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“Education is an important element in the struggle for human rights.

It is the means to help our children and our people rediscover their identity and

thereby increase their self respect. Education is our passport to the future,

for tomorrow belongs only to the people who prepare for it today.

— SIR MALCOLM X



ABSTRACT

Pedestrian detection reliability is a fundamental problem for autonomous or aided driving.

Methods that use object detection algorithms such as Histogram of Oriented Gradients

(HOG) or Convolutional Neural Networks (CNN) are today very popular in automotive

applications. Embedded Graphics Processing Units (GPUs) are exploited to make object

detection in a very efficient manner. Unfortunately, GPUs architecture has been shown

to be particularly vulnerable to radiation-induced failures. This work presents an exper-

imental evaluation and analytical study of the reliability of two types of object detection

algorithms: HOG and CNNs. This research aim is not just to quantify but also to qualify

the radiation-induced errors on object detection applications executed in embedded GPUs.

HOG experimental results were obtained using two different architectures of embedded

GPUs (Tegra and AMD APU), each exposed for about 100 hours to a controlled neutron

beam at Los Alamos National Lab (LANL). Precision and Recall metrics are considered

to evaluate the error criticality. The reported analysis shows that, while being intrinsically

resilient (65% to 85% of output errors only slightly impact detection), HOG experienced

some particularly critical errors that could result in undetected pedestrians or unneces-

sary vehicle stops. This works also evaluates the reliability of two Convolutional Neural

Networks for object detection: You Only Look Once (YOLO) and Faster RCNN. Three

different GPU architectures were exposed to controlled neutron beams (Kepler, Maxwell,

and Pascal) detecting objects in both Caltech and Visual Object Classes data sets. By ana-

lyzing the neural network corrupted output, it is possible to distinguish between tolerable

errors and critical errors, i.e., errors that could impact detection. Additionally, extensive

GDB-level and architectural-level fault-injection campaigns were performed to identify

HOG and YOLO critical procedures. Results show that not all stages of object detection

algorithms are critical to the final classification reliability. Thanks to the fault injection

analysis it is possible to identify HOG and Darknet portions that, if hardened, are more

likely to increase reliability without introducing unnecessary overhead. The proposed

HOG hardening strategy is able to detect up to 70% of errors with a 12% execution time

overhead.

Keywords: Fault tolerance. soft error. pedestrian detection. hardening.



Validação da confiabilidade e tolerância a falhas em algoritmos de detecção de

pedestres para GPUs embarcadas

RESUMO

A confiabilidade de algoritmos para detecção de pedestres é um problema fundamental

para carros auto dirigíveis ou com auxílio de direção. Métodos que utilizam algoritmos

de detecção de objetos como Histograma de Gradientes Orientados (HOG - Histogram

of Oriented Gradients) ou Redes Neurais de Convolução (CNN – Convolutional Neural

Network) são muito populares em aplicações automotivas. Unidades de Processamento

Gráfico (GPU – Graphics Processing Unit) são exploradas para executar detecção de ob-

jetos de uma maneira eficiente. Infelizmente, as arquiteturas das atuais GPUs tem se mos-

trado particularmente vulneráveis a erros induzidos por radiação. Este trabalho apresenta

uma validação e um estudo analítico sobre a confiabilidade de duas classes de algoritmos

de detecção de objetos, HOG e CNN. Esta pesquisa almeja não somente quantificar, mas

também qualificar os erros produzidos por radiação em aplicações de detecção de obje-

tos em GPUs embarcadas. Os resultados experimentais com HOG foram obtidos usando

duas arquiteturas de GPU embarcadas diferentes (Tegra e AMD APU), cada uma foi ex-

posta por aproximadamente 100 horas em um feixe de nêutrons em Los Alamos National

Lab (LANL). As métricas Precision e Recall foram usadas para validar a criticalidade

do erro. Uma análise final mostrou que por um lado HOG é intrinsecamente resiliente

a falhas (65% a 85% dos erros na saída tiveram um pequeno impacto na detecção), do

outro lado alguns erros críticos aconteceram, tais que poderiam resultar em pedestres não

detectados ou paradas desnecessárias do veículo. Este trabalho também avaliou a confia-

bilidade de duas Redes Neurais de Convolução para detecção de Objetos:Darknet e Faster

RCNN. Três arquiteturas diferentes de GPUs foram expostas em um feixe de nêutrons

controlado (Kepler, Maxwell, e Pascal), com as redes detectando objetos em dois data

sets, Caltech e Visual Object Classes. Através da análise das saídas corrompidas das

redes neurais, foi possível distinguir entre erros toleráveis e erros críticos, ou seja, erros

que poderiam impactar na detecção de objetos. Adicionalmente, extensivas injeções de

falhas no nível da aplicação (GDB) e em nível arquitetural (SASSIFI) foram feitas, para

identificar partes críticas do código para o HOG e as CNNs. Os resultados mostraram que

não são todos os estágios da detecção de objetos que são críticos para a confiabilidade

da detecção final. Graças a injeção de falhas foi possível identificar partes do HOG e



da Darknet, que se protegidas, irão com uma maior probabilidade aumentar a sua confi-

abilidade, sem adicionar um overhead desnecessário. A estratégia de tolerância a falhas

proposta para o HOG foi capaz de detectar até 70% dos erros com 12% de overhead de

tempo.

Palavras-chave: tolerância a falhas,soft error, detecção de pedestres,proteção por soft-

ware.
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1 INTRODUCTION

Embedded systems are nowadays common used in applications that range from a

simple smart watch to a complex self-driving car system. A system, to be called embed-

ded, processes some data from the environment and, based on it, generates control signals

to manage the system they are integrated in (YEN; WOLF, 2013). Since the embedded

system must follow specific and, at times, strict constraints, designing and programming

an embedded system could be much more challenging than programming a general pur-

pose computing device.

In the last years, the embedded systems market have been demanding much more

processing and power performance. The new market scenario is forcing engineers to put

their effort in produces high-performance embedded systems, which must consume less

power than a general purpose computer, in some cases must be real time (WOLF, 2012;

WOLF, 2014).

According to Marwedel Embedded systems must fit at leat these three specific

constraints Dependability, Energy Efficiency, and Performance (MARWEDEL, 2010):

(1) Dependability is essential especially for those applications which the device must

be reliable and maintainable. An embedded system is typically required to maintain its

functionality for a given period. In particular, safety-critical applications require very high

reliability, i.e., applications where an error or malfunction could cause life loss or several

damages. (2) Energy efficiency is nowadays of extreme importance, specifically for those

applications for which there is a limited power/energy budget, like portable devices. It

is then likely to have an embedded system design that consumes less power/energy as

possible. (3) Finally, performance is a critical constraint on a real-time system, since a

delayed answer could result in a user harm or property loss.

In some specific situations, embedded systems are required to respect not just one

or few, but all the mentioned requirements. Self-driving cars, aircraft, military, and space

applications are examples in which the system must be reliable while manipulating a

significant amount of data in real-time and be extremely energy efficient. In this scenario,

designing an embedded system which fills all requirements is an extremely challenging

task.

Recently embedded GPUs have got into the market, bringing the processing power

which was reserved for HPC research into embedded systems. Thanks to their low cost,

increased energy efficiency, and flexible development platforms, low-power embedded
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GPUs have enjoyed widespread adoption in various application domains. The employ-

ment of embedded GPUs on the embedded systems is a reality. Tesla self-driving system,

for instance, is powered by NVIDIA Tegra K1 and X1 embedded GPUs. However, Tesla

is not the only enterprise that is working with NVIDIA, others such as Audi, Mercedes-

Benz, Volvo, Baidu, etc.. All of then want to exploit embedded GPUs to enter the self-

driven car’s market (NVIDIA, 2017).

Efficient parallel processing is attractive to compress images in satellites and re-

duce the bandwidth necessary to send them to ground (AGENCY, 2014). On aircraft,

GPUs are studied to integrate all the circuitry required to implement collision avoidance

systems (BECKER; SANDER, 2013). An application is considered safety critical if it

should not fail, or if a failure could result in a loss of life, property damage, or environ-

ment damage (KNIGHT, 2002; BLANCHET et al., 2003). Some embedded systems are

used in safety critical system, so they have to be reliable, which makes their development

process harder.

With the shrink of transistors size to attend the market demand for low power con-

sumption and high performances, a new reliability problem for electronic devices arises.

Transistors become more and more susceptible to single events caused by radiation par-

ticles (BAUMANN, 2005). When a radiation particle has enough energy to change the

transistor state, it may change values of registers, flip-flops, memory cells, or latches.

Additionally, radiation can also disturb logic computation. Terrestrial radiation-induced

errors are mainly soft errors, once they do not cause permanent damage to the circuit.

When an application uses the corrupted data it could process a variable in a wrong way,

resulting in a corrupted software output, called as Silent Data Corruption (SDC).

The probability of a single transistor to be affected by a soft error is small, that

is, the single transistor Soft Errors Rate (SER) is low. However, Baumann has already

shown that if electronic chips are massively used in parallel, the SER will increase signif-

icantly (BAUMANN, 2005). Figure 1.1 shows the monthly SER for the amount of SRAM

memory integrated on the device, it indicates that when lots of transistors are used in par-

allel, the system SER becomes a critical issue for electronic system projects. More recent

works have been shown that SER is also a huge concern on GPUs (OLIVEIRA et al.,

2014b; PILLA et al., 2015; OLIVEIRA et al., 2016). Unfortunately, as GPUs were tradi-

tionally designed for entertaining and gaming applications, for which soft error rate is not

critical, their reliability solutions are in its beginning if compared with general purpose

CPUs.
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Figure 1.1: Monthly Soft Error Rate SER scale per number of chips. The image shows
for one memory chip the SER will be negligible, but when 1000 chips are used in parallel
it can not be ignored. From (BAUMANN, 2005).

1.1 Motivation

The terrestrial atmosphere is constantly bathed by cosmic rays, which are cumber-

some and energetic charged particles from space (figure 1.2). Most of the cosmic rays are

captured or blocked by the Earth’s magnet field (GOLDHAGEN, 2003), however, depend-

ing on the particle energy, it could penetrate and hit the upper level of our atmosphere,

producing a significant amount of neutrons that reach the ground. Energetic particles are

a real concern on electronic devices reliability. In the past, lots of work have been report-

ing problems with cosmic rays on electronic devices, not only on satellites (BINDER;

SMITH; HOLMAN, 1975) and airplanes (DICELLO; PACIOTTI; SCHILLACI, 1989),

but also at the sea level (MAY; WOODS, 1979; MICHALAK et al., 2012).

A soft error could result in an unexpected application behavior, which may lead

to some environment damage, a risk of a human life or even death. A radiation-induced

event on an electronic system could cause various unexpected results, such as arithmetic

errors, modifications on reconfigurable logic circuits, a wrong processing output, operat-

ing system crash, and other fails.

Soft Errors are particularly critical for automotive safety-critical systems as a fail-

ure caused by an SDC could bring serious damage. The most famous case is Jean Bookout

Vs. Toyota Motors (TIMES, 2013). After a technical problem a Toyota Camry 2005 car

with two women inside, suddenly accelerated until it crashed, leaving one woman dead

and Jean Bookout seriously injured (figure 1.3). During the trial, a reverse engineering

process demonstrates that two things culminated to the accident: (1) bad programming



15

Figure 1.2: Cosmmic ray incidence on earth. From (NASA, 2005).

Figure 1.3: Toyota Camry 2005 after the crash in a highway. From (MONEY, 2013).

practices and (2) a bit flip that killed a system task (KOOPMAN, 2014; CUMMINGS,

2016; STRATEGIES, 2013). Toyota Motors was sentenced to pay $ 1.5 million dollars to

Jean Bookout and $ 1.5 million to the other woman family.

The accident mentioned above helps to understand the importance of reliability

on automotive embedded systems. Car enterprises want to put more embedded applica-

tions on their products, so it is necessary to ensure that all safety metrics will be met.

Autonomous cars are complex by its definition, as it is a combination of many Artificial

Intelligence algorithms, such as Object Detection, Free Space Pixel Labeling, Sign De-

tection, and others AI methods. Putting all cited AI techniques on a final product and

guaranteeing safety is extremely challenging. In this scenario, this work will contribute

to evaluate the reliability of three Object Detection algorithms, Histogram of Oriented

Gradients, and two different Convolutional Neural Networks.
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1.2 Goals and Contributions

The main contributions of this work are:

1. The experimental evaluation of the behavior of HOG executed on embedded GPUs

exposed to radiation;

2. Experimental evaluation of two Convolutional Neural Networks (Darknet and Faster

RCNN) under radiation, using the most advanced GPU architectures available on

the market;

3. Utilization of formal metrics to describe the radiation-induced errors on pedestrian

detection systems and to evaluate their criticality;

4. Identification of the most vulnerable HOG and Darknet procedures through fault-

injection;

5. Concrete proposals on how to increase HOG and Darknet reliability for automotive

applications;

6. Validation of HOG hardening strategies through SASSIFI fault injection.

The remainder of the document is organized as follows. Chapter 2 gives a back-

ground on reliability of electronic devices and functional safety for automotive applica-

tions concepts. Chapter 3 introduces the used object detection algorithms and their struc-

ture and reviews. Chapter 4 presents the proposed error criticality metrics, the radiation

tests setup and the fault injection tools that are used in this work. Chapter 5 presents and

discusses experimental and fault-injection results, while Chapter 6 concludes the docu-

ment and presents some future works.
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2 RADIATION EFFECTS ON ELECTRONIC CIRCUITS

This chapter will explain the main radiation effects on electronic circuits. Due to

the transistors shrinking, it is necessary to study the impact of radiation-induced errors on

embedded devices. Since GPUs are becoming popular on embedded systems, it is also

mandatory to comprehend the implication of radiation-induced events on GPUs.

2.1 Reliability issue for electronics devices

Various sources of errors could undermine the system reliability, including envi-

ronmental perturbations, software errors, temperature, or voltage variations (LUTZ, 1993;

LAPRIE, 1995; NICOLAIDIS, 1999; BAUMANN, 2005). The generated error may cor-

rupt data values or logic operations and lead to Silent Data Corruption (SDC), Application

Crash, System Hang, or be masked and cause no observable error (CONSTANTINESCU,

2002; SAGGESE et al., 2005; SCHROEDER; PINHEIRO; WEBER, 2009a).

This work focuses on radiation-induced soft errors that, according to (BAUMANN,

2005), are a huge concern in modern computing devices because, uncorrected, they pro-

duce a failure rate that is higher than all the other reliability mechanisms combined.

In fact, today the radiation-induced failure rate represents a significant issue not

only in radiation-harsh environments, such as space but also in milder environments at sea

level. Due to the shrinking of transistor dimensions and the exacerbation of many avail-

able resources, electronic devices are becoming more susceptible to soft errors induced by

ionizing particles. High-energy neutrons generated by the interaction of cosmic rays with

the terrestrial atmosphere may then have enough energy to corrupt data stored in SRAM

memories or to affect logic computations (BAUMANN, 2005). Radiation-induced fail-

ures are expressly pertinent in safety-critical applications, for which reliability is manda-

tory.

2.2 GPU Reliability

While extremely efficient in terms of FLOP/s and FLOPs-per-WATT, modern

GPUs have been shown to be prone to experience radiation-induced corruption (DE-

BARDELEBEN et al., 2013; WUNDERLICH; BRAUN; HALDER, 2013; GOMEZ et



18

al., 2014; OLIVEIRA et al., 2014a; OLIVEIRA et al., 2016). GPU architecture may be

particularly susceptible to be corrupted by radiation for three main reasons. (1) GPUs

were traditionally designed for entertainment video editing or gaming applications, for

which reliability is not a concern (BREUER; GUPTA; MAK, 2004). Thus, their archi-

tecture is optimized to increase performance more than reliability. (2) GPUs orchestrate

parallel processes using hardware scheduler and dispatcher. To make parallel executions

more efficient, GPUs use shared memory among threads. The corruption of the scheduler

or an error in the shared memory is likely to affect the computation of several parallel pro-

cesses, significantly lowering the GPU reliability (RECH et al., 2013b). (3) GPUs require

a huge amount of memory to implement parallelism, both caches and register files. These

memories have been demonstrated to be the cause of the majority of errors in modern

computing devices (SEIFERT; ZHU; MASSENGILL, 2002; TAN et al., 2011).

Typically CPU cores include parity, Error Correcting Code (ECC) or other error

protection mechanisms on their main memory structures even in commercial SoCs (AMD,

2015; ARM, 2016; INTEL, 2016), most embedded GPUs, including the ones consid-

ered in this paper, still lack any protection. As an example, Tesla’s self-diving system

is powered by NVIDIA Tegra K1 and Tegra X1, which do not have any reliability so-

lution applied to the GPU core. The lack of architectural hardening makes embedded

GPUs unprotected against soft errors, which could undermine their utilization for safety-

critical systems. It is worth noting that the latest GPUs for High-Performance Computing

Applications include ECC on the main memory structures (NVIDIA, 2015b; INTEL,

2014), which has been shown to reduce of about one order of magnitude the GPU error

rate (OLIVEIRA et al., 2016). Lately, some SoCs with ECC-protected GPU memories

appeared in the market (AMD, 2015) but are not employed in any self-driving car, yet. As

discussed in Chapter 5, ECC is likely to improve SoCs reliability significantly and reduce

software hardening overhead. However, ECC alone is still not sufficient to guarantee high

reliability, as radiation can corrupt logic as well (BAUMANN, 2005).

Many studies were done on large-scale systems reliability(MARTINO et al.,

2014; EL-SAYED; SCHROEDER, 2013; LIANG et al., 2006; LIANG et al.,

2005; OLINER; STEARLEY, 2007; PECCHIA et al., 2011; SAHOO et al., 2004;

SCHROEDER; GIBSON, 2010). Generally, large-scale systems reliability studies fo-

cus on DRAM (HWANG; STEFANOVICI; SCHROEDER, 2012; SCHROEDER; PIN-

HEIRO; WEBER, 2009b; SRIDHARAN et al., 2013) and disk failures (SCHROEDER;

GIBSON, 2007). Blue Waters system (MARTINO et al., 2014), primarily focusing on
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characterizing all system failures, reports only the number of uncorrectable errors on

GPUs. This work is the first survey focused specifically on GPU failures caused by soft

errors in embedded systems.

Driven by the proliferation of GPUs in HPC and safety-critical applications, many

studies have been trying to improve GPU reliability (GOMEZ et al., 2014). GPUs

reliability exposed on terrestrial radiation is also studied in some initial works (DE-

BARDELEBEN et al., 2013; RECH et al., 2014). At the same time, fault injection ex-

periments have been performed to track error propagation towards the GPU outputs and

evaluate the Architectural Vulnerability Factor (AVF) of several parallel codes (FANG et

al., 2014a; FANG et al., 2012; HAQUE; PANDE, 2010; TAN et al., 2011)

This is the first study that provides radiation experiments for a variety of safety-

critical workloads and evaluates the efficiency of ECC for critical applications. No prior

work has combined the field study and radiation tests to understand the GPU failures in

a unified way. This study provides insights into differences in the reliability of object

detection applications for automotive area. The fact of using beam radiation experiments

ensure that realistic GPU FIT rates and error models are reported.

2.2.1 Functional Safety for Automotive Systems

One of the most important features in self-driving cars is the human and obstacles

detection. From 2016, only vehicles implementing pedestrian detection are eligible to

receive five stars (which is the highest possible score) in the security evaluation from

the European New Car Assessment Program (Euro NCAP), which is the most reliable

car safety evaluation agency in Europe (PROGRAMME, 2012). In this scenario, it is

fundamental to test detection algorithms and validate their reliability.

To be applied in automotive applications, any system must be compliant with the

strict ISO26262 constraints (DONGARRA; MEUER; STROHMAIER, 2015). For safety-

critical automotive applications, like the autonomous driving or the pedestrian detection,

the requirements are identified with Automotive Safety Integrity (ASIL) level D, which is

the highest classification of injury risk. ASIL level D is the most stringent level of safety

measures to be applied to avoid an unreasonable residual risk. It imposes any component

of the system to be able to detect 99% of permanent and transient faults. The allowed

hardware failure probability (either radiation-related or not) is limited to 10 Failures In

Time (FIT, i.e., errors in 109 hours of operations).
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Such a requirement is extremely restricted. A simple comparison can be made to

have a reference, considering the fatal crashes as the FIT rate that occurred in the United

States in 2013, which The National Highway Traffic Safety Administration (NHTSA)

estimates to have been 30,057. Of those, 10,076 were driver related fatal crashes which

may have been avoided with a reliable self-driving or crash warning system. The non-fatal

crashes were 5,657,000 (DONGARRA; MEUER; STROHMAIER, 2013). To measure

the FIT rate, besides the number of events, it is necessary to calculate the number of

hours of operations (i.e., the total number of hours driven in 2013). For NHTSA, the

number of Vehicle Miles Traveled in 2013 was about 3× 1012. Assuming conservatively

that those miles were traveled with an average speed that ranges between 25 and 50 Miles

Per Hour (MPH), the accidents occurred in a time window between 12×1010 and 6×1010

hours. Considering only the fatal crashes caused by the direct responsibility of the driver

as failures that occurred in the measured time window, fatal crash FIT rate is between 84

and 168. For non-fatal crashes, the FIT rate would result in about 28,582. As said, the

ASIL level D target is 10 FIT. Having self-driving cars fully compliant with ISO26262

would reduce the current fatal crash rate from 9 to 17 times and the non-fatal crash rate

more than 3,000 times (SAXENA, 2016). This evaluation on one side demonstrates the

importance of reliable autonomous cars and, on the other, highlights the challenging effort

required to be compliant with ISO 26262. Unfortunately, today’s self-driving cars are still

far from reaching the 10 FIT goal. Google reports its first automobile accident caused by

system error in February, 2016 (GOOGLE, 2016b). Considering that the Google cars

have driven about 1.5 × 106 miles until June 2016 (as reported in (GOOGLE, 2016a))

their FIT rate, under the assumption of an average speed between 25 and 50 MPH, is

between 16,000 and 33,000 FIT, well above the ASIL-D requirements.
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3 PEDESTRIAN DETECTION ALGORITHMS RELIABILITY

This chapter serves as a background to understand Pedestrian Detection impor-

tance and the algorithms key features. The algorithm analysis is also necessary to com-

prehend the causes of observed errors and choose the critical procedures to be hardened.

Then, the related works in the field of pedestrian detection quality are reviewed, and func-

tional safety for automotive systems is discussed.

3.1 Reliability of Object Detection Algorithms

Embedded GPUs are part of projects implementing the Advanced Driver Assis-

tance Systems (ADAS), which analyzes camera or radar signals to detect pedestrians or

obstacles and activate the car brakes to prevent collisions (PROGRAMME, 2012). Addi-

tionally, autonomous driving systems, which is the new trend in the automotive market,

rely on humans or obstacles computer-aided detection. The reliability characterization

of algorithms that implement objects detection is then mandatory to ensure automotive

systems safety.

This work considers two classes of Object Detection Algorithm: a Feature De-

scriptor and Convolutional Neural Networks (CNNs). Feature descriptors and CNN share

some similar characteristics, such as both extract information from the input frame by a

feature extraction process. They also have on the end of classification task a previously

trained classifier to predict the final output. However, the main difference between HOG

(Histogram of Oriented Gradients) and CNNs is that HOG extracts a previously defined

representation from the image, and CNNs learns the representations by extracting features

from the frames.

HOG algorithm (DALAL; TRIGGS, 2005) is the core of several pedestrian or

object detection systems (SIVARAMAN; TRIVEDI, 2013; ZHU et al., 2006; KANG;

LIM, 2014; LI; GUO, 2013). HOG can be combined with a variety of classifiers to detect

pedestrians. In this work, HOG is used as a feature descriptor together with a Support

Vector Machine (SVM) as a classifier (DALAL; TRIGGS, 2005). If otherwise stated, in

the rest of this work the conjunction of HOG and SVM will just be addressed as HOG.

Two CNNs are considered, Darknet and Faster RCNN. Darknet is an open source

convolutional neural network for object classification and detection, written in C and

CUDA (REDMON et al., 2015). Faster RCNN is an object detection framework based
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on convolutional networks written in C++ and Python. The core of Faster RCNN uses

Caffe (JIA et al., 2014) a Deep Learning Framework developed by Berkeley Vision and

Learning Center (BVLC).

3.1.1 Histogram of Oriented Gradients

HOG is one of the most common features descriptors for pattern or object de-

tection (YANG; ZHANG; TIAN, 2012; LIM; ZITNICK; DOLLAR, 2013; REN; RA-

MANAN, 2013), particularly in automotive applications (SIVARAMAN; TRIVEDI,

2013), and its applications on both human (ZHU et al., 2006; KANG; LIM, 2014) and ve-

hicles (LI; GUO, 2013) detection are widespread on today’s self-driving vehicles. One of

the reasons for HOG popularity is normalization, which eliminates illumination variance

on daylight scenes, improving shape detection. HOG orientation sampling is extremely

versatile and can be defined to detect different objects. By simply changing the classifier

characteristic, HOG can be used to detect humans or objects as well as to recognize faces

or gestures.

HOG is used as a feature descriptor, and SVM is used as a classifier. Two main

reasons dictated this choice: (1) HOG combined with SVM is one of the most popular

and efficient detection systems (DALAL; TRIGGS, 2005; DOLLAR et al., 2012). (2)

The availability of HOG together with SVM on a publicly accessible library eases the

reproduction of our results (BRADSKI, 2000). While radiation experiments results are

strictly related to the chosen feature and classifier, the reliability discussion and fault-

injection results for HOG are directly applicable to other classifiers.

On HOG each frame is analyzed by creating a set of blocks, which are pedestrian

candidates. Within these blocks, the features are extracted and classified using an SVM,

yielding a set of validated BBs (Bouding Boxes). Figure 3.1 shows the OpenCV HOG

behavior. The steps showed in the picture are separately analyzed in the following. The

fault injection routine described in Chapter 4 is used to identify which step is more critical.

On figure 3.1 the CPU triggers the execution loading to the GPU the image matrix

and the data of a previously trained SVM. The method is composed of five GPU steps:

Gradient computation, Orientation binning, Descriptor Block and Block normalization

(referred only as Block normalization), and Classifier (DALAL; TRIGGS, 2005). The

OpenCV version of HOG has a special feature over the original method: an image pre-

processing for color correction (see Figure 3.1). Before performing HOG main steps, the
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Figure 3.1: OpenCV HOG algorithm execution flow. Adapted from (DALAL; TRIGGS,
2005)

GPU executes a lookup texture on the processing frame.

Gradient Computation is the first step, in which a simple derivative mask filter is

applied to the image to detect gradients. The kernel is a very simple mask applied to every

pixel on the picture and, as such, intrinsically robust against soft errors. In fact, an error in

a step of a filter is averaged with correct values and typically does not significantly affect

the output.

The second phase of HOG is Orientation binning. In this step, the image is

divided into a fixed number of 8x8 pixels regions called cells. A histogram of gradi-

ent orientations is computed on the pixels within each cell. The histogram is calculated

with a weighted vote on the cell, which is a function of the gradient magnitude at the

pixel (DALAL; TRIGGS, 2005).

The Descriptor Blocks and Block normalization phase groups adjacent cells as

spatial regions, called blocks, of various dimensions. Cells are grouped based on their

gradient orientation, and a cell can participate to more than one block. Once cells are

arranged, their histograms are normalized to avoid illumination and contrast bias. A cell

can have different normalizations, one for each block it belongs to. Each block is repre-

sented by a block descriptor, which is a vector that considers the contributions of all the

normalized cells in the block. The final object (i.e., a potential BB) detection is based on

various blocks descriptors. Blocks typically overlap so that each block may contribute to
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various objects. The next step of HOG classifies objects into BBs.

The peculiarity of cells to participate to various blocks and of the object to be

formed of different blocks could significantly impact HOG behavior under radiation. For

HOG it is more likely that a radiation-corruption affects HOG in a way that increases,

rather than decreases, the number of BBs, due to the algorithms characteristics. Assuming

that a block (or the descriptor of a block) that participates in a BB got corrupted in a way

that prevents HOG to consider it as part of the object. As blocks overlap, HOG could still

identify the object without the corrupted block thanks to other correctly computed blocks.

For HOG to miss a BB, radiation should corrupt most of the blocks that compose

that BB, which is unlikely. On the other hand, there are two situations in which radiation

can induce additional BBs. (1) The corruption of a block that is part of a BB leads HOG

to create an additional BB over the same portion of the image or to split the BB into two

BBs. (2) The corruption of a block that should not be part of a BB leads HOG to create

an additional BB over a portion of the image that does not represent a human (or object).

This latter situation may lead HOG to create a BB with the dimension of a single block

or to erroneously group the faulty block with adjacent ones to create a larger BB.

The last step of the HOG method is Classifier. The soft linear SVM classi-

fier is trained with SVMLight, that solves several problems on SVM vectors classifiers

(JOACHIMS, 1999). Humans (or other objects) are identified by BBs, described by four

coordinates. A different training could be used to identify other objects in the image.

This step is particularly critical for the overall system reliability. Errors in the matrix that

results from the SVM training significantly impact the pedestrian detection.

3.1.2 Convolutional neural networks

Artificial Neural Networks (ANNs) are becoming a widely adopted computational

approach in many fields, from data mining to pattern recognition, High-Performance

Computing (HPC), and data analysis (ESSEN et al., 2015; AMIN; AGARWAL; BEG,

2013). Lately, ANNs have been employed in self-driving cars, which rely on multiple

pattern recognition algorithms to identify and classify objects based on captured frames

or signals. Most of these algorithms can be efficiently implemented using ANNs (RED-

MON et al., 2015; JIA et al., 2014; NEAGOE; CIOTEC; BARAR, 2012).

Nowadays Deep Neural Networks (DNNs) are one of the most efficient ways to

perform object detection and classification. These networks achieve great performances in
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visual recognition challenges, like image classification (CIREGAN; MEIER; SCHMID-

HUBER, 2012), segmentation (CIRESAN et al., 2012), and object detection (REDMON

et al., 2015; SZEGEDY; TOSHEV; ERHAN, 2013), showing significant improvement

over other technologies such as WordChannels and SpatialPooling (ANGELOVA et al.,

2015). Much research has been done specifically regarding using DNNs to perform pedes-

trian detection in real time and showed promising results (LUO et al., 2014; RIBEIRO et

al., 2016; ANGELOVA et al., 2015).

ANNs have a massively parallel structure and require high computational capa-

bilities. GPUs (Graphics Processing Unit) appear then very suitable to execute ANN

algorithms. A particular type of ANNs which can produce significant results for image

processing is Convolutional Neural Networks (CNN). Ordinary ANNs are not very scal-

able for image processing since they are fully connected networks. Considering a picture

with 32 × 32 (32 pixels of width and 32 pixels of height) on RGB (Red, Green and Blue

color channels), it would produce an input of 32 × 32 × 3 weights to a fully connected

ANN. At a first look this seems manageable but, for bigger images, the size of the net-

work and its weights would add up fast. This fully connected ANN characteristic would

be time wasteful and can overfit the ANN weights (when the weights adjust so much to

the training dataset that this will interfere on not trained inputs).

To overcome the ANNs limitations, Convolutional Neural Networks have neurons

arranged in three dimensions - i.e. width, height and the color channels. CNNs are not

entirely connected networks, its starts with convolutional layers and finishes its execu-

tion with fully connected layers (KRIZHEVSKY; SUTSKEVER; HINTON, 2012). Such

CNNs characteristics improve their accuracy and performance on object detection tasks,

once it does not produce an amount of unnecessary data and can extract only the important

features of the input image. The first CNN proposed was LeNet (LECUN et al., 1998),

since then lots of new architectures were created, but they all keep the central concepts of

LeNet. Generally, CNNs architectures are composed of the following layers:

1. Convolutional Layer performs a convolution on its input. In image processing, a

convolution process consists in convolving a filter into an image/matrix - i.e. multi-

ply and sum every filter matrix position by the each image/matrix pixel and store it

into a resulting matrix. The resulting matrix of a convolutional layer is called Fea-

ture Map since each filter applied to the picture extracts a feature from the input.

On CNNs the convolution process could obtain lots of features depending on the

number of used filters. The first CNN convolution layer data input are the image
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matrices, while the following convolutional layers are fed with the extracted fea-

tures from the previous ones. As already said, CNNs are not entirely connected, so

the output of a convolutional layer will not be completely assigned to the next con-

volutional layer, that is, some feature maps will be treated differently by the next

layer.

2. ReLU Layer stands for Rectified Linear Unit Layer which applies a function

f(x) = max(0, x) to every image pixel. ReLU layers remove all non-positive val-

ues on feature map gotten from the previous convolutional layer. This type of layer

removes the non-linearity of the network, once the real world data is non-linear.

3. Pooling Layer Pooling Layer is a layer placed periodically in a CNN to reduce the

spatial size of the network. Even if CNNs are not entirely connected, its parameters

grow fast in size, so it is necessary to place pooling layers aiming to reduce the size

of the features maps. Pooling is made through a function, for example, Maxpooling.

Maxpooling splits the matrix into n block regions and then selects the bigger value

of each block and places it to the output matrix. The output matrix size will be n

times smaller.

4. Fully connected Layer is the last step of a CNN, which is in charge of making

a classification based on the extracted features on the previous layers. Fully con-

nected layer are regular artificial neural networks, they have full connection to the

last layer.

Some CNNs also have normalization layers, which are responsible for normaliz-

ing the neurons activation values, applying a transformation that maintains the standard

deviation close to 1 and means activation values nearly 0.

Due to CNN characteristics, it is possible to compute its layers as matrix multipli-

cation operation, by a Im2col operation, which transforms kernel convolution operation

into a matrix multiplication. Since GPUs GEMM (General Matrix Multiplication) func-

tions are well known for their performance, it is possible to take advantage on object

detection on GPUs. However, according to Oliveira et al. (OLIVEIRA et al., 2014a),

GPU GEMM is particularly prone to experience radiation-induced errors, so it is neces-

sary to measure the reliability strengths and weaknesses of CNNs on GPUs. In the next

sections, Darknet and Faster RCNN are described, those networks were tested in radiation

experiments. The results for tested CNNs are described on Chapter 5.
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3.1.2.1 You Only Look Once framework

Darknet is an open source Convolutional Neural Network (CNN) used to imple-

ment the YOLO object detection system (REDMON et al., 2015). Darknet is a Deep

Convolutional Neural Network that YOLO uses to perform object detection and classifi-

cation, it is capable of detecting objects in real time, analyzing up to 20 frames per second

(45 frames per second on a smaller version of Darknet). YOLO became famous because

of its performances in the PASCAL VOC 2007 Challenge, as it was the only real time

system and had a high accuracy compared to the other systems (EVERINGHAM et al.,

2010).

Darknet, as most CNNs, performs three operations to object detection, which are:

(1) Convolutional layers. (2) Max pooling layers. (3) Classification through a fully con-

nected layer.

YOLO performs its detection by dividing the input image into an S × S grid and

then calculating the class probability for each grid cell, as well as the bounding boxes and

confidence. Hence, it can detect and classify objects in real time. The network uses 24

convolutional layers, which are then followed by two fully connected layers. There are

also four maxpool layers in specific stages of the network.

Figure 3.2 shows the architecture of Darknet, it has an unusual characteristic com-

pared to other detection systems as it has a single execution pipeline. While other (UI-

JLINGS et al., 2013; LOWE, 1999; PAPAGEORGIOU; OREN; POGGIO, 1998; SER-

MANET et al., 2013) detection systems first generate a list of probable objects, a CNN

extracts the features, a nonlinear model adjusts the bounding boxes, and a nonmax sup-

pression algorithm removes the duplicated bounding boxes, YOLO performs all of it in a

single execution (REDMON et al., 2015). A single execution pipeline could be good for

the system reliability since it will stress less the caches and the functional units.

However, the lack of complex pipeline stages could prevent errors in the first stages

to be masked by following iterations.

3.1.2.2 Python Faster RCNN

Faster RCNN is an improvement of older versions of RCNN (REN et al., 2015).

The authors changed the complex RCNN pipeline to add more performance and precision

to Faster RCNN. Figure 3.3 shows Faster RCNN’s execution pipeline, the network has

two branches to add more detection precision. On the first stage, a traditional convolu-
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Figure 3.2: Darknet network architecture. Adapted from (REDMON et al., 2015)

Figure 3.3: Faster RCNN network architecture. Adapted from (REN et al., 2015)

tional network proposes regions on the input image and produces feature maps.

On the first branch, after the convolutional layers, a Region Proposal Network

(RPN) slides a window over an input feature map, and then it will "anchor" a set of scores

(i.e. are the bound boxes probabilities of that region) and a set of bounding boxes coordi-

nates for the processing window. An RPN is a network which takes an image/feature map

as input and outputs the rectangular object proposal i.e. possible objects on the image.

The set of proposed regions will then go through a RoI (Region Of Interest) pooling layer,

which is a maxpooling operation for only the proposed regions. Finally, RoI output will

be evaluated by a fully connected layer.

The second Faster RCNN branch gets the convolutional layers output and places it

as an input to the RoI pooling layer. Its output will also be evaluated on the fully connected

layer, so the bounding boxes and scores will be a combination of the classification made

on the fully connected layer, using the two previous steps outputs.



29

Faster RCNN architecture seems to be very reliable since it processes the RPN

output on the fully connected layer using a region of interests. Even if an error occurs on

one of the cited stages (RPN or RoI pooling), it may be overwritten by the classification

stage, once it computes the predicted bounding boxes and theirs scores based on precom-

puted regions of interest, which is composed by various anchor boxes and anchor scores.

Even an error in a region of interest that modifies the anchor boxes, and/or the way an

anchor box contributes to the object, it could result in a non-critical error.

Faster RCNN is built using Caffe and cuDNN. Caffe (JIA et al., 2014) is a Deep

Learning Framework which has support to be built with NVIDIA cuDNN library. cuDNN

is a GPU-accelerated library of primitives for deep neural networks (CHETLUR et al.,

2014). Compared with common GEMM frameworks (i.e., cuBLAS) cuDNN has spe-

cific optimizations for Neural Networks, which lead to less memory overhead caused for

traditional CNNs operations (CHETLUR et al., 2014).
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4 FAILURE IN TIME AND ERROR CRITICALITY EVALUATION

This chapter presents the object detection algorithm reliability and the metrics

necessary to analyze the object detection algorithms corrupted output criticality. Tradi-

tionally, the radiation-induced error rate is calculated considering any SDC or Crashes

as failures. Any result produced by the tested device which deviates from the expected

one is marked as erroneous and considered in failure rate calculation. The intention of

this work is to go beyond the traditional bit-per-bit comparison between the experimental

output and the radiation-free one. Two metrics that derive from image processing commu-

nity were selected to qualify the object detection algorithm radiation-induced corruptions:

Precision and Recall. The importance of each metric on the reliability evaluation of the

object detection algorithm depends on the application or on the system in which they are

applied. As described on Chapter 5, some metrics are of particular importance to identify

critical errors and give crucial insights to the device or application designers to improve

the reliability of their product.

4.1 Failure in Time

Cross Section is the most common metric to evaluate a system reliability, ex-

pressed with the unit of area: cm2. Cross Section is the circuit area that, if hit by an

impinging particle, will probably generate a failure. The higher the Cross Section value

the higher the probability for a particle to generate an error.

To evaluate the application sensitivity it is necessary to calculate the cross section

dividing the number of observed errors by the received neutron fluence (neutrons/cm2).

As such, cross section comes with the unit of an area (cm2). By multiplying the cross

section with the expected neutron flux at which the device will operate, it is possible to

estimate the realistic error rate, expressed in Failure In Time (FIT), i.e. errors per 109

hours of operation.

4.2 Experimental Methodology

In this work accelerated radiation testing is used to evaluate object detection reli-

ability on embedded GPUs. Then, extensive fault injection campaigns are performed to
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have insights about the code sensitivity and detect critical portions of the algorithm.

Both radiation experiments and fault-injection information are required for the

scope of this work. The gathering of realistic data is essential to precisely evaluate the

radiation reliability of the object detection algorithms executed on embedded GPUs and

analyze the criticality of radiation-induced errors. Such evaluation, for those devices

like COTS for which a Register Transfer Level (RTL) description is not available, can

be performed only through radiation experiments. In fact, without an RTL description,

faults can be injected only on a selection of user-accessible resources, while radiation

testing does not restrain faults to a single part of the chip. Additionally, fault-injection

results could be biased on the selected fault-model while radiation experiments mimic

the realistic probabilities and manifestations of failures, as described in the Radiation

Hardness Assurance (RHA) testing procedure (HERRERA-ALZU; LOPEZ-VALLEJO,

2014).

Radiation experiments provide a realistic mimic of the environment and offer a

plethora of advantages. However, it lacks error propagation visibility. It is very hard to

correlate SDCs or Crashes with a set of resources or algorithm procedures whose cor-

ruption leads to the observed failure. On the contrary, fault-injection can correlate SDCs

or Crashes with the root causes in some part of the algorithm. Extensive fault injection

campaigns are performed to understand errors propagation in this work better. In fact, it

is necessary to identify the object detection algorithm’s critical procedures to deeply an-

alyze its criticality and provide insights for designing efficient hardening solutions. The

intrinsic limitations of fault-injection on COTS make it impossible to correlate each phys-

ical radiation-induced error with its manifestation at the output. However, by corrupting

variable, registers, and instruction output values, it is possible to identify those parts of

the code that are likely to affect the object detection algorithm execution (HARI et al.,

2014).

The proposed fault injection cannot calculate the SDC rate for the object detec-

tion algorithms. However, it can be used to evaluate the percentage of injected errors that

caused SDCs. By injecting fault at hardware or software level, it is possible to measure

the AVF (Architectural Vulnerability Factor), which is the probability for a low-level cor-

ruption to propagate until the output (MUKHERJEE et al., 2003). At the software level, it

is possible to calculate the PVF (Program Vulnerability Factor), which is the probability

of a fault at the instruction level to affect the program output (SRIDHARAN; KAELI,

2009). The correlation of fault-injection and radiation experiment outputs allows to iden-
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tify which procedures or variables are more likely to generate the observed critical failures

and, thus, should be hardened.

4.3 Devices Under Test

Table 4.1 shows all tested GPUs, aiming to obtain significant statistical data, five

different GPU architectures are tested. Three commercially available embedded (Tegra

K1, APU A10-7850K, and Tegra X1) GPUs architectures and two HPC ones (K40 and

Titan X). Two main reasons dictate the choice of the HPC GPUs architectures. (1) K40

is the latest NVIDIA GPU made with 28nm CMOS technology. It is worth to make a

comparison between Tegra X1 and K40 since Tegra X1 is the most advanced embedded

GPU until this work is done. (2) Titan X is built with the novel Pascal architecture, which

has a particular architecture for Deep Neural Networks. Another reason for Titan X on

this work is that the next generation of embedded GPUs will be developed with Pascal

architecture, as well as Titan X (ANANDTECH, 2016).

APU A10-7850K: this architecture includes 4 CPU cores, designed with an oper-

ating frequency of up to 4.1 GHz. The CPU has 256 KB of L1 data and instruction cache

and 4MB of L2 cache. The general processor power consumption is about 95W. The

APU A10-7850K’s embedded GPU has 512 cores, divided into 8 Compute Units with an

operating frequency of about 866MHz. APU A10-7850K’s main memory is DDR3 with

a frequency of 2.133 MHz, using at most two channels. The GPU can execute up to 512

parallel threads, and the CPU up to 4 threads.

Tegra K1: this embedded SOC is powered by an ARM quad-core Cortex-A15

from ARMv7 family, with an operating frequency of 2.3 GHz. The ARM core disposes

of 32KB of L1 data and instruction cache, and 2MB shared L2 cache. The embedded

GPU has 192 computing cores with a 64KB of a register file. As main memory Tegra

K1 disposes of 2 GB of DD3L, operating at 933 MHz. Tegra K1 SoC is available on

Jetson K1 development kit, which is an NVIDIA platform for embedded system develop-

ers (NVIDIA, 2014).

K40: GPU is designed with Kepler architecture in a 28nm standard CMOS tech-

nology. K40 has 2880 CUDA cores, divided into 15 Streaming Multiprocessors (SMs),

with 192 CUDA cores for each SM. The register file and L1 cache are shared between

SM’s cores, on K40 each SM has 64K registers, 64KB of L1 cache memory, and 48KB

of read-only data cache. SMs share 1.5MB of L2 cache and a total 6GB GDDR5 mem-
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ory. The register files, shared memory, L1 and L2 caches are SECDED protected, while

read-only data cache is parity protected.

Tegra X1: is an embedded SOC designed with a Maxwell based GPU and an

ARM quad core. It is built in a 20nm standard CMOS technology. The Tegra X1 GPU

has 256 CUDA cores, which are divided in two SMs. Each Maxwell core can deliver

up to 40% greater performance when compared to a Kepler CUDA core, and up to twice

the performance per watt. Each Tegra X1 GPU SM has 64KB of L1 cache and 32KB of

registers file capacity, and 256KB of L2 cache shared between SM’s cores. The Tegra

X1 operates at 1GHz, achieving performances of up to 1 Teraflop using FP16 (half float-

ing point precision) operations (NVIDIA, 2015). On the CPU side, a quad-core ARM

A57 is the general purpose processor. Each A57 core has 48KB of L1 instruction cache

and 32KB of the L1 data cache. The L2 cache has 2MB shared between the four A57

cores (NVIDIA, 2015). Tegra X1 SoC is available on Jetson X1 development kit, which

is an NVIDIA platform for embedded system programers (NVIDIA, 2015a).

Titan X: is designed with the novel Pascal architecture, with a 16nm FinFET

technology. It has 3584 CUDA cores split into 28 SMs. Titan X was explicitly designed

to be more efficient in executing neural networks operations. NVIDIA Titan X has much

more memory compared to the others GPUs, it has 12GB of GDDR5X SDRAM memory.

Each SM shares a register file with 256KB and 48KB L1 cache. L2 cache has 3MB

capacity divided between all SMs. Titan X power supply is 250W, with 1.4GHz of GPU

base clock (NVIDIA, 2016).

Despite K40, none of the mentioned GPUs offer any reliability solution like ECC.

Testing an SECDED protection is essential to evaluate how this reliability technique can

prevent SDCs and the implications of this technology on system crash.

APU A10-7850K, Tegra K1 and Tegra X1 are designed with an SIMD (Single

Instruction Multiple Data) architecture. SIMD processor allows a single instruction to

operate on a group of data in parallel (HENNESSY; PATTERSON, 2011), commonly

arrays and matrices. A significant number of processing units is required to permit pro-

grammers to extract parallelism from SIMD architecture and speed up execution. Since

modern embedded GPUs can provide hundreds of processing units, it is easy to achieve

high speedups on Computer Vision applications that require an extensive use of operations

on arrays and matrices, like Object Detection.
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Table 4.1: Comparison between all tested devices
CPU

Architecture
GPU

Architecture CUDA Cores Transistor Size Cache SMs Power Consumption

Tegra K1
4 ARM Cortex-A15

32 bits Kepler GK20A 192 28 nm
L1 instruction/data cache 64KB;

L2 Unified Cache 2MB 1 up to 5W

APU A10-7850K AMD Kaveri Radeon 7 512 28 nm
L1 total cache 256KB;
L2 total cache 4 MB 8 95W

K40 – Kepler GK110B 2880 28 nm
L1 cache 64KB;
L2 cache 1.5MB 15 235 W

Tegra X1
ARM Cortex-A57

64 bits Maxwell GM20B 256 20 nm
L1 instruction cache 48KB and

data cache 32KB;
L2 Unified Cache 2MB

2 up to 10W

Titan X – Pascal GP102-400 3584 16nm
L1 total cache 48 KB;
L2 total cache 3MB 28 250W

4.4 Experimental Setup

Radiation experiments were performed at the ChipIR facility at the Rutherford

Appleton Laboratory (RAL) in Didcot, UK and the Los Alamos National Laboratory

(LANL) Los Alamos Neutron Science Center (LANSCE) Irradiation of Chips and Elec-

tronics House (figure 4.2). ChipIR and LANSCE provide a white neutron source that

emulates the energy spectrum of the atmospheric neutron flux between 10 and 750 MeV.

The available neutron flux was between 106 and 107n/(cm2×s) for energies above

10 MeV. The neutron flux the GPUs receive during experiments is ten orders of magnitude

higher than the atmospheric neutron flux (which is 13n/(cm2 × h) at sea level (JEDEC,

2006)). The experiments were carefully designed to ensure that the probability of more

than one neutron generating a failure in a single code execution remains practically neg-

ligible. The observed error rates were lower than 10−3 errors/execution. Since a much

lower neutron flux may hit a GPU in a realistic environment, it is highly likely not to

have more than one corruption during a single execution. Therefore, it is possible to scale

the experimental data in the natural radioactive environment without introducing artificial

behaviors (VIOLANTE et al., 2007).

The experimentally observed cross-section gains importance as it becomes an in-

trinsic characteristic of the device and application, independent of the neutron source.

Multiplying the experimentally measured cross-section (cm2) by the expected neutron

flux on the SoC (13n/(cm2 × h) at sea level (JEDEC, 2006)), one can estimate the real-

istic FIT rate of the device executing the application.

For all experiments, the beam was restricted to a spot with a diameter of 2 inches,

which is enough to irradiate APU A10-7850K, Tegra K1, Tegra X1, K40 adequately, and

Titan X chips without directly affecting nearby board power control circuitry and DRAM

chips. To ensure that data stored in the main memory is not corrupted, allowing an analy-

sis focus on the devices’ core reliability, a software watchdog was set to checks errors in

the DRAM.
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Figure 4.1: LANSCE and ChipIR (ISIS) neutron spectrum compared to the terrestrial
one.

Figure 4.2a shows HOG setup for two APU A10-7850K and four Tegra K1 GPUs,

aligned with the beam to reduce statistical error. The chips were then placed at different

distances from the neutron source. A de-rating factor was applied to consider distance

attenuation. After the de-rating, the devices error rate seemed independent on the position,

suggesting that the neutron attenuation caused by other boards between the source and the

device under test is negligible.

Figure 4.2b shows part of the experimental setup mounted at LANSCE for CNNs

on K40, Tegra X1 and Titan X. A host computer initializes the test sending pre-selected

input to the GPU and gathers results, comparing them with a pre-computed golden output.

It is worth noting that this comparison takes no more than 10% of the total execution

time. When a mismatch is detected, the execution is marked as affected by a Silent Data

Corruption (SDC).

Figure 4.2: (a) The experimental setup at LANSCE. A total of 2 APU A10-7850K and 4
Tegra K1 embedded GPUs were aligned with the neutron beam. The beam direction is
indicated by the arrow. (b) Radiation test setup inside the ChipIR facility, RAL, Didcot,
UK.

(a) (b)

Software and hardware watchdogs were included in the setup. The software
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watchdog monitors a time-stamp written by the application under test. If the timestamp

is not updated in a few seconds, the kernel is killed and launched again. This watchdog

detects Crashes, i.e. application crashes or control flow errors that prevent the GPU from

completing assigned tasks (e.g., an infinite loop). The hardware watchdog is an Ethernet-

controlled switch that performs a power cycle of the host computer if the host computer

itself does not acknowledge any ping requests in ten minutes. The hardware watchdog is

necessary to detect Hangs.

Each application under test (i.e., the code that is continuously executed by the pro-

cessor after the initialization phase) has three different stages, which form an application

execution (see Algorithm 1). First, input data are initialized with pre-determined values;

then, the application realizes its functional operation; Lastly, the result of the operation is

compared to a golden copy, and success or failure is reported. After the last phase, a new

execution is triggered. It is worth noting that the input data initialization and the compar-

ison with the golden copy represent only a small part of the execution time (< 10%).

while True do
// Application Execution Start
input = data_initialization();
result = functional_operation(input);
if result == golden_copy then

print(Ok);
else

print(SDC_detected);
download(corrupted_output);

end
// Application Execution End

end
Algorithm 1: Application under test. After initialization, application executions are
continuously triggered.

4.5 Metrics for error evaluation

The analysis goes a step beyond the traditional SDCs detection by considering er-

ror criticality. Besides measuring the number of radiation-induced output errors, it is also

necessary to qualify the effect of observed SDCs on the pedestrian detection reliability.

This work considers Precision and Recall. Correlating the selected metrics, it is possible

to distinguish those critical errors that could prevent a pedestrian detection or erroneously

lead the vehicle to a sudden stop.
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4.5.1 Precision and Recall

In the image processing community Precision and Recall are widely used to com-

pare the BBs identified by the algorithm with the ground truth, so to assess the quality

of a given classifier (FAWCETT, 2006). Employing Precision and Recall to compare the

experimental output with the radiation-free output (not with the ground truth) is necessary

to evaluate how radiation affects the object detection output.

Precision and Recall are given by:

Precision =
TP

TP + FP
(4.1)

Recall =
TP

TP + FN
(4.2)

where TP is the number of True Positives (objects that were detected), FP is the number

of False Positives (outcomes of the classifier that do not correspond to an object), and

FN is the number of False Negatives (an object that was not detected by the classifier).

Experimental results are qualified considering a BB n in the radiation-corrupted output as

TP if, for any BB m of the radiation-free output the following condition is verified:

Jaccard similarity(n,m) > TJ (4.3)

where :

Jaccard similarity(n,m) =
|m

⋂
n|

|m
⋃
n|

=
|m

⋂
n|

|m|+ |n| − |m
⋂
n|

(4.4)

where TJ is the acceptance threshold. Otherwise, n is considered as an FP. If for a given

BB m of the radiation-free output there is no BB n on the corrupted output which satisfies

this condition, an FN is detected.

TJ is an arbitrary threshold, with 0 ≤ TJ ≤ 1. Values of TJ close to 1 impose

the classifier to be extremely precise, i.e. BBs detected by the algorithm have to match

the ground truth exactly. Values of TJ closer to 0 relax detection precision. TJ = 0.5 has

been identified as a good trade-off to evaluate detection quality, as it allows some detection

imperfection yet maintaining a good relation with the ground truth (FAWCETT, 2006).

When evaluating the impact of radiation on object detection algorithm, TJ becomes a

threshold to distinguish between critical and noncritical corruptions. Any corruption that
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preserves Equation 4.3 is not considered critical, as BBs are to be regarded as sufficiently

similar to the radiation-free output. When Equation 4.3 is not verified, it means that ra-

diation induces an FP or FN (i.e., additional or missed objects, respectively). As such,

TJ = 1 imposes any radiation-induced error to be marked as critical while values of TJ

close to 0 allow most corruptions to be acceptable. In the reliability context TJ = 0.5

still holds, as the TJ trade-off discussion presented in (FAWCETT, 2006) is valid inde-

pendently from the source of detection imprecision (intrinsic algorithm detection impre-

cision or radiation-induced corruption). Then, to compare the object detection algorithm

radiation corrupted output with the radiation-free output the TJ = 0.5 is selected.

The Recall rate provides the fraction of existing objects that were detected by the

classifier, even in the event of a radiation-induced error. Hence, R = 100% means that

all objects were successfully detected. On the other hand, Precision measures the fraction

of the detections produced by the classifier that relate to an object, so that P = 100%

means that all detections generated by the classifier correspond to objects. In general,

the detection imprecision (either radiation related or not) empathizes Precision where

expenses Recall or vice-versa. An error could then lower Recall (i.e., miss some objects)

but increase Precision (i.e., reduce the number of false positives) or the other way around.

4.6 Applications Under Test

The quality of classifiers is proved using videos from available datasets. Such

proof is required as classifiers are not perfect, and their performances depend on the se-

lected frames. Researchers are then aiming at improving the average performances of

their algorithms on several representative frames. The purpose of this work is a little bit

different. This work characterizes the radiation impact on two different object detection

algorithms, i.e., if their proprieties are affected by radiation on a radiation-free execution

(not on the ground truth). It is worth noting that the radiation-free execution may differ

from the ground truth. However, the evaluation of object detection algorithm quality is out

of the scope of this work as it has already been deeply investigated (DALAL; TRIGGS,

2005; REDMON et al., 2015; REN et al., 2015). Table 4.2 shows Frames Per Second

(FPS) and detection precision for each tested platform and benchmark. It is remarkable

that FPS for Tegra K1, APU A10-7850K and Tegra X1 are smaller than K40 and Titan X,

due theirs carachteristics.
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Table 4.2: Frames Per Second and Detection precision
General detection precision

[Hit rate]
Tegra K1

[FPS]
APU A10-7850K

[FPS]
Tegra X1

[FPS]
K40

[FPS]
Titan X
[FPS]

Darknet ' 66% – – 3.07 10.43 15.46
Faster R-CNN ' 73% – – 0.41 3.65 7.83
HOG ' 50% 0.77 2.48 – – –

4.6.1 HOG

The experimental and analytical study on HOG algorithm is done using a version

implemented on the OpenCV library, in its 2.4.9 version. The selected version has an

open source sample test to allow developers to set the method’s parameters. The num-

ber of levels was set to 100, hit threshold to 0.8, and group threshold to 1, following

OpenCV directives for frames in which some objects can be covered by more than one

BB (BRADSKI, 2000).

For the aims of the proposed study, it is sufficient to run HOG on a single frame,

as long as the frame is sufficiently complex and representative.

The chosen static frame is illustrated in Figure 5.5a. The image is sufficiently

complex to induce HOG to create several BBs of different sizes and positions, and also

includes clusters of pedestrians, cars, and other objects. This single frame allows us

then to evaluate how radiation impacts HOG detection in a wide set of situations. The

chosen frame is specifically selected for radiation experiments and is not part of data

sets commonly used to evaluate detection quality. This choice is dictated by the fact that

frames on available data sets, while universally used to evaluate detection quality, may be

too simple to evaluate HOG reliability.

4.6.2 Darknet and Faster RCNN

Darknet and Faster RCNN networks are chosen because of their importance on

object detection field (REDMON et al., 2015; REN et al., 2015). Both methods Dark-

net and Faster RCNN can achieve 66% and 73% of correctness on object detection (see

table 4.2). The selected CNNs are significant as object detection benchmarks until this

work were the most advanced CNNs on GPUs.

As already said every CNN iteration the radiation free output and the output pro-

duced on radiation environment are compared. Once Darknet and Fast RCNN outputs

are float point matrices, an errorthreshold must be set. So when CNNs output matri-
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ces are compared it is considered as an SDC if and only if its difference is greater than

errorthreshold. In this work, the chosen errorthreshold is 5× 10−3, the choice of this

value is necessary to identify those radiation-induced errors that impact the final object

detection.

For CNNs radiation test two notable datasets are chosen. The PASCAL VOC 2012

Classification/Detection Dataset (EVERINGHAM et al., 2010) and the Caltech Pedes-

trian Dataset (DOLLAR et al., 2009). PASCAL VOC is chosen because it is a renowned

dataset and because it was used to evaluate Darknet detection capabilities (REDMON et

al., 2015). It consists of more than ten thousand images in which the system should de-

tect and classify objects of 20 predetermined classes, determining their bounding boxes

and classes. Caltech is then chosen because of its relevance in today’s researchers in the

automotive area.

4.7 Fault-Injection

As already mentioned radiation experiments are very reliable methods to measure

SDCs and Crash cross section. But to correlate errors to a particular resource or code

region it is necessary to employ fault injection. In this work, two types of fault injection

are used, one through NVIDIA CUDA debugger and the other with NVIDIA SASSIFI.

4.7.1 GDB Fault Injection

On HOG a fault injection campaign was performed to identify those portions

whose corruption is likely to affect pedestrian detection in a critical way. It is worth

noting that in cost-sensitive domains, such as the automotive sector, where efficiency re-

garding per-unit-prices is an essential criterion, full hardware redundancy or dedicated

hardware modifications are to be considered too expensive. Moreover, in real-time sys-

tems, full-time redundancy overhead may impede to meet deadlines. Our analysis serves

as a reference for the design of efficient and effective selective hardening solutions.

Fault-injection campaigns were performed for specific kernels regions of the main

HOG phases (detailed in Chapter 3). Using a Python script and CUDA-GDB, it is pos-

sible to freeze the HOG execution flow and change local variables values on GPU side

routines. The fault injection routine was performed using a methodology similar to GPU-
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Qin (FANG et al., 2014b).

All kernel variables are mapped into a list before fault-injection starts. Then a line

on one of the five HOG kernels (see Chapter 3) to place a GDB breakpoint, is randomly

chosen. When fault-injection starts, the program executes normally until the breakpoint

is reached. At the breakpoint execution is frozen and a variable from the local kernel

variables list is randomly chosen. The context is switched to the host, which performs

error injection by assigning a random value to the selected variable. The breakpoint is

then deleted and execution continues. When radiation generates a bit flip (or multiple bit

flips) on low-level resources, the bit flip may propagate resulting in a wrong value written

to memory. From a high-level view, the wrong variable value is not necessarily limited

to a single bit of difference from the correct value. As faults were injected in high-level

variables, injecting random values (which includes but is not restricted to single bit flips)

is the fault model that better fits the purpose of this work. Thus, a random value generator

is used, injecting random values rather than inject only single bit flips.

While the main purpose of the fault injection campaign is to understand the ob-

served radiation-induced errors better, the derived insights could be extended to other

sources of SDC. In fact, the observed HOG behaviors when faults are injected in vari-

ables does not depend on the physical source of error.

4.7.2 SASSIFI Fault Injection

SASSIFI injects transient errors in Instruction Set Architecture (ISA) visible states

such as general purpose registers, stored values, predicate registers, and condition regis-

ters (HARI et al., 2015). SASSIFI is divided into three main steps: profiling the kernel

application, generating the error injection sites, and injecting fault. SASSIFI is based on

SASSI, which is an instrumentation tool that operates at the final step of NVIDIA com-

pilation flow (STEPHENSON MARK SASTRY HARI et al., 2015). SASSIFI then does

not disrupt the perceived final instructions schedule or register usage. SASSIFI instructs

SASSI on which instrumentation to use and on where to insert it. For profiling/fault-

injection, SASSI must instrument all instructions that modify registers or memory. After

an instrumentation, SASSI calls a user-defined function which handles the profiling/fault-

injection procedure. Since SASSIFI does not need to switch context to the host to inspect

or modify GPU state, it introduces a slight time overhead. On the average, SASSIFI

fault-injection overhead is less than 5× the regular code execution.
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In this work, SASSIFI is used to inject faults into two injection sites, the instruc-

tion output (INST) and in the register file (RF). These two injection sites are described as

follows:

• INST injection site is used to inject faults on the instruction output. INST injec-

tions are interesting to measure how transient errors that modify the result of an

instruction propagates at the architecture level till the output. SASSIFI takes track

of the instruction whose corruption generate the observed error, allowing a detailed

study on low-level instructions reliability.

• RF injection site is used to inject faults on the register file. With RF it is possible to

measure register file AVF and how applications digest an error in memory elements.

The difference between INST and RF is used to evaluate ECC effectiveness.

Before injecting faults SASSIFI needs to profile the target application, SASSIFI

will profile the GPU kernel instead all program. The profiler steps consist in instrumenting

all instructions of the kernel code, so the registers and memory information will be passed

to SASSIFI handler to save it in a profiler output file. This phase is mandatory to identify

how many injection points exist on the GPU kernel. SASSIFI is used to injected at least

2,000 faults for each error site on HOG and Darknet (only on open source kernels), which

are sufficient to guarantee the worst case statistical error bars at 95% confidence level to

be at most 1.96%.

CUDA-GDB based fault injections are very slow, depending on the benchmark

complexity it could reach a nonpractical time to get a significant statistical data. HOG

has a simpler code compared to Darknet, that is, the code size is smaller and has fewer

submodules. So a fault injection campaign on Darknet using CUDA-GDB will not be so

accurate as HOG, once all complex Darknet code must be mapped. With SASSIFI a real

statistical data could be obtained with less time and effort.
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5 RESULTS AND DISCUSSION

This chapter reports results obtained through radiation experiments. The experi-

mental results are presented for five different GPU architectures. Then, the metrics dis-

cussed in Chapter 4 are applied to radiation induced SDCs to qualify HOG and CNNs

corruption, aiming to distinguish between tolerable and critical errors. Fault-injection re-

sults are then reported to identify critical procedures. Finally, experimental and analytical

analyses are made to propose hardening solutions to increment HOG and CNNs reliability

in embedded SoCs.

5.1 HOG and CNNs FIT analysis

To prevent leakage of business sensitive data, the absolute FIT rates can not be

shown, so the results presented on figure 5.1 are all normalized using the same constant.

However, we can state that SDC FIT rate for all tested platforms is in the order of tens of

FITs, above the limit of 10 FIT imposed by ASIL-D. Figure 5.1 shows the results for each

execution, the data calculated was compared bit-per-bit with the result of the radiation-

free execution. The application execution was then classified as follows:

Correct: The application produced exactly the expected output of a fault-free environ-

ment.

SDC: The application produced a different output than a fault-free-environment. This

corrupted output is stored and post-processed.

Crash: The system hanged or crashed and had to be restarted, or the system rebooted by

itself.

Figure 5.1: SDC and Crash normalized FIT for all tested architectures and configurations.
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Figure 5.1 also shows the SDC FIT for those executions which produced SDCs

that have Precision and Recall values different of 1. All SDCs that have Precision and

Recall values different of 1 are considered a critical SDCs, and referred in figure 5.1 as

an SDC Wrong Detection. A criticality analysis is better discussed in section 5.2.

5.1.1 HOG

For HOG the Crash rate was of 1.25 × 10−3 crashes/executions for APU A10-

7850K and 6.93 × 10−3 crashes/executions for Tegra K1 SoCs. It is not surprising that

for both APU A10-7850K and Tegra K1 Crashes are more likely than SDCs. HOG, in

fact, acts as a filter and operates image processing, which is intrinsically robust against

SDCs (BREUER; GUPTA; MAK, 2004). As a result, radiation errors that affect data

memory elements or operations could be masked during the computation, not affecting

the output. In other words, the SDC rate of HOG is likely to be small. The last three

steps of HOG (Orientation Binning, Block Normalization, and Classifier) have several

control flow operations whose corruption is liable to modify the algorithm flow, eventually

generating infinite loops or illegal memory accesses, which lead to Crashes.

It is worth noting that a significant component of Crashes is caused by radiation-

corruption of the device control circuitry. Errors affecting instruction memory, the GPU

hardware schedulers, or the CPU-GPU interface could lead to the application crash or sys-

tem hang, independently of the algorithm proprieties (OLIVEIRA et al., 2016). Crashes,

while more frequent than SDCs in HOG, are considered less critical as they are easily

detected (LI et al., 2008; NAKKA et al., 2005; PATTABIRAMAN et al., 2006). Crash

detection and recovery in a real-time system, however, must be quick enough to allow the

system to recover without missing deadlines (CANDEA; FOX, 2001; LEE; SHA, 2005;

WU; KUO; CHANG, 2006).

HOG is found to be more prone to be corrupted when executed on APU A10-

7850K. As discussed in Section 5.2.1, APU A10-7850K is also more susceptible to critical

errors than Tegra K1. The most likely reason for the observed discrepancies relies on the

number of active parallel processes, which is greater on APU A10-7850K. It means that a

higher amount of resources will be shared on APU A10-7850K concerning Tegra K1. Cor-

ruption of those shared resources is likely to affect several parallel processes, eventually

producing a critical error. Other reasons could be the different transistors layout, many

parallel processes scheduling, and different computing units designs. Unfortunately, as
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both APU A10-7850K and Tegra K1 designs and characteristics are proprietary it is not

possible to exhaustively understand the reasons for the observed different behaviors under

radiation.

Experiments highlighted a critical Tegra K1 and Tegra X1 SoCs configuration.

Tegra development boards rely on embedded flash memory to store the system boot-

loader. Under radiation, this choice does not seem reliable. In fact, several times during

the experiments, the flash memory got corrupted, impeding the correct system boot. To

have Tegra K1 and Tegra X1 functionality restored it was necessary to re-flash the embed-

ded memory. A boot-loader corruption is detected with two subsequent activations of the

hardware watchdog, which takes at least 20 minutes. This impedes a precise measure of

the bootloader FIT rate. However, FIT rates for Flash memories of several vendors and

technologies are plainly available (JUST et al., 2013; BAGATIN et al., 2014; FOGLE et

al., 2004) and are to be used as a reference to estimate the error rate in practical applica-

tions. As modern flash memories have been demonstrated not to be immune to terrestrial

radiation, it is advisable not to rely only on flash memory to store safety-critical applica-

tion key data.

5.1.2 Darknet

The beam experimental results, shown in figure 5.1, allow to evaluate the realistic

radiation-induced error rate of Darknet and to compare the measured sensitivities of the

considered architectures. K40 is the only tested GPU which has ECC-protected mem-

ories. For the K40 two configurations were tested: Unhardened (i.e., without ECC or

any software reliability) and with ECC enabled. The Titan X and Tegra X1 were tested

using Unhardened only. Figure 5.1 shows Darknet normalized FIT (the y-axes is in log

scale) for the three different architectures on Darknet. Experimental data is presented

with Poisson’s 95% confidence intervals, and results are shown separately for SDC and

Crashes.

From Figure 5.1 it is clear that the radiation sensitivity of Darknet strongly de-

pends on the architecture. The error rate of the Unhardened version of Darknet, in fact,

changes of about one order of magnitude across the considered architectures. Titan X

is the most reliable architecture for Darknet, as its FIT rates are about 10× lower than

K40’s. The main reasons for Pascal devices to be more reliable are: (1) 3-D transistors

have shown an 10× reduced per bit sensitivity to neutron compared to standard planar
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devices (NOH et al., 2015). The raw resources corruption probability for the Titan X

(built using FinFET technology) is then expected to be lower than that for the K40 (built

in standard CMOS technology). (2) Pascal architecture has been explicitly designed and

optimized for neural network execution. Titan X is then likely to use its resources in a

more efficient (and, eventually, reliable) way compared to the K40. Tegra X1 has an error

rate which is about half the one of the K40. This is mainly caused by the much smaller

area of the Tegra X1 and by the different transistor layout (20nm for the Tegra X1 and

28nm for the K40).

Even if crashes are more frequent than SDCs, they could be considered less crit-

ical, since crashes could be, at least, detected (LI et al., 2008; NAKKA et al., 2005;

PATTABIRAMAN et al., 2006). However, crash detection in a real-time system must

guarantee that deadlines are met. That is, the system must be able to recover before caus-

ing any harm to the environment (CANDEA; FOX, 2001; LEE; SHA, 2005; WU; KUO;

CHANG, 2006).

5.1.3 Faster RCNN

Figure 5.1 shows that Faster RCNN has the highest FIT rate among the tested

benchmarks. For K40 Unhardened, the Faster RCNN SDC FIT rate is 4.8× greater than

the Darknet one, and 3.1× greater than Darknet with ECC. Comparing Darknet and Faster

RCNN on Titan X, the FIT rate difference is 120×. Faster RCNN has higher Crash FIT

rate compared to HOG and Darknet. This is because Faster RCNN has lots of GPU/HOST

interactions, due to the many layers it requires and the multiple execution pipeline, which

tends to produce more crashes due to bus errors.

As Darknet, Faster RCNN also has a significant difference between SDC FIT rate

vs. Crash FIT rate for K40 when ECC is enabled. The higher Crash FIT rate when

ECC is enabled is because when ECC detects a double bit flip on memory, it launches an

exception to the operating system, leading to a Crash. On a first look the Faster RCNN

hight SDC FIT seems to be alarming, but on Section 5.2.3 the criticality analysis will

evaluate if all radiation induced errors are in fact critical.
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5.2 Pedestrian detection criticality evaluation

As discussed in Chapter 4, using only SDC FIT rate it is not possible to state a

priori if that HOG, Darknet and Faster RCNN, corruption outputs are critical or not, i.e.,

if detections are still fine. It is necessary to consider also BBs’ position using a statistical

metric to make sure that the errors are critical or not, in this work Precision and Recall

metrics are considered.

5.2.1 HOG

Figure 5.2 shows the values for Precision and Recall for both APU A10-7850K and

Tegra K1 SoCs, obtained comparing the corrupted output with the radiation-free output.

Most of the values for both Precision and Recall are concentrated on the top-right side

of figure 5.2. As discussed in Chapter 4, Precision is the fraction of retrieved instances

that are relevant. If Precision is lower than 100%, some detections are not relevant, i.e.

radiation leads HOG to mark as a pedestrian something it would not have marked without

radiation. Having a low Precision value is risky in the sense that the system may trigger

the vehicle to stop without apparent reason. Recall is the fraction of pedestrians that are

detected in the corrupted output. If Recall is lower than 100%, some pedestrians HOG

would normally detect are not detected because of radiation corruption. Low values for

Recall are critical as they could lead to undetected pedestrians and even to accidents if

used in self-driving cars.

In only 24% of corrupted executions for APU A10-7850K and 40% for Tegra K1

SoCs both Precision and Recall are preserved to 100%. As there may be several corrupted

executions with the same values of Precision and Recall, circles are presented with a

diameter directly proportional to the percentage of SDCs with that value of Precision and

Recall. Bigger circles imply that a higher percentage of errors have that value of Precision

and Recall. Values overlap in the single bubble for Precision = 100% and Recall = 100%

in Figure 5.2. For those executions, HOG radiation corruption is not critical, as the error

was insufficient to modify any BB in a way that refutes Equation 4.3. TJ in Equation 4.3

is an arbitrary value. Results presented here (for all tested benchmarks) are obtained with

TJ = 0.5, which derives from detection quality evaluations presented in (FAWCETT,

2006). Higher values for TJ are likely to increase the number of radiation errors identified

as critical.
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Figure 5.2: HOG Precision and Recall for APU A10-7850K and Tegra K1. Only corrupted
outputs are considered.

Figure 5.2 shows that some rare errors cause APU A10-7850K Precision and Re-

call to be lower than 20% or even close to 0%. Those events are extremely critical as

the corrupted output has a little (if no) correlation with the expected value. As shown in

Figure 5.2,most radiation corruptions for both APU A10-7850K and Tegra K1 SoCs show

both Precision and Recall higher than 90%. However, it is feasible to think that Precision

can be relaxed, Recall should be maintained at 100%. In fact, a non-relevant detection

(i.e. Precision < 100%) may at most cause an unnecessary stop while a miss-detection

(i.e. Recall < 100%) could lead to collision and eventual human life risk. Accepting val-

ues of Precision ≥ 90% but still requesting Recall = 100%, 85.1% of APU A10-7850K

and 65% of Tegra K1 corrupted executions would not be marked as critical. Under these

circumstances both APU A10-7850K and Tegra K1 SDC FIT rate would be significantly

reduced, eventually being sufficient to be compliant with ASIL-D.

As expected, experimental results represented in Figure 5.2 shows that radiation-

induced errors are more likely to affect Precision than Recall. In fact, HOG corruption

is more likely to increase the number of BB than reducing it. Additional BBs will affect

Precision more than Recall.

5.2.2 Darknet

Figures 5.3a and 5.3b show the Precision and Recall for all the observed SDCs in

the K40, Titan X, and Tegra X1 obtained comparing the radiation-corrupted output with

the expected output. Precision values are represented on the x-axis, and Recall values

are represented on the y-axis. As mentioned earlier, if Precision is lower than 100%,



49

some objects were wrongly detected by the Neural Network, while if Recall is lower than

100%, some objects were missed. Any Precision and Recall values lower than 100% are

potentially critical.

Most errors have both Precision and Recall equal to 1 in Figure 5.3a. When the

detections are calculated, all operations are made using float point numbers, so the final

output of Darknet is a group of floats that represent the object coordinates. To repre-

sent the real image coordinates, it is necessary to convert the float numbers to integers.

Converting float numbers to integer is a cast operation, which truncates the float number

based on its exponent. Since some errors happen on last decimal places, they do not do

not change precision and recall values, (i.e. precision and recall equal 1). As such, those

outputs are to be considered not critical as they do not impact detection quality. So an

error threshold was used to select only SDCs which change the float output values signif-

icantly. The considered error threshold was 5× 10−3, obtained from previous validation

tests. This value was chosen because it was a good tread-off to not considering small

errors which are only caused by a float representation.

Figure 5.3a shows that Precision and Recall values strongly depend on the archi-

tecture. Despite the fact that all architectures produced at least one SDC with precision

and recall equal to zero, Precision and Recall patterns are different on all tested devices.

From our results, it seems that the K40 and the Titan X follow a similar trend, having

most errors with Precision and Recall equal to 100% and then gradually reducing both

Precision and Recall equally, until reaching 0%. Then, some errors preserve Precision to

100% and gradually reduce Recall. It is worth noting that having Recall lower than 100%

is to be considered more critical than having Precision lower than 100%.

The Tegra X1, unlike the K40 and the Titan X, has most of its errors being either

not critical (both Precision and Recall equal to 100%) or extremely critical (Precision and

Recall equal to 0%). This is probably due to the small embedded architecture of the Tegra

X1, which requires the same hardware to perform several operations on the same layer. A

critical error is then likely to impact the detection significantly.

Figure 5.3b shows the differences on two K40 configurations: unhardened and

ECC. Comparing Figures 5.3b and 5.3a ECC hardening technique could not avoid critical

errors to happen since there are many critical errors on K40 ECC on. ECC appears to

correct only errors which are already masked by CNNs algorithms characteristics, so

even if ECC’s FIT rate is 10x smaller than ECC off version, the critical errors are not

corrected by ECC.
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It is reasonable to believe that an SDC on the first convolutional layers could di-

rectly impact Precision and recall values. The final part of Darknet execution is classi-

fication, performed by two fully connected layers. Fully connected neural networks are

known to be fault tolerant methods due to their parallel characteristics and the intrinsic

extremely low data interdependency (SEQUIN; CLAY, 1990; PROTZEL; PALUMBO;

ARRAS, 1993; TCHERNEV; MULVANEY; PHATAK, 2005). However, on CNNs, the

final fully connected layers are fed by the first convolutional layers, which could bring

corrupt data produced by an SDC, leading to a wrong classification. Section 5.3 will

explain through architectural level fault injection how the error propagation works on

Darknet. Using SASSIFI fault injection and precision and recall metrics, it is possible to

understand error propagation on Darknet better.

5.2.3 Faster RCNN

Faster RCNN gets the best result comparing all tested object detection algorithms

on K40 and Titan X. Figure 5.4a and figure 5.4b show small portions of critical errors

(i.e. errors with precision 6= 100% and recall 6= 100%). Figure 5.4a shows the results

comparing Faster RCNN on K40 within ECC and Unhardened modes. Unlike Darknet,

Faster RCNN has not many critical errors, even if it has the biggest FIT rates compared to

the other algorithms. The SDCs generated by radiation could not sufficiently disrupt GPU

operations to lead Faster RCCN to make bad predictions. So, a CNN raised by a com-

bination of Python + Caffe Framework + NVIDIA cuDNN + a complex execution flow

could potentially mask critical errors, once it has some overhead on memory operations

and more classification steps.

Pascal architecture used with cuDNN seems to be not only a good performance

option but also ideal regarding reliability. Figure 5.4b compares Faster RCNN running on

an older Kepler architecture K40 with it running in the newest NVIDIA Pascal architec-

ture Titan X. The critical errors are observed only on K40, Titan X errors are insignificant

to the final output.

Figure 5.5 shows examples of radiation-induced errors for all tested applications.

Figures 5.2.3 and 5.2.3 present a comparison between a gold detection and a radiation-

induced error obtained on HOG on APU A10-7850K, this output gets values of precision

and recall equals to 0%. Figures 5.2.3 and 5.2.3 show a comparison between a gold

detection and a critical error obtained on Darknet on K40, this error gets values of 0%
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Figure 5.3: Experimentally obtained values for precision and recall for all tested plat-
forms. Values are calculated comparing corrupted outputs with the radiation-free out-
put. 5.3a All Precision and Recall values for the tested devices Tegra X1, K40 and Titan
X. 5.3b Precision and Recall values comparing two different configurations, Unhardened
and ECC for K40.

(a) Darknet precision and recall comparison among architectures

(b) Darknet precision and recall for K40

for precision and recall. Figures 5.2.3 and 5.2.3 present a comparison between a gold

detection and a radiation-induced error obtained on Faster RCNN on K40, this error gets

100% for precision, but 80% of recall, since some objects are missing.

5.3 Fault Injection

This section describes the fault injection results made in this work. First HOG

GDB-based fault injection results are presented. This type of fault injection serves to

identify HOG critical procedures. Fault injection on Darknet is made only on open source
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Figure 5.4: Experimentally obtained values for precision and recall for K40 and Titan
X platforms. Values are calculated comparing corrupted outputs with the radiation-free
output. 5.4a Precision and Recall values comparing two different configurations, Unhard-
ened and ECC for K40. 5.4b All Precision and Recall values for the tested devices K40
and Titan X.

(a) Faster RCNN precision and recall comparison among architectures

(b) Faster RCNN precision and Recall for K40
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Figure 5.5: Example of experimentally observed errors on all tested applications.

(a) HOG expected output (b) HOG corrupted output

(c) Darknet expected output (d) Darknet corrupted output

(e) Faster RCNN expected output (f) Faster RCNN corrupted

kernels through SASSIFI. Once matrix multiplication on Darknet is done on NVIDIA

CUBLAS library, it is not possible to inject fault on those procedures, so this works is

restricted to available open source kernels.

5.3.1 HOG

Following the procedures described in Chapter 4, fault injection was done on GPU

kernels of HOG. The faults were injected at execution time only on the user available re-

sources through CUDA-GDB. While impossible to be used as a comparison with radiation

experiments, this data helps to understand the most critical portion of HOG. Over 2,000
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faults were injected on HOG using CUDA-GDB.

Figure 5.6 shows the results obtained with fault-injection on GPU kernels (listed

and detailed in Chapter 3). For each kernel of the algorithm (and for the overall HOG),

the PVF is reported, which is the percentage of injected faults that caused an observable

error. As such, the PVF is an indication of how many radiation-induced errors affect com-

putation. The higher the PVF, the more likely a radiation-induced error in the procedure

is to affect HOG execution. It is worth noting that a procedure having a huge PVF does

not mean that a procedure caused most radiation-induced failures observed during radi-

ation test. In fact, PVF does not include information about the amount or sensitivity of

resources involved in the computation, but only about their criticality.

As discussed in Section 5.2, the criticality evaluation is also made on SDCs pro-

duced by our CUDA-GDB fault injection, and we distinguish between critical and non-

critical errors. In Figure 5.6, the PVF is presented considering only injections that reduced

Precision and Recall (Precision < 100% and Recall < 100%) and that cause Precision to

be lower than 90% and Recall to be lower than 100% (Precision < 90% and Recall <

100%).

The PVF for the overall HOG algorithm is 14%, which means that only 14% of

the injections in all the GPU procedures impact HOG execution. Such a low PVF was

expected, as HOG is an image processing code. In agreement with radiation experiment

results, not all output errors impact HOG detection capability. As shown, 9% of injections

cause an output error that affects Precision and Recall (Precision < 100% and Recall <

100% in Figure 5.6) and 8% of injections reduce Precision preserving Recall (Precision

< 90% and Recall < 100% in Figure 5.6). Fault-injection confirms the trend observed

with radiation experiment. However, for fault-injection, the portion of noncritical errors

is lower than for radiation experiments. This is because our injection is performed at a

high level of abstraction.

As showed in Figure 5.6, there are some portions of HOG that, once corrupted,

are prone to generate critical SDCs. The most critical kernels in HOG are Resize, Block

normalization, and Classifier. 20% of faults injected in Resize caused an SDC. Unfortu-

nately, all the observed SDCs caused by Resize corruption are to be considered critical,

as both Precision and Recall were always lower than 85%. Interestingly, high-level fault

injection shows that all the SDCs in Resize were caused by faults injected in the color

texture variable. Injections in the other variables of Resize did not produce any effect on

HOG output. This result will be used in the next section to efficiently harden Resize and
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Figure 5.6: CUDA-GDB Fault-injection PVF for HOG and its kernels.

evaluate it on SASSIFI fault injection.

Gradient Computation shows the lowest PVF and the most significant behavior.

Results show that only 0.6% of SDCs could not satisfy the condition of having both

Precision and Recall equal to 100%, and no injection caused Precision to be lower than

90% with a Recall lower than 100% (i.e., the PVF is 0). The Gradient Computation is

a discrete derivative mask applied pixel-by-pixel to the frame. Even if a bit-flip happens

while calculating the gradient on a pixel, all neighbor pixels still have the correct value,

and little to no effect is expected in the output.

Orientation Binning is in charge of calculating the cells and their orientation. Ac-

cording to figure 5.6, Orientation Binning is very robust as its PVF is about 11%. Only

4.7% of errors injected in Orientation Binning generate SDCs that make both Precision

and Recall to be lower than 100%. Relaxing criticality to Precision < 90% and Recall <

100%, this percentage is reduced to 0.4%. Most observed errors in this step are caused by

injections that affect the cell dimensions computation, while errors in the weighted vote

and the gradient calculation hardly affected the output.

The most critical GPU kernel is Block normalization. Corruption in this kernel

results in a faulty grouping of cells or a wrong contrast normalization. The subsequent

phases of HOG will then work on wrongly grouped or wrongly normalized blocks, which

leads to misdetection. Block Normalization is then to be considered as a critical proce-

dure. As shown in Figure 5.6, the PVF of Block Normalization is almost the same even

if criticality is considered.

Classifier is a complex kernel. It is in charge of identifying pedestrians among ob-

jects. Classifier’s PVF is 17%, and most of the SDCs produced by injection on Classifier

are not critical. In fact, the PVF for Precision < 90% and Recall < 100% is only 0.9%.
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However, some errors show an extremely low Precision (lower than 22%) and should then

be carefully treated.

5.3.1.1 HOG Reliability

The experimental results reported here confirmed that HOG, being a filter and pro-

cessing images, is more prone to experience Crashes than SDCs. A Crash is an undesired

event in safety-critical systems but, being detectable with a watchdog, it can also be easily

handled. The only constraint for Crashes hardening in a real-time system, like pedestrian

detection in automotive applications, is to guarantee that deadlines are still met. In other

words, even if a Crash occurs it is essential for HOG to become operative in time to

maintain FTTI1 sufficiently low to ensure safety.

SDCs, by their nature, are very hard to be detected and could be more harmful

than Crashes. In the automotive market, full hardware redundancy is to be considered too

expensive. As HOG is to be included in a real-time system, full software redundancy is

also to be considered impractical due to its large overhead (MITRA, 2010). Based on Sec-

tion 5.3.1 analysis, which goes through GPU fault injection, it is possible to identify the

critical HOG procedures to be hardened, improving HOG’s reliability significantly and

in an efficient way. There are several ways to harden a code or portions of a code (MI-

TRA, 2010). The scope of this section is to identify where hardening strategies should be

applied, not to propose a specific hardening solution. However, to give a reference and

evaluate how the fault-injection results impact the hardening solution overhead, duplica-

tion with comparison was applied, as it has already been demonstrated to detect more

than 90% of SDCs in GPUs (OLIVEIRA et al., 2016). ECC reduces about one order of

magnitude the SDCs rate of GPUs (OLIVEIRA et al., 2016) and, as this section shows, if

available it could significantly reduce duplication overhead. In fact, when ECC is present

there is no need to duplicate and check memory values but only operations and compu-

tations. In the following discussion, the overhead of duplication applied to critical HOG

procedures is evaluated with or without ECC available. Table 5.1 reports the overhead

imposed to HOG by the hardening (by duplication) of each phase. The overhead is higher

when ECC is not present because of memory checks, which are very time-consuming.

On the fault-injection campaign, Resize is identified as a critical procedure. How-

ever, the observed errors were caused only by corruptions in the color parameters vari-

1The Fault Tolerant Time Interval (FTTI), defined (but not quantified) in the ISO26262 as the time
between the fault occurrence and the action execution
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Table 5.1: Execution time and selective duplication overheads for each HOG phase. Hard-
ening values are the overhead imposed by duplication applied only to one HOG phase in
relation to the unhardened version total execution time. The - symbol indicates that no
hardening was needed.

Phase
Execution time

percentage
Hardening overhead

without ECC
Hardening overhead

with ECC

Resize 5.56% 0% 0%
Gradient Computation 9.78% - -
Orientation Binning 47.81% - -
Block Normalization 14.43% 23.2% 3.2%
Classifier 22.42% 49.6% 8.6%

Total 100% 72.8% 11.8%

ables. Resize takes only 5.56% of overall execution time. It is not necessary to duplicate

the whole procedure, but only the color texture variable. The duplication of this single

variable introduces a negligible overhead in the overall HOG execution time yet signifi-

cantly improves its reliability.

Gradient Computation and Orientation binning represents almost 9.78% and

47.81% of overall execution time, respectively. Since these two kernels did not produce

critical errors, their hardening is likely not to improve reliability significantly. Based on

Section 5.3.1 analysis and hardening efforts, it is not recommended hardening Gradient

Computation and Orientation binning. Considering that these two steps are responsible

for almost 60% of all HOG processing time, the overhead introduced by a fault tolerance

technique in Gradient Computation and Orientation binning would unnecessary increase

HOG execution time and power consumption. In particular, the duplication of matrices

used both as input and output in Gradient Computation and Orientation binning would be

extremely time-consuming, resulting in a 40.5% (5.4% with ECC) and 71% (12% with

ECC) overhead, respectively. These values are not reported in Table 5.1 as, consider-

ing the overheads and the fact that these kernels produced no critical SDCs during our

fault-injection campaign, it is prudent that duplication should not be applied.

Block Normalization has been identified to be the most critical kernel. Based on

fault-injection campaign and hardening efforts, hardening on Block Normalization would

be critical to HOG. Since this step takes only 14.43% of the overall execution time and

almost all produced SDCS are critical, hardening is mandatory. An overhead of 23.2%

was observed in HOG execution time when duplicating Block Normalization with no

ECC protection. If ECC is available, this value drops to a much lower 3.2% as memory

elements do not need to be duplicated and checked.
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The last step of HOG execution is the Classifier phase. This phase got, in general,

acceptable values of Precision and Recall. However, some outliers could significantly (but

rarely) impact HOG reliability. Other classifiers can be used instead of the SVM-based

one that was considered. It is expected from the classifier to be intrinsically a critical

portion of HOG, as it decides whether an object detected by HOG is a pedestrian or not.

It is then reasonable to believe that hardening the classifier is essential to ensure high

reliability. Duplicating this kernel yields an overhead of 49.6% in the absence of ECC is

assumed, and 8.6% if ECC is present.

A final HOG hardened version of the algorithm runs 72.8% slower if no ECC is

present. It is worth noting that this overhead is considerably lower than the average slow-

down imposed by a full algorithm duplication, which is about 150% (OLIVEIRA et al.,

2016). As expected, ECC could significantly improve the reliability of HOG reducing

the overhead imposed by duplication. In fact, as reported in Table 5.1, duplication imple-

mented on an ECC protected device will impose an overhead of only 11.8% to HOG.

To validate the proposed hardening strategy a SASSIFI fault injection campaign

was performed. As already said, SASSIFI injects fault at microinstructions level, so the

fault injection models are different if compared to CUDA-GDB fault injection. While

validating the hardening strategy through radiation experiments would be ideal, SASSIFI

can still indicate if the GDB-based hardening is efficient to correct errors generated by a

lower level of abstraction. Figure 5.7 shows the results for two HOG versions: Instruction

redundancy (i.e. ECC on) and Smart Redundancy (i.e. ECC off). HOG AVF obtained

with SASSIFI is extremely low, which is even more accurate than CUDA-GDB fault in-

jection if comparing with radiation test results (see Section 5.1.1). INST and RF SASSIFI

injection sites were used, but only INST injection site produced SDCs on HOG. For each

version, more than 2,000 faults were injected for each error injection site resulting in a

total of more than 12,000 injections.

Figure 5.7 shows that Instruction and Smart redundancy versions detected 70%

and 41% of overall SDCs respectively, while 100% of critical errors were detected. How-

ever, fault injection is not accurate as radiation-induced tests, to obtain more reliable re-

sults it is necessary to expose the hardened versions of HOG to a radiation environment.

Testing hardened versions of HOG will be done as a future work.
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Figure 5.7: Fault-injection and AVF for HOG through SASSIFI. Three versions of HOG
were tested: the same of radiation test (i.e. Unhardened), Instruction redundancy only
(i.e. ECC on), and Full Redundancy (i.e. ECC off)

5.3.2 Darknet

Figure 5.8 shows the results of SASSIFI fault injection on Darknet open source

kernels. It is important to emphasize that the accessible kernels represent only 13% of

Darknet overall processing time, while GEMM operations consume about 67% of Dark-

net overall execution time. So a fault injection campaign on open source kernels will

collaborate to understand if they could produce critical errors, even if they are not the

time-consuming kernels of Darknet.

Overall AVF (figure 5.8) for INST injection site is 41%, and for for RF injection

site is 9%. Relaxing criticality to Precision < 90% and Recall < 100%, this percentage

is reduced to less than 10% for INST and 1% for RF. Despite max pool and im2col, the

other kernels are simple functions that do not stress GPU resources, so they do not have a

high AVF.

Max pool layer is very reliable by its concept, once it divides a feature map into

blocks and selects the biggest element of each block. So if an error corrupts a smaller

element, it will not be select, so that the error will be masked.

Im2col is a data rearrangement operation which makes it possible to use matrix

multiplication on CNNs, however, even if a variable is corrupted on im2col, only one

feature map will be with a wrong value. So the others feature maps will still be okay,

giving to CNN, in the most cases, the ability to correct predict the detection.

Based on the SASSIFI fault injection and the Darknet characteristics the obvious

suggestion for an efficient hardening strategy is for GEMM functions. The next section a

well know hardening strategy is proposed for CNNs, based on Darknet results.
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Figure 5.8: Fault-injection and AVF for Darknet and its open source kernels.

5.3.2.1 CNNs Reliability

CNNs, in general, make an intensive use of GEMM (i.e. 67% of overall process-

ing time), and GEMM is a sensible kernel in GPUs. Actually, most radiation-induced

errors in GEMM have been demonstrated to impact multiple locations in the corrupted

output (RECH et al., 2013a). Multiple errors on the first layers of a neural network could

significantly reduce the reliability of the system, as the errors could propagate to the fol-

lowing layers.

The basic idea of ABFT strategy for neural networks is to harden the matrix multi-

plication kernels of Darknet using the ABFT for GPUs, it has already have been proposed

in (RECH et al., 2013a). It is an extension of Huang and Abraham idea (HUANG; ABRA-

HAM, 1984), which is based on Freivalds’ result checking approach (FREIVALDS,

1979). Input matrices A and B are coded before computation, adding column and row

checksum vectors by summing all the elements in the correspondent column or row.

The result of the multiplication of the expanded matrices is a fully-checksum ma-

trix M , where the nth row and the nth column contain the column (Mc) and row (Mr)

checksum vectors of M , respectively (FREIVALDS, 1979). When the multiplication is

finished, M column and row checksum vectors are re-calculated summing the first n− 1

columns and n − 1 rows of M, resulting on M ′
c and M ′

r, respectively. Output verifica-

tion is done by comparing the checksum vectors from the multiplication and the newly

computed ones.

If a mismatch is detected between Mr[i] and M ′
r[i], it means that at least one error

is present in the ith row of M , and respectively for columns. If M [i, j] is identified as the

only error in M , it can be corrected quickly using the row (or column) checksum vectors
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following Equation 5.1 (HUANG; ABRAHAM, 1984).

Mcorrect[i, j] = M [i, j]− (M ′
r[i]−Mr[i]) (5.1)

On a GPU, the operations required to compute the checksums and detect errors can

be done in O(n), while error correction takes constant time (RECH et al., 2013a). The

technique proposed by Huang and Abraham is only capable of correcting single output

errors (HUANG; ABRAHAM, 1984), which has been experimentally demonstrated to

correspond to less than 43% of the cases (RECH et al., 2013a). Thanks to experimental

radiation data, the ABFT strategy was extended to correct multiple errors in the same

row or column of M in constant time and randomly distributed errors in O(er × ec),

where er and ec are the number of mismatches between M row and column checksums,

respectively (details in (RECH et al., 2013a)).



62

6 CONCLUSIONS

In this work, the reliability of three object detection frameworks was evaluated.

An experimental evaluation of representative object detection algorithms was proposed,

through both fault-injection and radiation tests. Besides measuring FIT rates, the critical-

ity of SDCs and their distribution at the output were investigated. The first experimental

evaluation of HOG-based pedestrian detection reliability was proposed. Using metrics

derived from the image processing community the behaviors of HOG executed on em-

bedded GPUs exposed to atmospheric-like neutrons were investigated.

As expected, HOG is pretty robust against SDC, while it experiences many

Crashes. This analysis helps to identify those errors that are critical for automotive ap-

plications, which are a small fraction of the total. While being rare, those errors could

lead to accidents and thus should be carefully considered. Hight level fault-injection re-

sults highlight the most critical procedures for HOG. Those procedures are exactly the

ones that should be hardened, eventually with duplications. Additionally, a microinstruc-

tions based fault injection was done to demonstrating the hardening efficiency. However,

Classify hardening have shown to be useless on SASSIFI fault injection, on the contrary,

Block normalization hardening was able to detect all critical errors.

In this work, the first experimental evaluation of Darknet and Faster RCNN re-

liability was performed. The behavior of a CNN on GPUs exposed to atmospheric-like

neutrons was investigated. As most Neural Networks, Darknet and Faster RCNN are

pretty robust against SDCs, while they experience a nonnegligible crash rate. This anal-

ysis helped to identify those errors that are critical to a real system application, which

is a small fraction of the total. Aiming to harden the CNNs a further study at Darknet

source code was done. Results show that only a small portion of Darknet is not based on

matrix multiplication procedures, so hardening those methods would be worthless since

their critical SDC rate was less than 10%. Based on radiation results and SASSIFI fault

injection, a hardening method was proposed for Darknet, i.e., for all neural network that

has a core based on matrix multiplication.

6.1 Future works

In the future, a more generic hardening strategy will be designed for object de-

tection algorithms. Considering a frame i and a frame i − 1, the precision and recall the
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difference between then will not be zero in a fault-free execution. However, if a SDC hap-

pens on the frame i and the precision or recall values get nearly zero, probably a SDC was

detected. A possible generic hardening strategy will be a real time Precision and Recall

measurement, which calculates the differences between the image detections.

Recently, YOLO got an upgrade in various aspects, which could achieve 40 frames

per second and 78% of average accuracy. Such type of object detection must be evaluated

under radiation tests and fault injection since it is the new state of object detection (RED-

MON; FARHADI, 2016).

Other future work is to develop an ABFT based hardening for YOLO. Actually, it

is already being implemented. To demonstrate ABFT efficiency, it will be evaluated by a

radiation-induced test.

The autonomous drive cars are complex AI systems, that is, to make a car driver

without human help it is necessary to combine different algorithms, such as Holistic Path

Planning, Sign Detection, and Free space detection. So as a future work, other parts of

autonomous drive reliability will be investigated.
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