cpp-mtu2 16384 0 0 0 0 10

15 cpp-mtu2 32768 0 0 0 0 10

16 cpp-mtu2 65536 0 0 0 0 10

17 cpp-mtu2 131072 0 0 0 0 10

18 cpp-mtu2 262144 0.01 0 0.01 0.01 10

19 cpp-mtu2 524288 0.01 0 0.01 0.01 10

20 cpp-mtu2 1048576 0.03 0 0.02 0.03 10

21 eduk 2048 0.48 0.34 0.14 1.07 10

22 eduk 4096 2.75 3.31 0.72 11.4 10

23 eduk 8192 4.35 1.47 2.23 6.42 10

24 eduk 16384 53.15 81.57 13.32 271.97 10

25 eduk 32768 195.03 149.39 60.37 481.69 10

26 eduk 65536 473.28 22.09 457.66 488.9 2

27 eduk 131072 – – – – 0

28 eduk 262144 – – – – 0

29 eduk 524288 – – – – 0

30 eduk 1048576 – – – – 0

31 eduk2 2048 0 0 0 0 10

98

algorithm n avg sd min max ter

32 eduk2 4096 0 0 0 0 10

33 eduk2 8192 0 0 0 0.01 10

34 eduk2 16384 0.01 0 0.01 0.01 10

35 eduk2 32768 0.01 0 0.01 0.01 10

36 eduk2 65536 0.03 0 0.02 0.03 10

37 eduk2 131072 0.05 0 0.05 0.06 10

38 eduk2 262144 0.11 0.01 0.1 0.12 10

39 eduk2 524288 0.22 0.01 0.21 0.24 10

40 eduk2 1048576 0.45 0.04 0.34 0.48 10

41 mgreendp 2048 0.01 0.01 0 0.03 10

42 mgreendp 4096 0.05 0.11 0 0.35 10

43 mgreendp 8192 0.02 0.06 0 0.19 10

44 mgreendp 16384 0 0 0 0.01 10

45 mgreendp 32768 2.64 8.33 0.01 26.34 10

46 mgreendp 65536 0.02 0 0.01 0.02 10

47 mgreendp 131072 0.03 0.01 0.03 0.04 10

48 mgreendp 262144 0.07 0.01 0.05 0.08 10

49 mgreendp 524288 0.14 0.02 0.1 0.16 9

50 mgreendp 1048576 0.27 0.05 0.21 0.32 9

51 mgreendp1 2048 127.31 72.93 71.72 281.86 10

52 mgreendp1 4096 368.65 43.72 326.49 425.47 6

53 mgreendp1 8192 – – – – 0

54 mgreendp1 16384 – – – – 0

55 mgreendp1 32768 – – – – 0

56 mgreendp1 65536 – – – – 0

57 mgreendp1 131072 – – – – 0

58 mgreendp1 262144 – – – – 0

59 mgreendp1 524288 – – – – 0

60 mgreendp1 1048576 – – – – 0

61 ukp5 2048 0.02 0.01 0.01 0.05 10

62 ukp5 4096 0.11 0.14 0.04 0.48 10

63 ukp5 8192 0.2 0.06 0.13 0.3 10

64 ukp5 16384 4.53 8.14 0.77 26.37 10

99

algorithm n avg sd min max ter

65 ukp5 32768 15.36 17.47 3.13 48.49 10

66 ukp5 65536 54.58 69.86 15.12 222.43 10

67 ukp5 131072 165.19 152.01 60.26 513.26 10

68 ukp5 262144 428.72 131.43 278.56 592.34 6

69 ukp5 524288 – – – – 0

70 ukp5 1048576 – – – – 0

71 ukp5 sbw 2048 0.02 0 0.02 0.03 10

72 ukp5 sbw 4096 0.09 0 0.09 0.09 10

73 ukp5 sbw 8192 0.44 0 0.44 0.44 10

74 ukp5 sbw 16384 2.34 0.01 2.34 2.36 10

75 ukp5 sbw 32768 11.07 0.03 11.03 11.14 10

76 ukp5 sbw 65536 47.91 0.07 47.8 48 10

77 ukp5 sbw 131072 200.11 0.54 199.67 201.15 10

78 ukp5 sbw 262144 – – – – 0

79 ukp5 sbw 524288 – – – – 0

80 ukp5 sbw 1048576 – – – – 0

Table A.3: Results of the BREQ 128-16 Standard Bench-

mark (see Section 5.3). For each row, there is a set T

comprised by the run times that algorithm spent solv-

ing instances of size n. We do not count the run time of

runs that ended in timeout. The meaning of the columns

avg, sd, min, max and ter are, respectively, the arith-

metic mean of T , the standard deviation of T , the min-

imal value in T , the maximal value in T , and the cardi-

nality of T (i.e. the number of runs that did not end in

timeout). The time unit of the table values is seconds.

100

Table A.1: Results for the PYAsUKP 4540 Instances (see Section 5.2). Columns
n and wmin values must be multiplied by 103 to obtain their true value. Let T be
the set of run times reported by UKP5, MGREENDP1 or EDUK2 for the instance
dataset described by a row. The meaning of the columns avg, sd and max, is,
respectively, the arithmetic mean of T , the standard deviation of T , the maximum
value of T . The time unit of the table values is seconds.
Instance desc. UKP5 MGREENDP PYAsUKP

400 inst. per line Subset-sum. Random c between [5× 106; 107]

n wmin avg sd max avg sd max avg sd max

See section 3.2.1 0.05 0.12 0.74 – – – 2.52 21.75 302.51

20 inst. per line Strong correlation. Random c between [20n; 100n]

α n wmin avg sd max avg sd max avg sd max

5 5 10 0.03 0.00 0.03 0.24 0.03 0.29 1.57 1.78 3.62

15 0.04 0.00 0.05 0.43 0.06 0.53 3.85 1.53 5.13

50 0.13 0.00 0.16 1.01 0.52 1.70 12.12 8.17 28.84

5 10 10 0.06 0.00 0.06 0.50 0.04 0.54 0.00 0.00 0.01

50 0.29 0.00 0.30 5.93 0.82 6.79 22.43 17.85 45.19

110 0.66 0.00 0.66 16.05 3.36 19.68 76.53 62.54 175.61

-5 5 10 0.04 0.00 0.05 0.04 0.00 0.04 4.02 2.72 7.12

15 0.05 0.00 0.05 0.05 0.00 0.05 6.76 4.22 12.24

50 0.14 0.00 0.15 0.11 0.02 0.12 24.76 19.41 66.23

-5 10 10 0.10 0.00 0.10 0.11 0.01 0.13 6.74 6.28 15.38

50 0.32 0.00 0.32 0.28 0.01 0.29 48.70 42.53 111.61

110 0.65 0.00 0.66 0.52 0.01 0.53 144.87 143.53 416.41

200 inst. per line Postponed periodicity. Random c between [wmax; 2× 106]

n wmin avg sd max avg sd max avg sd max

20 20 0.79 0.10 0.97 0.74 0.11 0.96 8.65 7.74 28.63

50 20 5.70 0.37 6.54 5.12 0.65 6.13 78.34 82.46 356.67

20 50 0.89 0.12 1.19 0.75 0.14 1.09 11.57 8.20 39.20

50 50 4.72 0.69 6.27 3.97 0.75 5.30 113.21 87.16 267.10

500 inst. per line No collective dominance. Random c between [wmax; 1000n]

n wmin avg sd max avg sd max avg sd max

5 n 0.07 0.03 0.14 0.04 0.01 0.07 0.59 0.44 2.03

10 n 0.65 0.31 1.30 0.33 0.10 0.60 2.34 1.86 8.44

20 n 1.04 0.32 1.91 0.72 0.12 1.31 8.62 7.64 31.22

50 n 3.64 0.36 4.74 3.56 0.20 4.46 73.49 72.26 279.01

qtd inst. per line SAW. Random c between [wmax; 10n]

qtd n wmin avg sd max avg sd max avg sd max

200 10 10 0.08 0.00 0.09 0.14 0.02 0.21 1.32 0.85 3.01

500 50 5 0.50 0.01 0.53 2.09 1.00 3.75 3.36 2.86 11.16

200 50 10 0.72 0.01 0.74 2.15 0.85 3.65 6.99 5.81 23.04

200 100 10 7.34 0.32 8.09 33.93 6.94 43.40 40.43 35.13 118.28

101

Table A.2: Results for the MTU implementatios over the reduced PYAsUKP’s
dataset (see Section 5.2.1). Columns n and wmin values must be multiplied by 103

to obtain their true value. Let T be the set of run times reported by CPP-MTU1,
CPP-MTU2, F77-MTU1 and F77-MTU2, for the instance dataset described by a
row (in this case, we don’t count runs that ended in timeout). The meaning of the
columns avg and ter, is, respectively, the arithmetic mean of T and the cardinality
of T (i.e. the number of runs that didn’t end in timeout). The time unit of the table
values is seconds.
Instance desc. CPP-MTU1 CPP-MTU2 F77-MTU1 F77-MTU2

40 inst. per line Subset-sum. Random c between [5× 106; 107]

n wmin avg ter avg ter avg ter avg ter

See section 3.2.1 0.04 40 0.04 40 0.00 40 154.97 8

2 inst. per line Strong correlation. Random c between [20n; 100n]

α n wmin avg ter avg ter avg ter avg ter

5 5 10 0.00 1 – 0 0.00 1 – 0

15 – 0 – 0 – 0 – 0

50 – 0 – 0 – 0 – 0

5 10 10 0.00 1 – 0 0.00 1 – 0

50 0.04 1 – 0 0.03 1 – 0

110 0.01 1 – 0 0.00 1 – 0

-5 5 10 – 0 – 0 – 0 – 0

15 – 0 – 0 – 0 – 0

50 – 0 – 0 – 0 – 0

-5 10 10 0.00 1 – 0 0.00 1 – 0

50 0.00 1 0.79 1 0.00 1 0.83 1

110 0.00 1 – 0 0.00 1 – 0

20 inst. per line Postponed periodicity. Random c between [wmax; 2× 106]

n wmin avg ter avg ter avg ter avg ter

20 20 67.17 19 67.17 19 18.05 17 15.12 17

50 20 101.93 18 2.15 20 134.09 17 143.47 17

20 50 3.15 20 1.74 20 6.33 20 7.83 20

50 50 2.22 20 21.13 20 4.45 20 13.81 20

50 inst. per line No collective dominance. Random c between [wmax; 1000n]

n wmin avg ter avg ter avg ter avg ter

5 n 16.54 9 37.01 9 19.85 9 37.29 9

10 n 147.08 6 5.84 5 34.41 5 10.09 5

20 n 17.95 3 19.23 3 27.45 3 27.78 3

50 n 13.36 2 1.40 2 26.73 2 2.64 2

qtd inst. per line SAW. Random c between [wmax; 10n]

qtd n wmin avg ter avg ter avg ter avg ter

20 10 10 1.33 20 12.92 20 2.54 20 2.87 20

50 50 5 43.08 46 43.97 19 59.14 38 38.63 16

20 50 10 55.14 45 87.68 19 47.05 41 85.97 19

20 100 10 10.10 16 38.41 17 20.23 16 44.41 16

102

A.1 Data and code related to CSP pricing subproblem dataset

The 596 selected instances of CSP are available in <https://github.com/henri

quebecker91/masters/tree/8367836344a2f615640757ffa49254758e99fe0a/data/selecte

d csp inst>, and the code used to solve the SCF relaxation can be found in the same

repository (<https://github.com/henriquebecker91/masters/tree/8367836344a2f61

5640757ffa49254758e99fe0a/codes/cpp>). The code can be compiled by executing

make bin/cutstock in the folder. Unfortunately, the code has external dependencies,

and the user will need to install them before having success in the compilation. The

dependencies are the Boost C++ library (see: <http://www.boost.org/>), and IBM

ILOG CPLEX Studio 12.5 (see: <https://www.ibm.com/developerworks/commu

nity/blogs/jfp/entry/cplex studio in ibm academic initiative?lang=en>). The li-

brary paths are configured inside the Makefile. The binaries generated inside the

automatically created bin subfolder will have the same names as the ones used to

identify them in Section 5.4.

A.2 Caṕıtulo de resumo em português

A.2.1 Introdução

O Problema da Mochila com Repetições (PMR) é uma variante dos conheci-

dos Problema da Mochila com Limite de Itens (PMLI) e Problema da Mochila 0-1

(PM 0-1). A única diferença entre o PMR e essas outras duas variantes é que, no

PMR, cada item possui uma quantidade de cópias ilimitada dispońıvel. O PMR

é NP-dif́ıcil e, portanto, não existe um algoritmo que possa resolvê-lo em tempo

polinomial.

Instâncias do PMR são compostas pelo limite de peso c suportado pela

mochila e um conjunto de n itens. Cada item tem dois valores associados: seu

peso e o seu lucro. O objetivo do PMR é maximizar o lucro dos itens colocados

dentro da mochila, enquanto respeitando o limite de peso da mochila.

A aplicação prática do PMR discutida nessa dissertação é: resolver os prob-

lemas de avaliação (pricing subproblem) que são gerados quando se resolve a relax-

ação cont́ınua de uma instância do Bin Packing Problem (BPP) ou do Cutting Stock

Problem (CSP) usando a formulação de cobertura de conjuntos e a abordagem de

https://github.com/henriquebecker91/masters/tree/8367836344a2f615640757ffa49254758e99fe0a/data/selected_csp_inst
https://github.com/henriquebecker91/masters/tree/8367836344a2f615640757ffa49254758e99fe0a/data/selected_csp_inst
https://github.com/henriquebecker91/masters/tree/8367836344a2f615640757ffa49254758e99fe0a/data/selected_csp_inst
https://github.com/henriquebecker91/masters/tree/8367836344a2f615640757ffa49254758e99fe0a/codes/cpp
https://github.com/henriquebecker91/masters/tree/8367836344a2f615640757ffa49254758e99fe0a/codes/cpp
http://www.boost.org/
https://www.ibm.com/developerworks/community/blogs/jfp/entry/cplex_studio_in_ibm_academic_initiative?lang=en
https://www.ibm.com/developerworks/community/blogs/jfp/entry/cplex_studio_in_ibm_academic_initiative?lang=en

103

geração de colunas. O BPP e o CSP são problemas clássicos da área de pesquisa

operacional e importantes para a indústria, vide (DELORME; IORI; MARTELLO,

2014) e (GILMORE; GOMORY, 1961; GILMORE; GOMORY, 1963). Os mel-

hores limites inferiores para a solução ótima desses dois problemas são os valores

das soluções ótimas de suas relaxações cont́ınuas. A formulação do BPP/CSP com

menos simetrias tem um número exponencial de colunas e, por causa disso, é re-

solvida usando a abordagem de geração de colunas (GILMORE; GOMORY, 1961).

Os problemas de avaliação gerados pela abordagem de geração de colunas (quando

a mesma é aplicada ao BPP/CSP) são instâncias do PMR.

A.2.2 Trabalhos relacionados

Nesta seção é apresentada uma revisão bibliográfica sobre o PMR em ordem

cronológica.

(GILMORE; GOMORY, 1961) Uma aplicação prática do PMR é proposta. Essa

aplicação é a resolução dos ‘problemas de avaliação’ que surgem na resolução

da relaxação cont́ınua do BPP/CSP.

(GILMORE; GOMORY, 1966) São propostos algoritmos de programação dinâmica

para o PMR no contexto dessa aplicação prática.

(MARTELLO; TOTH, 1977) Um algoritmo da abordagem branch-and-bound é

proposto, e comparado com algoritmos de programação dinâmica usando pe-

quenas instâncias artificiais, onde obtem os melhores resultados, por uma pe-

quena margem.

(MARTELLO; TOTH, 1990a) O foco muda para solucionar instâncias grandes

em pouco tempo. Instâncias artificiais são usadas com esse propósito. No con-

texto dessas instâncias, os algoritmos de programação dinâmica são claramente

dominados pelos algoritmos de branch-and-bound.

(ZHU; BROUGHAN, 1997) É demonstrado que alguns desses conjuntos de in-

stâncias artificiais possuem somente uma pequena quantidade de itens rele-

vantes, esses conjuntos de instâncias são desacreditados.

(POIRRIEZ; ANDONOV, 1998) Um novo algoritmo de programação dinâmica

é proposto, assim como novas instâncias artificiais.

(ANDONOV; POIRRIEZ; RAJOPADHYE, 2000) O novo algoritmo com-

104

para somente com algoritmos de branch-and-bound e o algoritmo de progra-

mação dinâmica ingênuo, os antigos algoritmos de programação dinâmica não

ingênuos foram esquecidos ou exclúıdos devido a experimentos anteriores.

(KELLERER; PFERSCHY; PISINGER, 2004) O novo algoritmo é consid-

erado o estado da arte.

(POIRRIEZ; YANEV; ANDONOV, 2009) O novo algoritmo de programação

dinâmica é hibridizado com branch-and-bound, e os conjuntos de dados são

atualizados para serem mais dif́ıceis. Estes conjuntos de dados são dif́ıceis

para branch-and-bound, e o algoritmo h́ıbrido compara somente com branch-

and-bound. O método h́ıbrido é o novo estado da arte.

(BECKER; BURIOL, 2016) Um algoritmo de programação dinâmica antigo é

redescoberto e tem um desempenho melhor que o estado da arte quando exe-

cutado sobre o conjunto de instâncias mais recente proposto.

(essa dissertação) Algoritmos antigos são revistos, reimplementados e testados. A

influência dos conjuntos de instâncias e o contexto histórico se torna aparente.

A.2.3 Classes de instâncias

Esta seção trata das classes de instâncias usadas nos experimentos apresen-

tados neste trabalho. Essas instâncias são diferenciadas principalmente pela dis-

tribuição dos seus itens, ou seja qual a relação entre o peso e o lucro de cada item.

Neste trabalho não foram utilizadas instâncias com uma distribuição de itens sem

correlação (peso e lucro de cada item escolhidos aleatoriamente), pois estas foram

desacreditadas em (ZHU; BROUGHAN, 1997).

A.2.3.1 Instâncias do PYAsUKP

O conjunto de instâncias proposto em (POIRRIEZ; YANEV; ANDONOV,

2009), e reutilizado na comparação apresentada em (BECKER; BURIOL, 2016),

será referenciado como conjunto de instâncias do PYAsUKP. Estas são instâncias

geradas artificialmente com o propósito de serem “dif́ıceis de resolver”. O conjunto

de instâncias usado neste trabalho é similar ao usado em (POIRRIEZ; YANEV;

ANDONOV, 2009). A mesma ferramenta (PYAsUKP) foi usada para gerar os con-

juntos de dados, e os mesmos parâmetros foram usados, com exceção das instâncias

105

subset-sum, que foram ampliadas multiplicando os seus parâmetros por dez. Algu-

mas instâncias fazem uso de sementes aleatórias que não foram publicadas, então as

exatas instâncias usadas em (POIRRIEZ; YANEV; ANDONOV, 2009) podem ser

diferentes. As instâncias usadas aqui são exatamente as mesmas que foram usadas

em (BECKER; BURIOL, 2016).

O conjunto de instâncias do PYAsUKP é composto 4540 instâncias prove-

nientes de cinco conjuntos de instâncias menores. Os cinco conjuntos menores são:

subset-sum, com 103 ≤ n ≤ 104 e 5 × 106 ≤ c ≤ 107, totalizando 400 instâncias;

strongly correlated, com n = 104 e 2010000 ≤ c ≤ 10010000, totalizando 240 in-

stâncias; postponed periodicity, com 20000 ≤ n ≤ 50000 e 1020000 ≤ c ≤ 2 × 106,

totalizando 800 instâncias; without collective dominance, com 5000 ≤ n ≤ 50000 e

105000 ≤ c ≤ 100050000, totalizando 2000 instâncias; SAW, com 104 ≤ n ≤ 105 e

11000 ≤ c ≤ 10100000, totalizando 1100 instâncias.

Em cada um desses cinco conjuntos menores de instâncias, para mesma com-

binação de parâmetros, o número de instâncias gerado é sempre perfeitamente di-

viśıvel por dez. Dessa forma, é posśıvel definir um conjunto de instâncias composto

de um décimo das instâncias do PYAsUKP (ou seja, 454 instâncias), e que possui

pelo menos uma instância para cada combinação distinta de parâmetros usada. Essa

distribuição reduzida será referenciada como: o conjunto de instâncias reduzido do

PYAsUKP.

A.2.3.2 Problemas de avaliação gerados a partir do BPP/CSP

O Bin Packing Problem (BPP) e o Cutting Stock Problem (CSP) são proble-

mas clássicos da área de pesquisa operacional. Quando a relaxação cont́ınua de uma

instância do BPP/CSP é resolvida usando a formulação de cobertura de conjuntos

e a abordagem de geração de colunas, são gerados de dezenas até milhares de ‘prob-

lemas de avaliação’ (pricing subproblems). Cada um desses problemas de avaliação

é uma instância do PMR.

Para uma mesma instância do BPP/CSP, o número de instâncias do PMR

geradas, e o lucro dos itens em uma dada instância, pode variar baseado na escolha

da solução ótima. Uma instância do PMR pode ter múltiplas soluções ótimas, entre-

tanto, somente uma delas é usada pela abordagem de geração de colunas, que define

os próximos problemas de avaliação gerados. Consequentemente, este conjunto de

instâncias do PMR é dif́ıcil de descrever, ele possue um número grande e variável

106

de instâncias com valores de lucro dos itens também variáveis. A melhor forma

encontrada pelo autor para garantir que os resultados são reproduźıveis é disponi-

bilizando publicamente os códigos usados nos experimentos, conjuntamente com o

conjunto de instâncias do BPP/CSP da literatura usado nos experimentos. Os códi-

gos são determińısticos e, consequentemente, irão produzir os mesmos resultados se

executados várias vezes sobre a mesma instância.

Um survey recente sobre o BPP e o CSP reuniu instâncias da literatura, e

também propôs novas (DELORME; IORI; MARTELLO, 2014). O número total de

instâncias em todos conjuntos de instâncias apresentados no survey é de 5692. O

autor dessa dissertação escolheu 10% dessas instâncias para os experimentos real-

izados nesse trabalho. Essa fração das instâncias foi escolhida aleatoriamente dentre

instâncias do mesmo conjunto ou, em conjuntos maiores, dentre os mesmos parâmet-

ros de geração. As 596 instâncias do BPP/CSP selecionadas estão dispońıveis no

repositório GitHub do autor1.

A.2.3.3 Instâncias BREQ

O Bottom Right Ellipse Quadrant (abreviado como BREQ, e que pode ser

traduzido como ‘Quadrante de Elipse Inferior Direito’) é um tipo de distribuição de

itens proposto pelo autor dessa dissertação. O nome dessa distribuição é derivado

do fato que, quando plotado em um gráfico (com o lucro e o peso como eixos x

e y), os itens formam um quarto de elipse (especificamente, o quadrante inferior

direito). Essa distribuição foi criada para ilustrar que diferentes distribuições de

itens favorecem diferentes abordagens e, consequentemente, a escolha de conjuntos

de instâncias (ou especificamente, a distribuição dos itens) define o que é considerado

o melhor algoritmo.

As instâncias BREQ favorecem algoritmos fazem uso de limites, como aqueles

que fazem uso da abordagem branch-and-bound (que pode ser traduzida literalmente

1As instâncias podem ser encontradas em <https://github.com/henriquebecker91/masters/tree
/8367836344a2f615640757ffa49254758e99fe0a/data/selected csp inst>, e o código usado para re-
solver a relaxação pode ser encontrado no mesmo repositório (<https://github.com/henriqueb
ecker91/masters/tree/8367836344a2f615640757ffa49254758e99fe0a/codes/cpp>). O código pode
ser compilado executando make bin/cutstock no diretório. Infelizmente, o código pode ter de-
pendências externas, e o usuário precisará instalar eles antes de ter sucesso na compilação. As
dependências são a biblioteca Boost C++ (veja: <http://www.boost.org/>), e o IBM ILOG
CPLEX Studio 12.5 (veja: <https://www.ibm.com/developerworks/community/blogs/jfp/entry
/cplex studio in ibm academic initiative?lang=en>). Os caminhos da biblioteca são configurados
dentro do Makefile.

https://github.com/henriquebecker91/masters/tree/8367836344a2f615640757ffa49254758e99fe0a/data/selected_csp_inst
https://github.com/henriquebecker91/masters/tree/8367836344a2f615640757ffa49254758e99fe0a/data/selected_csp_inst
https://github.com/henriquebecker91/masters/tree/8367836344a2f615640757ffa49254758e99fe0a/codes/cpp
https://github.com/henriquebecker91/masters/tree/8367836344a2f615640757ffa49254758e99fe0a/codes/cpp
http://www.boost.org/
https://www.ibm.com/developerworks/community/blogs/jfp/entry/cplex_studio_in_ibm_academic_initiative?lang=en
https://www.ibm.com/developerworks/community/blogs/jfp/entry/cplex_studio_in_ibm_academic_initiative?lang=en

107

como ‘ramificar-e-limitar’). Dessa forma, caso um conjunto de instâncias baseado no

BREQ seja utilizado em uma comparação entre algoritmos de programação dinâmica

e algoritmos de branch-and-bound, os algoritmos de B&B serão favorecidos. Como

veremos na seção de experimentos, muitas das instâncias do PYAsUKP levam muito

mais tempo para serem solucionadas por algoritmos de B&B do que por algoritmos

de programação dinâmica. Consequentemente, as conclusões sobre qual é o melhor

algoritmo para o PMR seriam contrárias caso fossem somente usadas as instâncias

do BREQ, do que se fossem usadas somente as instâncias do PYAsUKP.

O conjunto de instâncias utilizado na seção de experimentos consiste em um

total de cem instâncias, dez instâncias para cada um dos dez valores de n utilizados:

1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, 1019 e 1020. A capacidade da mochila

para uma determinada instância é 128× n.

A.2.4 Abordagens e algoritmos

As abordagens mais comuns usadas para solucionar o PMR são a progra-

mação dinâmica e o branch-and-bound (B&B). A conversão de instâncias do PMR

em instâncias de outras variantes do problema da mochila (PM 0-1 e PMLI) não é

usada pois costuma resultar em perda de desempenho.

Algoritmos de programação dinâmica para o PMR tem um pior caso pseudo-

polinomial de O(nc) (onde n é o número de itens, e c é a capacidade da mochila),

e um uso de memória de O(n + c). Os algoritmos de programação dinâmica (PD)

que são usados nos experimentos são: UKP5 e EDUK.

O UKP5 foi proposto pelo autor dessa dissertação em (BECKER; BURIOL,

2016). Após a publicação, o autor percebeu que o UKP5 era basicamente o mesmo

algoritmo que o ordered step-off apresentado em (GILMORE; GOMORY, 1966). O

pseudo-código do UKP5/‘ordered step-off ’ pode ser encontrado no Algoritmo 3 da

Seção 4.2.4.

Algoritmos de B&B para o PMR tem um pior caso exponencial, e um uso

de memória de O(n). Os algoritmos de B&B que são usados nos experimentos são:

MTU1 e MTU2. Alguns algoritmos combinam ambas abordagens (PD e B&B). Os

algoritmos h́ıbridos que são usados nos experimentos são: EDUK2 e GREENDP.

Os seguintes algoritmos foram implementados em C++ pelo autor desse

trabalho para realização de experimentos: UKP5, MTU1, MTU2 e GREENDP.

108

Os seguintes algoritmos já possuiam uma implementação dispońıvel publicamente:

EDUK (OCaml), EDUK2 (OCaml), MTU1 (Fortran77) e MTU2 (Fortran77).

A.2.5 Experimentos e análises

Cinco experimentos são apresentados nessa seção. O primeiro experimento

consistiu na execução de UKP5, EDUK2, e GREENDP sobre o conjunto de instân-

cias do PYAsUKP. O maior tempo que o UKP5 dispendeu em uma única instância

foi 20 segundos. O GREENDP teve resultados similares ao UKP5, usando signi-

ficativamente mais tempo em algumas instâncias e marginalmente menos tempo em

outras. O maior tempo que o MGREENDP dispendeu em uma única instância foi 43

segundos. O PYAsUKP dispendeu consideravelmente mais tempo do que o UKP5

e o MGREENDP em cada conjunto de instâncias. Na maioria dos conjuntos de in-

stâncias, o PYAsUKP dispendeu pelo menos dez vezes mais tempo que o UKP5 ou o

MGREENDP. O maior tempo que o PYAsUKP dispendeu em uma única instância

foi 416 segundos. Para mais informações, consultar a tabela A.1 que se encontra

nesse apêndice.

O segundo experimento consistiu na execução de MTU1 (C++), MTU2

(C++), MTU1 (Fortran77) e MTU2 (Fortran77) sobre o conjunto de instâncias

reduzido do PYAsUKP (454 instâncias). A implementação original em Fortran foi

comparada com a implementação do autor dessa dissertação em C++. Considerando

o conjunto de instâncias utilizado, ambos algoritmos (em ambas implementações)

não são competitivos com os algoritmos de PD e h́ıbridos previamente testados

(UKP5, MGREENDP e PYAsUKP) em relação ao tempo de execução. Todas as

quatro implementações falharam em resolver cerca de metade das instâncias antes

do limite de tempo de 1000 segundos por instância. Entre as implementações do

MTU1 (C++ e Fortran) não há diferença significativa. Entre as implementações do

MTU2, pela forma como foi implementada a ordenação dos itens, a implementação

em C++ usa menos tempo, em especial para instâncias do tipo subset-sum. Para

mais informações, consultar a tabela A.2 que se encontra nesse apêndice.

O terceiro experimento consiste na execução de todos os algoritmos men-

cionados na Seção A.2.4 sobre as cem instâncias do BREQ 128-16 Standard Bench-

mark. Os resultados demonstram que algoritmos de B&B, ou que possuem cálculo

de limites (bounds), tem ampla vantagem sobre algoritmos que utilizam unicamente

109

programação dinâmica, considerando somente esse conjunto de instâncias. Isso cor-

robora o argumento de que a escolha de instâncias define o que é considerado o

melhor algoritmo. Os resultados desse experimento podem ser visualizados na figura

5.3. Para mais informações, consultar a tabela A.3 que se encontra nesse apêndice.

O quarto experimento consiste na execução do UKP5, MTU1 e o CPLEX para

solucionar os problemas de avaliação gerados a partir de instâncias do BPP/CSP. Os

resultados mostram que o CPLEX não é competitivo para solução dos problemas de

avaliação. Quando o MTU1 e o UKP5 são usados para solucionar os problemas de

avaliação, para a maioria das instâncias, solucionar todos os problemas de avaliação

de uma determinada instância do BPP/CSP toma menos de um segundo. Cerca de

cinquenta instâncias do conjunto de instâncias do BPP/CSP exigem mais do que

um segundo para que o UKP5 solucione todos os problemas de avaliação gerados

pela instância (até um máximo de 50 segundos em uma das instâncias). Quando

o CPLEX e o MTU1 são usados para solucionar os problemas de avaliação dessas

cinquenta instâncias mais dif́ıceis, cada uma dessas instâncias excede o limite de

tempo de dez minutos por instância do BPP/CSP.

O quinto experimento consiste na execução do UKP5 e do PYAsUKP (EDUK2)

em dois computadores com diferentes quantidades de cache compartilhada, de forma

serial e paralela, sobre a versão reduzida do conjunto de instâncias do PYAsUKP

(454 instâncias). O paralelismo aqui citado se refere a execuções independentes (i.e.

sobre diferentes instâncias), em cores isolados, com o propósito de reduzir o tempo

necessário para realizar um benchmark. Os resultados mostram que as execuções em

paralelo tomam mais tempo que as execuções seriais (comparando cada execução

paralela com a serial correspondente). Isto indica que mesmo em cores isolados, a

execução concorrente afeta os tempos de execução. O UKP5 é mais afetado por esse

efeito que o PYAsUKP, o que atribúımos ao maior uso de memória e, consequente-

mente, maior disputa pela cache compartilhada. Todos os experimentos descritos

anteriormente foram executados de forma serial, para evitar esse rúıdo.

A.2.6 Conclusões

A análise cŕıtica da literatura, conjuntamente com o resultado dos experimen-

tos apresentados nesse trabalho, leva a crer que a escolha de instâncias e algoritmos

usados nos experimentos de trabalhos anteriores permitiu que um algoritmo antigo,

110

porém eficiente, fosse esquecido pela comunidade cient́ıfica. Este algoritmo é o or-

dered step-off que é implementado, com pequenas alterações, pelo UKP5.

Outras contribuições são o conceito de dominância de solução (fraca e forte),

que é utilizado pelo ordered step-off mas não havia sido conceitualizado. Além da

evidência trazidas pelos experimentos de que: o pior caso do B&B pode ocorrer

em problemas de avaliação (pricing subproblems); a escolha entre soluções ótimas

para um problema de avaliação altera consideravelmente o número de problemas

de avaliação gerados subsequentemente (para uma mesma instância do BPP/CSP);

algoritmos do PMR que fazem uso intensivo da memória apresentam alteração nos

tempos quando executados concorrentemente porém em cores isolados; a conversão

do lucro dos problemas de avaliação de ponto flutuante para inteiro não causa perda

significativa no valor da solução ótima da instância do BPP/CSP subjacente.

	Dedication and Acknowledgments
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Figures
	Contents
	1 Introduction
	1.1 Motivation and scope
	1.2 Formulation and notation
	1.3 Properties of the UKP
	1.3.1 Dominance relations
	1.3.2 Periodicity and periodicity bounds

	2 Prior Work
	3 The datasets
	3.1 Uncorrelated items distribution datasets
	3.1.1 Babayev's use of uncorrelated instances
	3.1.2 Martello's use of uncorrelated instances

	3.2 PYAsUKP dataset
	3.2.1 Subset-sum instances
	3.2.2 Instances with strong correlation between weight and profit
	3.2.3 Instances with postponed periodicity
	3.2.4 Instances without collective dominance
	3.2.5 SAW instances
	3.2.6 PYAsUKP dataset and reduced PYAsUKP dataset

	3.3 CSP pricing subproblem dataset
	3.4 Bottom Right Ellipse Quadrant instances
	3.5 Other distributions

	4 Approaches and algorithms
	4.1 Conversion to other KP variants
	4.2 Dynamic Programming
	4.2.1 The naïve algorithm
	4.2.2 The algorithm of Garfinkel and Nemhauser
	4.2.3 The step-off algorithms of Gilmore and Gomory
	4.2.4 UKP5
	4.2.4.1 A note about UKP5 performance
	4.2.4.2 Weak solution dominance
	4.2.4.3 Implementation details

	4.2.5 EDUK

	4.3 Branch-and-Bound
	4.3.1 MTU1
	4.3.2 MTU2
	4.3.3 Other B&B algorithms

	4.4 Hybrid (DP and B&B)
	4.4.1 GREENDP
	4.4.2 EDUK2

	4.5 Consistency Approach
	4.5.1 GREENDP1
	4.5.2 Babayev's algorithm

	4.6 Other approaches

	5 Experiments and Analyses
	5.1 Setup of the first four experiments
	5.2 Solving the PYAsUKP dataset
	5.2.1 MTU1 and MTU2 (C++ and Fortran)
	5.2.2 Algorithms implemented but not used

	5.3 Solving the BREQ 128-16 Standard Benchmark
	5.4 Solving pricing subproblems from BPP/CSP
	5.4.1 The differences in the number of pricing subproblems solved
	5.4.2 The only outlier
	5.4.3 Similar methods generate different amounts of pricing subproblems
	5.4.4 Algorithms not used in this experiment

	5.5 The effects of parallel execution
	5.5.1 Setup
	5.5.2 Experiment

	6 Conclusions and future work
	6.1 Conclusions
	6.1.1 A critical review

	6.2 UKP-specific knowledge contributions
	6.3 Technological UKP-specific contributions
	6.4 Future work

	References
	Appendix A — Tables
	A.1 Data and code related to CSP pricing subproblem dataset
	A.2 Capítulo de resumo em português
	A.2.1 Introdução
	A.2.2 Trabalhos relacionados
	A.2.3 Classes de instâncias
	A.2.3.1 Instâncias do PYAsUKP
	A.2.3.2 Problemas de avaliação gerados a partir do BPP/CSP
	A.2.3.3 Instâncias BREQ

	A.2.4 Abordagens e algoritmos
	A.2.5 Experimentos e análises
	A.2.6 Conclusões

